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PREFACE

This book is the substance of lectures I have given during the past

six years to the Natural Philosophy Class A in the University of

Glasgow.

It is intended primarily as a class-book for mathematical students

and as an introduction to the advanced treatises dealing with the

subjects of the different chapters, but since the analysis is kept as

simple as possible, I hope it may be useful for chemists and others

who wish to learn the principles of these subjects. It is complementary

to the text books in dynamics commonly used by junior honours

classes.

A knowledge of the calculus and a good knowledge of elementary

dynamics and physics is presupposed on the part of the student.

A large proportion of the examples has been taken from examination

papers set at Glasgow by Prof. A. Gray, LL.D., F.R.S., to whom

I must also express my indebtedness for many valuable suggestions.

The proofs have been read with great care and thoroughness by

Dr. John M'Whan of the Mathematical Department.

R. A. HOUSTOUN.
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INTRODUCTION TO MATHEMATICAL PHYSICS.

CHAPTER I.

ATTBACTION.

§ 1. According to Newton's law of gravitation every particle of

matter attracts every other particle with a force proportional to the

product of their masses and inversely proportional to the square of

the distance between them. Thus if m and ml be the masses of two
particles and d the distance between them, F the attraction between
them is given by

form!

d*
'

where k is the gravitational constant. Newton was at first led to

this law by astronomical considerations; he found that it completely

explained the motions of the planets. Afterwards, by calculating the

force necessary to retain the moon in her orbit, he found that it was
this same force that operated between the planets that caused a stone

to fall to the earth, and so he was led to postulate the law for all

matter. Since Newton's time the law has been repeatedly verified

for two bodies on the surface of the earth by such experiments as the

Cavendish experiment, and at the same time the value of k has been

determined. If F, m, m! and d are measured in dynes, grammes and
centimetres, the numerical value of k, according to Poynting, is

6-6984 x 10" 8
. Experiments have been made to determine whether

the attraction on a crystal depends on the orientation of its axis or

whether k varies with the temperature of the bodies, but all such

experiments have led to negative results.

Two point charges of electricity act on one another with a force

varying as the product of the charges and inversely as the square of

the distance between them. Also, if we have two long thin magnets,

the poles of which may be considered to be concentrated in points

at the ends, there is a force between each pair of poles proportional

to the product of the pole strengths and inversely proportional to the

square of their distance apart. The attraction between electric charges

and between magnetic poles is thus analytically the same as that be-

tween gravitating particles. Consequently any result which holds for

H.p. A



2 ATTRACTION

gravitational attraction can also be interpreted in terms of electrostatic

charges and magnetic poles. The unit quantity of electricity on the

electrostatic system and the unit quantity of magnetism on the electro-

magnetic system are defined so that in the equations analogous to

_ kmm!

k, the constant of proportionality, is unity, when the medium in

question is air. Thus, in transferring a result from gravitational

attraction to electrostatics, if the medium is air, the constant k must

be put equal to unity.*

One fundamental difference there is between gravitational attraction

and the action between electric charges and between magnetic poles,

namely, as will be explained in Chapter V., that the latter is propagated

with a finite velocity from point to point and the medium transmitting

it is in a state of stress. If we have a point charge of electricity, the

field intensity at a point P, distant r from it, is given by e/r2 - If by
any possibility the point charge were suddenly doubled in magnitude,

then the field intensity would not double in value at the same instant,

but the increase would take a finite interval to travel out to P. But
for aught we yet know, in the analogous case of gravitational attraction

the intensity would double everywhere instantaneously throughout

the whole field.

We shall now calculate the force of attraction, or more shortly the

attraction, in some particular cases.

§ 2. Uniform rod at an external point.

Let AB be the rod, P the external point. We suppose that a particle

of unit mass is placed at P and that we are required to calculate the

attraction of the rod on this particle.

The thickness of the rod is supposed

to be very small in comparison with

its length.

Let A. be the linear density of the

rod, that is, its mass per unit length.

Let PD be drawn from the point per-

pendicular to the rod and let p be the

length of PD. With P as centre and

p as radius draw an arc of a circle.

Let M N be an element of the rod and let PM and PN meet the arc in

m and n.

Then the attraction of M N at P is

&A.MN

PM 2 '

Also, area P1V1N : area Pmn ::p. M N :p . mn.

*For the case of other media see p. 142.
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But area PMN : area Pmn : : PM 2
: Pm2

,
since, of course, the angle MPN

is small. Therefore

WIN mn mn
MN :mn:: PM 2

: Pm2 or

The attraction of MN at P is thus

PM 2 Pm2 f

If we suppose the arc ah uniformly loaded with matter so that its

linear density is the same as that of the rod, then its resultant attraction

is equal to the resultant attraction of the rod.

The direction of the resultant attraction of the arc must bisect the"

angle aPb. Let LaPb = 2a. Then the attraction due to an element of

the arc of length p d6 at an angular distance 6 from the direction of the

resultant attraction is , . ,.
kkdd

P
The component of this in the direction of the resultant is

kk dO cos

P
'

Hence the resultant attraction of the arc, i.e. of the rod, is given by

kkC+ «

cos 8d6 =
2kk sin a

Pj-a" P

§ 3. Uniform circular disc at a point on its axis.

Let a be the radius of the disc and let P be situated a height c

above its plane. Let the disc be very thin and let k be its surface

density, i.e. the mass of the disc per sq. cm.

of surface. Describe with the centre C two
adjacent concentric circles, one with radius

CA = r and the other with radius CB = r + dr.

Then the mass of the ring is 2ir\rdr.

Every particle in the ring is at a distance

^/(c2 + r2) from P ; also the resultant attrac-

tion of the ring is along the axis of the

disc. To obtain the component in this

direction of the attraction of every particle,

CP
we have to multiply that attraction by

resultant attraction of the ring is equal to

PA
or Hence the

(c
2 + r2)*

2irk\rdr c Snickerdr

(c2 + r2) (c
2 + r*f (c2 + r*f

The resultant attraction of the whole disc is

2-n-kkc

1
• dr

{tf + rrf

2irkkc.
(l 1

(e- + a2
)

i
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If we suppose a to become infinite, we obtain for the attraction of

an infinite lamina on an external particle the expression iirkk, which

is independent of the distance of the attracted particle from the

lamina.

§ 4. Two thin uniform rods AB and CD have lengths 2a and 2c, and

their linear densities are respectively A and

A'. The midpoint E of AB, and the midpoint

F of CD, are a distance b apart, and AB,

CD and EF are mutually at right angles

to one another. Determine the attraction

between the two rods.

Consider an element of CD of length dx

at the point P, distant x from F. The mass

of this element is k'dx, and the attraction

exerted on it by the rod AB is, by § 2,

IkkXdxsmkPE 'Ikkk'dx a

PE v/(6
2 + s;

2
) s/(a

2 + S2 + z2 )'

since AEP is a right angle and AP2 = AE2 + EF2 4- FP2
. The direction of

the attraction on the element is along PE. By symmetry the resultant

attraction of AB on CD must be along EF ; hence we need only

consider the component in this direction of fthe attraction on the

element. To obtain the component we have to multiply the resultant

attraction on dx by cos PEF or —„ — . This gives us3 v^ + x2
)

s

2kkk'ab dx

(&
2 + «2

) v/(a
2 + &2 + a;

2 )'

The resultant attraction between the rods must therefore be

I" Ikkk'abdx „,., ,p dx
K do

|

Joi:
or ikkk't

,(6
2 + a;V(a2 + 62 + a:

2
) i (b

,2 + x2)J(ai + b2 + xi )'

To evaluate the integral, assume x = b tan 0, so that

dx = b sec2 dd6, 62 + x 2 = V sec2
0, J(a* + J2 + x2)=7(a2 + 62 sec2 e).

This gives for the resultant attraction

ikXX'a I

Jo

l dd = 4UAfJo
tan-i;

at'Z (sin 9)

J(a'z 4- b2 - a2 sin2

= ikkk'l sin~'( °;'nw,
,

,

V(«2 + &2)/Jo

\
ten"l

6

= 4/cAA.' sin
-1 ar.

V{(a2 + 6 2
)(6

2 + c
2)}'
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§ 5. Homogeneous spherical shell at an external point.

A thin spherical shell is a solid bounded by two concentric spheres
of almost equal radius.

Let C be the centre of the shell, a its radius and X its mass per
unit area of external surface. It is required to find the force with
which the shell would attract a particle of unit mass situated at P.

Let CP = e.

Consider the ring cut off from the shell by the rotation about CP of
the angles PCM and PCN, which are respectively equal to 6 and + dd.
Its radius is a sin 6

; N M = a dO.

Hence its mass is 27m2
A. sin Odd.

From considerations of symmetry,
the resultant attraction of the ring
must be along PC, but the attrac-

tion of each individual particle in

it is in the straight line towards
that particle. The particles in the
ring are all at the same distance
from P, namely PM. In order to

obtain the component of their attractions in the direction CP, we
multiply by cos CPM or PQ/PM. The resultant attraction of the ring
is therefore

Zira?k\sm.6dd PQ
P~M 2

~~
~ PM'

Let us now change the independent variable to y, y being equal
to PM. We have

y
v = PM 2 = C2 + aa _ 2ae cos 6.

Fin. 4.

Therefore y dy = ac sin 6 dO.

Also PQ = c - a cos = ^ ( 2c
2 - lac cos B) = ^ (f + c2 a2

).

On substituting for 6, the resultant attraction of the ring becomes

irakX
1 + dy.

To obtain the attraction of the whole shell, we have to integrate

this between the limits y = c-a and y = c + a. The result is

TrakXalc\ Cc+a

<-' Jc-a
l +—2-) dy--

'ikX

y

2_ a2N c+o

V /c-a

4ira2kX h mass of shell

Therefore the shell attracts a particle at an external point as if its

whole mass were collected at its centre.
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§ 6. Homogeneous spherical shell at an internal point.

We proceed as in § 5, but the limits of y are a - c and a + c. Hence

the attraction of the whole shell is

The resultant attraction of the shell at an internal point is therefore

zero.

§ 7. Homogeneous spherical shell at an internal point. Otherwise.

Before entering on this alternative proof it is necessary to define

a solid angle. Let S be a surface which is not necessarily plane. In

order to measure the solid angle subtended at the point P by the

surface S, we draw a sphere of unit radius with its centre at P. Let

straight lines be drawn from P to every point in the circumference of S.

Then these straight lines will be the generators of a cone, and this cone

will intercept a certain area on the surface of the sphere. The solid

angle subtended by the surface S at P is numerically equal to the area

intercepted on the sphere of unit radius. Thus, if the surface S be

closed and P be an internal point, the solid angle is 4;r; if P be an

external point, it is zero, for the tangents drawn from P will touch S

in points lying on a curve which divides S into two parts Sj, S
2 , and

the area subtended by the one part Sj of the surface on the sphere of

unit radius is numerically equal to and of opposite sign from the area

subtended by the other part S
2

.

Let fig. 6 represent the shell and let P be the internal point.

With P as vertex draw a cone of small vertical solid angle dw. Let

PQ and PR, the distances of P from the shell

measured along the axis of the cone, be r
x

and r
2 ; dta is so small that it is not necessary

'—^ P to specify exactly what is meant by the axis of

the cone. Let dS
x
and dS

2
be respectively the

TV
__

areas intercepted by the cone on the surface of

the shell at Q and R.

Now consider fig. 7. In it MT represents the element of surface dSv
The vertex of the cone is so far away that in the neighbourhood of

dS
x
the cone may be regarded as a cylinder. With P as centre and PQ
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as radius describe a sphere, and let NV be the portion of the area of
this sphere intercepted by the cone. Then NV = r^ du>. But from fig. 6,
if C be the centre of the sphere and 6 be the angle RQC, it is obvious
that 6 is the angle between the normals to NV and MT. Thus

NV=MTcos0, r*dm = d&,vos6 or dS,=^%
1 cos

Similarly, dS
2
=^.

' COS0

The mass of the portion of the shell intercepted by the cone at Q is

Afj2 doi/cos 6. The attraction it exerts at P is in the direction PQ and

of amount —ll—"' cos
, which is equal to kXdw/cos 6. Similarly the

r
i

attraction exerted by the portion intercepted at R is in the opposite
direction and of the same amount. The resultant attraction of the
ends of the cones is therefore zero. But the whole shell may be
divided up in this way into an infinite number of cones. .Hence the
resultant attraction of the whole shell is zero.

§ 8. Elliptic homoeoid. Internal point.

_

Suppose that in the case of the previous example all lengths in the
direction of the a-axis are increased a times, all lengths in the direction
of the y-axis b times and all lengths

in the direction of the «-axis c times. ,,^ ^^.
Then the inner and outer surfaces of oy/^., ^ rrrr^XR
the shell will become similar, con- ^(1 ) J
centric and similarly situated ellipsoids, \\. >/
as shown in fig. 8. The cone will still ^^*^w_ ^̂ Z-^
be a cone and the masses intercepted

by its ends remain unaltered. The
ratio of QP to PR also remains the same. Hence the attractions

of the ends at Q and R still balance. A solid bounded by two similar,

concentric, similarly situated ellipsoids of nearly equal magnitude is

called a thin elliptic homoeoid. By dividing up its surface by an
infinite number of cones it can thus be shown that the attraction it

exerts at an internal point is zero.

The converse of this theorem is true and is of importance in electro-

statics. The electric intensity at any point inside a charged conductor

is zero. The charge is situated on the outside. Hence, if the surface

of the conductor be an ellipsoid, the density of the charge is given by
the above theorem, that is, it is proportional to the thickness at the

point of the thin elliptic homoeoid which has the ellipsoid as one of its

surfaces.

§ 9. Attraction at its pole of a homogeneous solid oblate spheroid of

small eccentricity.

Let 2b be the length of the minor axis and 2a that of the major axis

of the generating ellipse. The spheroid may be supposed made up of
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a concentric sphere, the radius of which is b, and an exterior shell.

The attractions of these portions will be calculated separately.

Take the axis of revolution as the axis of y and the centre of the

sphere as the origin of coordinates, and let a plane be drawn perpen-

dicular to the axis of revolution at a distance y from the origin to cut

the sphere and spheroid in two concentric circles, as in fig. 9. The

Pis. 9.

area of the inner circle is given by ttUQ? = ir (b2 -y2
). The area of the

outer circle is given by :rNM 2
, which equals ira2 ( 1 -—

2 J
since M is a

point on the spheroid. The area of the ring is therefore

a2
y
2

"J2
"' S2 + 2/

2
)
= 7r(a2 -J2)(l_|).

Let another plane be drawn parallel to the first at a distance dy
from it ; then the mass of the element of the shell comprised between
the two planes is

where p is the density of the spheroid.

The distance of every particle in this element from P is given by
PQ, since QM is small. To find the component of the attraction in the
direction N P we multiply by PN/PQ.

PN
PQS

(i-y) (b-y)

{(J_ y)
2 +:,2p { (6

_y)S + 6»_ yg }* (36,fr(J_y)+

The attraction of the whole shell at P is therefore

'-JW
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In order to integrate this put b-y = z. Then the integral becomes

TrkP (a?-V*) p» i | _-n-kp(aS-V) 2^*_87r/V (a2 -i2
)

2i 6t J
(

_)

2*6*
~^~ Wh

If we suppose a = 6(1 + <•), where € is small, we have a2 -b2 = 262e.

Hence the resultant attraction of the shell is

1 QTrkpeb

~15

By § 5 the attraction of the sphere is iirlcpb ; therefore the attraction

of the spheroid is ^kPb(l+U).

EXAMPLES.

1. If a particle be attracted by three uniform rods, joined together at

their ends so as to form a triangle, it will be in equilibrium if placed at the
centre of the circle inscribed in the triangle.

2. Prove that the resultant attraction of a very long rectangular plate

on a particle of unit mass in its plane, in line with one end of the plate,

and at distances a, a' from its long edges, is in a line inclined at 45° to

these edges, and is of amount \/2far log (a'ja), where o- is the uniform
surface density of the plate.

3. Show that the resultant attraction of a uniform right circular cylinder

on a particle situated on its axis outside the cylinder at a distance c from its

end is
27r/(;p[A- N/{(fl+ A)2+6 2

}+ N/{c
2 + 62

}],

where h, b and p are respectively the height, radius and density of the

cylinder.

4. Show that the resultant attraction of a uniform right circular cone on
a particle at its vertex is ^{l - cos a)h,

where h, a, p are respectively the height, semi-vertical angle and density of

the cone.

5. Knd the attraction of a segment of a paraboloid of revolution, bounded

by a plane perpendicular to its axis, on a particle at the focus.

Result, iirhpa log— a
, where x is the distance of the bounding plane from

the vertex.

6. Find an exact expression for the change in g produced by descending a

depth h below the earth's surface, on the supposition that the density of the

whole spherical surface stratum is the same, it say, and derive an approxi-

mate expression for use at a moderate depth.

In the Harton Colliery experiment /i=1260 feet; taking the surface

density as 2-5 and the mean density as 5 P

6, find the number of beats at the

bottom of the mine made in 24 hours by a pendulum which beats seconds at

the surface. (Cf. Gray's Physics, p. 526.)

7. Suppose that there is a hollow tube through the earth along one of its

diameters and that a particle is dropped down it. How long will it take

to reach the other side ? (42 minutes.)
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§ 1 0. Theorem of surface integral of normal force.

Let a closed surface be drawn in a region of space containing gravi-

tating matter. Let F be the force on a unit particle at an element dS

of this surface, measured positive outwards, and let 8 be the angle which

F makes with the outward drawn normal to dS. Then 1 F cos 8 dS is

the surface integral of normal force. The theorem to be proved may-

be enunciated as follows.

The surface integral of normal force taken over a closed surface in a

field of force due to matter attracting according to the inverse square

of the distance is equal to - 4^ times the

quantity of matter within the surface,

multiplied by the gravitation constant.

First of all suppose that there is a' single

particle of mass m in the field and that it

is inside the surface at P. With P as

vertex draw a cone of solid angle dui to

intercept elements of the surface dSv dS
2

.

Let d<x> be small, let rfSp dS
2
He respectively

distant r
x
and r

3
from P and let the axis of

the cone make angles 8
t
and 8

2
respectively

Fm. io. with the normals to rfSj and dS
2

. The
vertical angle of the cone is taken so

small that all its generating lines may be considered parallel. Then, as

in § 7, dS
t
cos 8

1
= r

x
2 da, dS

2
cos 8

2
= r

2

2 da. The normal force at dS
1

is

rCTYL TcTfl

- -^cosflj, and at dS
2

is
2
cos#„. Multiplying the normal force

at each end by the element of area there, we obtain

km „ r, 2 dm km „ r9
2 d<o „, ,

1 cos 8. J—, = cos 8„ l
, = - 2km dw.

r-f ' cos 8
l

iy i cos
2

On dividing up the surface into elements by an infinite number of

cones with their vertices at P, it is clear that the sum of the effects

of the different elements, the surface integral of normal force, is

- iwkni.

If the particle is outside the surface, the cone cuts the latter in two
elements which are both on the same side of the vertex. The direction

of F is the same on each element, but the direction of the normal is

different; hence the products have opposite signs and the two ends

cancel one another. For an external point the surface integral of

normal force is therefore zero.

Suppose now that the surface has a fold in it so that the cone cuts it

more than twice (cf. fig. 11). Since the surface is closed the cone must
cut it an even number of times. If the point is an internal one, it is

obvious that the effects of the successive elements thus formed will

annul one another except in the case of two elements, while if the
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point is an external one, the annulment is complete. Thus the theorem
still holds if the cone cuts the surface more than twice.

Suppose that instead of one we have several internal particles of

masses mlt m2 , ... m„, then the theorem will hold for each of them
separately. Therefore

I (Fj cos 6
1
+ F

2
cos 6

2
. . . F„ cos On)dS = - iTik(m

x
+ m,...+ m.n),

Fj, F
2 , ... F„ being the forces at dS due

respectively to m
1; m

2 , ... mn and 6
l ,

6
2 , ... 6„ being the angles which the

normal to dS makes respectively with the

directions of Pu F
2 , ... F„. For

F
1
cos 9

1
+ F

2
cos

2
. . . + F„ cos 6n

we may write F cos 0, where F is the
resultant of Flt F

2 , ... F„ and 6 the angle
which it makes with the direction of the
normal to dS, and for mj + m

2
. . . + mn we

may write M the total mass inside the Fro. ii.

surface.

Then IF cos dS = - iirkM,

and the theorem is proved.

We shall now make some applications of this theorem.

§11. Solid sphere, the density of which is a function of the distance

from the centre.

If the sphere be divided up into a system of concentric shells of

small thickness, the density of each shell is constant. This includes

as a particular case the homogeneous sphere. Let M be the total

mass of the sphere and a its radius. It is required to determine the

attraction at an external point P distant r from the centre.

Through P draw a sphere of radius r concentric with the given

sphere and let F be the force on a unit particle at P, measured positive

outwards. Then, from considerations of symmetry, F has the same
magnitude at all points on the surface of the sphere of radius r, and
its direction is everywhere normal to the surface of this sphere. The
surface integral of normal force taken over the sphere of radius r is

therefore 4?rr2
F. The quantity of matter inside this sphere is M.

Hence ^M
47rr2F= -47T&M and F=

2
-

Take now the case of a homogeneous spherical shell, and let P be

distant r from the centre of the shell, r being not greater than the

radius of the inner surface of the shell. Let F be the force, if any,

exerted by the shell on a unit particle at P. Through P draw a sphere
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of radius r concentric with the shell. Then, from considerations of

symmetry, F must be normal to this sphere, and have the same value

everywhere on its surface. The surface integral of normal force taken
over the sphere of radius r is therefore iwr^F. But the quantity -of

matter inside the sphere of radius r is zero. Therefore F = ; that

is, the attraction at any point inside the shell is zero.

Let us now return to the solid sphere of radius a, the density of which
is a function of the distance from the centre, and let P be an internal

point distant r from the centre of the sphere. In order to determine
the attraction of the sphere at P draw through P a sphere of radius r,

concentric with the given sphere. This sphere divides the given sphere
into two portions, for the inner of which P is an external point and for

the outer of which P is an internal point. The matter contained

between the spheres of radius r and a consequently exerts no action on
a particle at P, and the matter contained inside the sphere of radius r

acts at P as if it were all concentrated at the centre.

§ 12. Infinitely long right circular cylinder, the density being a
function of the distance from the axis.

This of course includes the case of the cylinder having a cylindrical

hollow core.

By symmetry the attraction is the same at all points on a cylinder

coaxal with the given cylinder and is directed normally inwards. Let
such a cylinder of radius r be cut by two planes perpendicular to the

axis at unit distance apart and let us take the surface integral of

normal force over the surface of the cylinder of unit length thus

enclosed. On the ends of this cylinder, F is tangential ; consequently

the ends contribute no part to the surface integral. The area of the

convex surface is lirr. Hence, on applying the theorem,

2&M
27rrF= -4irftlVI and F= --—

r

M is the mass per unit length of the given cylinder included within

the coaxal cylinder of radius r ; r can, of course, be either greater or

less than the radius of the given cylinder.

§ 13. Uniform lamina bounded by two parallel planes and extending

to an infinite distance in all directions.

By symmetry the attraction will be normal to the lamina, and its

magnitude will be the same at all points equidistant from it, whether
on the same side or on opposite sides of it.

Consider a right circular cylinder, the ends of which are parallel to

the surface of the lamina and at equal distances on opposite sides of it.

Let A be the area of the ends and F the outward force exerted by
the lamina on a unit particle situated anywhere on either end. Let M
be the mass of the lamina per unit area of surface. The total mass
contained inside the cylinder is thus AM. The attraction on the
convex surface of the cylinder is tangential to the latter ; hence the
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convex surface contributes nothing to the surface integral of normal
force. Then

2AF= -iirkAM or F=-2mfcM.

Thus F is independent of the distance from the lamina.

§ 14. Potential.

Let m be the mass of a particle situated at Q which attracts according
to the inverse square law and let another particle of unit mass move
along a curve from A to B in the field of the first particle. It is

required to find the work done during the
displacement by the attraction of m.

rfs p
Take any element of length ds situated at

point P on AB and let QP = r. The attraction
at P is km/r2 and acts along PQ. Take the
component of ds along PQ and let it be dr.

Then the work done in moving the particle of

unit mass along ds is -kmdr/r2
. But the Fig. 12.

whole displacement AB can be divided up into

an infinite number of such elements. Hence the work done in the
whole displacement is

p= BQ bndr

J)=aq r2

the negative sign being taken since dr is negative when the work is

positive. On integration this becomes

km,{~— - —
\BQ AQ.

It is obvious that this result holds whether the curve AB lies in one
plane or not. It is also obvious that if the particle of unit mass is

carried round a closed curve the total work done on it is zero.

Displace the point A to infinity and let B coincide with P. Then
the work done in bringing the particle of unit mass from infinity to P

is equal to km/r. This quantity is defined to be the potential at P.

Suppose that instead of one particle of mass m we have a system of

particles of masses m]; m.,, ... mn distant respectively r
x , r

2 , ... r„ from
the point P. Then, since the work done by the resultant attraction

of the system in bringing the particle of unit mass from infinity is

equal to the sum of the work done by the attractions of the different

particles, we have in this case for the potential at P the expression

km, km.-, kmn _
1 "... H = 2<

km
r r

So far the definition has been confined to a system of discrete

particles ; it may also be extended to the case of a continuous dis-

tribution of matter. For let p be the density at x', y', z' and let the
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coordinates of P be x, y, z. Then the mass of the element at x', y', z

is pdx'dy'dz' and its potential at P is

pdx' dy'dz'

r

where r = J{(x-x')2 + (y -y'Y + (z- z') 2 }. Consequently the potential

of the whole distribution at P is

\\\

pdx'dy'dz'

p being a function of x', y
', z and the integration being .taken

throughout all space where there is matter.

We shall denote the potential at x, y, z by V.

Let X, Y, Z be the components of the resultant attraction of the

system on the particle of unit mass at the point P(x, y, z), X, Y, Z being

taken positive in the positive directions of x, y, z. Let the particle

of unit mass be displaced through any element of distance ds, the

components of which are dx, dy, dz. Then, from the definition,

dV=F'ds,

where F' is the component of the attraction of the system in the

direction of ds. Hence

F
--ds'

i.e. the attraction in any direction is equal to the rate of increase of

potential in that direction.

Since V is a function of the coordinates, we have

dV = =-<*» + =- dy + ^az.
ox ay dz

But since the work done by a force is equal to the work done by
the components,

dV = f'ds - X dz + Y dy + Z dz.

This equation and the preceding one hold no matter what the

values of dx, dy, dz are. Hence

3v av av
/\ — o' * — ^> ^- — o"ox oy oz

§ 15. Lines of force and equipotential surfaces.

If we start from any point and move always in the direction of

the resultant force of attraction, we trace out a line of force. A line

of force may be defined as a curve to which the resultant force is

everywhere tangential.

The potential at a point P is a function of the coordinates of that
point. We may express this fact by the following equation,

y=f(x,y,z).
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Now f(x, y, z) = c, where c is a constant, is the equation to a surface.

We see at once that everywhere on this surface the potential has the
same value. Such surfaces are called equipotential surfaces.

The direction cosines of the normal to the surface at the point x, y, z

are proportional to

^1 ¥ ^1 or to — — —
dx dy dz 3x' "by dz'

i.e. to X, Y, Z, where X, Y, Z are the components of the attraction at

x, y, z. Hence the resultant attraction at x, y, z is at right angles to

the surface f(x, y,z) = c; the lines of force and the equipotential surfaces

cut everywhere orthogonally.

§ 16. Consider two consecutive equipotential surfaces. Let the

potential over one of them have the value V and over the other the

value V + Sv. Then S\J is the work done on unit particle in bringing it

from any point on the first surface to any point on the second. Let
Sn be the distance between the surfaces, measured along a line of force.

The average force along this line of force between the two surfaces is

8V

Sn

This varies inversely as Sn.

By means of the equipotential surfaces, therefore, we can represent

the force throughout the whole field in magnitude as well as in

direction. For, if we draw the surfaces

V = c, V = 2c, V = 3c, etc.,

increasing the constant always by the same amount so as to fill the

whole field with surfaces, the work done in taking unit particle from
any surface to the one next it is always the same. The direction of the

force is given by a curve through the point intersecting the surfaces at

right angles and its magnitude is proportional, or if c be chosen suitably,

equal to the number of surfaces intersected by this curve in unit length.

§17. Tubes of force.

Upon an equipotential surface let a small closed curve be drawn.

The lines of force which pass through this curve mark out a tubular

surface, which is called a tube of force.

Take a portion of such a tube bounded by
two normal sections, which of course will be

elements of equipotential surfaces, and apply

to it the surface integral of normal force

theorem. Let the areas of the ends be Ss1;

SS
2

. The normal force on the side is zero
r

because the force is there tangential. The

force at the ends is the resultant force there; denote it by Fu F
2

. If

there is no matter within the portion of tube contained,

F^-F^S^O or FjSS^ F
2
88

2 ,

that is, the force varies inversely as the cross section of the tube.
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Let us suppose the whole field is filled with such tubes and that

for each tube the productF FSS = c,

where c is small and constant. Then it is easy to see that these tubes

represent the field intensity both in magnitude and direction.

The surface integral of normal force over any closed surface is then

equal to c times the excess of the number of tubes which cross the

surface from within over the number of those which cross it from

without. As it also equals - iwlM, M being the quantity of matter

in the enclosed region, one tube starts from every —-j units of mass.

The end of each tube is thus always associated with the same definite

quantity of matter.

§ 18. Potential due to a homogeneous sphere.

Let a be the radius of the sphere and M its mass. Let r measure

the distance of any point P from its centre.

Then, if P be an external point, the attraction at P is kM/r2 and

the potential of P „

If P be an internal point the attraction at P is kMr/as
. The work

done in bringing the particle of unit mass from infinity to the surface

of the sphere is kM/a. The work done in bringing it from the surface

to P is given by

The potential at P is thus

kM
(

l
- +^) or *M (£-£).

Hence the equipotential surfaces, both inside and outside the given

sphere, are spheres concentric with the latter.

In the case of a thin uniform spherical shell of mass m and radius a,

the work done in bringing the particle of unit mass from infinity to

the surface of the shell is km/a. Suppose that the particle is taken

through the surface of the shell ; the force acting on it is finite, and
this part of the path is extremely short. Hence the work done on it

can be neglected. There is no force inside the shell. The potential

there is thus everywhere km/a.

The potential inside a thick homogeneous spherical shell of mass m
bounded by spheres of radii a and b, b being less than a, is given by

3 , a + b
i
km -

.->

n!ia2 + ab + b'
2
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§ 19. Potential due to infinitely long cylinder.

Let the cylinder be homogeneous, right circular, of radius a, and let

M be its mass per unit length. Let r be the distance of any point P
from the axis of the cylinder.

Then, from § 12, the attraction at an external point is

2kM

r

The work done in bringing a particle of unit mass from infinity to P is

f" 2&M

r
dr = 2kM (log oo - log r),

and is hence infinitely great. In this case we measure the potential
from the axis as a reference point. The attraction at any internal

point P is 2kMr/a2 and the potential is thus :

Jo

2lMr
, ,_ _ kMr

2

On the surface of the cylinder it is - &M, and if P be an external

point, the work done against the forces of the field in taking the
particle from the surface to P is

2£M(logr-loga).

Hence the potential there is

- JcM + 2kN\ log ~.

By this time it will be evident that potential is not merely an
aid to studying the energy changes of a certain "particle of unit

mass," but is an extremely useful way of obtaining an insight into the

distribution of forces in a field. Also, since it is the forces we are

concerned with, it is immaterial from what point potential is measured.

Changing the reference point merely adds a constant which disappears

in the differentiation.

EXAMPLES.

1. Show that a tube of force is refracted when it passes obliquely through
a thin layer of matter.

2. Show that two uniform spheres attract each other as if their masses

were collected at their centres.

3. A sphere of radius a, mass M and density varying directly as the

distance from the centre is built up of matter brought from an infinite

distance; show that the work W done throughout the process, by the

attraction of the matter which has already arrived on that which is brought

up later, is given by \N=$kM 2/a, where k is the constant of gravitation.

H.P. B
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Prove that this value of the work would not be altered by supposing the

matter originally uniformly distributed through infinite space.

Show that if the matter is now redistributed so as to form a sphere of the

same radius but of uniform density, work would be done by the mutual
attractions of the parts to the extent of ^yW.

4. Show that the equipotential surfaces and lines of force of a uniform
rod are ellipsoids and hyperbolas having the ends of the rod as foci.

5. A slab is bounded by two parallel infinite planes and its density is a

function of the distance from one of these planes. Find the attraction at an
internal point, and show how the potential varies in passing through the slab.

6. Supposing a solid homogeneous sphere of mass M and radius a to be
held together only by the mutual attractions of its particles, find the force

required to separate it into two hemispheres. (^X-M 2/a2
.)

§ 20. Gauss's theorem of average potential over a spherical surface.

The mean value of V over the whole of a spherical surface is equal
to the value of V at the centre, provided that none of the attracting

matter lies within the surface.

Let m be one of the attracting particles, and let dS be an element of

the spherical surface. Let r be the distance of dS from m. Then the
potential at dS due to m is m/r. The avBrage value over the sphere
of the potential due to m is

\>
I*

But I — dS may be regarded as the potential which would be pro-

duced at the point where m is situated by a thin spherical shell whose
mass per unit area is m and which coincides with the spherical surface.

We know that this is the same as if the whole mass of the shell were
concentrated at its centre.

Let a be the radius of the sphere, d the distance of its centre from
the particle. Then - . 9

' -dS\'
d

fds
w d

'

that is, the potential at the centre of the sphere due to the particle.

The theorem thus holds true for a single particle, and as the potential

due to a system is equal to the sum of the potentials due to its parts,

it must hold for the potential due to the whole external distribution.

It follows from this theorem that V cannot have a maximum or a
minimum at a point in empty space. For with such a point as centre

it is possible to draw a small sphere containing no matter, and the
average value of V over this sphere is equal to the value at the centre.

Hence V at such a point cannot be a maximum or minimum.
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Again, if V has a constant value V in any region of the field, it

must have the same value at every point of the field that can be
reached from this region without passing through attracting matter.

For if not, let P be a point just inside the region, and let a sphere be
drawn with P as centre passing out of the region but not containing any
attracting matter. Then the radius of the sphere can be taken so

small, that on the part of the surface outside the region V has a value

either greater or less than V . The average value of V over the

surface must therefore be correspondingly greater or less than V . But
the value at the centre is V . Hence the value on the part of the

surface outside the region cannot be greater or less than V , that is,

it must equal V . Similarly the region can be extended by drawing
other spheres until we come up against attracting matter.

§21. Gauss's theorem.

Let X, Y, Z be a vector, a continuous function of the coordinates.

Let any closed surface be taken. Then if dS is an element of the

surface and I, m, n the direction cosines of the outward drawn normal
todS, rrr/3X 3Y dZ\

mcdx dy dz
dxdydz=\\ (IX + mY + nZ)dS,

the surface integral being taken over the whole surface and the

volume integral throughout the region bounded by the surface.

AS,

l2m nj

dS,

Fio. 14.

Consider 1 1 1— dx dy dz. Divide the space bounded by the surface

into elementary strips by planes parallel to xy and xz. Let one of

these strips, of cross-sectional area dy dz, be represented in the diagram,

and let it intercept areas dSj, dS
2
on the surface. Let Xj, X

2 ,
^m^,

l
2
mjn

2
be the values of X and I, m, n at dS

t
and dS

2
respectively.

Integrating along the strip, we obtain

'3X
I I =-dxdydz= (Xj - X

2
)dydz.
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But dydz = l
1
dS

1
= -l

2
dS

2 , due regard being paid to the sign of l
2

.

Therefore (X
x
- X

2 ) dy dz = l
x
X

r
dS

%
+ Z

2
X

2
dS

2
.

Integrating through the other strips and adding, we thus obtain

[[[^dxdydz=[[lXdS.

Similarly,

Us- dx dy dz = mY dS, I L=- dx dy dz = I mZ dS,

and the theorem follows.

§ 22. Divergence of a vector.

rp, . dX 3Y 3Z
Ine expression ^— + ^- + =-

ox ay or:

is said to be the divergence of the vector X, Y, Z, and is written

div (X, Y, Z) or div R,

if R is the resultant of X, Y, Z.

§ 23. Laplace's and Poisson's equations.

Let us now identify the vector X, Y, Z with the force of attraction

at a point in a gravitational field. For any closed surface in this field

not containing matter we have, by the surface integral of normal force

theorem, since IX + mY + wZ = F cos 6,

JJ<

Hence, by using Gauss's theorem, we obtain

This -equation is true no matter what the shape of the surface is. It

is therefore true for every element of volume into which the space

bounded by the closed surface can be divided, and this can only be

true when the integrand itself is zero. Thus, for every point in space

devoid of matter, ^x gY 3z

'dx dy dz '

, . , , 32V 32V 32V nwhich becomes + + = o,
axi ay1 azi

on substituting for X, Y and Z their values ^, ^— and ^—. The above
dx dy dz

equation is called Laplace's equation, and is usually written

V 2V = 0,

32 32 32
V2 being used in this country for the operator ^ + ^72 + ^"2- On
the continent A is used for the same operator.

™
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Let us now suppose that a closed surface is drawn in a field con-
taining matter of density p, p being a function of the coordinates.
Then, by the surface integral of normal force theorem,

(ZX + mV + tiZ) dS = -ivkM= - iirk
j
[
fp dx dy dz.

If X, Y, Z is a continuous function of the coordinates, Gauss's theorem
can be applied. Hence

\\\(M
+^ +

?z
+i*kp

)
dxdydz=o -

This equation holds no matter what the shape of the closed surface

is. Hence, in the same way as before, and on substituting for X, Y
and Z, we obtain

g2v 32y ^
^t + ~r^> + =5-9 + ^hp = 0-
ox* oyi ozl

This is Poisson's equation. It holds for a point at which the density

is p, and includes Laplace's equation as a particular case.

§ 24. Change of coordinates.

In the preceding section Laplace's and Poisson's equations are

expressed in cartesian coordinates. For many problems it is necessary

to express them in polar or cylindrical coordinates. We can, of course,

change from the one system to the other by the methods given in

the books on the differential calculus. It is much shorter, however, to

use the following physical method.
Suppose that x, y, z, the coordinates of P, are expressed as functions

of three new variables £, 77, f Let us, for example, write

«=/i(£ n, 0, 2/=/2 (£ v, 0, *=/i(£ v, £)

If one of the new variables, say £, is constant, the point P is

restricted to a surface, and its position on that surface is specified by
t] and £ By giving £ in succession different values we describe an

infinite family of surfaces. Similarly, there is an infinite family of rj

and another infinite family of f surfaces. One surface of each family

passes through every point in space, and the values of £, i\, £ can be

regarded as the .coordinates of that point. If the three families

intersect orthogonally—and this is the only case we have occasion to

consider—these coordinates are said to be orthogonal. Examples of

orthogonal coordinates are of course cartesians, polars, cylindricals and

elliptic coordinates. In cartesians the three families of surfaces are

families of planes parallel to the different coordinate planes. In polars

we have a family of concentric spheres, a family of cones with the same

axis and vertex and a family of planes intersecting in the one straight

line. In cylindricals we have a family of coaxal cylinders, a family of
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planes intersecting in the axis of the cylinders and a family of planes

at right angles to the axis of the cylinders. In elliptic coordinates we
have three families of confocal conicoids, ellipsoids, hyperboloids of

one sheet and hyperboloids of two sheets.

Let the orthogonal coordinates of P be £, >], £ Draw the surfaces

d£ d£ fa fa d( dC
* IT' * ^T!

' IP ^ IT' » 2' ~2*

Then these surfaces will mark out a volume element which is approxi-

mately rectangular. The length of the

side between the $ + -f and £--$ surfaces
2 2

is Xdg, where A is a function of f, 77, f,

and the lengths of the other sides are

fj-d-q and vd£, fi and v being also functions

of £, r; and £ Let A, B, C be the com-
ponents of force at P in the £, q, f

fig. 15. directions, that is, normal to the |, ij, \
surfaces respectively.

Let us find the surface integral of normal force or the total outward
flux of force over the surface of the element. The area of the £ section
through P is /xv dr) d(. Hence the flux of force through this- section

is A/iv drj d£. The flux inward over the £ - -J end is

A/xv drjdC-^ (Afiv) -| dV d£.

The flux outward over the £ + -~ end is

bF.vdr) d£+^- (Afiv) -| dr, d£.

Subtracting, we obtain for the flux outward over these faces

^(Ap.v)d£drid{.

By symmetry, taking account of the other faces, we find for the
total outward flux of force

{^ ^">
+
i, (

B "A
> +

Tt
(CX/x)

}
^ *» dt-

By the surface integral of normal force theorem this must equal
- iirJeM, where M is the total mass within the element. But

M = p\fj,v d£ dr) d£,
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where p is the density at P. Hence

j
g-j (A/iv) + g- (Bi/ A.) + ~-ACkp) I c/£ rf»j rff= - iwkpXfxv d£ dr) d£,

or, on dividing out by A/*v d£^ d(,

i{| <*H
+1 (

B "x
) +1 (OV)} +^ = o.

We have thus proved Poisson's equation for orthogonal coordinates.

Consequently 1 +| +1 =^ 2 |(AH .

Since \dg denotes a displacement in the £ direction,

13V n 13V , „ 1 3V
A =

A3j>
B =^ ^ 0== vW

It should be noticed that this section affords a means of proving

the equations of Laplace and Poisson without using Gauss's theorem.

§ 25. Poisson's equation in polar and cylindrical coordinates.

In orthogonal coordinates the equation runs

To change this into polars we have to write r, 8, 4> for £, -q, £ and

1, r, r sin 8 for A, p., v, since the sides of the volume element are dr, r dO

and r sin 8 d<$>. On making the substitution, we obtain

,3V\ 1 3/ . ,3V\ 1 32V
,

, , „

3r/ r2 sin # 3#\ 30/ r* sin2 8 o<j>
2

r'sm

^ 3y. , v !

,, : v , I :--v

r2 3r

To change into cylindrical coordinates we have to write r, 8, z for

£, ?7, £and 1, r, 1 for A, p., v, since the sides of the volume element are

now dr, rdd and dz. On making the substitution, we obtain

1 3/ 3V\ 1 32V 32V , , „

§ 26. Example on Poisson's equation.

When p is given as a function of the coordinates and the boundary

conditions are known, Poisson's equation can be used to determine V.

For example, let the density p be a function only of r, the distance

from the origin. The attracting matter is distributed therefore in

uniform thin concentric spherical shells. We shall also suppose that

all the matter is a finite distance from the origin.
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It follows from symmetry that V can be a function only of r.

Expressing Poisson's equation, therefore, in polar coordinates and

putting srTi = =rr = 0, we obtain
^ b ad d<j> '

On integrating, this becomes

-4rf;l pr2r2^ = - -t ;.-.(
| r r,lr-i 0.

3V
C being the constant of integration. Since r2 -~- = when r = 0, C = 0.

Hence ^- = 5- I pr2 dr,
or r*

and on integrating by parts

V= - I dH-^-l pr2 dr[ + D = ^—\ pr2 dr- I iirk pr dr + D.

Jo I r2 Jo J
r Jo Jo

When r is 00 , V = 0, since all the matter is a finite distance from the

origin. When r is 00 the first term on the right-hand side vanishes,

since
j
pr2 dr is finite. Hence D = I iirkpr dr.

Jo Jo

We thus obtain the final value of V, namely,

k f
r

f
°°

V = - 1 47rr2p dr + k I iirrp dr.

But 47rr2p dr is the mass dm of a thin shell of radius r, thickness dr

and density p, and if m denotes the mass of the whole sphere of radius r,

fJi
&Trr2p dr = m.

'

r=<° dm
Therefore V^Aip^

r
J,.=r r

The first term represents the part of the potential at a distance r

from the origin due to the matter contained within the sphere of

radius r. The second term represents the part due to the external

shells. For each of these taken singly the interior is an equipotential

space, and P has consequently the same potential as on its surface.

§ 27. Electrical images. Point and plane.

All the results of the preceding sections hold for electrostatics as

well as for gravitational attraction, if we write k = 1 and understand

by p the density of the electrostatic charge. Only, in defining the

electrostatic potential at a point, we have to make a condition ; when
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the unit charge is brought from infinity we suppose it does not disturb
the distribution of electricity in the field.

The nature of the problem is, however, in electrostatics somewhat
different. Instead of being given the system of charges and asked
to calculate the attraction, we are given the conductor or dielectric
and have to calculate the distribution of the charge on it, before it is

possible to calculate the attraction.

Suppose that we have a charge + e at P and a charge -e at P'

situated a distance 2a apart. Let AB be an infinite plane at right angles
to PP' bisecting it. Then the potential on this plane is zero ; for if we
take any point Q on the plane, the potential at Q, is

pVp^ and PQ=PU

Since this plane is at potential zero, if we suppose it replaced by an
infinite thin plate of metal connected with the earth, there will be no
alteration of the potential on either side of it, but the field will remain
everywhere the same as if it were due solely to the two electric

charges P and P'.

If now we keep the metal plate in connection
with the earth and remove the charge P', the potential

to the left of AB will become zero, but on the right
it will remain the same as before.

Hence if a point charge is placed at P at a p*

distance a from a plane conductor which is at

potential zero, the electric field will be that due
to the point charge together with that due to an B

equal and opposite point charge situated at P', a

distance a on the other side of the plane. The charge at P' is said

to be the electrical image of the charge at P.

An electrical image is an electric charge or system of charges on
one side of a surface which would produce on the other side of the

surface the same electrical action which the actual electrification of

the surface really does produce.

Let a- be the surface density of electricity on the plane in the above
case of a point charge e at a distance a from an infinite conducting
plane at zero potential. To find a- at Q we require the electric field

strength at right angles to the plane. The field strength at right

angles to the plane at Q due to the charge at P is equal to

e PN
PQ2 PQ

and acts from right to left. The field strength due to the charge

on the plane, being equivalent to that due to the image at P', has a

component in the same direction equal to

e P'N

P'Q2 P^Q
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Since P'Q=PQ and P'N = PN, the resultant field strength at right

angles to the plane is
2g pn
PQ2 pq

The two components parallel to the plane neutralise one another.

Now suppose a small cylinder drawn as in fig. 17, with its ends

parallel to the plane AN, the area of each end being dS. Apply the

surface integral of normal force theorem to this cylinder. As has

been mentioned, there is no force to the left of AN. The end cd

contributes a part
2e PN
PQ2 PQ

dS

to the integral ; the resultant contribution of the side is zero, since

the field intensity parallel to the plane is zero. The total quantity

of electricity inside the cylinder is o-dS. Hence, apply-

ing the theorem,

2e PN PN

d

N
Fia. 17.

,
^dQ = iwa-dB or cr = -— ...

PQ2 PQ 2tt PQ3

As all the tubes of force which start from e end on
the plane, the total charge on the latter is - e. This
may also be found by direct integration.

The force of attraction produced at P by the surface

distribution of electricity on the plane is the same as would be
produced by the charge - e at P'. The resultant force on the charge

at P is hence
g2 ea

§ 28. Point and sphere.

Suppose that we have a charge e at P and a charge - e' at P'

;

e' being less than e. Then the equation to the surface of zero

potential is given by

e e' _ „ QP _ e

QP^QP1- OT
QP
7- ?'

At Q make L CQP' = L QPP' and produce

QC to meet PP' in C.

Then in triangles CQP', CQP, Z.QCP is

common and l CQP' = l QPC. Hence the

triangles are similar. Therefore

CP'_P'Q_CQ
CQ

_
PQ

_
CP'

The product of the first and third ratio is equal to the square of

the second, that is cp , /p'o\2 /e\2

CPVPQ/
=

'

Therefore C is a fixed point.

Fro. IS.

©'
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CP' CO
Also, since 7^: = ^, CQ2 = CP. CP' or CQ is constant. The surface

of zero potential is therefore a sphere with centre C.

Denote CQ by a and CP by/.
Suppose now that a thin metal sphere connected with the earth is

placed to coincide with the surface of zero potential. It will not

affect the field in any way. There are e' tubes of force from the

charge e terminating on the outer surface of this sphere, so that it has

a charge - e'. The inner surface has a charge + e'.

Let the charge at P' vanish ; the charge on the inner surface of the

sphere will also vanish. The field outside the sphere and the charge

on its outer surface remain, however, unaffected.

Hence, if a point charge e be placed at a distance / from the centre

of a spherical conductor of radius a, the electric field outside the sphere

is that which would be produced by the original charge e together

with a negative charge - e' situated on the line joining e to the centre

of the sphere at a distance of a2
// from the latter, e' being equal to ae/f.

The charge - e' at P' is the image of the charge e at P.

In order to find 0-, the density of the charge at Q, we have to find

the component of the field intensity along QC. The field intensity

at Q due to e is —g. Its components are

along QC and +—^ along PC -

PQ 1

QC e . PC e
— ~ ^> along QC and + —— —-

,

QP PQ2 6 QP PQ

The field intensity at Q due to e' at P' has components

QC e' , nn j P'C e' .

QP.QP7-,
along QC and -^^ along PC

w PC e P'C J_ PC _e_ _ jj^C e

QP PQ2 ~ QP7^ QP'2 ~ QP PQ2 ~ QP72 PQ

e / PC PC

\

_
pqVpq2

_
pq?)

: = 0.

The resultant component along PC is therefore zero. The resultant

normal component is

QCe' QCe / e e \ eQC/PQ2 .\ ea //2 \

P'Q3 PQS_Q VPQP'Q2 PQV PQ3 \P'Q2
/ PQ3U2

/

Hence, in the same way as in § 27, the numerical value of o- is given by

l_6a//2 \

PQMttU2 /'

It has of course the negative sign.

The point charge is attracted towards the sphere with a force equal to

ee' ee' e2a e2af

PP^
=

{ r a2
\
2 ~

f ( f a?\ 2 ~ (P - a?f

(/-5D 4'-7
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EXAMPLES.

1. Find the total charge on the plane in § 27, and on the sphere in § 28,

by integrating the expression for the density.

2. In § 27, if the " point charge " is a small charged sphere of radius b,

the energy in the field is
1 e2 1 e2

3. In § 28, if the " point charge " is a small charged sphere of radius b,

the energy in the field is , 2 i „-2

4. In § 28, if the sphere is insulated and without charge instead of being
at zero potential, the force on the point charge is an attraction equal to

e2a3 2/2 — a2



CHAPTER II.

HYDEODYNAMICS.

§ 29. Hydrodynamics is that part of physics which deals with the
motion of fluids. In order to simplify the mathematics the fluids dealt

with are usually supposed to be perfect, i.e.

(1) they do not support tangential stress,

(2) their structure is continuous.

If any plane surface is immersed in a fluid, according to the first of

these assumptions the resultant thrust exerted by the fluid on the

surface must be at right angles to it, whether the plane is moving
relatively to the fluid or not. In hydrostatics, that is, when the plane

is at rest relatively to the fluid, we know as a fact of experience that

the thrust is actually at right angles to the plane. In the case of

relative motion we know as an experimental fact that the resultant

thrust is oblique to the plane and has a component parallel to the plane

which resists the relative motion. The definition of viscosity depends

on this fact. The first assumption is therefore equivalent to neglecting

viscosity.

In deriving the equations of motion, etc., it will be necessary to

consider the motion of small fluid elements. According to the second

assumption, these elements must still possess the properties of the fluid

in bulk. We must never take them so small as to get down to the

individual molecules.

There are two methods of treating the motion of a fluid, the

"Lagrangian" and the "Eulerian." In the first of these methods we
seek to determine the history of every particle of the fluid. In the

second we fix our attention on a particular point in space, and attempt

to determine the velocity, density and pressure at that point for all

times. Here only the Eulerian method will be used.

§ 30. Acceleration at a point.

Let u, v, w be the components of the velocity parallel to the

coordinate axes at the point x, y, z at the time t. Then u, v, w are

functions of x, y, z and t.

Suppose that P is the point x, y, z and that the particle which is at P

at—the time t moves to the point Q, the coordinates of which are

x + Sx, y + Sy, z + Sz in the interval of time St.
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The acceleration of the particle is the acceleration at P at the time t.

The increase in the x component of the velocity of the particle in

moving from P to Q is given by

, 3m ., du „ ,
du „ du „

Su = ^r&t + -~-8x + 7S-8y + ~- 8z.
dt dx oy " dz

In going from P to Q we are taking a step forward in time and a

step forward in space. The first term on the right is due to the former

and the other three to the latter.

The x component of the acceleration of the particle is

8u du du 8x du 8y du 8z du du du du
8t dt dx 8t dy 8t dz 8t dt dx dy dz

LtS(= Lt5(=0

8x
since ji = u, ... , .... Similarly, the y and z components of the accelera-

Lt8(=

tion at P are given respectively by

, dm dv dm dm -, dw dw dw dw
^t + m^- + v=- + w=- and ^T + u=- + v^-+w^--
at ox ay dz dt dx dy oz

Hence if -j, denote the operator

3 3 3 3

dt dx dy dz

the three components of the acceleration at P can be written

du dv dw

§ 31. Angular velocity at a point.

Let p be the density of the fluid. Consider a small sphere of fluid

with its centre at P(x, y, z) and take a point Q,(x + a, y + fi, z + y) close

to P inside the sphere. Then the velocity at P is u, v, w and the

velocity at Q has the components

du n du du

Ox ' dy dz

The relative velocity of Q to P is therefore

du „ dm du

dx dy dz'

The moment of the velocity of Q about an axis through P parallel

to the x-axis is

; „ dw 3w\ „ /dm n dv dv\

:
+^ + ?dz-)P-(a dx

+ l3
dy

+
ydz)y-
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Multiply the above expression by p dx dy dz and integrate throughout
the sphere, and we shall obtain the angular momentum of the sphere

about an axis through its centre parallel to the z-axis. The sphere is

so small that the differential coefficients =- etc. may be regarded as

constant throughout the field of integration. The product terms such

as 1 1 1 a/3 dx dy dz vanish because to every positive value of a/3 there

corresponds an equal negative one. Also, by symmetry,

1 1 \/3
2dxdydz= 1 1 Yf-dxdydz.

-C-

Hence the angular momentum of the sphere about an axis through
its centre parallel to Ox is given by

But the moment of inertia of the sphere about this axis is

\\\{P
2 + y

2)pdxdydz = 2[[[[Ppdxdydz,

and hence the angular velocity about this axis is

fdw dm

'dz.

Let the components of angular velocity at the point P be denoted by

&V,C- Then

1 /3w dv\ _ 1 /du dw\ 1 /dv du\
Z
=
2ydy~dz)'

7,

~2\d^'"dx)' £
=
2\a~x~dy)'

§32. Curl of a vector. Potential vectors. Streamlines.

The vector, the components of which are

dw dv du dw dv du

dy dz dz dx dx dy'

is said to be the curl of the vector, the components of which are u, v, w.

Hence the angular velocity at any point is half the curl of the velocity

at that point.

Consider the expression

- d<f> = u dx + v dy + w dz.

If the curl is zero, d<f> is a perfect differential,

d<b dd> dd>
w=-7S

r
, v=-^-, w=--^-,

dx oy dz

the vector u, v, w is derivable from a potential, and is said to be a

potential vector.
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When u, v, w denote the velocity at a point,
<f>

is called the velocity-

potential. Obviously, the condition for the existence of a velocity

potential is that the motion should be irrotational.

If we define stream lines for any given time, as curves the tangents

to which everywhere give the direction in which the fluid is moving at

that time, then the equation to the stream lines is

dx dy dz

The stream lines obviously cut the surfaces given by
<f>
= constant at

right angles, and the stream lines and velocity potential have the same
properties as the lines of force and force potential in the theory of

attraction. One point, however, calls for attention, the convention

about the sign of the potential is different. In attraction we had

X =
<3V

dx'

§ 33. Equation of continuity.

Consider a rectangular fluid element, the centre of which is

P(x, y, z) and the sides of which are dx, dy, dz. Let p as usual be the

density of the fluid at P and let u, v, w
be the components of the velocity at P.

The average value of pu on the face

d(pu) dx TT .

EFGH is pu ^— -tt. Hence the rater ox 2

at which fluid enters the element through

this face is

pu-^-Ddydz (1)

The average value of pu on the face

Hence the rate at which fluid leaves the
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The total rate at which matter is entering through the surface of the
element is therefore

_i^M +^) +^l}dxdydz (3)
y ox oy oz

J

The mass of the element is pdxdydz and the rate at which it is

increasing is ->

-pdxdydz (4)

Hence, equating (3) and (4), we obtain

dp o(Pu) d(pv) 3(pw) _ , .

dt
+

dx
+

dy
+

dz ' w
the equation of continuity in its most general form in cartesian

coordinates.

It is obvious that (5) may always be written in the form

J + pdiv«z = 0,

q being the resultant of u, v and w.

If the liquid is incompressible and homogeneous, p is constant, and

if the motion is irrotational, u = -~ etc. Hence the equation of

continuity reduces to

This is the same as Laplace's equation.

§ 34. Equation of continuity in polar and cylindrical coordinates.

The equation of continuity in cylindrical and spherical polar co-

ordinates may be derived directly from first principles by considering

the rate of flow into an element and the rate at which the mass of

the element increases. Or it may be derived in the same way in the

first instance in generalised orthogonal coordinates and the transition

afterwards made to polars or cylindricals.

We shall here assume the result proved in § 24, namely that

oX 3Y 3Z 1 „ o ...

^ +^ +^ = X^ 2^AH- (
6
)

X, Y, Z being the components of a vector in the x, y, z directions, £, -q, £

generalised orthogonal coordinates, \d£, /j.drj, vdl the lengths of the

sides of the volume element bounded by £,
iy, ( surfaces and A, B, C

the components of the vector in the £, tj, g directions.

To obtain the equation in polars, write pu, pv, pw, pU, pV, pW,

r, 6, <j>, 1, r, rsin0 for X, Y, Z, A, B, C, £, % {, X, p., », and substitute

in (6). Then, by means of (5),

l +^ll^ 81'^^^ 81^)^^)}^ (7)

H.P.
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Here U, V, W are the components of the velocity at P m the r, 9, <j>

directions. If the motion is irrotational, U = - -^p V = - - -^ ana

W =
-.
—

j!^-r, # being used as velocity potential to prevent con-
rsmoocfi

fusion with the coordinate
<f>-

To obtain the equation in cylindrical, write

1, r, 1 for A,
fj,,

f. Then we obtain

1+M^ur)4^v>4^w4=° <
8
>

Here U, V, W are the components of the velocity at P in the r, 6, z

9, z for £, rj, ( and

directions, and if the motion is irrotational, U = -

W= -
a?"

dr'
v= _Ig and

r oo

§ 35. Particular cases can be derived from the general equations (7)

and (8), but it is better to obtain simple cases from first principles.

For example, suppose we have steady radial flow of an incompressible

liquid from a point. Take the point as origin and take as volume
element a shell bounded by spheres of radii r and r + dr and with the

origin as centre. If v denote the outward velocity at distance r, the

quantity of liquid entering the element per second is 4irr2«, and

the quantity leaving it per second is 47rr2«> + 4ti-— (r^v)dr. These are

equal. Hence the equation of continuity takes the form

g(*0=o.

§ 36. Equations of motion.

Consider, as before, a rectangular fluid element with centre at

P(x, y, z) and sides dx, dy, dz.

Let u, v, w be the velocity, p the

pressure and p the density at P,

and let X, Y, Z be the components
of external force per unit mass at P.

The rate of change of momentum
of the element in the x direction is
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hence the thrust on that face is

and the thrust on face ABCD is

3» dx\ , 7

The resultant pressure-thrust in the x direction is consequently

-^-dxdydz (11)

Equating (9) to the sum of (10) and (11) and cancelling out dxdydz,

we find the x equation of motion

d% _ op 3w du 3w du_ 1 op ..„.

" dt~ dx dt- dx ~dy c)z~~ p dx ^
'

The similar y and z equations are

ov dm 3d 3d „ 1 3»

at ox ay az p oy

dw dw 3w 2w _ \ dp
and -^+u-^-+v^- + w-^- = Z-- ^-.

at ox oy oz p oz

§ 37. Case of impulsive pressure.

It is possible that we may have an extremely great pressure acting

for a very short time. The diagram illustrating the hydrostatic para-

dox, fig. 21, is a case in point. P and Q are two pistons working in

cylinders fitted into a vessel containing

an incompressible liquid. If the one

piston be driven in smartly by a blow

from a hammer, an impulsive pressure is

transmitted throughout the liquid

Let (o be the impulsive pressure at the

point x, y, z inside the liquid, i.e. a = \p i

for the point taken over the interval of

time t through which the impulsive Fia. 21.

pressure acts. Let u, v, w be the com-

ponent velocities at the point before, and u', v', w' the component

"velocities immediately after the impulse.

Consider as before a rectangular fluid element with its centre at

x y, z. The increase of momentum produced in the x direction is

(«' - u) p dx dy dz.
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The impulsive thrust in the x direction is

/ 3o) dx\ , ,

and in the - x direction (<a + ^- -~-]dydz.

Hence the resultant impulsive thrust in the x direction is

-^-dxdy dz.
OX

The equation for the impulsive generation of motion is therefore

1 do>
u -u= — -=—•

p ox

Similarly v' -v= — =-, } (13)

1 3(o
w -w= — -~-.

p oz

The effect of finite forces during t is of course neglected.

Terms may be added to (13) to represent possible impulsive body
forces acting on the liquid, but such forces are only of mathematical

interest.

An interesting result follows from equations (13). If the- first,

second and third be differentiated respectively with regard to x, y
and z, and if the right-hand sides and left-hand sides of the equations

thus formed be added, we obtain

/3m' 3d' 3w'\ /du ~dv ow\ 1 /32
(o 32w 32oA

\dx dy dz J \dx dy dzj p\dx2 dy'2 dz2 )'

The left-hand side of this equation vanishes since the fluid is incom-

pressible, and the equation consequently reduces to

32 <u 32
(o 32

(d „

3a;2 3y2 dz2

Impulsive pressure therefore satisfies the same equation as gravi-

tational potential and is transmitted instantaneously to all parts of an

incompressible fluid.

§ 38. Boundary condition.

At a fixed boundary the normal component of the velocity must be

zero. Hence
lu + rnv + nw = 0,

where I, m, n give the direction cosines of the normal to the fixed

boundary, the direction outwards from the fluid being positive.

If the boundary is moving with velocity V in a direction making an

angle 6 with the outward drawn normal from the fluid, then we must
have

lu + mv + nw = V cos 6.
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If the motion is irrotational, this becomes

-g = VcOS0,
on

g- denoting a differentiation in the direction I, m, n.

§ 39. Green's theorem.

According to Gauss's theorem, § 21,

ni(s +i +s)^^&=i^
x+mY+mz

)
rfs

'

where the volume integral is taken throughout a certain region of

space and the surface integral is taken over the surface bounding the

same region, I, m, n being positive outwards and X, Y, Z being a
continuous function of the coordinates.

For X, Y, Z write pu, pv, pw, where p is a scalar and u, v, w a vector

function of the coordinates. Then Gauss's theorem becomes

=
I \pQu + mv + nw)

^s.

This equation is a special form of Green's theorem.

§40. Energy equation.

Suppose that X, Y, Z, the external force per unit mass of the fluid, can

be derived from a potential SI which is independent of the time. Then

dn v_ 3fi 7 _ da 312 _nx~~w Y~'W z~'w w -0
'

and the equations of motion can be written

du 3£2 dp dv 3fi dp dw 30 dp .

p
dt
= -

p di-o-x' p
dt
= -

p Vy-dy' p Tt
= - p d-z~dz '"<U)

Multiply the first, second and third of the above equations by u, v

and w respectively, and add the right-hand and left-hand sides of the

three equations thus formed. We obtain as a result the equation

/ du dv dw\ ( 30 30 30\ ( dp dp 3»\
p
(
u

dt
+v

di
+w

di)
= - p

{
u^ +v^ +w

dz)-{
u£ +% +w£)

which simplifies to

1^/99 n d£l (dp dp dp

2
p it(

u+v+w)+p
dt = -{u dx

+vi +wi
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Assume that the density p is constant, multiply by dxdydz and

integrate throughout all the region of space occupied by the fluid.

This gives

Now, by Green's theorem,

l|l(w;^ + fl^ + w^-Wx(fo/(fe==||£> (lu + mv + nw) dS,

the other term vanishing, because the continuity equation takes the

form 3m 3j; dw= Q
3a; 3m dz '

owing to p being constant. Also, the order of the integration and
differentiation in the first two terms of equation (15) is clearly

interchangeable, and T, the total kinetic energy, and V, the total

potential energy of the liquid in the region, are given by

T = ^ 1 1 1 p (m2 + v2 + w2
) dx dy dz, V = 1 1 1 pf2 dx dy dz.

Making these substitutions in (15), we obtain

_(T+V)= - \\p(lu + mv + nw)dS, (16)

that is, the rate at which the energy of the region is increasing is equal

to the rate at which pressure forces are doing work upon its surface.

If the motion is irrotational, the right-hand side of (16) becomes

n'H*
§41. Integration of the equations of motion.

The equations of motion can be integrated whenever a velocity

potential exists, if the forces are derivable from a potential and if p
is a function of the pressure only. Eewriting them from p. 35 for the

sake of convenience, we have

du 3m 3m 3m „ 1 dp
^T +«K-+1'^+W^-=X— ^-,
at ox dy dz p ox

o~v ov dv 3w , 1 dp

ot ox dy dz p ay

dw dw 'dm ow 1 dp

ot ox dy dz p oz

.(12)
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If the motion is irrotational,

dw _ dv du __dw dv du

dy dz dz dx' dx dy"

Substituting these results in (12) and at the same time writing

3<i> 3<f> 3<f> , „ P ,u= - ^-, v = - ;=—, w = -^- in the first term of these equations, we

obtain
3 3$ du dv dw _ 1 dp

dt 3a; dx dx dx p dx

3 3<£ du dv dw 1 dp
-~r; ~- + u 7— + v r̂ +w r̂ = Y -- ^-,

at oy oy oy oy p ay

3 34 du dv dw I dp

at dz oz oz oz p dz

Let q be the resultant of u, v, w and let X, Y, Z be derivable, as

in § 10, from a potential which is independent of the time. Then
substitute, and the equations become

dx dt ^dx\2 u
J
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§ 42. Bernoulli's theorem.

Let the motion be steady and let the distance along a stream line be

denoted by s. Then, the acceleration along the stream line, at any
point on it, is given by -g

q of course denoting the velocity along the stream line. By analogy

with the right hand of equation (14), the resultant force per unit mass
at the point in the direction of the stream line is

_3I2_13p
ds pds

whence I|'=-f_ ?| and f* = _ fi
_l» +D

(
i 9

)
p ds ds * ds } p 2* v

'

D being a constant of integration.

Bernoulli employed a different method of proof. We proceed to

give his proof for the ease when the fluid is incompressible.

Consider a portion of a tube of flow, i.e. an infinitely narrow tube

the surface of which consists of stream lines, and

B denote the positions of the ends, which are

normal to the stream lines, by A and B. Let
the direction of flow be from A to B.

Let the velocity, pressure, cross-sectional area

r
and force potential at B and A be denoted
respectively by q, p, a-, 12 and q', p', a-', fl'.

In each unit of time a mass q'a-'p enters at A and an equal mass q<rp

leaves at B. Hence „, , „qa = qcr.

The mass entering per unit of time at A brings with it the energy

?
V>(i^ + J2'),

while the mass leaving per unit of time at B takes with it the energy

q<rp{\f + Q).

The work done per unit of time by the pressure on the mass
entering at A is y^
while the work done per unit of time on the mass leaving at B is

po-q.

Hence, since the energy in the tube is constant,

p'a-'q' + q'<r'P ($q'2 + 12') =p<rq + qtrpfa* + 0),

which simplifies to ,

^ + i2 + i<f=D (20)

It should be noted that this equation is not the same as equation (18)
of the preceding section. This equation holds for rotational motion
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and D is constant only so long as we keep to one stream line. Equation
(18) holds only for irrotational motion, but C is constant throughout
the field.

§ 43. Applications of Bernoulli's theorem.

First take the case of liquid flowing in a horizontal pipe of varying
cross-section. The velocity is greatest where the cross-sectional area
is smallest. Apply (20). Since the pipe is horizontal, fi may be
taken as approximately constant along the stream lines; hence, when
q is greatest, p is least. The pressure must therefore be least at the
narrow parts, as is shown by the gauge tubes.

Next consider the case of the efflux of a liquid from a small hole
in the side of a vessel, which is kept filled up to a constant level.

Then the motion is steady. Take the origin in the surface of the
liquid and the axis of s vertically downwards. Then $2 = - gz.

Pig. 23. Fig. 24.

Take a stream line which is on the surface of the jet at B. It may
be supposed to start from the surface of the liquid at A. To determine
the constant D for the stream line, substitute the values for p, 12 and

q at A. The velocity at the surface may be supposed to be zero;

hence q = 0. Also 12 = and p = II, the atmospheric pressure. Hence
D = H/p, and throughout the stream line

P n 1 9
n

P * P

At B we have^ = II and 12 — -gz. Hence the velocity at B is given

by?2 = 2gz.

This result is known as Torricelli's theorem.

It is a matter of experience that the jet, when it issues, is not

cylindrical in form. The stream lines converge inside the vessel, and
this convergence continues until a point outside is reached, where the

cross-sectional area of the jet is a minimum. This point is called

the vena contracta. At the vena contracta the jet is approximately

cylindrical. The area of the vena contracta depends on the nature

of the hole and on whether it is fitted with a mouthpiece or not;

in the case of a simple hole in a thin wall the area of the vena

contracta is found by experiment to be about '62 times the area of

the hole.
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Owing to the curvature of the stream lines the pressure is not the

same throughout any cross-section of the jet except at the vena

contracta. Consequently only there will the velocity be uniform and
only there is it given throughout the cross-section of the jet by
Torricelli's theorem. We cannot therefore calculate the rate of efflux

of the liquid unless we know the area of the vena contracta.

EXAMPLES.

1. Fluid is moving in a fine tube of variable section K ;
prove that the

equation of continuity is

|(Kp) +g(KM= 0,

where v is the velocity at the point s.

2. Find the equation of continuity in a form suitable for air in a tube,

and prove that if the density be f(at — x), where t is the time and x the
distance from one end of a uniform tube, the velocity is

af(at -x) + (V- a)f(at)

f{at-x)
'

where V is the velocity at that end of the tube.

3. If F(x, y, z, t) is the equation of a moving surface, the velocity of the
surface normal to itself is

(proved in Lamb's Hydrodynamics, p. 7).

4. Establish the differential equation for the equilibrium of a fluid, namely,

dp= p (X dx+ Y dy+ Z dz).

A vertical cylinder of gas (section A and height h) has mass M at uniform
temperature. If k denote p /p , where p and p are corresponding pressure

and density, prove that the density p at depth z below the top of the

cylinder is given by p= Cegzlh
, where C is a constant to be found in terms

of A, h, k and M.

5. If the velocity potential is of the form <£=2log?-, and if the density

at a point fixed in space is independent of the time, show that the surfaces

of equal density are of the form

where p is the density and r, 6, z are cylindrical coordinates.

6. If a liquid is in equilibrium and the components of the force per unit

mass acting on it are

X=y2+yz+z2
, Y= z1+ zx+ x2

, Z = x2+xy+y2
,

show that the density at x, y, z must be of the form

where F is an arbitrary function. (Hint : the density is the integrating

factor that makes Xdx+ Ydy+ Zdz a perfect differential.)

7. If an incompressible fluid is at rest under the action of a system of

forces, show that they must be derivable from a potential.
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8. A liquid is in equilibrium under the action of forces X = [i(y + z),

\= fi(z + .v), Z=fj.(x+y) ; show that the surfaces of equal pressure are hyper-
boloids of revolution.

9. Show that if a fluid moves about an axis so that the stream lines are
circles, a velocity potential will exist if the velocity be inversely proportional
to the distance from the axis. Hence prove, that if the axis be vertical and
the fluid be acted on by gravity the equation of a surface of equal pressure
is r2z= c, where r is the distance of a point from the axis, z its distance from
a fixed horizontal plane and c is a constant.

10. A right circular cylinder of radius a, closed by plane faces perpen-
dicular to its axis, is filled with liquid. The axis Oz is the axis of the
cylinder and the liquid is acted on by external forces whose x and y
components per unit mass are Ax+ By, Cx+ Dy respectively.

Prove that the liquid will rotate as a whole about Oz with uniform angular
acceleration ^(C- B), and if the pressure at the origin is zero and u> is the
angular velocity of the liquid, show that the resultant force on each plane
end of the cylinder is

Jn
-

/0^ {(0
2 + |(A+ D)}.

11. Apply Green's theorem to show that the problem of finding an irro-

tational motion of an incompressible fluid, which has prescribed values of

normal velocity at the boundaries, admits but one solution.

12. Assuming that the equations of motion of liquid in a rotating ellip-

soidal shell (equation x1/ai +y'i/b2+ z2/c'i= l) can be expressed in the form

1 dp 3V

-

P

d
£ +

Tz
+2x+fy + y*=0 >

so that the component space accelerations are ax+ hy+gz, hx+ jiy+fz,

gx+fy+ yz, show that, if the forces represented by — cNfdx, —'dV/dy,
— 3V/3z be only those due to the mutual attraction of the parts of the

liquid, the principle of constancy of angular momentum givesf—g= h=0.
Hence, taking 'dVj'dx, 'dVI'dy, 3V/3z= A;c, By, Cz, show by integration that

the surfaces of equal pressure are similar coaxial surfaces, and are similar

to the containing surface if

(A+ a)o2= (B + /3)6
2= (C+ y)c2

,

so that the external case might be removed.

13. Prove that the accelerations parallel to the axes can be written in

the form g^
~- + div{«(w, v, w)}-udiv(u, v, to)

with two similar equations. (By the expression u{u, v, w) is meant w2
,

uv, uw.)
Prove that if q be the resultant velocity of the fluid at any point and ds

be an element ofpath in the direction of flow, while q' is the velocity in any

other direction at the same point, the acceleration in this latter direction

at the point can be written g„/ g„'

dt
+qW
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§ 44. Two-dimensional motion. The stream function.

If w is zero, and if u, v are functions of x, y only, then the motion

takes place in planes parallel to the ay-plane and is the same in every

one of these planes. When we know the motion for the plane 2= 0,

we know it everywhere. Consequently this case is said to be one of

two-dimensional motion ; for analytically it is the same as if the motion
were confined to an infinitely thin layer. When we speak of two-

dimensional motion in what follows, we shall be understood to refer

to the above case ; when, for the sake of convenience, we refer to points

and curves in the plane 2=0, we shall understand the lines through
the points parallel to Oz and the surfaces parallel to Oz, of which the

curves are the traces. Finally, when we refer to liquid flowing across a

curve in the plane 2 = 0, we shall understand the quantity of liquid

that flows through that portion of the cylindrical surface parallel to Oz,

which has the curve as base, comprised between the planes 2 =
and 2 = 1.

Let OP (full line) be any curve through the origin in the zy-plane

and let ^ denote the quantity of liquid, supposed of unit density, that

flows across OP per unit of time, from right to left. Then

$ = I (lu + two) ds,

Jo

where I, m are the direction cosines of the normal to the element ds,

the normal being drawn to the left of the curve.

Pio. 25. Fig. 26.

Let the liquid be incompressible. Then i/< is a function only of x, y,

the coordinates of P. For if any curve represented by the dotted line

be drawn joining OP, </ must be the same for both curves, since the

quantity of fluid contained between the two curves remains constant.

Similarly it must be the same for all possible curves drawn between
O and P. Hence it does not depend on the shape of OP, but only on

the position of its end point P, and is thus a function only of the

coordinates of that point.

Let P move from P to P' along a stream line. Since PP' is a portion

of a stream line, no liquid flows across it, and ip has the same value

for P' that it has for P. Hence

\p = const.
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is the equation of a stream line. If we were to shift the reference
point 0, the only result would be to add a constant quantity to all the
expressions for ip. We may therefore regard ip as indeterminate to
the extent of an additive constant.

Let AB be an element of length ds on the curve OP. Then kG = dx,

CB = dy. From fig. 27 it is obvious that

I = - cos ABC and m = cos BAC.

Hence dy = - Ids, dx = m ds and

ip=\ (lu + mv)ds= - \udy + \vdx or dip = vdx-udy.

Fio. 27.

But since ip is a function of the coordinates,

Hence v = ^-,
dx

u— - drf>

dy'
These expressions hold whether the

motion is irrotational or not.

They might have been obtained otherwise. For two-dimensional

motion in an incompressible liquid the equation of continuity takes

the form 3m 3w_ n
3a; 3y '

and this is the condition that

vdx-u dy

is a perfect differential. We have only to put this equal to dtp and the

expressions follow.

Now suppose that the motion is irrotational. Then

d4> dip

and consequently

_3^_ dip

3r dy' ' dy dx

d<f> dip d<j> dip _ .

dx dx dy dy

The two families of curves, <f>
= constant and ip = constant, intersect

orthogonally. This again might have been inferred from the definition

of ip.
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§ 45. Expression for the kinetic energy.

By Green's theorem

llKS +|%S)^^&+ lli(
wl +vl+wl)&^&

= I \p (lu + mv + mo) dS.

On substituting p = 4>, u= - —, v = - -^-, w— - —, this becomes

The kinetic energy, T, of the fluid in the volume through which the

integration is taken, the motion being irrotational, is given by

2T = pin{(lHlHS)>*-
The density is here assumed to be constant. Hence, by the equation

of continuity,

V2
<t>
= and 2T = p[icj^-dS,

— denoting a differentiation in the direction of the outward drawn
an
normal.

Let us assume now that we are dealing with two-dimensional motion.

Then -^- = 0, and the volume reduces to a cylinder with its generators

parallel to 02, the ends being given by the planes 2 = and 2=1. The
kinetic energy is given by

"-'JJ{@)'*(S&>*
a surface integral taken over an end of the cylinder.

The surface integral II^^^S reduces to \<f>^ds, a line integral

taken round the trace of the cylinder on the plane 2 = 0.

Let I, m be the direction cosines of the outward drawn normal to

this curve. Then

3<f> ,3<f> 3<£ , 3i/- 3t/- dip

on ox oy oy ox os

since - m, I are the direction cosines of ds, that is, of the tangent to the

curve. The positive direction of s is that in which, on going round the

curve, the area enclosed by it is on the left hand.
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In two-dimensional motion, therefore, the kinetic energy is given by

§ 46. Conjugate functions.

Two real variables are necessary to specify the position of a point P
in a plane. One complex variable x + iy is sufficient, containing as it

does within itself both a real x and a real y which can be laid off along
their respective axes.

If x + iy be put equal to rei$, r, which is represented by OP in the
diagram, is said to be the modulus of the complex variable, and the
angle 6, represented by kOP, is said to be
its amplitude.

A function of both variables x and y is

said to be a function of x + iy when it has a
differential coefficient with respect to the

latter. For example, A (x + iyf + B (x + iy)

and sin a (x + iy) are functions of x + iy, while

Ax3 + Biy and sin (ax + iy) are not.

Now take any function of a complex variable, and separate its real

and imaginary parts, i.e. let

<l> + ixf>=f(x + iy), (21)

where
<f>
and

\J/
are both real functions of x and y. We have

l +*!=/> + ^). Ty
+iM = if(X + iy) -

Hence ig_|^ =^ + i ^.
ox ox oy oy

On equating the real and imaginary parts, this gives

~dx~oy' dy dx'

It can be shown conversely that if (22) holds, then
<f> + i^ is a

function of x + iy. For from (22) it follows that

VBsc ox) \dy dyj

which is the condition that 4> + iip has a differential coefficient with

respect to x + iy.

It is evident that the families of curves given by 4> = constant,

if/
= constant intersect orthogonally. Also, by differentiating (22) with

respect to x and y and adding, it follows that

dx2 dy2
'
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and by differentiating (22) with respect to y and x and subtracting, it

follows that gg. 32j,

dx2 dy2

The families of curves given by 4> = constant and 1^ = constant are

said to be conjugate. For (21) can be written in the form

4> + i(-<j>) = -if(x + iy),

where \p and -
<f>

are respectively the real and imaginary parts of the

function of a complex variable, -if(x + iy), and the r61es of the two
functions are now interchanged.

§ 47. Solution of problems in two-dimensional steady irrotational

motion.

If we are given a special problem in two-dimensional motion and
know that the motion is steady and irrotational, the straightforward

method of procedure is to find a solution of the continuity equation

dx2 ~dy2

that satisfies the boundary conditions, and then determine p by means
of the equation -.

P Z

^) + (^) being substituted for q
2

. If, however, we start with

given boundary conditions, finding a solution may prove a very tedious

or even impossible task.

The more fruitful method of procedure is not to take a particular

problem and try to solve it, but to take a particular class of solutions

of the differential equation and see to what problems they can be

applied.

It has been shown in the last section that the real part <j> of any
function f(x + iy) of a complex variable satisfies the equation for the

velocity potential, and at the same time the imaginary part gives

the stream function. We shall now take some simple functions of a

complex variable and examine the solutions which we get in this way.

Owing to the conjugate property of
<f>
and \p each solution will have a

second meaning, i.e. we can also take <p as potential and <j> as stream

function.

(1) <f>
+ i\p= x + iy.

Here $ = x and ^= y. The equipotential curves are straight lines

parallel to Oy, and the stream lines are straight lines parallel to Ox.

(2) 4> + i\f>=(x + iy)2 = x2 -y2 + 2ixy.

Here $ = %2 -y2 and \f
= 2xy. The equipotential curves and the

stream lines are represented in fig. 29. The equipotential curves are

rectangular hyperbolas with the axes of coordinates as axes; the



HYDRODYNAMICS 49

stream lines are rectangular hyperbolas with the axes of coordinates as
asymptotes.

In going from any curve of the family to the one next above it in
the diagram, the parameter is increased by the same constant quantity.
For example, it is the equipotential curves given by

x2 -y2 = 0, x2 -y* = 0-2, x2 -f = 0-i, ...,

that are plotted. Hence the diagram represents the motion quanti-
tatively as well as qualitatively. The quantity of liquid flowing per
unit of time across the portion of any equipotential intercepted between
any two consecutive stream lines is everywhere the same.

Fig. 29.

Any stream line may be taken as a fixed boundary. If, for example,

we take the parts of the curves xy = 0'l and %y = §-2 in the first

quadrant as boundaries, the solution represents the flow of a liquid in

a channel with a bend in it.

If we take
<f>

as the stream function and \p as the potential function,

we obtain the same solution turned through 45°.

/o\ , -, 1 x-iy
(3) 4> + if^

Therefore </> = -,

and *=-

xi + y
i

xz + i

or

or

x + iy x2 + y
2
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Equation (23) represents a family of circles with their centres on the

sc-axis and with the y-axis as common tangent at the origin. Equation

(24) represents a family of circles with their centres on the y-axis and
the a-axis as common tangent at the origin.

(4) <j> + i\p =
fj.
log (x + iy) = /j. log reie = /n log r + fdd.

Here <£ = /tlogr and t = f).9. The equipotential lines are a system
of concentric circles and the stream lines radii diverging from their

common centre. The solution represents liquid either flowing from,

or to the origin, or, as this fact is usually expressed, it represents either

a two-dimensional source or sink at the origin.

If the r61es of potential function and stream function are inter-

changed, the solution represents liquid flowing round a circular cylinder.

In this case the potential at any point is multiple-valued.

(5) <$> + *^ = /* log
X + :

' x + iy + a

Let the distances OA and OA' in the figure each be equal to a and let

P be the point x + iy. Then, if we write

x + iy-a = reie
,

r2 = (x- of + y
2 and 9 = tan-1

x- a

Fig. 30.

Hence x + iy - a clearly represents the line AP and x + iy + a represents
the line A' P. Let

x + iy + a = r
1
el9'-.

Then 4> + ty = p, log—jj. = p, log- + pi{9 - 6J.r
i
e

'i

Therefore 4> = p.logr/r
1
and ^ = /j.(9-9

1
). In order to examine the

shape of these curves, let us change them into cartesians.

The first may be written

(x - a)2 + y
2 = B {(x + a)2 + y

2
},

where B is a constant. This gives

X2 +y2 + a2_ 2aa;l±| = 0. .(25)
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The second may be written

tan-1 -

x-a tan l
-

x + a

_y_ y_
x-a x+a _

• = const, or „— = C.

1 +
%< -aL

This gives
* C

(20)

_
Equation (25) represents a system of coaxal circles with the centres

situated on the z-axis and the y-axis as radical axis. The radical axis

intersects the system in imaginary points, and consequently the limiting
points are real. Equation (26) represents a system of coaxal circles with
the centres situated on the y-axis and the z-axis as radical axis. In
this second system the radical axis cuts the curves in real points and
the limiting points are imaginary.

It is obvious from fig. 3 1 that the solution represents a source and a

sink of equal intensities.

(6) <^ + 4f = cosh- 1 ^^-
c

Here x + iy = c cosh
(<f> + i\f) = c cosh <j> cos ip + ic sinh (j> sin f,

and on separating the real and imaginary parts, we obtain

x = c cosh
<f>
cos $, y = c sinh <£ sin \j/.

On eliminating i/-, these equations give

x2 if

<? cosh2
<f>

c2 sinh2
<f>

= 1,



52 HYDRODYNAMICS

and on eliminating $ they give

r
= 1.

c2 cos2 ^ c
2 sin2 i^

The equipotential curves are thus ellipses and the stream lines

hyperbolas.

Both have common foci at x= ±c. If the flat hyperbola, i.e. the

curve for which sin i/< = 0, be taken as boundary, the solution represents

the flow of liquid through an aperture in a plane wall. If the roles of

<j> and \p be interchanged, the solution represents liquid circulating

round an elliptic cylinder.

§ 48. Application of the method of images.

The method of images can also be applied to the solution of problems

in hydrodynamics. For example, let AB be a fixed plane, the space to

the right of which is filled with an incompressible liquid, let P be a

fixed point source of strength m and let us suppose we are required to

determine the motion. The liquid of course cannot penetrate through

the plane.

In the case of a point source of strength m alone in an infinite liquid

the velocity potential is mjr, where r is the distance of the point in

question from the source, and the stream lines are obviously straight

lines radiating from the source. The total quantity of liquid flowing

from such a source in unit time is ivm.
The conditions to be satisfied in the given problem are that <j> is

zero at infinity, that the quantity of liquid flowing in unit time out of

any surface in the fluid is zero unless the surface includes P, when it

becomes 4;rm, and that the equipotential surfaces cut the plane AB at

right angles. These conditions are satisfied by assuming that the

source has an image of equal strength at P', at an equal distance on
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the other side of the plane AB. The potential at S is thus

in m
SP

+
SP

;
'

An interesting result follows from this. Let S be on the plane
at Q. Then the velocity at Q is 2roQN/PQ3 and has the direction QA.
The pressure at Q, according to equation
(18), is given by

P 2*

Assume that there are no body forces,

substitute for f- and we obtain

P. ,QN 2

- = C-2m2 -"
..

p PQ6

The pressure on the plane is thus less than
it would be if there were no source at P.

Writing QN =x and PN =a, we find that the presence of the source
diminishes the total thrust on the plane by

„ J^xn-Kxdx „r r i <$ \ , 7 ,,2pmI w^r =2wpm
l \w+z?-(F+wr

{x
}

EXAMPLES.

1. There is a line source and parallel to it a plane through which no' liquid

can pass. If the source and plane extend to infinity, find the velocity
potential and the pressure on the plane.

2. Two impenetrable planes meet at right angles. One of the angles thus
formed is filled with liquid, there being a continuous line source parallel to

the line of intersection of the planes and distant respectively a and b from
them. Derive an expression for the velocity potential and the pressure
on the planes.

3. The motion of a liquid is in two dimensions, and there is a constant
source at one point A in the liquid and an equal sink at another point B ;

find the form of the stream lines, and prove that the velocity at a point P
varies as (AP. BP)-1 , the plane of the motion being unlimited.

If the liquid is bounded by the planes x=0, x= a, y=0, y=a, and if the
source is at the point (0, a) and the sink at (a, 0), find an expression for

the velocity potential.

4. Liquid is moving irrotationally in two dimensions, between the space
bounded by the two lines 8= ±hr and the curve t^cos 36= a3

. The bound-
ing curves being at rest, prove that the velocity potential is of the form

<fj=7
3 am30.
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§ 49. Motion of a sphere in an infinite liquid. No forces.

A solid sphere of radius a and density <r is moving at a given in-

stant with velocity v in a given direction in an incompressible liquid

of density p. The liquid extends to infinity

and is at rest there. It is required to

investigate the motion of the sphere and the

liquid.

We shall assume that the motion is irrota-

tional. Take the position of the centre of the

sphere at a given instant as origin of coordinates

and the direction of motion as the positive

,?-axis.

The velocity potential at a point P depends
by symmetry only on OP and angle ZOP, i.e. on
r and 6. Hence we obtain the equation of

continuity in a suitable form by making the
'

Fig. 34.

and

3oS

d<t>

terms in

equation (7) equal to zero and then writing U= -^
This gives

°7

3

dr'

3
3c

3c d6

dr

3/ . ,d<j>-

=

=

r36i

.(27)

the common factor p being cancelled out.

At infinity the velocity of the liquid is zero and at any point on the

surface of the sphere the normal component is equal to the normal

component at the point of the velocity of the surface. Hence the

boundary conditions are

3</> A
3^ = °' r = a

>

"dr
= «cos0 (2E

We determine cf> completely by (27) and (28), and then obtain^ by
equation (17), i.e.

p dt r-
Ht), .(29)

U being put equal to zero, since there are no body forces acting on the

liquid.

To solve (27) assume 4>=fcosd, where / is a function of r only.

This expression is suggested by the form of the boundary condition

for r = a. Then, on substituting, the equation reduces to

dr
£ + ar£-y-o.
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In order to solve this, assume /= ?•*". We find on substituting that

to = 1 or -2. We have therefore

4> = Ar cos 6 + -g cos 6,

where A and B are constants. Now

-^- = A cos & 5- cos 0.
Or r6

To satisfy the condition at infinity A must equal zero and to satisfy

the condition at r = a we must put

v=2B/a3
.

Hence <£ = |^cos0 (30)

We shall now proceed to determine p, the pressure at P.

In order to find q, the velocity at P, we have

3<f> ra3
„ 1 3<i> va? . ,.

- ~- = -~- cos 0, - - ^ = jj-3 sin 0.
Or r6 r 30 2r3

We cannot determine — by differentiating 4> with respect to t, for

equation (30) gives only the value which <p takes for one particular

value of t.

We know from symmetry that the sphere must move in a straight

line. Let the position of its centre at time t be given by (0, 0, y)

;

ji = v. Then the velocity potential is given by

va3 (z - y)

2{x2 + y
2 + (z-y)2

}
i

'

since in this position r2 = x2 + y
2 + (z- y)

2

and cos 6 = j

.

{x2 + y
2 + {z-y)2Y

1Sg"
OT3*y 3m3u - yf*l

3<£_ dt
v " dt

dt ~ 2{x2 + y
2 + {z-yf}i 2{x2 + y

2 + (z- y)
2
}
1

0.1 \dv
a\z-y)

Tt

2{x2 + y
2 + (z-y)2

}
%

,.. . dd> v2as 3v2as cos29 as cos6dv
which becomes ^= __ +_^_+^- ^
on changing to our former notation.
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On substituting the values of if and -^ in equation (29), we obtain
dt

p v*aB 3v%3 cos2
6> tfcosddv «%6 / „a 1 . M\

, „ ,„i\-= s-h 1 = 1 cos2 + -r sm2
) + C, ...(31)

p 2r8 2r3 2r2 <& 2rB \ 4 J
K

'

where C is a quantity depending only on the time. When the pressure

is given at any definite point, C can be determined.

To find the kinetic energy of the liquid we may proceed by either

of two ways. We may divide the fluid into elements, find the kinetic

energy of each element, using the expression for q
2 already found,

and integrate throughout the region occupied by the fluid. Or we
may apply the theorem proved in § 45, namely, that

In the given problem the liquid has two boundaries, one the sphere

of radius a and another at infinity, which we may also take to be

spherical and of radius R. Now for the boundary at infinity

. dd> va3
. va? „

and is of the order R~ 6
. The area of the boundary at infinity is of

the order R2
. Hence the integral over the boundary at infinity is

of the order R~ 3
, and vanishes when R is made very large. We obtain,

therefore, for the integral over the whole boundary, taking 2ira2 sin 6 dd

as the element of area,

(""yWrinOift
4o *«

In the above expression _=__-. since the normal is drawn out-
dn dr

wards from the liquid, i.e. inwards to the sphere. This gives

2T = - irpah2 T cos2
<9 d(oos 6) = -= irpa?v2 = ^ M'v2

,

where M' is the mass of the liquid displaced by the sphere. If M be the

mass of the sphere, the total kinetic energy of the liquid and sphere is

(m+~N\'\i
l/„.

.
1

2

The effect of the liquid is thus equivalent to an addition to the

inertia of the sphere of one half of the mass of the liquid displaced.

If the sphere is being accelerated,

2
MV

di
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gives the rate at which the kinetic energy of the liquid is being
increased. Consequently ,

l »„'
dv

2
M

di

must be the resultant force with which the sphere acts on the liquid,

and 1>
the resultant force with which the liquid acts on the sphere. This
force opposes the motion, and in magnitude and direction is quite

independent of the previous motion of the sphere. If T7 = 0, the

liquid exerts no force on the sphere. Thus, if a sphere is set in motion
in an ideal liquid and left to itself, it moves forward in a straight line

with uniform velocity.

The resultant force exerted by the liquid on the sphere can also be
derived from the expression for the pressure (31). For r = a, the latter

becomes „ „ ,

^ =
-(W0~5) +^- s + C.

Divide the sphere into elemental zones by planes parallel to the

xy-plane. The area of a zone is 1iraL sin 6 dO. From the form of p
the resultant force must be in the direction of Oz. It is therefore

given by

p cos 6 2tto? sin 6 dd.

Only the cos 6 term in the expression for p requires to be considered

in the integration, because the other terms do not change with the sign

of cos 6, i.e. they are the same both in front of and behind the sphere.

The resultant force is therefore

I wcfip jr cos2# sin 6d0 = va3p -y I cos2# d (cos 6)

2 „ dv 1 ...dv=rapir^dt'
the same result as before.

§50. Motion of a sphere in an infinite liquid. Gravity acting.

Take the direction of Oz vertically downwards. The equation of con-

tinuity and the boundary conditions remain unaltered, and the velocity

potential and kinetic energy are represented by the same expressions

as before. Writing - gz for fl, the equation for p becomes
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The resultant thrust of the liquid on the sphere is in the direction of Oz,

as before. The effect of the additional term, is to give an additional force

fir p+ l 4
I gpa cos2 6 . 2?ra2 sin 0dO = 2Tra3gp cos2 6 d (cos 0) = -~ ira?gp=M 'g,

acting vertically upwards. This is the force equal to the weight of

liquid displaced, which is given by the principle of Archimedes.
If the sphere is allowed to fall under the action of gravity, the rate

of increase of its momentum is

4 o dv
-Tracer—.
3 dt

The downward force on it due to gravity is

4
sgTflftrgr.

The upward forces due to the weight of liquid displaced and to the

communication of kinetic energy to the liquid are respectively

4 ^ dv

ra?pg and _^_.
The equation of motion is therefore

4 „ dv 4 .. . 2 „ dv

V^jrr^-^-i^Pde
which
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5. A large sphere of radius 6 is filled with liquid and a smaller sphere of
radius a is moving inside it with velocity v along a diameter. Find the

inetic energy of the liquid for the

lemma «, is moving insiae n witn velocity v along a mameter. una tne
velocity potential and the kinetic energy of the liquid for the time when
the spheres are concentric.

[
63 -

r+^)c0S e, r=^Pv^
(
^-^.j

6. A cylinder of radius a is surrounded by a coaxal cylinder of
radius b, and the intervening space is filled with liquid. The inner cylinder
is moved with velocity u and the outer with velocity v along the same
straight line perpendicular to the axis of the cylinders

;
prove that the

velocity potential is

ahi — JPv n (u-
<p=-il s-rcos0+ -—,,. ,iT

§51. Let any curve be drawn from A to B. Take an element of

length ds at a point P on the curve and let the direction of q, the
resultant velocity at P, make an angle with ds. Then

I q cos ds
Ja

is said to be the "flow" along the curve from A to B. Not the time
aspect, only the instantaneous space aspect of the integral is meant.

w„„ n udx v dy w dz
JNow cos0 = --j-H r + -TJ

q ds q ds q ds

hence <7cos0<fe= (udx + vdy + wdz),

and, if the motion is irrotational, this reduces to <£a - <£b-

If A and B coincide so that the curve becomes closed, then the integral

(A
I (udx + vdy + w dz),

taken round the closed curve, is said to be the circulation round the

closed curve or the circulation in the circuit. The circulation round
any closed curve vanishes in a region in which a single-valued velocity

potential exists. If the velocity potential is multiple-valued, the

circulation does not necessarily vanish. For example, if
<f>
= fi0 and

the circuit goes once round the origin, the circulation is "2/xtt.

§ 52. Stokes' theorem. The line integral of the tangential component

of a vector taken round any closed curve is equal to the surface integral

of the normal component of the curl of the same vector taken over

any surface bounded by the curve, or
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Let P(x, y, z) be the centre of a rectangle ABCD, the lengths of

the sides of which are dx, dy, and let u, v, w be the components of the
vector at P.

At A and B u has respectively the values

du dx du dy du dx du dy
U
~dx~J~dy'2'

U + diT~dyt'

and at B and C v has respectively the values

dv dx dv dy dv dx dv dy

dx 2 dy 2' ^ dx 2
+
3y 2

• P

Fla. 35. Fig. 36.

dudy
Hence the average value of u on AB is u - =- ~ and the average

value of v on BC is v + *- — . Similarly the average value of u on

du dy , .

,

, ,. . _ . dm dx

'dy~
line integral round the element is therefore

DC is m + ^7(

-4- and the average value of v on AD is v-^-^r. The

du dy\/ dudy\ , / dvdx\ , ( dudy\ , / dvdx\ ,

-(
3w 3m'

3a; 3«/,
dxdy.

Similar expressions hold when the rectangle is parallel to the YZ
or ZX planes.

Now consider the triangular element ABC, the normal to which is

given by I, m, n. Since the contributions from OA, OB, OC cut out,

the line integral round ABC is obviously equal to the sum qi the line

integrals round ABO, BCO and CAO, that is to

^u\ .r,^ /3w dv\ „ „„„ /du dw\ „„„3« du\

dx
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K
by the result already proved. This becomes

where A is the area of ABC. Since the value of the circulation round
ABC is independent of the coordinate system, this result holds for a
triangle with its sides not parallel to the coordinate planes.

Take any surface and divide it up into elementary triangles. The
line integral round the surface is equal to the sum
of the line integrals round the individual triangles,

because, as may be seen from fig. 37, every side

of a triangle not at the same time on the bounding
edge of the surface, is traversed twice during the
integration in different directions, and so con- — /C^

tributes nothing to the total. Hence the line fig. 37.

integral round the surface is equal to

which proves the theorem.

§ 53. A word requires to be said about the direction of the normal to

be considered positive. An observer walking round the edge of the

surface on the positive side in the direction of the line integration

would have the area on his left. This follows from fig. 35. The
circulation is related to the positive direction of the normal in the

manner typified by a right-handed screw.

It should be added that this rule is bound up with the convention

adopted as to the coordinate axes. We always use in this book what
is known as a right-handed or positive system, i.e. to an observer

situated in succession at X, Y and Z the rotations in the directions YZ,

ZX and XY are all anti-clockwise. The second figure below represents

a left-handed or negative system; the corresponding rotations in it

are clockwise. A reversal of the direction of any one axis changes a

positive system into a negative one or vice versa. In defining the curl

of a vector we assumed implicitly that a positive system was used. If

a negative system had been used consistently throughout, it would be

necessary in Stokes' theorem to consider the other direction of the

normal positive.
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§ 54. Kelvin's circulation theorem.

If the force is derivable from a potential and if the density is a
function of the pressure only, the circulation in a circuit moving with
the fluid does not alter with the time, that is

d f
A

-j- 1 (udx + vdy + w dz) = 0.
at J a

We have -j (u dx) = -r- dx + u -r, (dx) = ( - ^ ^-\dx + udu.

Hence

d
f
A

, , . , , f*/ 13» 3J2\, / Idp 3J2\ ,

(ft

1 3p 3J2N
,

,
7 ,

+ — ^- - ^—\dz + udu + vdv + wdw
p oz azj

-(-J?-
n4-)>

It should be noted that we have already met the same three quantities

contained in the above bracket in Bernoulli's theorem, but then they

had all the same sign.

It follows from this theorem that if any finite portion of a perfect

fluid has a velocity potential at any instant, it has had one at all

previous, and will have one at all subsequent times. For if the

circulation is zero, the curl of the velocity is zero, and consequently

the motion is irrotational.

§ 55. Vortex tubes.

A vortex line is a curve whose tangent at any point coincides with

the direction at the point of the instantaneous axis of rotation of the

element. It is thus the envelope of successive axes of rotation. Its

equation is
§ dx = dy_dz

If vortex lines be drawn through every point on a small closed

curve, the quantity of fluid enclosed is said to form a vortex or

vortex tube or filament. The tube is taken so thin that the angular

velocity is constant for all points on any one cross-section. Let o> be

the angular velocity at any point on the tube and a- the cross-sectional

area at that point ; then cucr is said to be the strength of the tube.

§ 56. Laws of vortex motion.*

The following are the fundamental laws of vortex motion :

(1) A vortex filament is always composed of the same elements

of fluid.

* These laws form the justification of the assumption of irrotational motion
made in § 49.
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(2) The strength of a vortex filament, w<r, is constant (a) with
respect to time, (b) throughout the filament.

(3) Every vortex must either form a closed curve or have its

extremities in the surface of the fluid.

Proof (1). Take any surface in the fluid wholly composed of vortex
lines. By Stokes' theorem the circulation in any circuit in it is zero.

After a time, owing to the motion of the fluid, the Surface will have
taken up a new position. By Kelvin's theorem the circulation in any
circuit in the surface is still zero ; hence the surface is still composed
of vortex lines.

If two such surfaces be considered, their intersection must always
be a vortex line. Hence vortex lines move with the fluid.

(2a) This follows from Kelvin's theorem, since by Stokes' theorem
2oxr is the circulation in a circuit round the tube.

(2&) Helmholtz's proof: Isolating in imagination a portion of a
vortex bounded by two normal sections and applying Gauss's theorem
to it, we have

The integrand on the right-hand side vanishes throughout the

volume, as may be found by actual differentiation of £, >? and £ and
the integrand on the left-hand side vanishes over the

surface of the filament, since the normal component of

the angular velocity is zero there. We are left therefore

with only the surface integral over the ends of the

filament, and consequently it must be zero. It has the

value ,, „.
(OjCTj — w

2
o-
2 ,

coj, o>
2 , o-j, cr

2
being respectively the angular velocities

and cross-sectional areas at the ends of the element.

Hence the theorem follows. The minus sign is accounted for by the

fact that the angular velocity has the same direction and the normal

different directions at the two ends.

(26) Kelvin's proof : Apply Stokes' theorem to the

portion of the surface of the tube bounded by

ABCDEFG. Since (Z£ + mij + nC)dS = for this

surface, \(udx + vdy + w dz) taken along the boundary

is also equal to zero. Now if BC and GF are taken

sufficiently close together, the part of the line integral

along BC is equal and opposite to the part of the line
FlG 41

integral along FG. The whole line integral thus

reduces to the parts round the rings GAB and CDEF. These are equal

respectively to 2(0^ , - 2w
2
o-

2
in the notation of the preceding proof.

Hence the theorem.
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(3) If a vortex tube ended in a fluid a closed surface could be

drawn cutting the vortex only once, and 1 1 (Ig + mri + nQdS taken over

this surface would not be zero.

§ 57. The rectilinear vortex.

Let the motion be in two dimensions. Then w = 0, ^- = 0, ^- = 0,
oz oz

and consequently £ = 0, ^ = 0. If vortex lines exist, they must be

parallel to the 2-axis. In two-dimensional motion we can always write

m = - ~- , i) — ^-. Consequently

. dv ~bu d2
if/ 32

^
dx dy dx' 'by2

Let us suppose that we have a vortex of circular cross-section at rest

in an infinite liquid which is itself at rest at infinity. Let the radius

of the cross-section be a, let the centre of the vortex be situated at the

origin and let the angular velocity have the constant value £ through-

out the vortex. Then \p satisfies the equation

inside the vortex and the equation

3¥
+?Va0

3a;2 oy2

outside the vortex. As in this problem we obviously have symmetry
about the axis of the vortex, it is better to take r as independent

variable. The best way of changing to the new independent variable

is in this case by means of the formula (cf. § 24)

On retaining only the differentiation with respect to £ and sub-

stituting £ = r, A = v=l, /i = r, the equations become

rdr\ 3r

and

)
= 2f (32)

The radial and tangential components of the velocity are now given

respectively by --g| and ^-
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Solving (33), we have

37-(
r
3^)

=
' ''1f

= C and V' = Clogr + D,

and solving (32), we obtain

-(V|f) = 2^, r^ =^ + A, ^ = k^2 + Alogr+B.

The radial component of the velocity, it will be observed, is every-

where zero.

We have now to determine the constants of integration. If we
measure \p from the origin it must be zero when r = 0. Hence, in

the expression for \p inside the vortex, A = B = 0. At the surface

of the vortex there must be no slipping ; the tangential component of

the velocity must be the same there both inside and outside. The
value inside is (a and the value outside C/a ; hence C = £«

2
. Also,

since the two expressions for f must agree for r = a, \(a2 = £a'
2 log a + D.

Hence D = ^£a2 - (a2 log a. Substitute m/V for fa
2

, m being the strength

of the vortex. We then have

. mr2

inside the vortex and

outside the vortex.

, m. . m
t = -logr/a +-

These expressions are of the same form as the expressions for

the gravitational potential due to an infinitely long circular cylinder

inside and outside the cylinder. To obtain the latter (cf. § 19) all we

have to do is to substitute - k for
7i
--
Aw

As has been mentioned above, the direction of the resultant velocity

at any point is tangential to the circle drawn through the point with

its centre on the axis. Its value inside is given by

and its value outside by

3 mr2 _ mr
~dr 27T«2 va?

dm, , m
=- - log r/a=—

It thus agrees (cf. §116) both in magnitude and direction with the

magnetic intensity due to an electric current of strength m/27r electro-

magnetic units flowing along a homogeneous conductor coincident

with the vortex.

H.P. E
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We can determine the pressure outside by the equation

p 1 „ ?>4> ~- + - cfi = —- + C
P
+
2 q dt

+
'

putting -2. = o and q
2 = -^. Then

P. n
p p 2ir2r2

II being the pressure at infinity.

In order to find the pressure inside the vortex, write down the

equation of motion for the radial direction. The body force is zero.

The acceleration is —— . Hence we haveA4

1 dp _ mV
p dr 7r2ffl

4
'

71 07)/ T P
This gives " =—5—1--, where P is the pressure at the centre of

the vortex. ^ ^

At the surface of the vortex

5_Jl£*£_ +
P

therefore £-5_j£.
p 2ir2a2 2wW p p p irW

The pressure diminishes all the way from infinity to the centre. If

II < m2p/(Tr2ffl
2
), p becomes negative for some value of r < a, and in this

case a cylindrical hollow exists in the vortex. It is even possible for

the vortex to be all hollow.

§ 58. If a liquid of invariable density is moving irrotationally, its

kinetic energy (cf. § 45) is given by

Let the boundary be fixed. Then -2- = 0, and consequently T = 0.

But every element of the volume integral is positive. Hence q
2 = 0,

i.e. we cannot have liquid moving irrotationally inside a space with

fixed boundaries.

§ 59. If an impulsive pressure acts on a liquid at rest producing a

velocity u, v, w,

1 dm
u= — —

-, . .
.

, . .
.

,

p ox

(cf. §37). Let the liquid be incompressible and put 4> = mjp. Then

u = - ^-, • • , • • 1 *•« the motion produced by impulsive pressure in a

liquid at rest is irrotational.
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Conversely, any irrotational motion existing may be imagined pro-
duced by impulsive pressure.

§ 60. Kelvin's minimum energy theorem.

The irrotational motion of a liquid occupying a simply-connected
region has less kinetic energy than any other motion consistent with
the same motion of the boundary. (A region is said to be simply-
connected when every closed surface drawn in it can be contracted to a
point without passing out of the region.)

T . 3c/> 3c/. dd> . ^ . . . T 3<A
Let

~a~> ~W> ~lj~ £lve irrotational motion. Let -~ + m,

3c/> , dd>
-~r- + v, --^- + w give another possible motion. The motion of the

boundary is the same in both cases ; hence, at a point on the boundary
where the normal is given by I, m, n, h' + mv' + nw' = 0.

The kinetic energy of the other possible motion is given by

T =
HjJ\ 3«

+M
')

dxdydz

= 9M I l"('3~)
dxdydz + -zp\ 1

1

2m'2 dx dy dz - p I ! yZ-J^-u' dxdydz.

But by Green's theorem, since the liquid is incompressible,

1 1 YZ-^-vI dxdydz = - 1 1 \<p*2,^-dxdydz + I \<f>(lu' + mv' + nw')dS = 0,

and 1 1 1 2w'2 dx dy dz is essentially positive. Hence the theorem is

proved.

The theorem is a particular case of a more general theorem due to

Kelvin, which is enunciated as follows :

A material system if started from rest by impulses applied to

certain points, adjusted to communicate certain specified velocities

to these points, has less kinetic energy than any other possible motion

of the system fulfilling the same velocity conditions.

EXAMPLES.

1. Considering the earth as composed of a solid spherical part, of density

symmetrical about the centre, covered by a stratum of water, and disregarding

the attractions of the particles of water on one another, prove that the

equation- of the free surface is

where x, y, z are the coordinates of the point considered, taken from the

centre as origin (z being taken along the axis), w is the angular velocity of

rotation, b is the polar radius, and p, is a constant to be interpreted.
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Show that if a be the equatorial radius,

a - b _ 1
2
a26

a 2 /x

Work out this quantity numerically to a, rough approximation. (Hint

:

The flow along an are of a meridian terminating at a pole is constant.)

2. An ellipsoidal hollow space (equation x2la2+y2/b2+z2/c
2= 1) is filled with

water. The water has vorticity, uniform throughout the mass, of angular
speeds £, r), £ about the principal axes of the surface, and the case is turning
with angular speeds Wj, <o2 , M3 about the same axes. Show by the condition

that the motion must fulfil at the surface of the vessel that the velocity

potential of the irrotational part of the motion of the water at any point of

coordinates x, y, z referred to the principal axes is

, , *. 62 - c
2

, . c2 — a2
, f.a? — b2

Prove that the component speeds with reference to fixed axes with which
those of the ellipsoid coincide at the instant are

with similar expressions for v, w.

Hence find the component speeds u', v', w' of the water at x, y, z relative

to the moving axes of the ellipsoid, and prove that a given particle remains

on an ellipsoidal surface similar to the containing surface.

3. If the axis of a hollow vortex be the axis of z, measured vertically

downwards, the plane of xy being the asymptotic plane to the free surface,

and if II be the atmospheric pressure, prove that the equation of the

surface, at which the pressure is n + <?pa, is

(x2+y2)(z- a)= c?,

where c is a constant.



CHAPTER III.

FOURIER SEEIES AND CONDUCTION OF HEAT.

§61. Suppose that we are given a curve y=f(x). Then in the

equation , .^
y = a + a

1
cosx + b

1
smx,

a , «j and \ may be determined so that the graph of the equation cuts

the curve in any three points between x = and % = 2ir. For it is only

necessary to write down the condition that the ordinates should be
equal at these three points and we have three linear equations for

determining a , a
2
and b

1
. Similarly, in the equation

y = a + djCos x + a
2
cos 2x + a

3
cos 3x+ ... a„cos nx

+ Sjsin x + 52 sin 2x + 5
3
sin 3x -t- . . . bn sin nx.

a , a1; a
2 , a

s
... an , b1; &

2 , b
3
...b„ may be determined so that the two

curves cut in (2m +1) points. If n be made infinitely great, the

two curves will cut in an infinite number of points. This raises the

question whether the curves will not touch throughout the range x =
to x = 2tt, whether it is not possible to represent any function through-

out the range by an infinite series of the above type.

§ 62. Let us assume the possibility of expanding /(a;) throughout the

range to 2tt in a series of the above type, i.e. in a Fourier series, and
let us assume that the series may be integrated term by term. Then

/(«) = a + a
1
cosa;-i-a

2
cos 2x ... +&

1
sinx + &

2
sin2£ (1)

Integrate both sides of the equation with respect to x from to 2-k.

On the left-hand side we have I f(x) dx. On the right-hand every term

disappears except the first, which gives 2irar Hence

«o = ^£/(*)^ (2)

Multiply both sides of (1) by cosma;, where n is any integer, and

integrate with regard to x from to 2ir. Then, on the right-hand side,

we have terms of the following type

:

a 1 cos nx dx,

an I cos2 rer dx = -^ I ( 1 + cos 2nx) dx,
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am I cos mx cos nx dx = -— I {cos (m + n) x + cos (m - n) x} dx,

bn I sin nx cos nxdx = -^\ sin 2nx dx,

bm \ sin ma; cos nxdx = -^\ {sin (m + m)a: + sin (m - »)*} dx,

m being any integer except n. It is clear, that on integrating and
substituting the limits and 2w, every one of these terms will vanish
except the second. It gives a„ir. The left-hand gives

I f(x) cos nx dx.

Jo

Hence an = ~\ '"f(x)coanxdx (3)
""Jo

Similarly, by multiplying both sides of (1) by sinrnx and integrating

between the same limits, it can be shown that

1 f2"

bn = -\ f(x) sin nx dx.

The two formulae (2) and (3) may be combined into one by writing

the absolute term in the series -A instead of a . Here, however, it will

always be written a . 4
If the range is taken from - t to + it instead of from to 1w, the

only difference in the formulae for the coefficients is that the limits of

integration are from - 77 to + it.

§ 63. It is to be noted that in the preceding section we assumed,

but did not prove, that the expansion of f(x) in a series of the required

type was possible. It may be shown by trial, i.e. by taking particular

cases, calculating the coefficients and comparing the numerical value

of the function with the sum of the first few terms of the series, that

the assumptions are justified. This experimental method of proving

the assumptions is more convincing from the student's point of view

than the rigorous proof which is due to Dirichlet. Dirichlet's treat-

ment of the subject is long and will not be given here. In it the

sum of n terms of the series is taken, and it is shown that when n

becomes infinitely great, the sum approaches f(x), provided that f(x) is

single-valued and finite and has only a finite number of discontinuities and

turning-values from x = to x — 2tt. This gives the condition on which

the expansion of f(x) in a Fourier series is possible. If there are no

discontinuities in f(x), the series is equal to f(x) between and 2ir.

At a discontinuity in f(x) the value of the series is the mean of the

values of f(x) on both sides of the discontinuity. At and 2t
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the value of the series is the mean of the values of f(x) at these two
points.

It is not necessary that f(x) should have the same mathematical
expression throughout the range. For example, it may consist of

several different and disconnected straight lines.

A Fourier series can always be integrated term by term, but cannot
in general be differentiated term by term. It is easy to see why this

should be. For, if we differentiate the right-hand side of

f(x) = a + a
1
cos x + a

2
cos 2x + a

s
cos Zx ...

+ \ sin x + 6
2
sin 2a; + b

g
sin 3x . .

.

,

we obtain - a
x
sin x - 2a

2
sin 2x - 3a

s
sin 3x ...

+ 5j cos x + 2b
2
cos 2a; + 3b

3 cos 3a; ...

.

A Fourier series converges only because the coefficients of successive

terms decrease. It is obvious that differentiation must either destroy
this convergence or make it less rapid.

On integrating the same series, we obtain

a x + a
1
smx + -^- sin 2x + -g- sin 3a; . .

.

-

b

x
cos x--^- cos 2x - -£- cos 3x ... ,

and it is obvious that integration increases the convergence.

Examples. (1) Let f(x) = x2 from x = to x=2tt.

1 Pw 4
Then a = ^- x2dx = ^ ^

2
,

2ir

x2 cos nx dx

± (
2w

and b, = - I a;
2 sin nx dx

1 f
2

/ 1 2 \ 2w 2 C2*
= I — x2 sin rax + -j- x cos mx )

—~-
I cos nx dx --

\mr n2ir J mVJ

/ 1 „ 2 . V" 2 f
2' . , 4tt= x2 cos mx + -5- x sin mx —5- I sin nxax= .

\ nir rir / JtjtJo n

Hence, from to 2x,

4 4 4?r
a;
2 = - 7r

2 + 2 —= cos nx - 2— sin m.t.
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(2) Let/(x) = x from x = to x = tr and /(x) = x-27r from x = ir to

x=27i-(fig. 42).

J'

Here a =— -M xdx+l (x- 2w)dxi = 0,

an = -
J J

x cos me dx + I (a; - 2n-) cos nx dx \

= -
{ I a; cos wa; dx-2ir\ cos wx <£x

J-

lf/a; . N 2"-
f*= - \ - sm »x - I

" lA» /o Jo

d 5„ = - -H x sin mx itfx + I (x - 2ir) sin nx dx \

1 f
f2ir . p* . 1= -

-j I x sin nx dx - 2tt I sin nx (?x V

"sin wx , /2tt . \ 2,r ~|— ax - — sm nx }- =
\» /*• J

1 |7 x N 2'
f
2"

- -( (
— cos nx) +1
w /o JoI

cos nx , 2?r / \
2,r^

dx -\ cos nx
n n \

\ ( 2tt n 2tt n 2tt
= - \ cos 2nn H cos 2nir cos mr
ir I n n n

2?r
7T ^7T

Fio. 42.

Hence the series is

sin x - jr sin 2x + ^ sin 3x . . . .

At x = tt there is a discontinuity in f(x), the value changing from
7r to -ir. On substituting the value x= ?r in the series, we find, as

was to be expected, that it gives the mean of ir and - tr, namely zero.
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(3) Let (fig. 43) /(a) = c from x = to x-
17

=

0'

= from x = - to » = -»-
A A

o

and = - c from a;= -^- to x = 2-rr.

IT

Then a =—
j c da; - I c dx \ = 0,

IT

1 (-("2 (-2,7
^

f„ = — i I c cos ?i.r da; - I c cos ma; (Z.r \
T Uo J?* J

2

c f . wtt . 3jmt"|=— -{ sin -^- - sin 2mr + sin —=- } =
mir

(_
2 2

J

and &n = - 1 I c sin ma; dx - I c sin ma; da; [-

77 Uo J^ J

2

c f, m7r „ 3?mt]
=— i 1 - cos -pr + cos 2?i7T - cos ——

J-

TITT
[_

2 2
J

= ^2-2 COS 7MT COS -rr- }-

= alternately — and if m be even, — if m be odd.

Hence the series is

2c

77

2.11"1
sin x + - sin 2.i + ^ sin 3a; + ^ sin 5x . . . .

It is obvious from inspection that when a; is or 27r the series is

zero, that is, the mean of the values which f(x) has for these two points.

§ 64. Other forms of Fourier's series.

We had f(x) = a + a
1
cos x + u.

2
cos 2x + . . . + b

x
sin x + b

2
sin 2x . .

.

throughout the range x = to x = 2-, the coefficients being given by

ao=j-\ f(x)
dx

,
an = z\ f(x) cos nxdx

-tJo " Jo

1 p"
and b„ = - /(.?) sin «.* dx.

77 Jo
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It is sometimes necessary to represent f(x) by a series throughout

the more general range x = to x = 2l. Write x = -p- Then, when
x = 2it, z = 21, and ( 1 ) may be written

j:{Trz\ irZ 2« . . wg , . 2irZ
ji-j

j
= ip(z) = a + a

1
Gos -y- + a

2 eos—=- ... 4-OjSin y + o
2
sm—^- ...

,

where a =— I <f>(z)dz, «„ = -? I <£(2)cos —p&

and J" = t| ^(^sin^^.

Substituting now a; for a and f(x) for A («), we find that throughout
the range x = to x = 21.

r, . ttik 27ra; , . 7rx 7 . 27ra; ...

/(*) = a + a
1
cos-j- + ffi

2
cos—p... + \ sm -y- + e

2
sin —=— . .

.
, ...(4)

where a = ^l f(x)dx, an= j\ f(x)cos-j-dx

and 6n = ^ /(x) sin -y- dx.

. . nirx nir(2l-x)
Again, cos -y- = cos—*-=

The graph of the series

kx 2ttx
a + «j cos -j- + a

2
cos -y- ...

is therefore symmetrical about the ordinate through the middle of its

range, i.e. the ordinates on opposite sides of x = l at the same distance

from it are equal and have the same sign. Also

. rrnx . nTr(2l-x)
sin —=— = - sm—i-s -

The graph of the series

, . -kx , . 2ttx
b
1
sm -y + o

2
sm -y- . .

.

is therefore symmetrical about the middle point of its range, i.e. the

ordinates on opposite sides of the point x = I, y = at equal distances from

it are equal in magnitude but opposite in sign. In the Fourier series

representing a function of x symmetrical about the middle ordinate,

therefore, there will be no sine terms, and in the series representing a

function symmetrical about the middle point, there will be no cosine

and no absolute terms.* In examples 2 and 3 of the preceding section

the functions are symmetrical about the middle point, and we found on

evaluating the coefficients, that the absolute term and cosine terms

*If the origin of coordinates is at the middle of the range, these functions

become respectively even and odd.
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vanished ; this result might, however, have been inferred from the
nature of the function.

Suppose that /(a;) is given from x = to x= I. Then we may expand
it in a series in three different ways. We may first of all suppose that
I is only half the range and fill in the function in the second half so as
to make it symmetrical about the ordinate through x = l. Then

where

and

f(x) = a + a
1
cos -r + a

2
cos -y

i r2i i p

1 P ,, , rnrx , 2 P , . .

a" = T f(x)
cos— dx =

J] f(x)

.(5)

rnrx ,

cos —j— ax.

The second formulae follow since the integrals have the same values
in the first and second halves of the range. The above expansion is

called the half range cosine series.

cosmesenes.

We may suppose that I is only half the range and fill in the function

in the second half so as to make it symmetrical about the point x = l,

y = Q. Then
., . , . TTX , . 2wx , . 3ttx .„.

/(a;) = o
1
sin-^- + o

2
sin —j- + o

3
sin—=— ..., (6)

rnrx ,

I sin —p ax.where b„ = j I f(x) sin —,— dx = j I f(x) si

This expansion is called the half range sine series. The second

formula for b„ follows since the integral has the same value in the
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first and second halves of the range. It is of course always the second

formulae that are used in deriving the coefficients in the half range

series.

Finally, we may suppose that I is the whole range and use (4),

substituting I for 21.

The difference between the different methods is made much clearer

by consideration of a simple case. Suppose that f(x) = x from to I.

Then the three diagrams on p. 75 represent the three series as functions

of x.

Fig. 45.

§ 65. It is instructive and interesting to plot the first few terms in a

trigonometrical series as curves, and to show how their sum approaches

the value of the function. For example, let f(x) = - from x = to x = t.

Then, if we use the half range sine series, substituting jt for I in

equation (6), Q ^ ^ x

K =
2 f

"•

""Jo

-7 sin nx d.r, = - r- (cos nir-l)
4 2» v '

= - if n is odd, if n is even.
n
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Hence ^ = sin a; + ^ sin 3z + ^ sin 5a; ... .

In the accompanying set of figures, the horizontal line represents
77"

y = ~i- The heavy curve in (1) represents the first term of the series.

In (2) the dotted curve gives the second term of the series and the
heavy curve the sum of the first two terms. In (3) the dotted curve
gives the third term of the series and the heavy curve the sum of the
tirst three terms. In (4) the dotted curve gives the fourth term of

the series and the heavy curve the sum of the first four terms. We
see from the figures how the sum of the terms gradually approximates
to a straight line.

EXAMPLES.

1. Expand f(x)= x from to — and =w-x from - to tt as a half range
sine series. ^ 2

D ,. 4 /sin x sin 3x sin 5x sin 7x \

2. Show by expansion in a half range sine series that

-^sin4#+(^--gjjsin5#...].

3. Expand f(x)=x sin x from to it as a half range cosine series.

„ . , cosi 2 oos 2x 2 cos 3x 2 cos 4x

4. In the interval 0<x<-=, f(x)= -l-x, and in the interval ~<x<l,

f{x)=x-\l.

t> ^ , *i ^
21 ( 27rx

,
* 67rA'

,

l l0™ \Irove that /(#)=—jl cos—=— + -cos —^—+5? cos

—

j
— ...I.

5. Show by expanding sin x in a cosine series that

2 /.. 2 cos 2x 2 cos 4x 2 cos Qx \
sin#=- 1 z—

=

zt—z „ „ ....
7r\ 1.3 3.5 5.7 /

What function does the series represent when x lies between and - ir ?

6. Show that, if u is a fraction,

_2sinw7r J sin a; 2 sin 2x 3 sin Zx 4 sin 4x \smux- - ^p_^_^-— 2
-+

32 _ m2
-

42 _^2
...

j.

7. Prove that if --<*•<-,

-= cosa;-7;Cos3.i;+ p-cos5«-...

.

4 3 5
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§ 66. It is known as the result of experiment, that if we have two

parallel planes in a body, distant d apart, one of which is kept at a

temperature «
x
and the other at a temperature v

2 , v
x
being greater

than vv the quantity of heat that flows across the slab between the

planes, per unit area, per second, is

where k is a constant known as the conductivity of the substance for

heat. Suppose that the axis of x is taken perpendicular to the two
planes, and that they are brought close together so that d becomes dx

and v
l
- v

2
becomes dis. Then — gives the rate at which v increases

ox

with x at any point and - k— the quantity of heat that flows per

second through a unit of area drawn through the point with its normal
in the direction of the a:-axis. The minus sign is necessary because, if

dv~ is positive, the flow takes place in the - x direction.

The conductivity, k, is not strictly constant, but depends slightly on

the temperature of the substance. In what follows, however, it will

be considered constant.

§ 67. Equation for the conduction of heat.

Consider a rectangular element, the centre of which is situated at

P(x, y, z) and the sides of which are dx, dy, dz. We shall find an

expression for the rate at which heat

is flowing into the element and shall

equate it to the rate at which the

quantity of heat in the element is

increasing.
(

The "flow" of heat in the x

4_ _tj
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and the rate at which heat is flowing into the element through

On subtracting (7) from (8), we find that the rate at which heat is

being gained by the element through the two "x faces," ABCD and
EFGH, is

^(h^jdxdydz.

Similarly, — ( k— \dxdy dz and — (h ~\dxdydz give respectively the

rates at which heat is being gained through the y and z faces, and

{5(*l) +
|(*l)

+ l(*5)} <fa** <
9

>

gives the total rate at which the element gains heat by conduction.
Let p be the density of the body and c its specific heat. Then the

quantity of heat in the element is

cpv dx dy dz,

and the rate at which it is increasing is

cp ^j dx dy dz.

On equating this to (9) and cancelling out dx dy dz, we obtain

~dv 3/, 3d\ 3 /, dv\ 3 /, ov\ /im*5 =
a(*a) +

a*(*a*)
+ 5(*s) (10)

If we assume that the body is homogeneous, h does not vary with

x, y and z, and may consequently be taken outside the differentiation.

If k be written for k/(cp), the equation then assumes its usual form,

wr KW +w +™) or ^ =kV (11)

k is called the diffusivity of the substance.

It is possible that heat may be created inside the element of volume,

for example by the passage of an electric current through it, and in

this case the equation requires modification. Let A be the quantity of

heat created per second per unit of volume. Then the rate at which

heat is being created inside the element is

A dx dy dz.

We must add this to (9). Hence the equation

dv ('bhi "d
2v d2v\ A /, „,.

Wt
= K \W +

df
+ ;M) +

cp~
{

'
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§ 68. Equation for the conduction of heat. Otherwise.

Take any closed surface inside the body, and let I, m, n be the

direction cosines of the outward drawn normal to an element dS of

this surface. The flow in the direction of the outward drawn normal is

,/,3t dv dv-Ml— +m^- + n^-
\ ax ay az.

The quantity of heat flowing in through dS per second is therefore

, /,3b dv dv\ .

k
(

l

dx
+m

dy
+ n

dz)
dS

>

and consequently the rate at which heat is flowing into the region

bounded by the surface is

w
, , ,dv dv dv\ .

k{l^-+in~-+n^-)aS.
ox ay ozj

If we assume that k is constant and apply Gauss's theorem, this

becomes
f f f , /92v dH 9V\ , , ,

\}\\o^ + df
+w) y *

The rate at which the heat in the region bounded by the surface

is increasing is given by

I cp 57 dx dy dz.

\\Y
The two volume integrals are equal, no matter what the shape of

the surface is. Hence the integrands must be equal, whence equation.

If k is a function of x, y, z, Green's theorem must be used instead

of Gauss's.

§ 69. Equation for the conduction of heat in polars and cylindricals.

It is sometimes necessary to express the equation for heat conduction

in polar or cylindrical coordinates. The equation may be derived

directly in these coordinates from first principles or it may be

derived in generalised orthogonal coordinates and the proper sub-

stitutions made. Here we shall assume the result proved in § 24, that

2 _ 1 v d /fiv dv'
V V

~\^v^dl\kd~i

where £, -q, £ are the orthogonal coordinates and A, /*, v the multipliers.

On writing r, 9, <j> for £, r\, f and 1, r, r sin 6 for A, /*., v, we obtain

for the equation of heat conduction in polar coordinates,

dv k [d f „ . a dv\ d ( . a dv\ 9/1 dv\\

dl
=r^ine{^ smd

d7)
+w{sme w) +m^^d^)j

_«jd/
2
dv\ 1 d_( . „dv_\ _J_ dh\ . ..

~T*\dr\ dr)
+
sin6d6\

sm
96>J

+
sin2 9<^

J '
{

'
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and on writing r, 6, z for £, r/, £ and 1, r, 1 for A., fi, v, we obtain the
equation in cylindrical,

dt r\dry?>r)
+
do{rdB) +WAr

Vz)
K
\r dr{

r
dr)

+
r2 d6i

+
dz2

\

§70. Boundary conditions.

At the surface of separation of two media of different conductivities,

\ and fc
2 , the temperature must be the same on both sides of the

surface and as much heat must flow out of the one medium as flows

into the other. Let », , v
2
denote the temperatures on different sides

of the same element of the surface of separation and let n denote
the direction of the normal to the element. Then, expressing these

conditions mathematically, we obtain

-n, ^.
'"dn

'"
2 3w'

and k^ = h
2
-

At the surface of separation of a solid and a gas, it is usually

assumed that the temperature of the gas is appreciably constant

throughout, and that the Newtonian law of cooling holds, namely,

there is a loss of heat from the surface of the solid proportional to the

difference of temperature of the surface and the gas. " If v denotes

the temperature of the surface of the solid, vR the temperature of the

gas, k the conductivity of the solid and n the direction of 'the normal

to the surface drawn inwards, then

e is called the emissivity of the surface. It varies considerably with

the condition and state of polish of the surface. It also varies with the

temperature since the Newtonian law of cooling is strictly true only for

small temperature differences.

If the surface is impervious to heat or is coated with a varnish

impermeable by heat, ^- = 0.

§ 71. Uniqueness of solution of problem.

When the initial and surface conditions are given, then the state of

the body is fully determined for all subsequent times.

For, if possible, let there be two independent solutions v
x
and v

2
.

Then ^- = kV2v throughout the solid,
ot

v =f(x> V> z ) for * = an<^ v = 4>(%, y, z, t) at the surface.

Let V = v
1
- v

2
. Then V satisfies ^- = /<V2V throughout the solid,

V = for t = and V = at the surface.

H.P. F
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We shall show that V must be zero everywhere in the solid.

Consider the integral

j= 1 1 1— dxdydz.

It gives ^= jTfv|^a;<fy<fe=KJT [vV2Vdxdydz

by Green's theorem. The surface integral is taken over the surface of

the body and the volume integrals throughout its volume.

Since V = over the surface, I 1 1 V— dS =

- i"-JJJ{©"*®
,"®>**-'

But J = 0for t = 0.

Therefore J^O, i.e. {[i^dxdydz^O.

As V 2 cannot be negative, V must be zero everywhere. Hence v
1
= v

i ,

and we can have only one solution.

We shall now proceed to apply the differential equation for heat

conduction to particular cases.

§ 72. Steady flow in one direction.

'dv
In the case of steady flow ^j = 0, and the equation becomes

?)
2v Tfiv 32« .

3a;2 3y2 dz2

Let the temperature be given for

x = by tf = V
,

and for x = d by v = V
t , for all values of t.

Then obviously the isothermals are planes parallel to the two given

planes and v cannot vary with y or z. The equation becomes

dx2

The integral of this is v = Ax + B.

On substituting the values for x = and x = d, we obtain

V =B, V
1
= Arf + V .

Hence the solution is v — ^ 1
7
——x + Vn .

d °
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This may be written ° = 1
. °

;J x d

hence the fall of temperature is proportional to the distance from x = 0.

The quantity of heat that flows across area S of any isothermal

in time t is given by

Q--f|t|^-
t(V'7l)8 *-

The quantity of heat contained in the slab bounded by the planes

,»; = and x = d is given by

cpSv dx = cpS -—f-
3

77 + V a; = ^ cpSd(V + V,
),

where S is the area of a face of the slab.

§ 73. Steady flow. Symmetry about a point.

We shall next suppose that the lines of flow radiate out from a

point, which we shall take as origin, and that consequently the

isothermals are concentric spheres with this point as centre. Let

« = Va for r = a and v = V
b
for r = b

for all values of t. Let b be greater than a.

In this case we take the equation of the conduction of heat in polar

coordinates, and as v depends only on r, the equation reduces to

Integrating this, we obtain

a dv . 3v A A _

or or r1 r

Substitution of the values for r = a and r = b gives

v-=-5 + B
'

v--"5 +B -

and v=(Va -Vb) n r- +^ —
v ' (b-a) r b -a

The curve connecting r and is therefore a rectangular hyperbola.

The quantity of heat that flows across any isothermal in time t is

-*|J4m*< = 4irfc(V.-V
t)-

°'

'07-" — -"«v. ""(6 -a)"
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The quantity of heat contained between the isothermals r = a and
r = b is

= 47T/JC -!
(
V„ - V

8 )
v

2
+ (&V6

- aVB) i

g
'-

1

.

§ 74. Two dimensions. Steady flow.

(1) Suppose we have a thin plate (fig. 47) bounded by the lines

x = 0, x — l, y = and «/=<», that the temperature on the edge y = is

constant and given by f(x), and that the

temperature on the other edges is always zero.

We shall also suppose that heat cannot escape

from either surface of the plate and that the

effect of initial conditions has passed away,
that the temperature everywhere is indepen-

dent of the time. The problem then becomes
one of two-dimensional steady flow, and can

be formulated as follows :

/1X 32v 32
vj .

(2) v= for x = 0, v = for x = l,

Fig. 47. v =/(») for y = 0, v = for y = qo .

Try e
OI+ft' as a solution.

Then, since a2 + /3
2 = 0, either a or /3 must be imaginary. From the

nature of the boundary conditions, since # = for y = °o, /3 must be

real and negative. Therefore our solution becomes

v = Ae-^+i?x +Be-^- ipx or e~ <*•>(C cos fix + iD sin ,3a;),

where A, B, C and D are constants. Since v = for x = or x = I, only

the sine term can be used, and /3 = -=-, where m is any integer. Giving

m all its possible values and multiplying each term by a constant, we
have therefore

v=o

m-jry

=25y~ sm-
mirx

T'

We have now only to satisfy the condition v =f(x) for y = 0.

do this by fixing the values of bm , by putting

We

Then, when y = 0,

- I /(«) sin —j— dx.
Jo '

V7. ' '

v = zft sm -
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i.e. the half range sine series for v. The solution is therefore

85

« = 26„e sm-
rmrx

where
2 f

l

.
=
jj

/(s>riin —,— ate.

(2) Let us now take the analogous problem of steady flow in a

rectangular plate bounded by x = 0, x = l, y = and y = h, the boundary
conditions being as follows :

v = for a: = 0, v = for a; = Z,

a = for y = 0, v=f(x) for «/ = A.

If we start with the same solution as

before, v = e^+Pv, we find that, in order to v=0
satisfy the first and second conditions, it

must take the form

v-ffx)
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(3) Let us now consider the case of the same rectangular plate with

different boundary conditions, namely

i> = for x = 0, v = for x = l,

v = 4>(x) for y = 0, v=f(x) for y — h.

To obtain a solution write v = u + w, where u satisfies the differential

equation and the boundary conditions,

w = for x = 0, 14 = for x = l,

u = for y = 0, u=f(x) for y = h,

while w satisfies the differential equation and the boundary conditions,

w = for £ = 0, w = for x = l,

w=4>(x) for y = Q, w = for y = h.

Then u + w satisfies the same boundary conditions as v. u satisfies

the same conditions as v in (2), and is hence given by

. . miry
sinh—r^

„, I . tnirx
u = zbm t sin —;-

,

smh-j-

where *m = 7 I
/(*) sm—p ^K-

w satisfies the same conditions as v in (2), if the origin be shifted to

the point 0, h and the direction of the y-axis be reversed. Hence

sinh
m,(h-y)

„,, I . ixvkx

smn —=—

*.= ?£*<*).where b'm = ~
| <£ (a;) sin —=— dx.

EXAMPLES.

1. If the conductivity of copper be 0"97 for the calorie as unit of heat
and the centimetre and second as units of length and time, find the value
of the same conductivity when the lb., the degree Fahrenheit, the foot and
the minute are taken as units.

2. Prove the following results for the steady flow of heat symmetrical
about a straight line in an infinite solid.

Temperature at any point distant r from the axis of symmetry,

(V„ log b - V, log a) - (Va - V,) log r

log 6 — log a
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where V„ and V6 are the temperatures of the cylindrical isothermals of

radius a and b respectively.

Quantity of heat crossing any isothermal per unit length in time t,

log b — log a

3. The inner and outer surfaces of a conducting shell are concentric
spheres of radii r,, r

2 and are maintained at constant temperatures vu v2
respectively. If the conductivity of the substance is a linear function f{v)
of the temperature, show that the quantity of heat transmitted through
the shell in unit time is the same as if the conductivity had the uniform
value /{£(»i+ »a)}-

4. A hollow shell of isotropic material has conductivity k e~'lc
, where

k and c are constants. The internal and external radii are a and b. Show
that if the internal surface be maintained at temperature v and the external
surface at temperature zero, the heat conducted across the shell in unit
of time is

.

r
ab ,. _S>.

4ir*n 5 c(l-e o).

"b-a v '

5. An infinitely long plane and uniform plate is bounded by two parallel

edges and an end at right angles to these. The breadth is ir, the end
is maintained at temperature v at all points and the edges at temperature
zero. Show that the steady state as given by

v=^-{e~ysmx+ U-Sy smZx+ ...},
IT

where y is taken along one edge and x along the end from one corner as

origin, satisfies all the conditions.

Identify this solution by any process with

v= 2-°tan
_

sinhy

[Cf. Byerly's Fourier's Series and Spherical Harmonics, § 58.]

6. An infinitely long uniformly thick plate of homogeneous material

is bounded by two parallel edges I apart, an end at right angles to the edges,

and two plane faces which are coated with varnish impermeable by heat.

The edges are maintained at temperature zero and the end is kept heated
so that the temperature is V at the middle point and diminishes uniformly
to zero at each edge.

Find approximately in terms of V the temperature on the middle line

of the plate at a distance 31/tt from the heated end. Find also the rate

of flow of heat across a cross-section at that point.

7. The two edges of an infinitely long rectangular plate are maintained

at temperature zero while the end is maintained at temperature v sinn%.

The breadth is tt/ti and x is measured along the end from one corner. Find
an expression for the temperature when the steady state is established.

8. Find the temperature of the middle point of a thin square plate

whose faces are impervious to heat when three edges are kept at the tempera-

ture 0° C. and the fourth edge at the temperature 100° C. (Answer 25° C.)
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§ 75. Variable linear flow. No radiation.

(1) Let us suppose we have a bar of length I and of uniform section,

the diameter of which is small in comparison with the radius of

curvature. We shall also suppose that its surface is impervious to
heat, that there is no radiation from the sides. Let the initial

temperature of the bar be given and let its ends be kept at the constant
temperature 0° C. Then, if one end of the bar be taken as origin and
distances along the bar be denoted by x,

n\ ^"— ^2p

„ ,
,

' !- for all values of
v = when x-; = Z, J

(3) v=f(x) for t = 0, <o + <x> for

The boundary conditions suggest that x occurs in the solution as

sin —j— . Trying eat sin —^?, we find that this satisfies the differential

equation if /m7ry

Taking every possible value of m and multiplying each term by a

constant, bm , we obtain

v = zome v '
' sin —y—

.

This satisfies the condition for t = oo and for t = it reduces to the

half range sine series. Hence the solution is

v = 2ome
v ' ' sin—y— ,

where ^™ = T f(pc)sm-^-dx.

We see from the solution that when t = oo , v = everywhere ; all the

heat has escaped from the bar. v /

(2) Suppose, instead of the ends of the bar being kept at temperature

zero, that they are impervious to heat. Then the statement of the

problem becomes

{L)
di-

K
dx*'

(2) | = for , =
0,|

Y for all values of t

;

| = for x = l,\

(3) v =f(x) for t = 0, v + oo for t = oo .
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The boundary condition suggests that cos —=— is a factor of the

solution, and proceeding as before we obtain for the complete result

^ ~ K (~r) t ««
v = an + 2M,.e v « ' cos —=—

,

o

mirx
dx.where a =Uj(x)dx, ara

= | P /(x) cos

We see from the solution that in this case when t=x, v= a , the

average initial temperature. This result might have been inferred

directly from the fact that no heat leaves the bar.

(3) Suppose that the ends are kept permanently at different

temperatures, that

~dv _ Wv
(i)

di~
K
dtf''

. ,
' > for all values of t

v = y tor x = I, J

(3) v=f(x) for t = 0, v+ oo for i = oo .

Assume v = u + w, where u = 4> (xt) and w — ^(x), and let w satisfy

,. . 3w _ 32wW di~
K
dx^''

w = y for x=l, J

Since w is independent of t, from (1) it must have the form
w = Ax+B. From (2),

/3 = B, y =M + B.

Hence w= " "'
x + p,

b

The conditions, which « must satisfy, are then

3w 3%

' '• for all values of t.

(1) : K ;

3< 3a;2
'

^ ' . . ,
' V for all values of <

:

« = for x = l, J

(3) u=f(x)- (y ~PK -P for 2 = 0, «=£«> for 2 = oo.

But this is the same as the first problem in this section. Hence the

complete solution for v is

v = K ' rj x + p + 2bme
w/ sin—,-,

where ^m = 7 l/(g)~ ;
x ~ ft

f
sin ~r~^
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§ 76. Equation for variable linear flow with radiation.

Consider a thin rod of uniform cross-sectional area o- situated in air

at temperature zero. Let k be the conductivity of the rod, p its

density, c its specific heat, p its perimeter and e the emissivity of its

surface. Let x denote distance measured along the axis of the rod

and let the isothermal surfaces be planes perpendicular to the axis of

the rod.

Consider an element of the rod bounded by the planes x and x + dx.

The rate at which heat is being conducted into it is

, ov

ox

The rate at which heat is being conducted out of it is

Hence the rate of gain by conduction is

trie ^-5 dx.
ox'

The temperature of the element is v, the area of its surface is p dx,

and hence the rate at which it loses heat by radiation is

evpdx.

The quantity of heat in the element is vcpcrdx and the rate at

which it is increasing is g^— cpo- dx.
at

We arrive therefore at the equation

dv , , d2v , 7 dv ~d
2v ,

^rCpcr dx = crlc^-r
2
dx- evpdx or ~- =k—

2
-/iv,

where h =—.
Cpcr

In order that the isothermals may be planes, it is necessary that the

rate at which heat is being conducted out of the element should be

much greater than the rate at which it is being radiated out.

§ 77. Ingenhousz's experiment.

Suppose that the flow is steady, that one end of the bar is situated

at the origin and has a fixed temperature, while the other end is at

infinity and has temperature zero. Then

(2) v = V for x = 0, v = for x = a>

.

The solution of (1) is v = he "^ +&e *° .
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From (2), we find that A = 0, B = V. Hence

i)= Me kcr
.

A well known experiment is to coat two similar bars of different

metals with wax, and to fix them up parallel with one end of each

projecting into a vessel in which water can be boiled. The bars are

long enough for the cold ends to be near the temperature of the

atmosphere, when the steady state is reached. Let the conductivities

of the two bars be h
x , k2

and let the distances along which the wax
is melted be llt /,. Then, where the wax just melts, the temperature

must be the same on each bar. Therefore

V^ Zi=
V,

2

k
2
<r

2
or

£
2
~Z

2
2 '

since e, p and o- are the same for both bars.

§ 78. Despretz' formula.

One end of a bar is kept at a constant temperature V and heat is

conducted along the bar and escapes by radiation into the air. Then,

when the steady state is established,

v = Ve k"
,

as in last section. Let vlt v„, v
3

be respectively the temperatures

at z - d, x and x + d. Then

v
1
= Ve ka

, v
2
= \le

k" and v
3
= Ve k"

Denote h±% by 2m. Then

V 7—

^

/—

o

whence e ka =n + \/n2 - 1,

the root with the minus sign being impossible. Therefore

-

N
/grf = log.(n + >/nnri).

We can determine n experimentally. Hence, in the comparison of

two bars of different materials, if e, p, " and d be the same for both

and klt jij refer to the one bar and k
2 , »2

to the other,

^_ Iog
e («2 +^V- 1

)
,

K log^ + Jn^-lj
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§ 79. Consider the case of a finite rod of length I, from which there
is radiation, both ends of which are kept at zero temperature and the
temperature of which is initially given. The statement of the problem
is as follows

:

. . "do d2v ,

(2) w = for x = 0, v = for x = l;

(3) v=f(x) for t = 0, v±<x> for t = cc.

Write v = e~ ht u. Then, by substituting in (1), we find that it

reduces to _ _.
cm, _ o2u

U^ K
c^'

The boundary and initial conditions are the same for u and v: By
comparison with § 75, it will be seen that the problem has been reduced
to the analogous one with no radiation. The solution is therefore

™ -{'»+" (x) }
(

•
mTX

v = Zom e
l x ' ' ' sm —=—

,

where J_ = ~
\ f(x) sin -^— dx.:

7j</^
sil

§ 80. Fourier's ring.

Suppose we have a thin bar of uniform section bent into the form of

a circular ring of radius a. At one point, O, in the ring let a steady

temperature be maintained and let heat be radiated from the ring to

the air. It is required to find the temperature of the ring when the

steady state is established.

Take O as the origin and denote the distance from O, measured
round the ring, by x. Then

(2) v = V for x = 0, ^- = for x = +7ra.

The solution of (1) is

fep [~tip

From (2), we have

whence

V = A+B, = Ae i<r -Be

-J.-rt +J~ira.
Me kcr

\le
h"

'2 cosh + $^-ira 2 cosh .1%
V ho- \ kcr

Tta
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The solution is therefore

f s/fkx-na) -J~J£(X -*a)\ Vcosh A /^(a;-7ra)

2cosh /V / 7iira coshA/r^Ta
\ far V far

The heat radiated from the ring into the air in time t is

22
J

epi> cfo = 2W sjepkv tanh a/ 77- w.

§ 81. Linear flow in semi-infinite solid. Temperature on face given

as harmonic function of the time.

Let all space on the positive side of the yz-plane be filled with a

homogeneous solid of diffusivity k. Let the temperature on the

2/2-plane be given as a harmonic function of the time and let it be

the same for all values of y and z. It is required to find the tem-

perature throughout the solid when the periodic state is established.

Clearly v is here independent of y, z, and the conditions to be

fulfilled are as follows :

. dv_ d2v
{[) Wt~

K
'dtf

;

(2) v = V siant for x = 0, v=f=co for x = oo.

Try e"-
t+?x

. Then, in order to satisfy (1), a = /</3'2 . Before, in §75,

we used the special case of this solution when a was real and negative.

The form then obtained is, however, not suited to the present case.

Suppose here that a is imaginary, i.e. try a = ±iy. Then we obtain
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The final solution is thus

v = Ve
/ I

—
* X

rin(nt-j£-x) (14)

This result has an important application to the determination of the
conductivity of the earth's crust.

The diurnal variation of the temperature of the earth's surface

cannot be traced below a depth of 3-4 feet, the annual variation cannot
be traced beyond a depth of 60-70 feet. As far as they are concerned,

the convexity of the earth's surface may be neglected, and we may
regard the phenomenon as the propagation of a plane wave into an
earth with a plane surface.

Let x denote distance from the surface measured positive downwards
and let the maximum diurnal or annual variations be measured for

two depths, ajj and x
2

. Let the results obtained be v
x
and v

2
. Then

-i = e
"

In this expression »=2tt/T, where T is either 1 day or 365 days,

according to the case chosen. Everything is known except k, and
hence k can be determined.

We can determine from (14) the ratio of the depths at which the

annual and diurnal variations are just perceptible. For, denote these

depths by x
1
and x

2 , and let the values of the mean annual and daily

surface variation of temperature be A and D. Then

Ae 365k =De k
,

and xjx
2
can be calculated when A/D is known.

Of course the above theory is an approximate one. Neither the

annual nor the diurnal variation can be represented as a simple sine

curve. But they can be represented by Fourier series, of which these

sines are the most important terms, and the approximation improves as

we descend into the earth owing to the higher terms of the series

dying away more rapidly.

§ 82. Angstrom's method of determining the conductivity of bars.

In this method, which according to Lord Kelvin is the best yet

devised, the middle of the bar is subjected to a periodic heating and
cooling, and measurements are made on the velocity of the heat waves
along the bar and the rate of decay of their amplitude. The conditions

may be stated approximately as follows :

(1)
dt
=K

dtf-
hv;

(2) v = V sin nt for x = 0, v =f=
oo for x = oo

,
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the sole difference from the preceding section being the radiation term
in (1).

Assume as a solution v = Ve~!>x sin (nt -fx).

We find on substituting and equating the coefficients of the sine and
cosine terms to zero, that

K (£
2 -/2)-^ = and w-2m//=0.

Now g and / are determined from the observations and n is known.
Hence k is given by

K=w
EXAMPLES.

1. A rod is surrounded by a medium at temperature zero and its two
ends are maintained at a constant temperature V. Show that, when a
steady state has been reached, the temperature at the middle point will be

V sech ( I \-r- ), where 21 is the length of the rod, h its conductivity, p the

perimeter, cr the area of the cross-section and e the emissivity of the surface.

2. Show that the series —^2 —s sin —=— sin -— has the value 2xyll for
k1

i in' I 2 '

0<x<l/2 and 2(l-x)y/l for l/2<x<l.
Apply the result to the problem of the temperature distribution at time t

in a bar of length I, the ends of which are kept at zero temperature, and in

which the temperature originally increased uniformly from zero at one end
to the middle point and thence diminished uniformly to zero at the other

end. The lateral surface of the bar is impervious to heat.

3. It has been proposed to represent the rate of cooling of a surface by
the empirical formula e{v — v

)

n
, where n has the value 1'2. Show that on

this supposition the equation to be satisfied in a long thin rod cooling

laterally is ^ ^
at Ox1 cpa-

where v is the temperature at distance x measured along the rod from one
end, vQ is the temperature of the medium, k is the diffusivity, p the density,

p the perimeter, c the specific heat and cr the area of cross-section of the rod.

4. A bar of length I is heated so that its two ends are at temperature
zero. If initially the temperature is given by

cx(l — x)

show that the temperature at time t at any point is given by

See
M

( --to- . its. 1 —tt- 3irx
v=- __| e smT+r Sln —+...j m

5. A uniform cylindrical bar, of length I and small cross-section, is kept
at a constant temperature v at one end and placed in a medium at tempera-

ture zero. If the temperature at a distance x from the end is vge~ax in the

steady state, prove that the product of half the radius of the bar into the

ratio of the conductivity to the emissivity is a-2.
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6. Two iron slabs each 20 cm. thick, one of which is at the temperature
0° and the other at the temperature 100° throughout, are placed together
face to face, and their outer faces are kept at the temperature 0°. Find the
temperature of a, point in their common face and of points 10 cm. from
the common face fifteen minutes after the slabs have been put together.
Given k = p24 in o.a.s. units.

7. Show that the equation for the conduction of heat in a thin wire in

which an electric current of constant strength y is flowing, is given by

3*>_ 32r , y
2

where y is the current and C the electrical conductivity, i.e. the reciprocal

of the resistance per unit cross-section per unit length.

The surface of a uniform wire is impervious to heat, the ends are at the
same temperature and the current y has been flowing long enough for

the steady state to be established. Show that the ratio of the thermal
and electrical conductivities is given by

^(?;2
-'y

1 )
= -(M

1
-i(2)

2
,

where v2 and w
2
are respectively the temperature and potential at the middle

of the wire and vu ut
their values for one end.

8. At depths of 6, 12, 24 feet the annual ranges of fluctuation of

temperature are 5'6° C, 2"8° C, 07° C. Find the velocity of propagation
of the temperature wave into the earth.

9. A solid is bounded by the planes x= and x = l. Discuss the follow-

ing cases, where the surface temperatures have been kept at the given values

so long that the distribution of temperature in the solid is purely periodic :

(i) x=0 at v= a+ bsinpt : x= l at zero,

(ii) x=0 at v = a + b sin pt : x= l, impervious to heat,

(iii) x= and x= l at v = a + bsmpt.

(iv) x = at v= a + bsmpt : x=l iXv — a — b sin.pt.

10. A large ring, of uniform cross-section small in every dimension, is

heated initially so that there is a uniform gradient of temperature round
each half from one point to the diametrically opposite point ; it is then
left to itself in a medium at zero temperature. Find the distribution of

temperature in the ring at any subsequent time.

11. A thin ring surrounded by a medium at temperature zero is heated
at one point by a source of temperature V . After the temperature of the

ring has assumed a steady condition, the source is -withdrawn. Express by
means of a Fourier series the value of the temperature at any point of the

ring at a time t after the suppression of the source.

12. A thin uniform ring of radius a has initially one half of its length at

temperature v and the other half at temperature zero, and is left to itself

in air at temperature zero : find a trigonometric series to express the
distribution of temperature.

13. Show that after time t the mean temperature of the ring in the
ey ,

preceding question is -°e v , in which c is the specific heat, p the density

of the material, o- the cross- sectional area, p the perimeter and e the

emissivity of the surface.
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§ 83. Flow of heat in a sphere. Surface at zero temperature.

Let the radius of the sphere be a and let its initial temperature be
given by v=f(r). Then, from considerations of symmetry, flow must
take place only in the direction of the radius. The equation (cf. § 69)
becomes therefore

cm k a / _ dv\

dt r2 3rV 3?

Write rv = u. Then

ov _ 1 3m u
_2
3y _ ?m , 3 /

2
3«\ _ _

32w
3,. r 3,. ,.2' 3,. g,. 3,.^ 3}-/ 3/-2'

Hence the conditions that u must satisfy are

... 3m _ 32m
(1 ' 3l

_K
3F ;

(2) m = for ?- = 0, « = for r = a;

(3) u = rf(r) for i = 0, M=f oo for f=oo.

The problem is thus mathematically the same as that of § 75, (1).

§ 84. Linear flow in doubly-infinite solid. Fourier's integral.

(1) 37
= K

3^ ;

(2) u =/= oo for x = ± oo for all values of t

;

(3) v=f(x), -oo<«<+oo, for t = 0; v+<x> for t = <x>.

The new feature in this problem is that the temperature is initially

prescribed over an infinite instead of a finite range.

Suppose that instead of extending to infinity both ways, the solid

extends only to ± /. Then, as in § 75, the particular solution is

~ K \T) ' sm (wrxX
cos\T"/

If we take every possible value of m and multiply as usual the

cosine terms by am and the sine terms by bm , then when t = 0, the

solution will take the form

v = a
g + 2am cos —y- + iom sin —r-.

This satisfies the initial conditions if

1 C+ l

1 f
+' ,. . rmrx 7 , , 1 f+ !

,. . . mwx ,
am = 7| J ((c) cos —y- ax and om = yl /(x)sin—j— ax.

h.p. G
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Substitute £ for x in the formulae for aa , am and bm , and write the
values of a , am and bm in the series. Then

/(a;

)=2|-J_ i

/(S^ + 2 jl ^/©cos-j-^cos—
, v * f

+
'
// A •

m7r£ j/' m7ra:

U /^ Z

^sin-p

=
7J!/

(^B + 2cos!T (
£- x>]^

-si>[T + 2T"{T«--*}^T«{-Ttt-«)}]*
When Z is made infinitely large, the square bracket becomes

f+co

COS a(g-x) da,

assuming that the integral is convergent, and thus

This is Fourier's integral. It is the form which the series takes

when the range is made infinite both ways, and it is equal to f(x)
throughout the range. As we have derived it from Fourier's series,

f(x) must here be subject to the same conditions as are necessary for

its expansion in a series.

If we return now to our problem, we see that its solution is

1 f+°° f
+c°

v =2^\ J£\ J^)e-"
aHcosa($-x)da.

This result may be put into another form Changing the sign of u,

does not alter the value of e- Ka?t cos a(£ - x), also there is a well known
definite integral,

f
e-™*cosbzdz=~?=e 4a

Jo 'Voi
hence

4k(
|
\-"^cosa{^-x)da = l[ e~«* cob a (g-x) da = J^-

and v =TTn\ f® e d%-
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§ 85. Other forms of Fourier's integral.

We have

since altering the sign of a does not change the sign of cos a(£ - x).

Suppose that it is desired to represent f(x) only from x = to

x = + co . Then we can give it any arbitrary form from x = - oo

to x = 0. The integral can be written in the form

~~
I ^£ I /(£) (

cos a£ cos ax + sin a£ sin aX
)
d°-

""J -« Jo

Complete f(x) in the range a; = - co to a;= so that /(

-

x) =/(«), so

that it is an even function of x. Then, if we integrate first with respect

to £ the sin a£ term will vanish, since its sign changes with the sign

of £, and the cos <x£ term will give the same result from -co to as

from to + qo . Thus the integral becomes

(
poO pGO

-I d£ I /(£) COS a£ COS ax da.

"Jo Jo

On the other hand, if we assume that f(x) is filled in on the negative

half of the range so that/( - x) = -f(x), the integral becomes

poO poo

I d£ I /(£) sin a£ sin ax da.

Jo Jo

These two integrals are analogous respectively to the half range

cosine and sine series; and they might have been derived directly

from the latter.

§ 86. Linear flow in semi-infinite solid.

We shall assume that the temperature on the face of the solid is

zero. Then the statement of the problem is

... dv _ ?Pv

(2) v = for x = 0, v + oo for x = co
;

(3) v =/(«) for t = 0, v =f co for t = oo .

As in § 84, the particular solution is of the type

cos

The sine must be chosen in order to satisfy the condition for x = 0.

Hence the solution is

O p=0 pCO

v = -\ dg\ /(£)e- Ka2( sina£sinaxda.
""Jo Jo
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This expression may be put in the form

v = -\ dg\ f(g)e- K°-2t[cosa(g-x)-cosa(g + x)~]do..

With the aid of the formula

r bl

£
g - O02 cos Jg ^g _

Jo 2\/«
this reduces to

-, r
» r tf-*y a+xjn

v = —j=\ mle «* -e ™ Jdf.
aVTWJo

If the face of the solid is impervious to heat instead of being at the

temperature zero, we must take the cosine integral.

§ 87. The age of the earth.

In the preceding problem let f(x) be constant and = c . Then

2V^<LJo e
Jo

C
J

rr ^ (»_£-!
c r* _£

2vV'<<LJ -a: J+z J -JlTKtJO

since e
iKt

is an even function of /3. Write a2 = /6
2/(4k2) ; then the

result takes the simpler form
X

p = -= I e-"!
fZa (15)

vi" Jo

Tables of values of this integral have been drawn up, and hence v

can be determined as a function of the upper limit.

If we descend into the earth we find that after we pass the points

where the diurnal and annual variation cease to be appreciable, the

temperature begins to increase. The rate of increase varies from place

to place, but may be taken roughly as 1°F. for every 50 feet of descent

for depths up to about 1 mile. This increase of temperature is easily

explained on the assumption that the centre of the earth is at a high

temperature and that heat is flowing outwards.

If we assume that the earth was originally at a uniform temperature

c and that its surface has been always at a constant temperature zero,

we can use the above result to find how long it has taken to cool. We
neglect the convexity of the earth's surface.

We find from (15) that

dv 2c -ft
1 c -f,— g 4kc __ _____ g 4«t

cix Jtt 2-JkI s/W



CONDUCTION OF HEAT 101

Kelvin found by the method indicated in §81 that k for the material

of the earth's surface has the value 400, the units of length and time
being the foot and year. Assume that the earth was initially at the

temperature of molten rock, i.e. about 7000° F. Insert the value for

the gradient at the surface, namely, j- = 1° F. for every 50 feet. Then,

writing x = in the exponential, we obtain

Jl 7000

50 7^-400

C

If we write x= 100 miles,

, 70002 x502 ...
t=

400.T = 108 years -

_£_ (100X5280P _S

g 4*t = 6
~ 1600X108 _g 2_

At that depth the gradient is only j^ of its surface value after

10s years. We see, therefore, from the first result, that according to

our assumptions 108 years have elapsed since the earth was at a tem-
perature of 7000° F., and we see from the second result that it is per-

missible to neglect the convexity of the earth's surface. The assumption
throughout all the temperature change of constant conductivity, specific

heat and density is, of course, open to question. Also the earth may
have taken much longer to cool, owing to the liberation of heat due to

the radio-active disintegration of some of its material.

§ 88: Point source of heat.

Consider the expression

» = ^e"w (16)

It may be shown by trial to satisfy the equation for heat conduction

when there is symmetry about the origin, namely,

cHi _ k 3 /
,2
dv\

"dt r2 dr \ dry

It therefore represents heat flowing to or from the origin.

The total quantity of heat in the field is given by

I cpviirr2 dr = r,l e ilct r2 dr.
Jo 2(wKt)Vo2(TTKty

Now we have the well-known result
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On integrating by parts,

e,-*tlz=(e,-*z\ +21 e~ z2z2dz

f°° sAr S
Therefore I e~ :?z1dz = —r , since Lt —» = 0.

Jo 4 z= „ e3

Hence the total quantity of heat in the field

and is constant.

The temperature

~\ e 4"'-
r
-
7
-== = Q,

8cp(7r«)* 8c/j(7tk)^

If r is not and t is put = 0, the first term in the index becomes
+ oo and the second term - so. As, however, the first term is pro-

portional to the logarithm of the second, it must be very much smaller.

The whole index can therefore be taken as - oo, and consequently
= when t = 0, for r =f= 0.

The expression (16) gives therefore the distribution of temperature

that would be produced if a quantity of heat Q were suddenly created

at the origin at the time t = 0. In other words, it is the distribution

of temperature due to an instantaneous point source of strength Q
at the origin at time t = 0.

Let us consider the expression (16) in more detail. For any given

value of t, v diminishes as r increases, and is always when r = oo.

a* Q <.-£(* *\
3< Scp^tf W 2t)'

and is zero when t=co and when r2 = 6«£. The first value obviously

gives a minimum since it makes v zero. The second gives a maximum,
32y

as may be shown also by forming the second derivative ^-. Consider

the sphere of radius b with its centre at the origin. Its surface

temperature is zero when t = 0, it increases until t = b2/6K, and then

decreases and becomes zero again when t=<x>.

A source of strength - Q is called a sink of strength Q.

If at any point heat is generated gradually at such a rate as to

give Q units of heat per unit of time, then the point is said to be a

permanent point source of strength Q.

We can easily derive the temperature distribution for a permanent
point source of strength Q at the origin, for we have only to multiply
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(16) by dt and integrate from to ». An infinite time is necessary
for the permanent state to be established. Then

1) = ; 6
iKt

8c/>(h-k)*Jo

Substitute z for

V«*

J_ li

8cp(irK)*Jo fi

y.'-'*-a? (17)lhen dz = —- and « =
4kV 2cpir*KrJ w

/•CO /

since I e- z2dz =~ and k = cpK.

Jo <*

This result might have been obtained from §73. For there

and the quantity of heat that flows across any isothermal in the unit

of time, here denoted by Q, is given there by

Hence ,*+**-**
iirkr b-a

which agrees with (17) to a constant term. In §73, it is to be
remembered, the temperature on two concentric spheres was arbitrarily

defined. In this section the temperature is defined, so that it is zero

at infinity.

§ 89. Plane source of heat.

It may be shown in the same way as in § 88 that

-.6

2Cp\JTVKt

is the distribution of temperature due to an instantaneous plane source

of strength Q given by as = £. The quantity Q is in this case the

amount of heat instantaneously generated per unit area of the given

plane. It is, however, more instructive to derive the result from the

expression for the temperature in the doubly-infinite solid, namely,

v=-
2\flTKt.

Suppose that a quantity of heat Q is suddenly given to the space

bounded by the two planes £ and £ + S£ for every unit area of the

planes. Then the temperature of this space becomes

Q
cPS?



104 CONDUCTION OF HEAT

and the temperature of the rest of the solid is of course zero, i.e.

/(£) = —*£ between £ and £ + S£, and is elsewhere 0. Substituting i

the formula, we obtain

in

(I-*)2
1 Ci+S* Q -^irr- Q

2cp\J1TKt

when 8£ is made infinitely small.

We can thus regard (18) as the solution for an instantaneous heat
source of strength cpf(g) S£ per unit area on every plane £.

§90. Doublets.

Suppose that we have an instantaneous point source of strength Q
and an instantaneous point sink of strength Q situated respectively at

x=^, y = 0, z= and x= -^, y = 0, 2 = 0,

where I is small, then the source and sink together are said to

constitute a doublet of strength 0,1.

The temperature distribution due to the doublet is by (16) obviously
given by

v = ^e « *—,,
K)' +y2+*

scp(tTKty

Q

&CP (TTKtf-

4ict I
8rp(-7TK<)*

Since I is small, the square bracket becomes

Ir
!

2kJ

Hence
Qfo

Wcp-^^f

This expression might have been derived from the solution for a
point source by differentiating with respect to x. Since the differential

equation for the conduction of heat is linear in », we can differentiate

any particular solution any number of times, and the result will still

be a solution.
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§ 91. Two and three-dimensional Fourier series and integrals.

Consider the following problem :

\dx* dy2
J

'

(2) v = for x = 0, v = for x = a,~\

„ r , j- for all £

;

v = for y = 0, v = for y = o,j

(3) v=f(x,tj) for 2 = 0, #=£ oo for t=--cc.

The boundary conditions suggest sines ; therefore write

sin sin-^
a o

for the part of the particular solution into which x and y enter, n and
m being integers, and try eat as a time factor. By substituting in (1),

we find that

Hence the particular solution is

v = e
"- Va/ ^b/i sm sin-7-^-

a o

This satisfies the condition for t = ce>. We have now only to satisfy

the condition for t = 0.

When we consider the latter, we find a new feature, the temperature
being given as an arbitrary function of x and y instead of x only. Also
the series which we obtain by multiplying all the particular integrals

by constants and adding, namely,

^„e-^^+^> (sin^sin^
#, b

is a doubly infinite one, i.e. for every value of m there are an infinite

number of values of n and vice versa. The question therefore arises,

whether for ( = 0we can represent such a function by such a series 1

Let us first of all regard y as constant. Then f(x, y) can be expanded

in terms of sin by the half range sine series. The expansion is

where bm = ± f(x, y) sin™ dx.
a jo a

After the integration with respect to x is performed and the limits
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substituted, regard bm as a function of y and let it be expanded in terms

of sin -r-^ by the half range sine series. Thus

&m = 2&™„sin^.

where bmn =^1^1 f(x> f) sin~ sin ^p dx -

Substitute this value of bm in the original series and

,, > vv , . m-rrx . nwy
f(x, y) = 22Z>,„„ sin— sin -^,

where &,„„ has the value given three lines above.

We have therefore shown the possibility of expanding f(x, y) from

x = to x = a and from y = to y = b by such a doubly infinite series,

and the solution of the problem is

v = 22o„„e " v ° y v b ' ' sin sm -r^>
a b

where &„,„ has the above mentioned value.

Similarly it can be shown that f(x, y, e) can be expanded within the

range x = to x = a, y = to y = b, 3 = to z = c by the triply infinite

SeneS
K>W1 •

m7r% ?lT Wrz
zzio__. sm sm—j^ sm -—

>

'"
" a b c

, , 8 f , f6 , f
a

.. , . mirx . mry . pwz jwhere bmnp =
^53 1 1 J

^' y' ^ Sm
~a~

S1" ~T Sm
c

We can also expand /(«, y) and /(«, y, 2) in terms of the products of

cosines or of cosines and sines.

If the range is infinite, these two and three-dimensional series become
two and three-dimensional integrals. The most formidable in appear-

ance, the three-dimensional doubly infinite one, is as follows :

, f=o j.» j.» |.+„ »+x r+00

cos a (£ - x) cos ftiq-y) cos y (f— z) d£.

It represents /(cc, y, z) throughout all space.

EXAMPLES.
vi

1. Prove that v=-. -e M
impKt

represents an instantaneous point source of strength Q in an infinite thin

plate, the surfaces of which are impervious to heat. Also show that the
maximum value of v at a point distant r from the source is

Q

After what time is this maximum attained ?
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2. A quantity of heat Q is imparted at a given instant to an infinite

uniform solid at a point 0. Find the radius of the sphere which separates
the region for which the temperature is rising from the region for which
the temperature is falling. Show that its rate of increase is inversely
proportional to its magnitude.

3. Two semi-infinite solids of the same material, bounded by the plane
.r= 0, are initially at temperatures uniform throughout, one at temperature
e , the other at temperature —v9 . If conduction takes place across the
boundary, find the temperature and gradient of temperature at any sub-
sequent time, for any point in either.

Taking the foot and year as units of length and time, and the value
of the diffusivity as 400 and of va as 10,000° F., find the gradient at the
surface after 200,000 years.

4. Two uniform thin bars of the same material and cross-section are
infinitely long in one direction. One is throughout at temperature V and
the other at temperature zero, when they are put in contact end to end.
Find on the supposition of zero lateral loss of heat the temperature at any
point in either after the lapse of any interval of time.

5. A bar of uniform cross-section is covered with impermeable varnish
and extends from the point ,r= to infinity. The bar being throughout
at temperature zero, the extremity is brought at time t= to temperature
i and kept so ever after. Find the distribution of temperature in the bar
at any subsequent time t, and verify that your expression gives the obvious
solution for t= oo

.

6. A rectangular plate bounded by the lines x= 0, y=0, x= a, y= b has
an initial distribution of temperature given by

. . 7r.v . Try
w= Asin— sm-r-

a b

The edges are kept constantly at zero temperature and the plane faces

are impermeable to heat. Find the temperature at any point and time,

and show that very close to any corner of the plate the lines of equal
temperature and flow of heat are orthogonal systems of rectangular
hyperbolas.

Show that the heat lost by the plate across the edges up to time t is

where s is the thermal capacity of the plate per unit area.

7. If the temperature of an infinite solid has different uniform values

V, V on opposite sides of a given plane, prove that at any subsequent time
the temperature is given by the expression

V+V, V-V r^h,-*
Vir Jo2 J.

x being measured from the plane towards the side where the temperature
was initially V.



108 CONDUCTION OF HEAT

8. A conducting sphere initially at zero temperature has its surface

kept at a constant temperature c for a given time, after which it is kept
at zero. Find the temperature at any time in the second stage.

9. If the surface of a rectangular parallelopiped is kept at the tempera-
ture zero and the initial temperatures of all points of the parallelopiped

are given, then for any point of the parallelopiped

v= 2 2 SB,,,,,/ w "2 '"an— sin-^sin^,
m = l n= l p— \

where B^^JLj'd.vf'dyfj^y, *)sinS



CHAPTER IV.

WAVE MOTION.

§ 92. Transverse vibrations of a stretched string.

We suppose that the string is perfectly flexible, that it offers no
resistance to bending and that it is stretched between two points by a
constant stretching force T, so great that gravity can be neglected in

comparison with it. Then the string is capable of executing vibrations

of two kinds,

(1) transverse vibrations, in which every particle moves at right

angles to the length of the string, and

(2) longitudinal vibrations, in which every particle moves parallel

to the length of the string.

If the string is displaced and left to itself we have vibrations of

both kinds occurring together, but the longitudinal vibrations can

usually be neglected in comparison with the transverse vibrations.

We shall assume, in what follows, that this is the case, that the trans-

verse displacement is a small quantity of the first order and that the

longitudinal displacement is a small quantity of the second order in

comparison with the length of the string.

Fia. 49.

Let. the string be uniform and let its mass per unit length be

denoted by p. Take its undisturbed position as a-axis and suppose

that the motion is confined to the a;«/-plane.

Consider the motion of an element, PQ, of length ds. Its transverse

rate of change of momentum is pds—jt. The resultant stretching,

forces at P and Q act along the tangents at these points. The transverse
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component of the stretching force on the element at P is -T^,
oy
7^- being the sine of angle PMx and the transverse component of

the stretching force on the element at Q, is T^ +^-(t^ \ds. The

resultant of these two forces is a force of amount

parallel to Oy and in the direction of Oy. The stretching force may be

regarded as constant throughout the string, also since the displacement

is small we may write ^ for ^ in the above expression. The resultant
OX OS

7)2

force on the element may therefore be written T —-¥ ds. Equating the

rate of increase of momentum to this, we obtain ""

p df ox2

for the equation of motion of the string. If we write v2 for Jjp, this

takes the form -^ 32,,—- = ifi ——

.

dP 3z2

§ 93. Let us change the independent variables in the above equation

to x
1
and x

2 , these quantities being given by

Xj = x - vt, x
2
= x + vt.

_,. 3 3 ox, 3 3a;, 3 3

ox ox
x

ox ox
2
ox ox

x
ox

2

_, , 32« 32
y „ 32

y 32v
Therefore ~J =^ + 2

* + ~rh-
3k2 ox

x

z ox(ox
2

ox
2
2

.

.

3 3 3b, 3 3e„ 3 3

ot ox
l

at ox
2

ot ox
1

ox
2

and consequently g =
^|J_

2*2^ + ,2

|J.
On substituting these values, the original equation reduces to

"d
2
y

dx
1
dx

2

= 0.

The most general solution of this is obviously

y=fi^i)+fi(x2)-

Hence the most general solution of the original equation is

y=f1 (x-vt)+f2 (x + vt).
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Now, if /j (x - vt) be plotted as a function of x, it is exactly the same
as /j (x) in shape, but every point on it is displaced a distance vt to the

right of the corresponding point in /^(x). It thus represents an
irregular wave travelling towards the right with uniform velocity v,

the shape of the wave at time t = being given by y=f1
(x). Similarly

V ~fi (
x + v represents a wave travelling towards the left with uniform

velocity v. The general solution is the sum of these two waves.

Let the string have one end fixed at the origin, let the other end be
a great distance off in the direction of Ox, and suppose that a wave
given by y=f(yt + x) is approaching the origin. At the origin the

displacement must be zero ; hence the reflected wave must have the

form y= -f(vt-x), since the sum of this and the original expression

is zero at x = for all values of t. The transverse wave in a stretched

string is therefore inverted by reflection.

§ 94. Harmonic waves.

Consider the expression

2ir/, X\ n ft X
y = eoBT^--j = cos2^;

-
x

By plotting it as a function of x for successive values of t, it may be

shown to represent an infinite train of progressive harmonic waves.

The waves are said to be harmonic because the displacement has the

cosine form, the train is infinite as the expression gives real values for

the displacement throughout the whole range - oo < x < + oo , and the

waves are said to be progressive because as t increases the whole wave
profile moves bodily forward in the direction of positive x. The wave-

length, the distance between two successive crests at any instant, is

given by A ; the period, that is the time taken by a complete wave to

pass a fixed point, is given by t.

Let us suppose that the progressive wave travelling from right to

left and given by
ft x\

y = cos 2ir f - + - \

is reflected at the origin. Then the reflected wave must be given by

2/=-cos2tt(--^

The resultant displacement at any point on the string due to the

superposition of the two waves is given by

x\ „ ft x\ „ . 2irf . 2ttx_ ft x\ „ ft xX . . 2*
y = cos2ir(- + yj-cos27r( --^-J=--2sin

—

sm X
By plotting this expression as a function of x for successive values of

t, it may be shown to represent an infinite train of stationary harmonic

waves. At the points given by x = 0, -, X, —, ..., which are called

nodes, the displacement is always zero. The points midway between
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the nodes are called loops, and at the loops the displacement varies

between + 2 and - 2.

A good example of a solitary wave, as opposed to an infinite train,

is given by the expression

which can easily be shown graphically to represent a solitary maximum
moving in the direction of positive x.

§95. String of length 1.

Let us suppose that the length of the string is I and that its initial

displacement and velocity are given. Then the problem may be

stated as follows

:

(1) W^l% where V* = 1
P

>
(2) y=0 for x =

'

:r = l
>

(3) tj=f(x), |i=<Mz) for t = Q.

As in the case of the differential equation for the conduction of heat,

we build up the solutions from sines and cosines or exponentials. We
know from § 93 that the expression

imt—It) hat— t) -imt—\-t\ -imt t)

Pe « '+Q,e \» ' + Re «" /+Se v" '

satisfies (1). The constants must be chosen to make it satisfy (2).

If we write S = - P, R = - Q, it becomes

/ .mx .mx\ . , / . mx .mx\
I %— -i— J

— imt[ i— -i—

)

\ e V _g V ) + Qg \g V _ g V I

= 2i sin— ( pe
lmt + Qe - imt

) = sin— (b cos mt + V sin mt),
v v

b and V being constants. This satisfies (2) if m/v = mr/l, where n is any
integer.

On substituting for m and taking all the possible values of n,

we obtain

^?, . nirx rnrvt ^?,, : rnrx . mrvt ,.,

V = 2j b" sm -Y<ios-j- + 2jO nsm— sin—j- (1)

We then choose the constants bn and b'„ so as to satisfy (3). When
t = 0, y is represented by the half range sine series

26„sin^p=/(a;)

imt
Pe

and J- by the half range sine series
at

_,, tittv . rnrx , , v

zb n^rsm^r = <f>(x).
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Hence, by § 64,

b„ = j I fix) sin —j— dx and b'n = -^— I
<f>

(x) sin —=— dx.

Each of the terms in (1) represents a stationary wave, the wave-
lengths being given by 21hi, where n is any integer. The frequency, or

number of periods per second, of the fundamental noteis—,./- and

the frequency of its harmonics, as the other terms are called, is given

by the well-known formula -^-a/--J 2lM p
The initial conditions, that is the values of f(x) and 4>{x), may be

such as to make some of the constants b„, b,' vanish. In that case the

corresponding harmonics in the note are awanting.

If the initial displacement and velocity are not confined to one plane,

we resolve them into components in the xy and ar-planes. The prin-

ciple of the superposition of small vibrations then enables us to treat the

motion in the one plane quite independently of the motion in the other.

§ 96. Damping.

Vibrations are said to be damped when their amplitude decreases

with time. All vibrations that occur in nature are damped. So far

we have not taken account of damping, and our results are therefore

strictly true only for an ideal string. We can represent the effect of

damping by adding an additional term - 27c^ to the right-hand side

of the equation of motion for the stretched string. This term re-

presents a force proportional to the velocity and resisting the motion.

It is due to friction in the string and to loss of energy by air waves,

but it is not possible to form a clear picture as to how it acts.

Let us suppose that the boundary and initial conditions are the same

as in §95, but that instead of (1) we have the equation

&9-0&M-91& (2)

Try 6± !
'»-'f+P( as a solution. Then

p2 + tfa? + 2/^ = 0,

i.e. /3= -k±>Jk2 -v2a? or -k±iJvW-k2
,

since f: is presumably small.

The typical solution is therefore e
-u±i«x±iVvW-ic"-i Combining

expressions of this type in the same way as in the last solution,

we obtain

... . nirxf, /«V¥ ,„, ,, . /wW ,,

A

«-H sin —p ( b cos a/—
j2

m + b sin a/—p h-t\

as an expression satisfying the end conditions.

H.P. H
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V 72
^- * fc

has been increased by damping. Also the overtones are no longer
harmonics of the fundamental.

Let us now consider the initial conditions. When t = the second
term in the above expression vanishes, and the first term takes the
same value as before. But on differentiating the expression with
regard to t and afterwards putting t = 0, we obtain

nirx/ ., ,, /«,
27rV2 7„

In order to get rid of the additional term, we must write the
complete solution,

y=2jbne
K sm—|-cosW—p IH

-W.

It is obvious that this satisfies the initial conditions when the values

of bn and 5'„ are given by

K = j \
f(x)sm^dx and b'„ =— .

"
•Jo '

, lni
ir

ivi ,„Ji

w

—

p
—

^

<p{x)m\ -j— ax.

o '

§ 97. Energy of a vibrating string.

Let us assume that the motion is undamped, that the string is of

length I and that it is displaced in one plane and let go. Then, when
3?/

t = 0, y =f(x) and ^ = 0, and the solution is consequently

*5f^ 7 . nirx imvt
y = 2Asin— cos-p.

We shall now determine the kinetic energy of the string at time t.

At that time we have

Now the kinetic energy is

IjV& = 1 2V (^)
2

sin*^ak-^ «fa,
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for all the integrals of the type I sin -^- sin —^- dx vanish. Also
Jo >> *

f (
. „ mrx , If'/. 2tojt!K\ ,

Hence the kinetic energy is given by

m being substituted for />Z, the total mass of the string. The kinetic

energy is thus equal to the sum of the kinetic energies of the different

modes of vibration.

In order to determine the potential energy of the string, we must
find the work done in displacing it from the sc-axis to the actual

position occupied at time t. The force per unit of mass in the

direction of the y-nxis according to the equation of motion is fl
2^-

Hence the work done in displacing the element through Sy is given by

-P^dsSy.

Suppose that the string is brought to its final position in a number
of steps, Sy for any one step being the same fraction of the final value

of y for every point on the string. Then Sy is a function of r. Writing
ds = dx, we find for the work done in any one step

CI 32„ CI

dx dx
'"'

integrating by parts, Sy being zero for the ends of the string. This is

The amount of work done in all the steps is therefore

PV2
l v /^nm,r\

2

cos

I

rnrvt

the product terms vanishing, as before, during the integration. Writing

m for pi, we obtain for the potential energy of the string

The result might have been derived by the energy principle from the

expression for the kinetic energy, since the potential energy is zero

when the string is crossing its equilibrium position.
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§98. Longitudinal vibrations in a rod.

The longitudinal vibrations in a rod of any section and torsional
vibrations in a rod of circular section are mathematically the same as
the transverse vibrations in a stretched string. We shall proceed now
to deal with these vibrations, neglecting gravity in each case.

Let us suppose we have a uniform rod of density p and cross-sectional

area a.
^

Take the a-axis in the direction of its length, and let E be the
Young's modulus* of the material of which it is composed.

Consider the element of the rod bounded by the planes A and B,

which are given respectively by x and x + dx. Its mass* is pa dx. Let
a longitudinal wave pass down the rod. Then all its particles will be
displaced in the direction of Ox. Let £ denote the displacement of the
particles that were originally at x. The elongation per unit length at

A is ^- ; hence the total force exerted on the element from right to

left across the plane A is Ea ^. The total force exerted on the element

/3£ 32£ \from left to right across the plane B is Ea
(
^ + 7^\dx ). Consequently
\OX OX ) g2£

the resultant force on the element in the x direction is Eadx^^. The
. . 32£

acceleration of the element in the same direction is —. The equation

of motion is therefore

, 32
£ ^ , 32

£ 32
£ E m

Padx^=Eadx^ or ^ =-^-

The velocity of the wave is given by jE/p. If one end or point of

the bar is fixed, then £ must be zero for that end or point. At a free

3£
end ~ = 0, for there is no force exerted across a free end.

ox

The periods of the different overtones and the case of given initial

conditions can be worked out in the same way as for the transverse

vibrations of a stretched string.

It should be noticed that, just as in the case of a stretched wire,

where the rod is stretched, it suffers lateral contraction, and that where
it is compressed longitudinally, it suffers lateral expansion. The cross-

sectional area a is thus not constant, but the error introduced by
considering it constant can be neglected.

S 99. Torsional vibrations in a right circular cylinder.

Let a be the radius of the cylinder, p the density and n the rigidity

modulus of the material of which it is composed. Take the axis of

the cylinder as axis of x, let the cylinder be vertical and take the

origin in its upper surface. Let the upper surface be fixed and let

* If a wire of length L and cross-sectional area a is stretched a small distance I

liy a force F, then its Young's modulus

_ stretching force per unit area_ FL
elongation per unit length al
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the cylinder be twisted about its axis. Denote by 6 the angle through
which the plane defined by x is twisted.
To find the twisting couple in any section of the cylinder, consider

the slice bounded by x and x + dx. Divide it into rings by drawing
coaxal cylinders with Ox as axis, and
consider the ring bounded by r and r + dr.

Its upper surface is twisted through an
angle 6 and its lower surface through an

7)9
angle + ^-dx. If we divide the ring into

elements by drawing planes through the
axis of the cylinder and consider any one
of these elements, when the cylinder is

twisted, its lower surface is displaced a

distance r^7.dx further round than its upper

surface. Each element of the ring therefore (cf. fig. 51) suffers

shearing strain *
<f>

given by
361

Fig. 50.

$-
7}x'

the expression for cf> being obtained by dividing the displacement
7)0

r =-- dx by dx, the distance between the two planes.

The tangential force per unit area on the upper surface of the

The moment of this about the axiselement is nr—.
,d6

is nr
."dx

The total moment about the axis of all the

Fig. 51.tangential forces on the upper surface of the ring is

therefore 2irni'3 ^— dr and the resultant couple exerted on the section is

2jt»;=— I r6dr
3zJo 2 dx

* When a cube is deformed in the manner illustrated in the diagram, it is

said to suffer shearing strain. Note that the new position of the upper face,

A'B'F'E', is still in the same plane as the old. The
amount of the strain is measured by AA'/AD or the

angle 0, since is small.

Such a strain is produced by a system of equal

tangential forces acting on A'F', CP and the two
opposite faces in the directions indicated by the

arrows. Let P be the amount of each of these forces

per unit area of the face on which it acts. Then n,

the modulus of rigidity of the material of which
the cube is composed, is defined by

P Fio. 52.
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Let us now consider the motion of an element bounded by the
sections x and x + dx. Its mass is pwa,2dx and its rate of increase of

angular momentum about the a>axis is

,, a2 o29pmHx-^^,

a2
/2 being the square of its radius of gyration. The twisting couple

on the upper surface of this element is irn-r-^- and it is in the
2 ox

negative direction about Ox. The couple on its lower surface is

n-na^/od dW , \ . , . , ,. .~\3" + ;P J
m positive direction. The resultant couple is

before mufiWB,
2 dx2

The equation of motion of the element is thus

pm^ ?Pd _ Trnat dW d29 _ n dW
2 W 2 3x2 °

r
dP~p?>x2

'

Torsional waves are therefore propagated along the cylinder with a

velocity s/n/p. At a fixed end of the cylinder 6 = ; at a free end

~- = 0, since the torsional couple there must be zero.

Let us suppose that the cylinder is a thin wire of length I, the upper
end of which is fixed and to the lower end of which a heavy cylindrical

vibrator is attached. Let M be the mass and k2 the square of the

radius of gyration of this vibrator. In this case the condition to be

satisfied at the lower end of the wire is that the torsional couple

there should be equal to the rate of increase of angular momentum
of the vibrator. That is, for x = I,

2 3z * W
Assuming 6 = (A cos mx + B sin ma;) cos mvt as a solution, we find from

the condition for x = Q) that A must be zero. From the condition

for x = I,

7rnai
r, ? „„n/ ,, . , i

ima4,

-r— Bmcos ml = - N\k2B(mvYsmml or tan to = , „..,„—
2 v

' 2v2Mk2m
This equation gives m.

If M&2 be very great, as is the case in the usual experimental method
for determining n, tan ml is small, and ml can be written for it. Then

m =mm (3)

Also, owing to nil being small, the solution can be written

= Bmx cos mvt

;
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that is, the angle of twist of any cross-section is proportional to its

distance from the upper end of the wire. The period of vibration, t,

is equal to Ivjmc. Hence, substituting in (3), we obtain

SttUM

the usual formula for the determination of the rigidity modulus.

EXAMPLES.

1. Find the form at time t of a vibrating string of length I, whose ends
are fixed and which is initially displaced into an isosceles triangle. The
string is vibrating transversely, is under constant stretching force and starts

from rest.

2. A portion of an infinite isotropic solid is contained between two
parallel planes at a distance I apart. It is fixed at these planes and vibrates

in a fixed direction parallel to them at points between. Establish the
differential equation for such vibrations, and give the complete solution for

the problem in question.

3. To the bottom of the vibrator of one torsional pendulum is fastened
rigidly a wire which carries at its other end another torsional vibrator.

The two wires are vertical and collinear, and the two vibrators execute
small vibrations in horizontal planes. Supposing that the usual condition

for uniform twist (which is to be stated) is satisfied for each pendulum, find

completely the resulting motion when each vibrator receives initially a
given displacement but no velocity.

4. The longitudinal displacements of a vertical steel rod, fixed at both

ends, are given by £=<zsin —=— , where I is the length of the rod and x is

measured from an end. Find numerically the maximum values of the terms
in the differential equation and the value of the term due to gravity, which
is neglected, given that a='01 mm., Z=100 cms., p= 7'7 gms./c.c. and
E = 3 109 gms./sq. cm.

5. A transversely vibrating string of length I is stretched between two
points A and B. The initial displacement of each point of the string is zero,

the initial velocity at a distance x from A is lcx(l — x). Find the form of the

string at any subsequent time.

6. A torsional vibrator is used to determine n, the rigidity modulus of a

thin wire. Derive an expression for n, retaining the first two terms in the

expansion for tan ml (cf. § 99). Hence find the error caused by the assump-

tion of uniform shear in determining the rigidity modulus of a copper wire

2 metres long, the moment of inertia of the vibrator being 30,000 c.g.s. units

and the period being 7 sees. Take 4'5 108 gms./sq. cm. for the rigidity

modulus of copper.

7. A string of length l+ l' is stretched with tension T between two fixed

points. The linear densities of the lengths I, V are p, p' respectively ;
prove

that the periods r of transverse vibrations are given by

//* tan (zit^/tT*) =pi tan (zwl'p^/rT^.
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8. If a uniform horizontal bar, both of whose ends are fixed, be displaced

horizontally, so that one half is uniformly extended and the other half is

uniformly compressed, prove that the displacement at time t of any particle

whose abscissa is x, is

@)S (•2m+l)Trvt (2m+l)irx
, cos ^ cos -

(2m+l)2 U U
where 2l is the length of the bar, the middle of which is the origin, and A
is the initial displacement of that point.

9. An elastic rod of length I lies on a smooth plane, and is longitudinally

compressed between two pegs at a distance V apart. One peg is suddenly
removed

;
prove that the rod leaves the other peg just as it reaches its

natural state, and then proceeds with a velocity equal to \l{l-l')jl, where V
is the velocity of propagation of a longitudinal wave in the rod.

§ 100. Tidal waves. — J>Va. I (o<& \A'fr,\rU

We pass now to another case of wave-motion represented by the
same differential equation, namely the case of " tidal " or " long " waves
in an incompressible liquid of uniform depth h. The waves which
occur on the surface of a liquid owe their propagation to two causes,

surface tension in the liquid-air surface and gravity. If the wave-
length is small, less than two-thirds of an inch or thereabouts, the

influence of surface tension preponderates and the waves are called

ripples. We shall only consider waves the wave-length of which is

so great that surface tension can be neglected.

Tidal waves or long waves are a particular case of gravity waves
characterised by a simpler mathematical treatment. Their distinguishing

feature is, as their name implies, that the vertical displacement of the

surface must be small in comparison with the wave-length.

Let the bottom of the liquid be given by y = 0. Measure y positive

upwards. Let the free surface in the zy-plane be given by y = h + r),

h being the depth in the undisturbed state, and let pa be the pressure

on the free surface. The liquid is supposed

to be bounded in the s direction by fixed
."^. planes parallel to the a$-plane. The dis-

tance of these planes apart is immaterial,

for they are perfectly smooth and the liquid

slips along them without experiencing any

x frictional resistance. For simplicity we
shall suppose that they are unit distance

apart. The problem is then that of long

waves in a uniform canal of breadth unity and depth h.

We shall make the fundamental assumption that the pressure at the

point x,y is given by p=^ + gp(h +^ y) (4)

The validity of this will be discussed later.

Consider the vertical strip which is bounded by x and x + dx before

the motion begins. Its volume is hdx. At a given instant after the
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motion is started, let the elevation of the surface at the top of the

strip be 17 and let the planes bounding it have moved to x + g and

x + dx + £ +~ dx. The volume of the strip is then (h + rj)(dx + ^- dx\

Since the liquid is incompressible, the volume of the strip does not
vary with the time. Hence

h dx— (h + 7])ldx + ^dx

which gives r) + h^- = (5)

on neglecting the second order term.

Let us now consider the equation of motion of the strip. Its rate of

increase of momentum is -^f
phdx^.

To find the resultant force on the strip divide it into elements by
planes parallel to the bottom, and consider one of these elements of

height dy. The force on it towards the right is pdy and the force

towards the left lp + ^-dx)dy. The resultant force on the element is

consequently -~dxdy or, from (4), -gp—-dxdy, since 77 is the only

quantity in the expression for p that varies with x. The resultant

force on the element is independent of y ; hence all the elements of

the strip must move with the same acceleration, a fact which we have

already tacitly assumed, and the resultant force on the whole strip is

-gph^dx.

The equation of motion of the strip is therefore

Phdx^= -gph^dx (6)

But from the equation of continuity, (5),

~dx dx2

Substituting this in (6) and cancelling out the common factor phdx,

we obtain finally -^it 325

w =9hd' (7)

the equation of motion for the propagation ofjong waves.

The velocity of the wave is given by v = s/gh. Assume the solution

*-*«»t('-!D
(8)
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Then -q, the elevation of the surface, is given by

, 3£ . 2wh . 2tt A x
r>= -ft -5= -A -^— sin— t—

OX A T \ V

If we extend the definition of 17 to include not only the elevation of

the surface but the vertical displacement of the particle originally at

any point x, y, then it is clear from the mode of deriving the principle

of continuity, that >j in this wider meaning is given by

Squaring (8) and (9) and eliminating
(
t -

-J,
we then obtain

& + ^ - a2

A

the equation of an ellipse with its long axis horizontal (cf. §101). As
the wave passes, the particles of the liquid describe ellipses about their

equilibrium positions as centres, the ellipses becoming thinner as we
descend into the liquid and degenerating into straight lines at the bottom.

§101. Condition for long waves.

The equation of vertical motion of the liquid in the canal in the

preceding section is
civ g,„

p Jt=-iy-^ <
10

>

Put the term on the left equal to zero and then integrate the

equation on the assumption that the pressure has the value p on the

surface, that is, for y = h + rj. We obtain then

P=Po + Op(h + l-V)-

The fundamental assumption which we made in § 100 is therefore

equivalent to neglecting the vertical acceleration of the particles.

To examine under what conditions the vertical acceleration may be

neglected, integrate equation (10) again, retaining the left-hand term.

We obtain ry gv

J c

p
jt
dy= ~p~-ypy> (n )

the constant of integration being included in the lower limit of the

integral. Substituting the condition that p =p for y = h + rj, we find

(Vl+7) ^.y

I Pj
t

dV = -Po~9P(h + v),

and subtracting this equation from (11),

fv dv
, f

A+i dv 7 />N
)c

P di y ~\
c

p di
y== -P +P° + 9P(h + 7l-y)>

p=p;+gp(h+v-y)-p\
h+ jt

fy-
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The only terms in p concerned in the wave propagation are the

variable terms gp-q and the last term, and in order that the waves may
be long, it is necessary that the term neglected be small in comparison

with the term retained, i.e. that I -r^V ^e small in comparison
with gi). Jh+^dt

Let /3 be the maximum value of the vertical acceleration. Then h/3

is the maximum value of the integral. Also fi is of the order 17/1-
2
,

t being the period. Hence, if we have h(3 small in comparison with

(7/3t2
, our approximation is justified. Since k = \/gliT, this condition is

equivalent to h2/\2
, small in comparison with 1.

§ 102. Stationary waves in a rectangular trough.

If a rectangular trough, the length of which is much greater than
the breadth and depth, be filled with water, stationary long waves can
be started by raising one end of the trough a small distance, holding it

until the surface is still and then dropping it sharply. The condition

to be satisfied at the ends of the trough is of course £ = 0, and the

typical solution is £ = sin —~ cos—=— , / being the length of the trough.
v

The disturbance is of course not simple, consisting as it does of a great

number of harmonics superimposed, but the fundamental vibration is

usually predominant and persists longer. Its period can thus easily

be taken with a stop watch and compared with the theoretical

value 2l/\/gh.

§ 103. Effect of an arbitrary initial disturbance.

Let us suppose that the canal is unlimited in the direction of + x

and - x and that the velocity and elevation are given initially, i.e.

gf=W>(z) I

for , = 0>

t) = hip(x) j

Assuming the solution

we have Z^v^-f^x- vt) +/'2
(x + vt)},

v= - h4r - h{f\(x -vt)+fz(z+vt}.

For t = 0, therefore, <f>(x)= -f\(x) +f'2
(x),

lKaO=-/'i(*)-/s(*).

and consequently f\(x) = -
f {4>(x) + 4/ (x)}>

f2
(x)= i{<Hx)-t(z)}^

The elevation at all subsequent times is thus given by

r,J±{<t>(x-vt) + +(x-vt)}~{4>(x + Vt)-t(x + vt)}.



124 WAVE MOTION

This expression represents two waves of different shape moving

in opposite directions with the same velocity. If ^ = for t= 0,

4>(x) = 0, and the two waves have the same shape. If 4>(x)= ±'/'(x)>

i.e. if for t = 0, =| = ± ~, there is a wave only in one direction.
at h J

§104. Assume $=f(x-vt). The displacement of a surface particle

is given by
3£

n= - h -^.= -hf'(x-vt).

But fr ~vf(x-vt).

Therefore J? = + ^.
ct h

When tj is positive, ^| is positive. A wave of elevation thus moves
Ob
51

the particles forward and a wave of depression moves them back.

§ 105. Energy of a harmonic long wave.
271-/ x\

As in §100, let the wave be given by £ = Acos—

(

t— ). We shall

now determine the kinetic energy and the potential energy in one

complete wave-length in a canal of unit breadth and depth h.

Consider the strip bounded by x and x + dx; its mass is ph dx and
its kinetic energy

\phdx(;ij
or l^^^iry^T^-t)-

To find the kinetic energy in one complete wave-length, we must
integrate this with regard to x through any range A. The position

of the range is immaterial. The result is

f„('-
A
)\

which becomes ^— (ttA)2 on using the relation A2 = gliT 2
. The kinetic

energy is thus proportional to the square of the amplitude.

To obtain the potential energy, consider the accompanying diagram.

The potential energy of the part GHEDCBO is unaltered by the wave;
the effect of the wave is to lift the portion EDCP' to GHEF. Divide

these portions into elements. Then to an element at P of mass pr] dx

will correspond an equal element at P'. The work done in lifting the

one element into the position of the other is equal to gprfdx, 17 being

the vertical distance between the centroids. If we take the original
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value of the potential energy as zero, the potential energy in one
complete wave-length is given by

f
gprfdx,

the integration being taken through half a wave-length. As before,
the particular position of the range of integration does not matter.

Now

Hence the integral is

Fig. 54.

„ 2irh . 2tr/
tA —r- sm — [t-

v)

I gp
2irAA\ 2

x t('-9 dx = ^va)'.

The potential energy of the wave is therefore equal to its kinetic

energy.

Now calculate the work done by the pressure in any plane normal
to Ox in one period. Let p dy be the thrust on an element of the plane.

Then ~ gives the velocity with which the point of application of this

thrust is moving, I p^ dy gives the rate at which work is being done

in the plane and I dt\ v-Jidy gives the total work done in one
Zfi. J° J° dt

period. As ~ is as often positive as negative, the constant part of p

contributes nothing to the integral, the direction in which it does

work constantly altering. We can therefore substitute gp-q for p. The
integrand is then independent of y, and the integral becomes

JgPh\
A A to

gphi^ = gphH"
7

^-) (
"

)i:
sin2 —[t- -(irA) 2

The particular time at which the period is taken is immaterial, as

may be seen by substituting the limits c and c + t for and r. The
work done in one period is therefore equal to the total energy in one

wave-length.

Let us now consider a harmonic train advancing into still water.

Take a plane on the wave-front. In one period the work done in
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this plane, that is, the energy that crosses this plane, is sufficient

to build up one wave-length. The head of the train advances therefore

a distance A in time r and has the same velocity as the individual waves.
This is not generally true. If a stone is thrown into a pool and

the group of waves that travels out from the point where it enters the

water is watched, it will be noticed that the individual waves travel

faster than the group. They grow up in the rear of the group, pass

Fie. 55.

through it and in turn disappear in the still water in front of the

group. The group velocity in this case is not so great as the wave
velocity. But in the case of long waves the group velocity coincides

with the wave velocity.

The group velocity gives the rate at which the energy is propagated.

It should be noted that the case represented in fig. 55 is an artificial

one. A harmonic train could not be regular up to its very front.

§106. Forced waves in a canal.

Consider the equation r& t o2(
=

U-+U + *> <
12

>

where X is a function of x and t, but not of y. Let X have the value

C sin (nt + mx) and assume £ = D sin (nt + mx). By substituting in the

equation, we find that . „ „ ,.^ D (to
2 - t>

2m2
) = - C,

and consequently that

Q
|= —

5

5—» sin (nt + mx).

To the above expression for £ there can be added any solution of

the equation gg* ~af

dt2 a^'

and equation (12) will still be satisfied. This additional part of the

solution is called the free wave and the former part the forced wave.

The complete solution is thus the sum of the forced and free waves.

When m2 approaches v2m2
, i.e. when the velocity of the impressed

force approaches that of the free wave, the amplitude of the forced

wave becomes very great. It does not, however, become infinite^ as

the formula states, being prevented by viscosity, which is not con-

sidered by our elementary theory.
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If m2 <i)2m2 the forced wave is direct, that is, it has a maximum
when the impressed force has a maximum ; if w2 > v^m2 the forced

wave is inverted and has a minimum when the impressed force has

a maximum.
Equation (12) is of importance in the theory of the tides. For

let there be a uniform canal round the earth's equator, and suppose

for the sake of simplicity that the earth's axis is perpendicular to the

ecliptic and that the moon's orbit is in the ecliptic. Let O be a fixed

point on the earth's equator, let the distance of P measured round the

equator from O be x, let n' be the angular velocity of the earth relative

to the direction of the moon and let A be the point on the equator

directly under the moon. Then, if t be measured from the instant

when O was at A, the are kO = an't and the arc AP = an't + x, a being

the radius of the earth.

It is only the component of the moon's tide-producing force

tangential to the equator that has any effect in producing waves
in the canal. We know from the

equilibrium theory of the tides

that the tide-producing force is

a maximum and vertical at A
and B, and that it is zero at J

and K. The numerical value of

the tangential component must
therefore have a maximum value

at intermediate points, G, H, F

and E ; at G and E it is towards
the moon and at H and F it is

away from it. The tangential

component thus runs through all its values twice as we go once

round the equator, and is hence proportional to sm 2 ( n't + -\. The

impressed force on the canal is therefore of the type considered in

the earlier part of the present section.

§ 107. Gravity waves. General case.

We shall now let fall the restriction that the waves are long and

consider the general case of waves caused by gravity on the surface

of a uniform canal of depth h. As in § 100, the origin will be taken

in the bottom of the canal, Oy will be taken vertically upwards, Ox
along the bottom, and p, the density of the liquid, will be taken

constant.

We shall assume that the motion is irrotational. It will be re-

membered that in this case (cf. Chap. II.) the velocity is derived from

a potential <£. In the problem under consideration, since it is one

of two-dimensional motion, 4> satisfies the equation

w +w~ ( }
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At the bottom we have the boundary condition

^ = 0fory = 0, (14)

and at the surface we have another boundary condition which will be
derived further down.
When

<f>
is known, p, the pressure at any point (cf. § 41), is given by

This equation can be simplified for our purpose here. First of all

the term \q
2 may be omitted, because in problems of wave motion the

velocities are always supposed to be so small that their second powers
may be neglected. Then the term F(t) may be supposed included in

^. The equation thus becomes
at

In this equation p and g are constants, t and y being the usual

independent variables. We can, however, take t and p as independent

variables. Then differentiation with respect to t gives

ot \dt J
g
ot

P const. y const.

This equation holds for any surface for which p is constant, and

hence for the air-liquid surface. Now —̂ is equal to the vertical
ot

component of the velocity of this surface and can be put equal to

_ .Jr, and — may be written for — , since the velocity is

Oy Ot
-i, const. Ot p const.

supposed to be small. We thus have the boundary condition at the

upper surface of the liquid,

S^!=° «* »-* <
15

>

Assume <j> = F (y) cos— (t - -),

F(y) being independent of x and t, and substitute in (13). This gives

df w '

the solution of which is

F (y) = P cosh^ + Q sinh -|^.

Hence <j> = ( P cosh^ + Q sinh ^~
J
cos— It -

-J.
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From (14) we find that Q must equal zero, and from (15) that

2ttA 2tt . , 2irh
: g— smh —5— or vz ~ tanh -r-.

Ztt A
(^)cosh:

A
_ y x

„
k

There are two special cases of this formula. If the waves are long,

A/a is small, 2irh/\ can be written for tan 2jtA/a and v2 = gh, a result we
have obtained already. If /j/A is large, the tangent may be put =1.

The velocity is then given by «2 = |-. This is the case of "deep-sea"
waves. "j7r

Let £, -q denote the displacement of the particle originally at x, y.

d£ 3<£ 2ir , 2tt« . 2ir

^|= - -^ = -PT cosh~ sin—
OJ OX A AtThen H>
^ = _^ = _P^ sinl1^cos^^-?

N

).

ot oy ' A A t \ t>/
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and write a = mir/a, /3 = mr/b, where m and n are integers. The typical

solution is then

j t //m\
2 /«\ 2 nnrx nwz cos //m\ 2 /w\ 2

,

^ =coshVw +
{b)

7rvc08 ^r cos irsmM{v + {b)™t
>

v being given from (5) by

VO -'

- to"hV©,+©
J

iZ :....!, "
\ ,

" I _
/(

r)
+W

It is obvious that different terms of the above type can be combined
so as to give initially any prescribed value to the elevation on the

surface and to the vertical component of the velocity on the surface.

EXAMPLES.

1. Show that in the case of deep-sea waves each particle of the liquid

describes a circle, and determine the relation of the radius of the circle

to the depth below the surface of the liquid.

2. A straight canal of depth h and length I has a rectangular cross-section,

and its ends are vertical and at right angles to its length. Show that the
periods of the longitudinal waves that can be propagated in it are obtained
by giving positive integral values to n in the expression

3. Find a solution of the differential equation for long waves in a canal

of length I closed at one end and communicating at the other with a tidal

sea, the level of which varies according to the equation

ve

r/= a cos (nt +8).

4. The space between two infinite horizontal planes is filled with two
fluids, one of density p and depth h, and the other of density p and depth ti.

Prove that the velocity of a long wave on the surface of separation is

l[
g{p-p')hir

\

y\ h'p+iw' rtip + hp'

5. Waves are propagated in a canal of depth h. What relation must
exist between h and A in order that (1) the formula for long waves, (2) the

formula for deep-sea waves should represent the velocity correctly to

1 per cent.?

6. Discuss the characteristics of the motion for which (cf. § 47)

4> + if= Ae im(x+iv'>am nt.

7. The section of a canal is semi-circular, of radius a. It is full to the
horizontal diameter, and above that the banks are vertical. Prove that

the velocity of propagation of long waves in it is ^ (irga)*.
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8. A long wave in a liquid of depth h represented by

is reflected by a vertical wall at right angles to its direction of propagation.
Find the thrust, if any, exerted on the wall.

9. Use the formula (cf. § 45)

2T=pjV on

to investigate the kinetic energy of the motion given by

A T V VI

the origin being taken at the bottom, and the surface being given by y = h.

10. Prove that the group velocity of deep-sea • waves is half their wave
velocity.

§ 109. Sound waves in a gas.

We found in § 33 that the equation of continuity for a fluid, when
expressed in its most general form, was

Also the equations of motion were

ou "du ou ~du ., 1 dp

at ox oy oz p ox

with two similar equations. We shall now apply these equations

to the case of wave motion in a perfect gas, and shall make the

following assumptions

:

_ ... . 3<£ 3<f> , 3<i>

(1) The motion is irrotational, i.e. u— -»-, v— - =- and w= - ^--

(2) The velocities are so small that their squares and products

can be neglected.

(3) The "body" forces, X, Y, Z, can be neglected.

For p write p ( 1 + s), where p is the initial value of the density

;

s is called the condensation. As the alterations of density in a sound

,. , . ,-, i i , ,, "os ds 3s
,

wave are slight, s is small, and we can neglect the =-, ^-, ^- terms in

the continuity equation. It then becomes

| = (l+s)V2
4> or | = V¥, (16)

since s is small. To the same order of approximation the first equation

of motion becomes d d4> 13»
~dt 3z p dx
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If the two similar equations be written down and the three equations
be multiplied respectively by dx, dy, dz and added, we obtain

3 , , dm deb Cilv „ /1f7 ,3^=7 or w =
Jp

+c (17 >

Let us now assume that Boyle's law holds and that p = c,p. Then
dp = cp ds, consequently

JH&-W4
and, from (17), |* , 3

f* , « |'.
O^ OTJ p 1 + s ot

This may be written ^ = 6-^, (18)
oti ot

since s is small. Combining (16) and (18), we obtain

w =c^> (19 >

This is the general equation for the propagation of wave motion.

.
i . • 2ir/, lx + rny + nz\

Assume <b = A sm— \t .

It is obvious that this represents a plane wave propagated with

velocity v in the I, on, n direction, for the surfaces of equal phase arc

given by
,°
Ix + my + ns = vt.

Substitute this value of c/> in equation (19), and we find, since

P + rn? + n2 =l, that v2 = c.

But c=p/p. Hence v = \/pjp, and the velocity of the wave can be

calculated.

This is the well-known expression derived by Newton for the velocity

of sound in a gas. It did not agree with experiment, the result given

by it being too small. The correct expression was first derived by
Laplace, who showed, that in the case of sound waves the condensation

and rarefaction take place so rapidly, that the heat produced has not

time to disappear by conduction. The temperature of each element of

mass will thus not be constant, but the quantity of heat contained in it

will. The change is not an isothermal but an adiabatic one. In this

case, as is shown in Chapter VI., the relation existing between the

pressure and volume is not p = cp, but p = cp«, c and k being constants

;

k is the ratio of the specific heat at constant pressure to the specific

heat at constant volume and for air, oxygen, hydrogen and nitrogen it

has the value 1
-

41.
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t onsequently -^ =^j ^
=ocPo«-i(l +^-\v

Now (1 +s)*-'-' may be put =1 and c/j/ -1 =pjp . Hence

and the velocity of the wave is Jxpjp . This result agrees well with
experiment.

Consider, again, the expression for the velocity potential in the

case of the plane wave travelling in the /, in, n direction, namely,

. -In/ lr + mi/+ii:\
= Asm

T
-^- —^ )•

,, . 3(6 .2ir/ 2W, lx + nii/+n:\
It ijivos «=-—T= A -r- eos — /

'

—

ox A t \ r )

with similar expressions for r and «', whence we derive the result that

if c w
I in «'

that the velocity is perpendicular to the wave front. The wave is

thus longitudinal.

£110. Transverse waves.

Consider the expressions

.(20)i) = b sin ~^- (t
-
'X C=csin J "Ju--

i
) + sl. ...

They represent two waves being propagated in the positive x

direction. If i) and £ denote respectively the displacements parallel to

O// and 0.~ of the particle at ,r, //, :, the resultant displacement is trans-

verse to the direction of propagation, and both waves together are said

to constitute an elliptieally polarised wave, because, as the wave passes,

the particles describe ellipses parallel to the //--plane.

To find the equation to these ellipses write

f-r sin
""

(/-',) cosSh- cos
"
" It

-'-
Jsin Sf,

i.e. ^
= |eosS + cos^(/-'^siiu\ (21)
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and eliminate (<-'-) between (20) and (21). This gives

"
'

'' 'o«t»Y=l or ,^- 2^ + ? -1,
6/ \csin8 & / &2 sin2 S 6c sin2 S c2 sin2 8

which is of course an ellipse since the asymptotes are imaginary.
The y and ,?-axes can be chosen so as to make the product term

disappear. Then we have cos 8 = 0, and the elliptically polarised wave
referred to the new axes can be written in the form

An elliptically polarised wave is the most general type of transverse

wave. "When b = c, the orbit of each particle is a circle and the wave
is said to be circularly polarised. When the phase difference is zero,

the orbit becomes a straight line and the wave is said to be plane

polarised.

EXAMPLES.

1. A vibration of frequency n is rendered intermittent in frequency m
by the interposition of an obstacle, so that it can be represented by the

expression
(1 + cos 2irmt) cos 'i-wiit.

Show that the intermittent vibration is equivalent to three simple

vibrations of definite frequencies, which find.

Apply this to the explanation of the two sounds, one above, the other

below the pitch of a fork, which are produced when the sound of the latter

is intercepted by a perforated revolving screen.

2. A sound wave is given by

If p , p + 8p denote the pressures when the air is at rest and in motion

respectively, the rate at which energy is transmitted across unit area in the

wave front is — (po+ 8p) =%*- • Show that Sp= p ^~ and that consequently

the average rate of flow of energy across unit area in the wave front is

27r2A2
p

VT1

3. Find an expression for the velocity potential for stationary waves in a

cylindrical pipe, the wave fronts being perpendicular to the sides of the

cylinder. Assume (1) that the pipe is closed at both ends, (2) that it is open

at one end and closed at the other. (Boundary condition at a closed end

~)=0 ; at an open end
<f>
= 0.)
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4. Show that <]>= -f(vt-r),

and any differential coefficient of it with respect to .r, y, z are solutions of
the equation ^ /3^ &£ ^\

5. Transform the equation of wave propagation

to the proper form for symmetry about an axis, namely

W(r4>)_ ?>\r4>)

Adopting the particular solution

show that only at a distance from the source equal to many wave-lengths is

-p£ inversely proportional to the distance, while near the source a different

law holds good.

6. A gas is enclosed within a rigid spherical envelope of radius a and
vibrates symmetrically about the centre. Show that the frequency is given

by jr— , where n is given by tan na= na.



CHAPTER V.

ELECTROMAGNETIC THEORY.

§111. It is shown in the elementary text-books, that the attraction

between permanent bar magnets may be explained by supposing
charges of positive and negative magnetism to reside at the ends of

each magnet and by supposing that like charges repel and unlike

charges attract one another. In the case of a thick magnet these

charges occupy regions near the ends ; these regions are the parts that

the lines of force emanate from, when the field of the magnet is plotted

with a compass needle, and they are called the poles of the magnet.

If the magnets are long, thin and uniformly magnetized, the poles

contract to points exactly at the ends, and we base our definition of

unit quantity of magnetism or pole strength on this case. Two like

poles of equal strength are said to have unit quantity of magnetism,
when they repel one another at a distance of one centimetre with a

force of one dyne, both being in air.

It has been proved by Coulomb with the torsion balance and also by
Gauss by measuring the attraction between two magnets in the " A

"

and " B " tangential positions, that the force between two poles varies

inversely as the square of the distance between them. It is thus

analogous to gravitational attraction. In order to define the field

strength or the magnetic intensity (H) at a point in the field of a

magnet or system of magnets, we suppose a positive pole of strength m
placed at that point ; then Hm gives the force with which the field acts

on the pole. It should be noted that Hwi has the dimensions of force

;

H has not. The potential at a point in the field (V) is the work that

would have to be done against the forces of the field in bringing unit

positive pole from infinity to that point. Thus, in analogy with

gravitational attraction, gy

The magnetic moment of a bar magnet (M) is equal to the pole-

strength multiplied by the distance between the poles. If the poles do
not occupy points but cover a definite region at each end of the

magnet, the moment is obtained by dividing the total quantity of

magnetism into elements and by multiplying each typical element

dm by I, the distance between it and the corresponding element at the
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other end of the magnet. Then M = Xldm. The intensity of

magnetization of a magnet (I) is defined as its magnetic moment
per unit volume. If the magnet is a thin cylindrical one of length I,

and cross-sectional area a, the volume is la and the intensity of

magnetization is given by

T _ M ml m
la la a'

that is, it is the surface density of magnetism on either end of the
magnet.

§ 1

1

2. Magnetic potential due to a small magnet.

Let A and B represent the poles of a small magnet, m the charge of

magnetism at A and - m that at B. Let C be the middle point of the
magnet and let I = AB. Consider the potential

at a point P, at such a distance from the

magnet that PC is large in comparison with
AB. The potential at P is made up of two
parts ; it is the sum of the potentials due to

the positive pole and the negative pole, that is,

it is equal to ^^
AP BP

Draw AD and BE perpendicular to CP, write

r for CP and let angle PCA be 6. Then, since

r is large in comparison with I, triangle DPA
may be regarded as isosceles. Hence

AP=DP = CP-CD = CP-CAcos0 = r

and similarly BP = r + ^cos 9. Therefore the potential at P,

m m _ I 1 1 \_ ml cos ^ _ M cos ^

AP -
BP =

m
l

J
"

J
"

]
=

J
2 cos2

= —;*—>
\r-^coso r + ^cosOl r2 —

since —-— may be neglected in comparison with r2 . It should be

noted that 6 is the angle which the direction of the point makes with
the positive direction of the axis of the magnet, that is, the line drawn
from its negative to its positive pole.

§113. Magnetic shell. Magnetic potential due to a uniform shell.

A magnetic shell is a very thin sheet of magnetizable substance,

magnetized at each point in the direction of the normal to the sheet

at that point.

The strength of the shell (4>) at any point is the product of the

intensity of magnetization at that point into the thickness of the shell

measured along the normal.
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If t denotes the thickness of the shell, <^> = It. Hence <£ at any point
is the magnetic moment of unit area of the shell at that point.

The shell is said to be uniform when
<f>

is constant all over it.

Suppose that it is required to determine the potential due to the
shell at a point P outside it, the distance of P from the shell being

large in comparison with the thickness of the latter.

Consider an element of surface at the point A, of

area a, and by drawing lines normal to the surface

at every point on the boundary of this area, cut a
small magnet out of the shell. BA is the axis of

this magnet. Its pole strength is la and its length
is t. Consequently its moment is lat or </>«. If AP
be denoted by r, the potential at P due to this

elementary magnet is

Fig. 59. 4>a COS 9

where 6 has the value shown in the diagram. Now a cos 6 is the
projection of the area of the end of the magnet on a plane at right

CO COS
angles to AP, and thus—7,— is the solid angle subtended at P by this

area. Let this solid angle be denoted by dil. Then the potential due
to the elementary magnet is , 10

If we suppose now that the shell is divided into a number of such
elementary magnets, it is clear that the potential due to the whole
shell will be , n

where J2 is the solid angle subtended at P by the whole shell,

fi depends only on the shape of the boundary of the shell. From
the method of establishing the result it is evident that the potential is

positive on the positive side of the shell and negative on the other side.

Let ACB be a section of a uniform shell. Let P and Q be two points

close up to the shell on opposite sides of it, P being on the positive

side. Let us suppose that it is required to

determine the difference of potential between
P and Q.

Let-Vp be the potential at P and V
Q

the

\ / potential at Q. Suppose now that another
N
»v

~'' shell of the same strength and with the same

D + boundary is placed in the position ADB indi-

fig. 60. cated by the dotted line. The negative

surfaces of the two shells face one another

and together they may be regarded as constituting one closed shell.

Since P and Q are close together the potential produced at P and

Q by the part ADB is approximately the same. Denote it by V.

Then the resultant potential at P is Vp + V and the resultant potential

at Q is V
Q + V. But the solid angle subtended at P by the whole
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closed shell is zero, for the one part annuls the other. And the solid

angle subtended at Q is - iir. Hence

Vp + V = 0, V
Q
+ V=-47r<£,

whence Vp
- V

Q
= 47r<£.

§114. Ampere's theorem.

In 1820 Oersted discovered that a current-carrying circuit produced
a magnetic field, and in 1823 Ampere enunciated the law that gives

the magnetic intensity at any point in the field of such a circuit.

It runs as follows :
" Every linear conductor carrying a current is

equivalent to a simple magnetic shell, the bounding edge of which
coincides with the conductor and the moment of which per unit of

area, i.e. the strength of the shell, is proportional to the strength

of the current." The direction of magnetization of the shell is related

to the direction of the current in such a way, that if an observer

stands on the positive side of the shell near the edge facing the

direction in which the current is flowing, the area of the shell is on
his left hand. The best proof of Ampere's theorem lies in the fact

that it is the basis of the whole science of electromagnetism. Its

results are thus being compared daily with experience, and no case

has been discovered in which it does not hold.

The electromagnetic unit of current is defined so that when the

current is expressed in it, it is numerically equal to the strength of

the equivalent shell. In other words, the constant of proportionality

becomes unity. We shall, however, use electrostatic units. The
theorem can then be written • •;„

P = V C
>

c/> being the strength of the equivalent shell, c being a constant and i

the strength of the current in electrostatic units.

The magnetic intensity in the field of an electric current depends
only on the strength of the current and not on the nature of the

medium filling the field. The magnetic intensity in the field of a

magnet depends on the nature of the medium in the field. Hence
Ampere's theorem is intended to hold only for a current-carrying

circuit situated in air.

Ampere's theorem, of course, does not hold for points inside the shell.

§ 115. Work done in carrying unit positive pole round closed path

in field of current.

Let A be the trace of the wire carrying the current and let AB be a

section of the equivalent magnetic shell. Suppose that the positive

pole is carried round the circuit R. Then the work done is zero,

because the circuit is analogous to an external circuit in the field of

a mass of gravitating matter. Suppose now that the pole goes from

P to Q. The difference of potential between P and Q is 47r<£ = iiri/c.

If we were to bring the pole from Q to P through the shell, this

difference of potential would be lost and the resultant work done in

the circuit would be zero. But it must be remembered, Ampere's
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theorem does not hold for points inside the shell. Consequently,
when the pole arrives at Q, assume the shell removed and let the

pole continue its path from Q to P in air. The length QP is so short,

that the work done on it can be neglected, and thus the whole work
done in the circuit is iwijc. If the path of the pole is a closed one
threading the wire carrying the current n times, the work done on the

O R
B

Fig. 61.

pole is iirni/c. If there are permanent magnets in the field, the result

still holds, for they cannot influence the work done on a closed path.

The theorem proved above is called the " first circuital theorem."

We have noticed incidentally, that the magnetic potential of a

current-carrying circuit is multiple-valued, while that of the equivalent

shell is single-valued.

§ 116. Case of a right circular cylindrical conductor.

Suppose that we have a homogeneous, right circular cylindrical

conductor, of radius a, infinitely long, with a steady current flowing

in it, and let the direction of the conductor be perpendicular to the

plane of the paper. There is no magnetizable

matter in the field. It is required to find H,

the magnetic intensity, both inside and outside

the conductor.

The direction of the magnetic intensity will

be in the plane of the paper and everywhere
tangential to circles with their centres in the

axis of the cylinder. Take therefore a circular

path of radius r, r being greater than a. The
Fl°- 62 - work done on the unit positive pole in taking

it round this path is 2irrV\. By the first circuital theorem this is equal

to Virile. Hence o.;

H = -.
cr

This gives the value of H in the air outside the conductor.

Suppose now that r is less than a. Since the current is uniformly

distributed over the conductor only a fraction (r/a)2 will flow then

through the circuit. The work done in taking unit positive pole round
A. '< -5

the circuit is therefore , , and H is given by
ca?

a j

This gives the value inside the conductor. Both values of course

coincide for r = a.
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§117. First circuital theorem. More general form.

Let all space be filled with a conducting medium not necessarily

homogeneous and let there be electric currents everywhere. At the

point x, y, z let the components of H be a, /?, y, and let the components
of current per unit area be u, v, w. That is, if we set up an area of

1 sq. cm. at right angles to the a:-axis, u gives the quantity of electricity

measured in electrostatic units which flows through it in one second.

Draw any closed circuit in this medium. Then, by Stokes' theorem,

|(^ +» +r*}=|j{<|-|) +..(|-|)«(l-|)}*-
The expression on the left is the line integral of the tangential

component of H taken round this circuit ; the expression on the right

is the surface integral of the normal component of the curl of H taken

over any surface bounded by the circuit. But, by the first circuital

theorem,

I {adx + fidy + ydz) =— II {lu + mv + nw) dS.

The surface integral on the right gives the total current through the

circuit. Combining this equation with the previous one, we obtain

3W-~>MJ{<£-D*«(I-2)«(I-D}*
The above equation is true, no matter what the boundaries and shape

of the surface are. It holds true for every element of it, no matter

what values /, m, n may have ; we may therefore equate the two
integrands. Thus the equation decomposes into the following three :

47ru_dy 3/3 iirv _3a 3y <Lirw _3/3 3a

c "dy ~dz' c 3« 3x' c 3a; 'by'

which hold for every point in the medium. They are equations which

enable us to determine the current when the magnetic intensity is

known.

§118. The displacement current.

If we differentiate the first of the above three equations with respect

to x, the second with respect to y, the third with respect to z, and add,

the right-hand side vanishes, and the left-hand becomes

47T 3w 4tt dv iir dw A 3m 3v
,
3w „

c & « 3y c 3z dx dy os

if the common factor is cancelled out.

This equation states that the divergence of the electric current is

equal to zero. In hydrodynamics there can be no sources and no sinks

where the divergence of the velocity is equal to zero. The stream



!42 ELECTROMAGNETIC THEORY

lines can have no ends ; they must all be closed curves. According to
the above equation it is the same with electric currents. They must
all be closed. They can start and end nowhere.
Up to the present wo have tacitly assumed the current to he a

conduction current, a procession of electric charges along a wire. If

a battery is connected with a resistance box and a steady current is

sent through the latter, then this conduction current is a closed one.

But if an insulated, uncharged piece of wire is suddenly charged by
connecting one end of it to one side of a battery, then the conduction
current is not a closed one. For, isolate any small portion of the wire
by drawing a sphere round it, and consider any small interval dt,

during the time that the wire is charging. As the wire is filling up
with electricity, the quantity of electricity on the part inside the
sphere will increase by a definite quantity dQ, during this time. Let
a- be the area of cross-section of the wire, u the current per unit area of

cross-section and dx the length of the clement of wire. Then the rate

at which electricity is flowing into the element is given by <ru and the

rate at which it is flowing out by <r(u + ^-dx). The rate at which it

is being gained is -rr~dx; this is equal to -^7. Thus for no point

du
on the wire is ;—- = 0.

ox
The equation at the beginning of this section is therefore not true

when applied to varying conduction currents. The main feature of

Clerk Maxwell's theory of electricity is that the conception of electric

current is extended so as to make the equation universally true.

The unit quantity of electricity on the electrostatic system is that

charge which repels an equal and like charge at a distance of one

centimetre with a force of one dyne, both being in air. The force

between two electrostatic charges varies inversely as the square of the

distance between them. In order to define E, the electric intensity or

the field strength at a point in the field of a system of charged

conductors, we suppose a small positive charge e placed at that point

without disturbing the distribution of the charges already in the field;

then Ee gives the force with which the field acts on the charge. It

should be noted that Ee has the dimensions of force ; E has not. The
potential at a point in the field (V) is the work that would have to ho

done against the forces of the field in bringing unit positive charge

from infinity to that point. As formerly,

The capacity of a condenser varies with the specific inductive

capacity (k) of the medium between the plates. We define k by
taking it proportional to the capacity of the condenser and making
the value for air unity. Since the capacity varies as k, the difference

of potential between the two plates of the condenser varies inversely
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as k. Consequently the oloi'trii* intensity in the medium between the

plates also varies inversely as k.

We are thus led to the eouelusion, that if we have a point charge c

situated in a medium of speeitie inductive capacity /', the eleetvie

intensity E at a point P distant r from it is given by

It is now necessary to introduce a new vector, the electric displace-

ment {D) at P, which is defined bv

In the ease of tlie above point charge.

If the medium is isotropic, as we have tacitly assumed, D has

everywhere the same direction as E. D is independent of the medium
in which the point charge happens to be placed. It is supposed to

measure a state of strain at the point. The energy of the point charge

is stored up in its field, and a state of strain is set up everywhere in

the field. When this state of strain is set up, something is displaced

at the point : hence the name.

The rate at which the displacement through an area is increasing

gives the displacement current in the direction perpendicular to that

area. The displacement current was introduced by Clerk Maxwell.

The true current is the sum of the conduction and displacement

currents and the latter is to be regarded as

producing a magnetic field in the same wax-

as the former. For example, iv point charge ^ vy
is moving with velocity r in a straight line.

*

Alxnit this straight line as axis a circle is

described. If the velocity of the point ^
charge is small in comparison with the velo-

city of light, the displacement through the circle is proportional to

the solid angle subtended at the point charge by the circle. As the

charge approaches the circle, this angle increases ; the displacement

through the circle increases, and there is consequently a displacement

current through the circle, which produces a magnetic intensity

tangential to the latter.

If we return now to the ease we were considering earlier in the

section, the charge inside the small sphere has increased bv dQ in dt,

if. the surface integral of displacement current over the sphere is

^- outwards. This expression also gave the resultant conduction
Of

current into the sphere. Hence the divergence of the true current

is zero.
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Let k denote the conductivity of the medium ; then kE denotes the

resultant conduction current per unit area. E is not the electromotive

force or the difference of potential between the ends of a wire, but the

space rate of change of the latter or the potential gradient, k gives

the quantity of electricity flowing per second through an area of one

square centimetre when the potential gradient at right angles to that

area is unity. Let the components of E be X, Y, Z ; then the components
of conduction current are «X, kY, kZ. The components of displacement

k k k
are — X, — Y, — Z, and the components of the displacement current

Aw Air 47i

k_ 3X k_ 3Y k_ 3_Z

4tt 2>t' 4tt 37' 4ir 3f

If we substitute the total current for u, v, w in the first circuital

equation, we obtain

4™ kdX_dy 3/3 4™ &3Y_3a_3y
c c dt ~dy dz' c c dt dz dx'

Attk k 3Z _ 3/8 da

c c dt 3» ~di/'

the first three equations for the electromagnetic field. They may be

summarised as . , _^
4itk ka£ .

E + - ^57 = curl H.
c c at

EXAMPLES.

1. Find an. expression for the magnetic intensity due to a small magnet

at any point, the distance of which is great in comparison with the size of

the magnet. Show that for a given distance the maximum value of the

intensity is twice its minimum.

2. If the magnetic intensity varies inversely as the nth power of the

distance, show that if we have two small magnets, the couple on the second

when the first magnet is " end on " to it, is n times the couple when the

first magnet is "broadside on," the distance between the magnets being

the same in each case.

3. Two circles of wire, of radii a, b, are placed in parallel planes perpen-

dicular to the line joining their centres which are at a distance x apart.

Show that if y is the current in each circle in electromagnetic units and bja

is small, the force exerted by either circle on the other is approximately

67r2y
za262^

(at+ xtf
'

4. An infinitely long right circular solenoid has n turns of wire wound

round each unit of length. The current in the wire is y electromagnetic

units. Show that the magnetic intensity inside the solenoid is given by

H = 4;my.
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5. Show that the potential energy of a uniform shell due to its intro-
duction into a magnetic field is _ , N

where
<f>

is the strength of the shell and N is the number of lines of magnetic
intensity due to the external system passing through the shell in the
direction of its magnetization.

6. A straight wire extends to infinity from a point A, and carries a
current y (electromagnetic units). From A it is continued in the other
direction to infinity by a plane sheet in the form of a uniform circular
sector of angle 20, which is bisected by the prolongation of the direction
of the wire. Prove that the magnetic field intensity at a point P on a line
through A perpendicular to the plane of the sector and distant a from it is

(.+¥).
7. An insulated straight wire is embedded in an infinite conducting

medium and a current y (electromagnetic units) flows in it. Show that the
magnetic intensity at any point P is given by

y (cos 6l
— cos 62)

h
'

where h is the perpendicular distance from P to the wire and 6lt 62
are the

angles which the wire makes with AP, BP the lines joining its ends to P.

8. A point charge of electricity is situated on the axis of a circle of
radius c at a distance a from the plane of the circle. Show that the total
displacement through the circle is

eJi ?5_y
2 ^ (a2+ c2)*

y

Hence find the time rate of change of displacement through the circle if

the charge e is travelling with velocity v along the axis, and the correspond-
ing line integral of magnetic intensity round the circle.

§ 119. Current induction.

If a coil of wire is connected in circuit with a galvanometer and the

pole of a magnet is thrust into the coil, a current is set up through
the galvanometer. This current endures as long as the magnet is

moving and ceases whenever the magnet comes to rest. If again,

instead of thrusting the magnet into the coil, a current is started

or stopped in a neighbouring circuit, a transient current is set up
in the first circuit. This transient current lasts only as long as the

value of the current in the neighbouring circuit is altering and ceases

whenever the latter attains a steady value. Such currents are called

induced currents and their laws were determined experimentally by
Faraday.

In both the above cases the magnitude of the induced current

depends on the resistance of the circuit, i.e. on the material of which
the wire is composed. The induced electromotive force, that is the

resistance of the circuit multiplied by the current, is the same no
matter what the material of the circuit is. We shall now proceed

H.P. K
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to give the mathematical expression for the induced electromotive

force. This was first obtained by F. E. Neumann in 1845, but from
a different standpoint.

At a point distant r from a magnetic pole of strength m, the medium
being air, the magnetic intensity H is given by rnjr2 . Just as in the

analogous case of the electric charge, the medium in the field of the

magnetic pole is supposed to be strained. This strain is specified at

any point by B, the magnetic induction at that point. B, like electric

displacement, has the same value no matter what the nature of the

medium in the field is. For an isotropic medium B and H have the

same direction, and B = /*H, where fi is a quantity called the magnetic

permeability, /* being different for different media. If a, p, y denote

the components of H, then fj.a, ilJ3, py denote the components of B.

When the medium is air B and H have the same value. We shall

confine our attention wholly to isotropic media.

Suppose now that we have an electric circuit in a magnetic field.

At every point in the field B has a definite direction and magnitude.

Draw any surface with the circuit as edge. At every point on this

surface the direction of B is inclined to the normal to the surface.

Divide the surface into elements, and multiply each element by the

normal component of B at that point. Then the sum of these products

taken over the whole surface may be written

wfi(la + m/3 + ny)ilS,

where I, m, n give the direction cosines of the normal to dS. The
integral is consequently the surface integral of normal magnetic in-

duction through the circuit.

If a magnet is moved near the circuit or if a current is started in a

second circuit in its neighbourhood, the value of the integral undergoes

a change and a current is induced in the first circuit. The induced

electromotive force is proportional to the rate of change of the integral.

If E denotes the electric intensity at any point in the first circuit, then

the electromotive force acting round that circuit is given by 1 E ds,

where the integration is taken round the circuit. The law of the

induction of currents can then be stated mathematically as follows

:

c Ed.s= -^-\\iJ.(la + mf3 + ny)dS.

The minus sign means that if the surface integral of normal induction

is increasing, its direction is connected with the line integral of electric

intensity in the manner typified by a left-handed screw. In the usual

statement of Stokes' theorem, the curl and line integral of the vector

are connected in the manner typified by a right-handed screw (cf. § 53).

In the above equation E is measured in electrostatic units and c is

the constant of proportionality, which has the same value as in the
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mathematical expression of Ampere's theorem. On the electromagnetic

system of units the unit of electromotive force is chosen so as to make
c unity. The equation thus gives us a means of defining the electro-

magnetic unit of electromotive force. The equation also gives us a

means of defining //.. For suppose we have a primary circuit wound
uniformly round the surface of a cylinder and a secondary circuit

wound round the outside of the primary near the middle of the

cylinder. If the primary current is broken, a current is induced in

the secondary, and the total quantity of electricity passing round the

latter is proportional to the induction through the cylinder, i.e. to

the magnetic permeability of the medium filling the cylinder.

The equation expressing the law of current induction is sometimes
called the second circuital equation.

§ 1 20. Currents induced in a mass of metal.

Let a lump of soft iron be placed in a changing magnetic field.

Then the magnetic induction at every point in the iron is changing.

If we imagine a closed curve drawn wholly in the iron, the surface

integral of normal magnetic induction taken over any surface bounded
by the curve is also changing. Consequently there is an induced
electromotive force round the curve. But the curve may be drawn
in an infinite number of positions in the mass of metal. We are

thus led to the conclusion that there is an electric intensity with a

definite magnitude and direction at every point in the metal. It is not

necessary that the medium in the field should be iron ; we can imagine
the closed curve drawn in air quite as well. We thus come to the

general conclusion, that whenever there is a changing field of magnetic
induction, at every point in that field there is an induced electric

intensity of definite magnitude and direction at every time during the

change. This electric intensity vanishes whenever the value of the

magnetic induction becomes constant.

The rate of change of magnetic induction can be determined when
the electric intensity is fully known. For, by Stokes' theorem,

c jE^ = C |||z(|-|) +mg-|) + W g-|)}^8.

The expression on the left hand is c times the line integral of the

electric intensity taken round any closed curve ; the right hand is

c times the surface integral of the normal component of the curl of the

electric intensity taken over any surface bounded by the closed curve.

By combining the above equation with the second circuital equation,

we obtain

d
dt

lx(la + m/3 + ny)dS

= " c

liKl
_
S) +m (S-l) +w(S"l)Hs -
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And, in the same way as in deriving the first three equations for the

electromagnetic field, this equation decomposes into the following three

equations :

fj/da /3Z_3Y\ fi'd/3 _ _ /dX _oZ\ pdy _ __
/3Y _3X

c dt \dy dzj' c dt~ \dz dxj' c "dt \dx ~dy

These are Maxwell's second three equations for the electromagnetic

field. They may be combined in the equation

c at

§121. It has been seen that the constant of proportionality in

Ampere's theorem and in the law of current induction is the same in

both cases. The one law enables us to define the unit of current

on the electromagnetic system and the other enables us to define the
unit of electromotive force on the same system. And yet the unit

of current multiplied by the unit of electromotive force should give one
erg per second. The explanation is, that the law of current induction

is not independent of Ampere's theorem. It was discovered experi-

mentally but could have been foretold theoretically from the latter.

For suppose we have a linear closed circuit in which there is a

battery of constant electromotive force e and that in this circuit a

current i electrostatic units is flowing. Let there be a pole of strength

m at a point at which the circuit subtends a solid angle $2. Then by
Ampere's theorem the potential energy of the pole is miQ/c. The
current will act on the pole and move it into a position where the

potential is less. Let midlife be the change in potential energy of

the pole in time dt. Then - mi dti/c is work done by the battery. The
rate of working of the battery is ei, but owing to the work done on the

pole, the rate at which heat is produced in the circuit is only

. rnioV,

c dt

— is negative). There is thus an induced electromotive force, or
ot / ^o

back e.m.f. equal to — ^-. The total number of lines of induction^
c ot

issuing from the pole is iirm and the surface integral of normal in-

duction through the circuit is mfl. Its rate of increase is thus

m— . That is, the electromotive force induced round the circuit is

dt

— times the rate of increase of the surface integral of normal induction.
c

The second circuital theorem can thus be derived from the first circuital

theorem by means of the principle of energy.

The constant c can best be determined by measuring the capacity

of a condenser both in electrostatic and electromagnetic units. The
dimensions of capacity are the dimensions of charge divided by potential
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and the dimensions of potential are the dimensions of work divided by
charge. The dimensions of capacity are therefore the dimensions of

charge to the second power divided by the dimensions of work. The
unit of work is of course the same on both systems and the units of

quantity are to one another as the units of current. Hence the

numerical value of the capacity on the electrostatic system is c
2 times

its numerical value on the electromagnetic system. The numerical

value on the electrostatic system can be found from the dimensions of

the condenser. In the case of a sphere it is equal to the radius. The
numerical value of the capacity on the electromagnetic system can be
found by experiment. Hence c.

§ 122. Electromagnetic waves.

Let k, the conductivity of the medium, be zero. Then the equations

of the electromagnetic field become

kdX_dy_d§ ^5X_^_?7 kdZ_d£_d_
c dt~dy d::' c dt dz dx' c dt dx dy'

fi.da._dZ dY
fj.

d/3 _dX _3Z _^5Z_5X_^
c dt dy dz' c dt dz dx c dt dx dy'

Differentiating the first with regard to t and substituting from the

last two, we obtain

k 32X _ 32y 32
/3 _ e_ / 32Y S2X 32X 32Z

c dt1 dydt dzdt jx\dxdy dy1 dz1 dxds,

lxkd_X_d__ d_X 3*X
ie ' WW dx2

+
dy*

+ 9#

But =— + ^- + ^- = 0, since we suppose that no charges exist in the
dx dy dz °

field. Hence ^32X_32X cPX o^X

"c
2" dP

~~
3x2

+
dnf-

+
dz1

'

This equation states that X is propagated by wave motion, the

velocity of the waves being c/y/pJc. We can prove the same for Y, Z,

a, j3, y by proceeding in exactly the same way. Hence the electric

and magnetic intensities are propagated in a dielectric with velocity

c/s/fjik. In the case of air /j. = k = 1 . The numerical value of c as

found in the laboratory by the method described in § 121 is 3 1010

cms./sec, and this coincides with the velocity of light in air. We thus

draw the conclusion, that light is an electromagnetic wave.

This striking result was first published by Maxwell in 1865. His

theory of the electromagnetic field was not generally accepted until

Hertz performed his experiments in 1887-88, because, previous to that

time, there were no experiments that could be explained only by it.

d_ /__ 3Y 3Z\

dx\dx dy dz)
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§ 123. Hertz's experiments.

If the inside and outside of a Leyden jar are connected by a coil of

wire possessing self-induction and having a spark gap at one point in

its length, and if the jar is charged by means of an influence machine,
the difference of potential at the two sides of the gap eventually reaches
a value when the dielectric resistance of the air breaks down and the
jar discharges across the gap producing a bright spark. If the resis-

tance of the wire is not too great and this spark is examined with a
rotating mirror, it is seen to consist of three or four sparks alternately

in different directions. Oscillations are set up ; the current does not
merely pass from the positive to the negative side, ceasing when the
original difference of potential is annulled, but it continues until a
difference of potential is produced in the reverse direction, the side

which originally possessed the negative charge now having the posi-

tive charge. Then the direction of the current reverses, and we
have the electricity oscillating from the one side to the other until

finally the heat of the current is no longer sufficient to maintain the

air of the gap in a conducting state and the circuit is broken. The
original electrostatic energy is dissipated in heat in the wire and in

the spark gap.

Here then we have changing conduction currents, and from what has

been said above we would expect displacement currents to be pro-

duced. In the theory of the discharge of a condenser which was given

by Lord Kelvin in 1853, only the conduction current was considered,

and Lord Kelvin's theory has stood the test of experiment well. The
reason why displacement currents are not in evidence during the

ordinary oscillatory discharge of a Leyden jar is, that the oscillations

are not fast enough and that the circuit is too " closed." The displace-

ment is all in the glass of the condenser and does not radiate out into

the field.

According to the theory the period of discharge of a condenser is

given by 2ir\/l_C, where L is the self-induction of the circuit and C
is the capacity of the condenser. In Feddersen's experiments proving

the theory, the average period was 10~ 5 sees. By reducing the capacity

and induction so as to bring the period down to about 10""8 sees.

and by altering the form of the circuit, Hertz was able to show the

existence of displacement • currents and to prove conclusively that the

dielectric played a part in the discharge.

Hertz employed a vibrator consisting of two spheres connected by a

straight rod with a spark gap in its middle, the two sides of the spark

gap being connected with the secondary of an induction coil. When
the primary of the induction coil was broken, vibrations of a large

period were set up in the secondary, and the spheres became charged

with electricity of different sign, until the resistance of the spark gap

broke down. Then they discharged across the gap and the electricity

surged backwards and forwards between the two spheres, until the gap

ceased to conduct. The number of complete vibrations was not large,
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about three or four, and they were not isochronous, because the resist-

ance of the gap was large and was changing all the time.

The vibrator may be considered apart from the induction coil ; it

cannot discharge back through the secondary of the coil owing to

the great inductance of the latter. Waves are sent out from the

vibrator, and Hertz demonstrated their presence in the room by means
of a receiver consisting of a circle of wire with a micrometer gap in it.

When the circle was placed so that the magnetic intensity normal to

its plane was altering, sparks passed across the gap, and the sparking

distance gave a means of estimating roughly the intensity of the field.

§ 124. Hertz's theory of the electric doublet.

An electric doublet is a system of two equal and opposite electro-

static charges a constant small distance apart. The product of either

charge and the distance between them gives the moment of the doublet.

The following four equations hold in the field of a Hertzian vibrator :

-
c w=™l "> W

^.-curlE (2)

divE = 0, (3)

divH=0 (4)

The last two equations merely express the condition that there are

no electrostatic charges or magnets in the field. In order to find the

state of affairs in the field we should have to solve the above four

equations together with the appropriate boundary conditions on the

surface of the vibrator and at infinity. It is, however, impossible to

express the conditions for the surface of the vibrator mathematically,

and a rigorous solution is beyond us. Hertz succeeded in obtaining

an approximate solution, which agrees with the result of experiment,

and which is of very great interest from its analogy with the mechanism

of light production.

In order to obtain Hertz's solution, we suppose that the vibrator is

replaced by an electric doublet, the moment of which varies harmoni-

cally with the time. This is an approximation to the state of affairs

on the vibrator. Take the centre of this doublet as origin and its axis

as Oz. Call all the planes through the axis meridian planes. Then by
symmetry the lines of magnetic intensity are everywhere circles round

the axis, and the electric intensity at every point lies in a meridian

plane.

Starting from equation (4), we have, since y = 0,

^ +^ = 0.
3k dy



152 ELECTROMAGNETIC THEORY

This is the condition that a dy - fidx is a complete differential of

some function of x, y. Write -^- for this function. Then

dm dm
dtdy' ^ QfQg.

Equation (1) may be written as

k dx d/3 dm k 3Y da d3Il

c dt dz dtdxdz' c dt dz dtdydz'

kdZ_djP_da_ _ 33II _ OTE
cdt~dx dy dfdx2 ~ Wdy2

'

From this we obtain

d/kx 92n\_ d/ky 32n\ d/kz dm dm\
dt\c dxdz)~ ' dt\c dydz)~ ' dt\c

+ cW +
c5f)~

From the conditions of the problem there can be no part of X, Y
or Z independent of t ; hence, on integrating the above three equations,

the constants of integration are each zero. We have therefore

kX - c
VIL kv-c^ *Z -- C ffi +^™- C
dxdz' ^- C

dydz'
ICZ ~ °\dx2

+
dy2 r

The first two components of equation (2) are

/*3a_3Z_3Y _[i,d/3_dX_dZ

c dt dy dz' c dt dz dx

Substituting the values for a, /?, X, Y, Z, which we have already

found, we obtain

^ a3n _ c d /dm dm\ c a3n
c dt2dy kdy\ dx2 dy2 / kdy dz2

p 33n _c dm -c d /32n a2n\
c dt2dx k dx dz2 kdx\ dx2 dy2 /'

These may be written

dy\dt2
kfi J ' dx\dt2

kfi J

which give on integration

B2IT r2^±.vm +f{z,t).

We can put f(z, t) = without loss of generality because the effect

of f(z, t) is merely to add to the expression for II a term independent

of x and y.* The five quantities we are concerned with, a, /?, X, Y, Z,

*This may most easily be seen by adding \j/(z, t) to II and substituting in the

equation. The substitution of the new term gives a function of z and t, x(z, t),

which can be arranged to remove the original/(z, t).
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are all obtained by processes involving differentiation of II with

respect to x or ;/, and hence are independent of this additional term.

Since the disturbance is radiated out from the origin, the general

solution must be of the form

n = l{fi(r-*t)+Mr + ti)},

where e = cj-Jkji.. A solution adapted to the doublet is

II = - sin {mr - nt),

where n/in = t:

For consider points close enough to the origin for mr to be small in

comparison with 2ir. This means only that r must be small in

comparison with A.. Then

II = — - sin nt.
r

T) , a2n , 32n . . . . , d-n . 1 . „
But kX = c_ _ , X;Y = c _ _ , and in this case kZ = c -^^r since - satisfies

dxdz dydz o.:- r

the equation -=-g + -^-j + -^-j = 0. In ow

j _. 1
3 /1\ <j>sinntz <t>am nt

. = - <b sin nt =- (
- I = + -—= or — .,

- cos 6,
oz oz\rJ rL r r-

if 8 is the angle r makes with the z-nxis. At points considerably less

than a wave-length distant from the origin, then, the components of

electric intensity X, Y, Z are obtained by differentiating ——=-,

with respect to x, y and z. But, by analogy with the small magnet,

——=-^ is the expression for the potential due to an electric

doublet of moment c<j> sin nt in a medium of specific inductive capacity k.

At distances great in comparison with the length of the doublet but

small in comparison with the wave-length, Hertz's solution thus gives

the values of the electric intensity which we would expect to get.

Similarly with the magnetic intensity. The magnetic intensity in

the case of a current y flowing in a closed conductor can be calculated

correctly on the assumption that each length ds contributes a part

^ sm at a point distant r from it, y being expressed in electrostatic
cr2

units, r making an angle 6 with ds and the direction of this part being

perpendicular to the plane containing r and ds. Apply this to the

doublet ; y ds has the value cn<j> cos nt, since this expression is obtained

by differentiating the moment with respect to the time. The expression

for H is therefore . n^ , awp cos nt sin u
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From the value of II, we have

om
a = 32

f c/> . ,) wb count or= ^-7^— -! - - 811) «/ > =— - . ^-.
ot'by dtdy[ r "j

AY e know that the lines of magnetic intensity are circles. Sujjpose
that the y-axis is in the meridian at the point considered. Then
3r y .

% =
r
= sln

'
w"e ° is defined as before, and /3 becomes zero.

The two values for the magnetic intensity therefore agree.
Also it is obvious that a, fi, x, Y, Z are zero at infinity. Hence the

solution satisfies the boundary conditions.

In differentiating ® sin (rnr - nt) with respect to z, y and z, we obtain

two types of terms, those with 1/r2 as factor and those with 1/r as

factor. At large distances from the origin the terms of the first type
may be neglected. Consider a wave at a large distance from the
origin and choose the yz-plane so as to contain the direction of

propagation of the wave. Then r = Jy2 + z2
,

kl = - -—— sin (-mr - nt) sin 6 cos 6, lZ = HzHL. sjn (mr _ n{\ B{n 2

T 'f
'

and a = —— sin (mr - nt) sin 9.
r '

Hence Z cos 6 + Y sin 6 is equal to zero and the electric intensity is

perpendicular to r. At large distances from the vibrator, therefore, we
have the electric and magnetic intensities both perpendicular to the

direction of propagation and to one another.

§ 1 25. Poynting's theorem.

If a conductor receives an electrostatic charge, the energy of the

charge is stored up in the field. This can be shown very well with a

Leyden jar, the inner and outer coatings of which can be detached

from the glass. If the condenser is insulated and charged, and if it

is taken apart with insulating tongs and the two coatings put into

contact with one another, no spark passes between them. But if it is

put together again and then discharged, the spark is as great as it

would have been had the condenser never been taken apart. The
energy of the charge has apparently been stored up in the glass.

The energy of a system of charged conductors can, of course, be

calculated from the work done in bringing each elementary charge

from infinity, in analogy with the method of calculating the potential

energy of a system of gravitating masses. It is found that the same
numerical value can always be obtained by assuming that there is an

amount of electrostatic energy stored at every point of the field

equal to /E2 ED
' ^T or

IT
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per unit volume, E and D being the electric intensity and displacement
at the point. The assumption is therefore taken to be correct. The,
expression ED/2 brings out the meaning of displacement very clearly

owing to its analogy with the formula " half tension by extension " for

the work done in stretching a spiral spring.

Similarly, at a point in a magnetic field, where H and B are respec-

tive^ the magnetic intensity and induction, we assume that there is a
u,H 2

quantity of energy ti— per unit volume. This assumption gives the

same value for the energy of a system of electric circuits as is obtained

by using the equivalence of each circuit to a magnetic shell.

We assume, therefore, that the density of the total energy in the

field is given by
2-(fcE2 + MH 2

).

Suppose now that we have a certain region of space bounded by a

closed surface. The energy in this region is given by

{[[±-aE* + H.HZ)dxd)/dz

= W±
r

{k(Xi + Yl + Z*)+n(a! + fP + y*)}d.rdydz,

the integration being taken throughout the whole region. The rate of

increase of the energy in the region is obtained by differentiating the

integral with respect to t, and is equal to

^X 3a
Substituting for k^—,...,..., p ^-, ....... , from the equations of

the electromagnetic field, this becomes

»*(£-l£)-*(i-D}***
= ^|J|{|G8Z-yY) + |(7X-aZ) + |(aY-^X)} <fady&

= JLff{Z(/?Z-yY) + m(yX-aZ) + m(aY-/3X)}<fe,

by Gauss's theorem. The vector, the components of which are /3Z - yY,

•yX - aZ and aY - /3X, is evidently at right angles to both H and E, and

its numerical value is equal to

{(0Z - yY)2 + (yX - aZ)2 + (aY - £X)2 }* = EH sin 6,

where 6 is the angle between the directions of H and E.
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The surface integral is the surface integral of the normal component of
cEH sin 6 ,

,——— taken over the surface bounding the region. It is natural

then to interpret -—JEL at a point in space as the rate of flow of

energy per unit area at that point. This result is due to Professor
Poynting.

§126. Application of Poynting's theorem.

Let us apply the theorem to the case of a long straight homogeneous
cylindrical wire of circular section carrying a steady current y. Let r

be the radius of the wire.

Consider the portion of the wire intercepted between two planes
perpendicular to its axis and distant d apart. Let R be the total

resistance of this portion. Let us consider the rate at which energy

is flowing into this portion. We have to form the expression
sln

over the side and ends of a cylinder of length d and radius r.

The lines of magnetic intensity are circles and on the surface of the

cylinder H has the value 2y/(cr). The lines of electric intensity inside

the cylinder are straight lines parallel to its axis. The total difference

of potential between the two ends of the cylinder is yR ; hence the

electric intensity is yR/d. It is everywhere at right angles to H.

The direction of —j at the ends of the cylinder is parallel to

these ends ; hence no energy enters into the cylinder through the ends.

7
2R

On the surface it is perpendicular to the surface and has the value ^—-,.

If we multiply this by the total area of the curved surface, we find for

the rate at which energy is flowing into the cylinder

v2R
27rfdxjf-!l

7
= y

2 R,
lirrd '

and that of course is the rate at which heat is being produced in the

cylinder.

If the current is produced by an electric battery, chemical energy is

converted into electromagnetic energy in the battery and flows through

the dielectric to the wire where it is converted into heat. It does not

flow along the wire although the latter guides its flow through the

dielectric.

If an alternating current flows along the wire, periodic waves are

therefore propagated in from the surface, the amplitude decreasing

with the distance from the latter. We would thus expect the current

to be denser near the surface of the wire. This result is borne out by
experiment. If k, the conductivity, is very great in comparison with

k, we find that the equations for the propagation of H and E are of the

same form as the equation for the conduction of heat.
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§1-7. Propagation of a plane wave.

Consider the expression Y = B cos "'-(/- -
j.

It represents a plane wave of electric intensity propagated in the

direction of the positive ir-axis, >• being the velocity of the wave, t its

period and B the maximum value of its amplitude. In any plane

parallel to it; at any time the electric intensity has everywhere the

same value. If we fix our attention on a fixed plane, then, as time

progresses, the electric intensity undergoes a simple harmonic variation.

If we fix our attention on a definite time and move the plane instan-

taneously in the direction of the .r-axis, then the electric intensity again

undergoes a simple harmonic variation when regarded as a function of

the distance. Its direction, however, always remains parallel to the

//-axis.

Put X = Z = and substitute for X, Y and Z in the second three

equations of the electromagnetic field. Then

= 0, -^ = 0, _^ =? = B^sin^---y

The constants of integration mast be zero, as there are supposed to

be no permanent magnets or steady currents in the field. We thus

obtain _ N

a = /3 = 0, y=B-cos^^--

This represents a plane wave of magnetic intensity, of the same
period and velocity as the former wave propagated in the same direction,

the magnetic, intensity in the wave being always parallel to the .--axis.

According to the equations of the electromagnetic field, we cannot have

the one wave without the other. Both together are said to constitute

a plane electromagnetic wave plane polarised in the r.i-plane. In the

wave the electric and magnetic intensities are at right angles both to

one another and to the direction of propagation.

Similarly, if we had started out with the wave

T \ f
Z = C co

by substitution in the equations of the electromagnetic field we would

have found associated with it the wave

/8= _C?cos^(/-^.^ fir t \ I'l

Together they constitute a plane electromagnetic wave plane polarised

in the .rv-plane.

Suppose that the plane polarised wave is not propagated in the direc-

tion of one of the coordinate axes but in any direction whatc* er, the
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direction cosines of which are I, m, n. Then it may be represented by

v a „„ 2ir/ lx + my + nz\ „ „ 2tt/ j Ix + my + nzX = A cos — ( t ^
J,

Y = B cos — ( t -

-_ - 27t/, Ix + my + nz
Z = C cos—[t —"-—

t \ v

Now ?x + ?X +^ =
"ox ~dy dz

Substituting in this equation and cancelling out the common factor

2ir . / Ix + my + nz— sin"
TV

we obtain ZA+mB+mC = 0, i.e. A, B and C are not independent, but
the resultant electric intensity must be at right angles to the direction

of propagation.

Substituting in the second three equations of the electromagnetic

field, we obtain

u, da . _ „,2i . 2ir/, lx+ my + nz\
- - ^t = (??iC - wB)— sin— t ,

c at v ' tv t \ « /

I
1 'dfi i « 7~\ 2s- . 2?r/, Ix + my + iu

- - £ = (mA - IC) — sin — [t
C 01

V ' Tff T \ V

-^ = (IB- mA)
2
-? sin

2
*( t -

h±M+^\
C CI

v ' T0 T \ V )

. . _ _. c 2tt/, lx + my + nz\
whence a = (mC - wB) — cos —u

flW 7

P = (r*-lG) ±cos^- te + my +^
x ' JUtf T \ «)

.,_ .. c 2ir/, & + WM/ +
7 = (ZB - mA) — cos— 2 —
' v ' jU» t \ v

We see from the form of the coefficients that (a, /?, y) is at right

angles to both (X, Y, Z) and (I, m, n).

The velocity of the wave is given by c/Jkp. It is found that as far

as light waves are concerned, /x = l. Also we know that the velocity

of a light wave is given by c/n, where n is the index of refraction of

the medium for the particular colour in question. We must therefore

have JJc = n or k = n2
. Hence h cannot be a constant as far as light

vibrations are concerned, but must depend on the frequency of the

vibrations, although in electrostatics it was a constant for any one

medium.
In what follows we shall suppose we are dealing with monochromatic

light.
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§ 1 28. Energy of a plane wave.

Suppose that the wave is propagated in the x direction and that

it is polarised in the ».r-plane. Then it may be represented by

Y = B cos -~ (t - -\ y = B— cos ~f (f - -\

By Pointing's theorem the energy is flowing in the direction of

the .r-axis. i.e. the direction of the flow of energy is identified with the

ray, and the rate of flow at any time for any value of x is given by

cEHsiutf c- , ,--/, A
; = -, B- cos- — /— ertrssq. cm., sec.4- iTTfir r \ c/ ° '

l

This expression oscillates between zero and a constant positive

value, but never changes sign. The energy flow is therefore always
forward. The period of the oscillations is so small that they cannot
be detected by the eye or any physical instrument ; it is the mean
value that is important. Now the mean value of eos-0, between =
and = —

, is i. Hence the intensity of the wave is equal to

A *
As all our observations on light are made in air, for all practical

purposes we may put nv = c. The intensity of the wave is therefore

proportional to the square of the amplitude, a result which might have
been derived by analogy from hydrodynamical and other considerations.

i; 1*29. Boundary conditions.

It is now necessary to determine the conditions that must be

fulfilled at the boundary of two media when an electromagnetic wave
passes from the one to the other. To fix our ideas, let the .ry-plaue

be the boundary, let the specific inductive capacity of the upper

medium be k, of the lower medium //, and take the axis of c positive

downwards. We shall also suppose that as we pass through the

boundary, the specific inductive capacity changes discontinuously from

the value A- to k'. _

Consider the rectangle ABCD, the side
t =q_

AB of which is in the one medium and

the side CD in the other, both AB and CD
being extremely close to Ox. Let a unit

magnetic pole be carried round this rect-

angle. Then the work done against the

field must be zero, because the area of

the rectangle is so small, that the dis-

placement "current flowing through it may be neglected. The work

done on the ends AD and" BC may be neglected owing to their being

so small. Thus the work done' on AB must be equal and opposite

to the work done on CD, or, in other words, the magnetic intensities

along AB and DC are equal. We arrive therefore at the condition
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that the tangential component of magnetic intensity must have the

same magnitude and direction on both sides of the boundary, that is,

in this case a and (3 must be the same on both sides of the boundary.
Similarly, by taking unit positive electric charge round the rectangle,

it may be shown that X and Y have the same value on both sides

of the boundary.
Suppose now, that instead of representing a rectangular circuit,

ABCD is a section of a flat right circular cylinder, the axis of which
is parallel to Oz, AB and CD being sections of the ends of this cylinder.

Let the area of the ends be a. Take the surface integral of the
normal component of electric displacement over the surface of the

cylinder. Then the part contributed by the side may be neglected

owing to the area of the side being so small. The part contributed

JcZ.0,

by the upper end is --.— and the part contributed by the lower end
h'Z'a

where Z' is the value of Z in the second medium measured

downwards. Since there is no electric charge within the cylinder,

lf~7n ic 7 a
the whole integral must be zero. Hence - -;—j- —

;
— = or JcZ = h'Z'.

4?T 47T

We thus arrive at the condition that the normal component of electric

displacement is the same in both media. Similarly it may be shown
that the normal component of magnetic induction is the same in

both media.

§ 130. Reflection and refraction.

Let a plane polarised plane wave of monochromatic light fall upon
the plane boundary of two transparent media. Take the axis of z

positive downwards and let the boundary of the two media be given

by z = 0. Let the plane of incidence

be the 2a;-plane and let the angle

of incidence be <j>. Let the specific

inductive capacity of the upper

medium be k and of the lower

medium k'. As is usual in problems

in optics, we put the magnetic per-

meability of both media equal to

unity.

Eesolve the electric intensity in

the incident wave into two com-

ponents, of maximum amplitude A,

in the plane of incidence and B
x

perpendicular to the plane of incidence. Then the plane of polarisation

of the incident light makes an angle cot-1 Bj/Aj with the ax-plane.

Resolve A
:

into components k
x
cos <£ parallel to Ox and - A

:
sin

<f>

parallel to Or. Then the electric intensity in the incident wave may
be written o

= Aj cos
<f>
cos— •Jk {x sin 4> + z cos <£}\

i )'
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Y, = Bl cos^ (t -^iEl±f^ii} N

Zl = - Al sin * cos^ (*_ ^I^Hli+^^1),

since the velocity in air is c and the direction cosines of the normal to

the wave front are sin <£, 0, cos
<f>.

To find the magnetic intensity associated with this electric intensity,

substitute for X
x , Yj, Z

x
in the second three equations of the electro-

magnetic field and solve for a,, /3lt yl , making the constants of

integration zero. Then we obtain

a
1
=-B

1
^cos^cos^^-^ {a:sin

^
+ gCOS

^),

ft = + A^cos^ (t -^W + *cos<^

7l
= + B^sin 4> cos^ (< -

^0"*°* + »"»*}

The above six equations represent the whole incident wave. When
it arrives at the boundary it gives rise to a refracted and a reflected wave.

We shall assume that the maximum values of the electric intensity of

the refracted wave are respectively A
2
for the component in, and B

2
for

the component perpendicular to the plane of incidence. We then

obtain the following equations for the refracted wave simply by sub-

stituting for Aj, B
l , k and

<f>

:

n Sir /
' slid {x sin 6 + z cos 6

}

X2
= A

2
cos o cos— It '-

2jt /, \/F{a;sin0 + 2cos0}
Y

2
= B

2
cos— [t -

1 i

. n 1-k (, \fk' {z sin 6 + z cos 9\
Z
2
= - A

2
sin cos— ( t

L -

„ m . 2irf, >Jk' {xsmO + zcosO}
a
2
= - B

2
V/c COS COS— ( I -

m 2ir (. "Jk'fxsin 6 + zcos 6}\
/32
= + A

2
-Jk cos— It ^ >-

),

H.P.

m . n 2tt/, \/k' fxsind + zcosd]
y2
= + b

2vk sin cos— 1 1
'
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Similarly, for the reflected wave, we obtain

X
3
= A

3
cos f cos^ (t -

>#{s™^ + *«"*'}

Itt / \fh {x sin <j> + z cos <£'

}

= B, cos— [t-
6 T V C

. . ., 27t/, \/A;{a;sin.(/)' + acos<i'}N
Z

3
= - A

3
sm <£ cos— u s - 2-i

a
3
= - B

3
VAcos *' cos^ (*

-^sin^cos^}

& = + A
3
^cos^(^^gsin

^
+ gCOS

^^,

y3
= + B

3
s/£sin <£' cos |(* - ^{^i"^ + ^o^'}

In the above A
3
and B

3
are put respectively equal to the components

of the maximum electric intensity in and perpendicular to the plane of

incidence. Also, we do not assume that (/>', the angle of reflection, is

equal to <£, the angle of incidence. It should be noted that <£' is the

angle that the normal to the reflected wave front makes with the

positive direction of Oz.

We have now to apply the boundary conditions. A,, B
1( <f>

are

known, and we wish to determine A
2 , B

2 , 6, A
3 , B

3 , <f>. It is at once

clear that for 2 = 0, all the components of electric and magnetic

intensity must be proportional to the same function of x and t,

i.e. sfk sin 4> = •Jk' sin = V& sin </>'. This equation contains the laws of

refraction and reflection, for it may be written

sin <t> [¥
,

.,

sm 6 1 k

The laws of reflection and refraction are thus derivable from the

mere fact that there are boundary equations, and they do not depend

on the particular form of the latter.

Since the tangential components of the electric and magnetic in-

tensities are the same on both sides of the boundary, we have

Xj + X
3
= X

2
with three similar equations. These give

(A
x
- A

3 )
cos <j> = A

2
cos 6, Bj + B^Bg,

(Bj - B
3 ) s/k cos cf> = B.

2
\fk' cos 6 and (A

x
+ A

3)\/£= A
2
s/ft'.

We have thus four equations for the four unknown quantities, and

conclude that the other two boundary conditions are not independent.
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This conclusion may be verified by trial in the present case. On
solving the equations, we obtain

« _a v k' cos 4> - -Jk cos 9 _ \/h cos
<f>
-Jk'cos 9

3 — 1
—

T~
= 7— > 3 — 1 —7—

7
== 5

Vk' cos
<f> + \Jk cos 9 sjk cos <j> + -Jk' cos 6

. _. 2s/£cos<£ 2sJkcos4>
2 — 1 ~~r

=
f
== > 2 — 1 —T-3 7~ *

Vk cos 6 + sjk' cos 4> ' \/k' cos 9 + \fk cos
<f>

On substituting
s
^
1^ for A /-l, these results become

sin \ k

a _a tan(^-fl) ain(^-g)
3 Han^ + fl)'

3_ 1
sin(</. + 6;)'

a _ a 2 sin cos </> _ 2 sin 6 cos (^>

2_
x
sin (cf> + 6) cos (<j>-6y

2_
!

sin (0 + 0)
"

The above are called Fresnel's formulae. They were first obtained

by Fresnel, but not by a satisfactory method. They enable us to

determine completely the reflected and refracted waves when the

incident wave is known.
According to these formulae B

3
never vanishes, but A

3
becomes

equal to zero when tan
(<f> + 9) = go , i.e. when

<f>
+ 6 = -^. In this case

sin 6 = cos 4>, and if n be put for the ratio of the refractive indices of

both media, i.e. if n = <Jk'/k,

n = —.—
f.
= tan <f>.

sine*

This value of
<f>

is called the polarising angle, and this equation

states Brewster's law. After reflection at this angle of incidence,

natural light is plane polarised in the plane of incidence.

Fresnel's formulae can be verified very easily with a spectrometer

fitted with two nicols with square ends, one attached to the collimator

in front of its object glass and the other attached to the telescope in

front of its object glass. These nicols can be rotated respectively

about the axes of the collimator and telescope, and are provided with

divided circles for reading their positions. The collimator has a

circular aperture instead of a slit. From Fresnel's formulae,

B
3 _ Bj sin (cf> - 9) tan (<f> + 9)_ Bj cos

(<f>
- 9)

A^
-
"AT sin (<£ + 9) tan (<£ - 9) Aj cos(<£ + 0)'

Aj/Bj is the tangent of the angle which the plane of polarisation

makes with the xz plane before reflection and A
3
/B

3
the tangent of

the like angle after reflection. In the experiments of Jamin and

Quincke, Aj/Bj was put equal to unity, that is, the polarising nicol

was set with its principal plane at 45° to the xz plane, then A
3
/B

3
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was determined experimentally for different values of <£, and the
results compared with those given by the formula. The agreement
was very good, only in the neighbourhood of the polarising angle
was there an appreciable difference between theory and experiment.
This difference has been shown to be due to the boundary conditions
not being accurate. In deriving the latter, we assumed that the value
of the index of refraction changed discontinuously in passing from
the one medium to the other. If we assume that the change takes
place gradually within a region small in comparison with the wave-
length of light, we obtain more elaborate boundary conditions, and
from these can derive formulae that represent the experimental results

perfectly. From experiments confirming the more accurate theory,

we learn that the transition layer or region in which the index of

refraction changes from the one value to the other has, in the case

of a polished glass surface, a thickness of about T|Tr
of the wave-length

of sodium light.

§131. Perpendicular incidence.

In the case of perpendicular incidence <£ and 6 both become zero and
Fresnel's formulae for A

3
and B

3
become indeterminate. If, however,

we use the equations on page 163 immediately above Fresnel's formulae,

cos
(f>
and cos 6 both become equal to 1, and

A — A ^ ~^—A ™ _ * "Jk~ "Jk' _ j 1 ~ n

The fraction of the intensity reflected is therefore the same for

light polarised in and perpendicular to the plane of incidence, namely

In the case of reflection from glass to air, n = 1
-5 approxi-

/w-l\ 2

\n+l)
mately ; hence 4 % of the incident light is reflected.

§132. Total reflection.

Suppose that k' is less than k, that the wave, for example, is reflected

internally at a glass-air surface. Then <£ is the angle of incidence in

the glass, 6 the angle of refraction in the air and sin 6 = n sin </>, n of

course having its usual value of l
-5 or thereabouts. We have

cos > = \/l - sin2 = <s/l -m2 sin2
c£.

Where total reflection occurs, m2 sin2 <£ is greater than 1 and cos d

becomes imaginary. We may write it in this case,

cos 9 = i \/w2 sin2
<f>
- 1

.

It is interesting to examine what happens to Fresnel's formulae
when this imaginary value of cos 6 is substituted. Let us confine our
attention to the reflected wave and examine the expression for B

3
.

For angles of incidence greater than the limiting angle,
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„ _ sin (4> - 6) _ sin 4> cos 6 - cos 4> sin
1 sin (4> + 0)

~~ l sin
<f>
cos 6 + cos <£ sin 6*

i sin <£ \/»i2 sin2
<£ - 1 - n sin $ cos 4>

t sin
<t>
\/ni sin2

</> - 1 + n sin <£ cos <£

n cos
<f>
- i \/n2 siri2

<f>
— 1= Bj , ——

n cos <j> + i v ?i
2 sin2

<£ - 1

On multiplying both numerator and denominator by

n cos <f>-i -Jn
2 sin2 <£ - 1,

this gives

d d (™
2 cos2 <£ - «2 sin2

<£ + 1 ) - 2 m cos
<f> -Jn

2 sin2 <£ - 1
B
3 - B

l ^231

The coefficient of B
x
is a complex quantity, the modulus of which is

found by calculation to be 1 and the amplitude of which is

_j 2» cos (j> *Jn2 sin 2
</> - 1

n2 cos2
(f>
- n2 sin2 <£ + 1

On writing b for the latter, the equation becomes

B
8
= B

1
e-*.

In order to interpret this result it is necessary to go back somewhat.

v = b. cos^ (t - ^l^EL±±l^tl
1 l T \ C

represented the electric intensity perpendicular to the plane of incidence

for the incident wave. Instead of the cosine we might have written

,2;r/ -\/i-^'sin^+2cos</)}\

Yj = real part of B^ T ^ c
',

and we could have made similar substitutions for the other cosines.

This assumption is perfectly legitimate, for the equations of the electro-

magnetic field and the boundary conditions are linear in X, Y, Z, a,
f3, y

•

they are satisfied by both parts of the complex quantities taken singly,

and must therefore be satisfied by their sum. Had we proceeded in

this way, we should have found for Y
3
in the above case,

,iir / A/&-[x8in$-zcos$}\

Y
3
= real part of bJ t

""
c '

. r2n- / V^{:cBin<£-3COS<£}\ ~|

real part of Bj/LTV" c ) J

TK*-— c
)- b

j



166 ELECTROMAGNETIC THEORY

The amplitude of the reflected wave is therefore the same as the

amplitude of the incident wave, i.e. no light is lost by reflection, but a

phase difference is produced = b and varying with the angle of incidence.

Similar results are obtained on examining the expression for A
3

.

Let us denote the phase difference produced in this case by a. Both
components of the incident wave were originally in the same phase,

but a relative phase difference has now grown up between them equal

to a - b. The reflected wave cannot therefore be extinguished with

an analysing nicol until this relative phase difference has first been
removed with a compensator. The relative phase difference has been

determined experimentally, and the results agree well with theory.

This method of interpreting the complex amplitude is due to Fresnel.

§ 133. Absorbing media.

So far, in dealing with electromagnetic waves, we have confined

ourselves to dielectrics. Let us now drop this restriction and assume
that k is not zero.

Then the equations of the field are

iwK kdX_dy df} iinc k dV _ da _ dy 4ttk k oZ _ dfi _ da

c c dt~dy dz' c c dt dz dx' c c dt dx dy

_/*3a_<3Z_3Y _/f^_5X_9Z _^5l-?X_^
c di~ dy dz' c dt dz dx' c dt dx dy'

Let us assume that we are dealing with harmonic plane waves of

period t, and that exponentials are to be substituted in place of

X, Y, Z, a, /3, y, always on the understanding of course that the latter

are the real parts of the exponentials replacing them. Then, as t occurs

i— 2
in every quantity in the same factor e T

, dividing by i— is equivalent
T

to integrating with respect to t, and the first of the above equations

may be written i ^ d* _ 3y _ d§
c * "* dt dy dz'

The second and third equations take the same form. If, as is usual

in dealing with light waves, we put /* = 1, the only effect of the

conductivity of the medium is to replace h by the complex quantity

k - »2kt. The waves will therefore be represented by terms of the type,

real part e

On writing Jc - i2kt = ( N - «K)2
,

.2tt/ (N - iK)(lx+my+nz)\

this becomes, real part e T \ c
'

2irK
/;

. .2W N(lx+mi/+,i:)\
---(lx+my+nz) i—it — - I

= ,, e rc e tV c '

-—(lx+my+nz) 2ir ( , N (I'X + 11UI + 7iz)
= 6 TC COS "
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This represents a wave the amplitude of which diminishes as the

wave advances, the energy of which is being absorbed as it progresses.

The exponential factor diminishes as lx + my + nz increases. In a

conductor we must have therefore absorption of electromagnetic waves.

The constant, which determines the absorption, has been determined
for several metals for wave-lengths in the infra-red by Rubens and
Hagen, and has been found to agree with the value calculated from k.

Of course the same difficulty exists in connecting up absorption of light

with conductivity as in connecting up index of refraction with specific

inductive capacity. The quantity of light absorbed by any substance

varies with the wave-length, and the values given for the conductivity

in the tables are for steady currents, i.e. for infinitely long waves.

EXAMPLES.

1. A copper disc is spun about an axis at right angles to its plane in a

uniform magnetic field, the lines of force of which are parallel to the axis of

the disc. It is touched at two points by the ends of a wire, in which is

placed an electromotive force which just balances the induced electromotive

force due to the rotation. Find the e.m.f. when the wires touch at any-

chosen points of the disc.

2. Show that in the case of the Hertzian vibrator there are longitudinal

waves of electric intensity, near the origin in the direction of the axis.

3. Find an expression for the energy radiated by a Hertzian vibrator in

half a period across a sphere of very large radius with its centre at the

vibrator.



CHAPTER VI.

THEEMODYNAMICS.

§ 134. The science of thermodynamics is founded upon two prin-

ciples. The first principle runs as follows :

When heat is transformed into work or work is transformed into

heat, the quantity of heat lost or gained is proportional to the quantity

of work gained or lost.

This result was founded on Joule's experiments. It is merely the

principle of the conservation of energy, and is fully explained in

the text-books of elementary physics.

The second principle, sometimes called the principle of entropy, is

from its nature somewhat difficult to state. An account of it will be
given later. Clausius has enunciated it as follows :

It is impossible for a self-acting machine, unaided by any external

agency, to convey heat from one body to another at a higher tem-

perature.

The principles of thermodynamics have been applied with success to

the theory of steam engines, the radiation from an incandescent solid,

the definition of temperature, the phenomena of solution, etc. Thermo-
dynamics is not, therefore, a self-contained part of physics, but rather

an aspect of the whole subject.

§ 135. Let unit mass of a gas or vapour be contained inside a cylinder

of cross-sectional area A and let it be subjected to a pressure p by
means of a piston. Let v be the volume of the gas.

Suppose now that the piston is displaced upwards
through a small distance dx. Since the displacement

is small, we can assume that it does not" affect the

pressure appreciably. The force acting on the piston

during the displacement is then pA and the external

work done by the gas during the displacement is

pA dx or p dv,
FIG. ot>. .... .

where dv is the increase in volume of the gas.

It is obvious that this result holds, no matter what the shape of the

envelope containing the gas is. For the surface of the latter can

always be divided into plane elements and, when the volume changes,

each element is displaced in the direction of its normal.
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We have considered p constant throughout the change of volume.
If, however, the latter is large, p is a function of v. If the volume of
the gas changes from i\ to v.„ the external work done during the
change is then "

»,.,

I pclv.

§136. Watt's indicator diagram.

The state of a gas contained in a cylinder can be represented by two
variables, v and p, because the temperature t is connected with p and v
by means of the characteristic equation of the gas. The state of a gas
can therefore be represented by a
point P on a coordinate diagram,
v being the abscissa and p the
ordinate. Suppose that the volume
and pressure of the gas change
gradually, then the point will de-
scribe a curve and arrive finally at
some such position as Q. The
external work done by the
during the change is

fQ
p<7o = PQMN.

gas

Q

M v

Fig. 67.

If the point representing the state of the gas is originally at A and
if the volume and pressure of the gas are put through a succession of

changes and finally return to their original values, the point will

describe a closed curve such as ABCD, returning to the point of

departure A. The gas is then said to be put through a cycle. AVhen
a system starts from a given state and returns to the same state by
passing through a series of intermediate states, it is said to perform a
cycle. The total external work done by the gas during the cycle in

the above case is equal to the area of the closed curve ABCD, because
the work done by the gas in moving from A to C is ABCFE, and the
work done against the gas in moving from C to A is CDAEF.
The indicator diagram can be applied to other systems as well as to

a gas contained in a cylinder, e.g. a wire stretched by a weight. If clx

be the increment in length and F the stretching force, the work done
on the wire during the change is F clx. We only require therefore to

replace p and v as coordinates by means of F and x.

§ 137. The unit mass of gas in the cylinder in § 135 was supposed
to be at the same temperature and density throughout. Only then
can its state be truly characterised by v and p ; otherwise we would
require a different value of v and p for every element of its mass.

Suppose now the temperature of the gas to be raised. Heat flows in

from outside. While the heat is flowing in, the temperature of the

gas must be unequal. Similarly, if the gas is being compressed, its

pressure during compression will not be the same throughout. In
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order that the working substance, the gas, may be truly homogeneous
during the change, we must assume that the latter takes place infinitely

slowly. We must also assume that the flow of heat from the source

to the working substance does not lower the temperature of the source.

Only then can the change be accurately represented on the indicator

diagram.

If, during the change, the working substance receives heat from a

source, the temperature of the source must be the same as that of the

working substance, otherwise the change would not be infinitely slow.

We can thus quite as well suppose the heat flowing in the opposite

direction, from the working substance to the source. All changes can

thus be effected ,in a reverse order. Such changes are said to be

reversible, and a cycle consisting of reversible changes is a reversible

cycle.

Reversible cycles and reversible changes are ideal, that is, they

cannot take place in practice. We must always have a finite difference

of temperature or pressure in order to produce the change. But they

constitute a limiting case, which is of very great importance and at the

same time very much simpler theoretically. Reversible changes in

thermodynamics are somewhat analogous to dynamics with friction

left out.

Unless the contrary is stated, in what follows, all changes are

supposed to be made in a reversible manner.

§ 138. Consider now unit mass of a working substance and suppose

a quantity of heat dq, measured in dynamical units, supplied to it.

According to the first principle of thermodynamics this heat is used

for two purposes

:

it does external work

;

it increases the intrinsic energy of the substance.

This fact may be expressed mathematically by the equation

dq=dU+dW,

where dl) is the increase of intrinsic energy and dW the external work

done.

Suppose that the working substance is brought from state (1) to

state (2) ; that the intrinsic energy changes from U
1
to U

2 , that the

heat supplied is q and the external work done W. Then

2=U 2
-U

1 + W.

This change from state (1) to state (2) may be made in different

ways. For each of these ways q and W may be different, but U
2
- U

1

is always the same. For, suppose that the substance is brought from

state (1) to state (2) otherwise and that

2' = U'
2
-U

1
+ W.
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_

Then, carrying il, from sWIo (I) to state (12) by the first transforma-
tiou and from state (2) to state (I) by the .second transformation,

</ - if - V.
2
-W.. + W- W.

Since tin; initial state is the same as flu-, final state, all the heat
supplied must have gone into external work, i.e..

i, - (/=W-W,
llenee U.

t
- U.j - 0, that is, the intrinsic energy depends only on the

state of the substance, and is a function of the coordinates dcliuing
that stati!. This may lie regarded as an alternative statement of the
first principle of thermodynamics.

§ I •'!!). Carnot's cycle.

We shall now consider a, reversible cycle due to ('arnot, which has
played a great part in the development of thermodynamics. To make
matters clearer-, we shall assume in this section that the working
substance is a gas, though any substance may lie put through a Carnot's
cycle.

The gas is contained in a cylinder D, the piston and side of which
ate non-conductors of heat, but the bottom of which is a perfect con-

ductor of heat. A, B and C are three stands, A being a non-conductor
of heat, but B and C having tops that conduct heat perfectly. B is

kept at tho constant temperature /, and C is l<cpt at the constant

temperature /.,, <, being higher than /.,.

Let the temperature of the gas in D lie originally (.,. Place D on A
and compress the gas by pushing the piston down. During tho

compression no heat is lost or gained by the gas, and tho change is

said to be an adiabatic or isentropie one. All the work done on the

&

B

s

BE

Source

SSSSSSS Non-conductor of heat.

Mmmi Perfect conductorof heat.

Sink

gas thus goes to raising its temperature, and wo shall suppose that

the temperature is increased from /,, to /,. If E is the point on the

indicator diagram representing the initial state of the gas, and if, as

the compression proceeds, the point mines along EF, EF is said to bo

an adiabatic curve.

When the temperature has become /,, remove D from A, put it on B

and allow tho gas to expand by removing weights from the piston.

During this expansion the temperature of the gas remains constant,
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V

the expansion is said to be an isothermal one and the point in the

indicator diagram moves along the isothermal curve FG. As the gas

does external work during this expansion, it must receive heat from B,

or the source as it is called. Let the quantity of heat received,

measured in dynamical units, be qv
Now place D again on A and allow the gas to expand further. The

expansion is an adiabatic one, and the temperature of the gas will

consequently fall. Let the expansion proceed until it falls to t
2

.

During this expansion the point in the indicator diagram moves along

the adiabatic GH.
The temperature is now the same as the initial one. Remove D

from A, place it on C and push down the piston until the volume of the

gas returns to its original value.

This change is an isothermal one,

and during it work is done on the

gas. Consequently the gas must
lose heat to C, and in virtue of this,

C is termed the sink or condenser.

Let the quantity of heat so lost be

q2 , measured in dynamical units.

This final change is represented on

the diagram by the isothermal HE.

The gas has now returned to its

original state, and the point repre-

senting its condition has travelled through the closed curve EFGHE.
Hence the gas has done an amount of external work W equal to the

area of this curve. By the first principle of thermodynamics,

W =
?1
-

?2 .

The efficiency of a substance working in such a cycle, that is, the

ratio of the external work done to the heat supplied from the source, is

Si ?i

As Carnot's cycle is a reversible one, the substance may be put

through it in the reverse order in the direction EHGFE. In this case

work W is done on the gas, heat q2
is received from the sink and ^ is

given to the source. Instead of heat being converted into work,

work is converted into heat.

§ 140. Application of the second principle of thermodynamics.

If we have two engines working between the same two temperatures

t
x
and U converting heat into work, one, which we shall call A, working

in a reversible cycle, and the other, which we shall call B, working in

an irreversible cycle, then the efficiency of B cannot be greater than

that of A.

For suppose that B is more efficient than A. Let t
x
be the tem-

perature of the source and t
2
the temperature of the sink. Let A take
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a quantity of heat ql
from the source and give up a quantity q2 to the

sink, and let B take a quantity q\ from the source and give up a
quantity q'„ to the sink. We can assume without loss of generality
that both engines do the same amount of work in a cycle, i.e.

?l-?2 = ?'l-?V

gl-g2 < g'l-g
,

2Also, by supposition,

2i 1i

Now let engine A work backwards converting work into heat, and
suppose that the work done by B is used in working A. Then to
every cycle of B there corresponds a cycle of A ; the resultant work
done is zero, but in each cycle a quantity of heat q2 - q\ is taken from
the sink and a quantity q1

- q\ is given to the source. Now it follows
from the above equation and inequality that q1 >q\ and q2 >q'2

.

Hence q1
- q\ and q2 - q'

2
are both positive, heat is being conveyed from

the colder to the hotter body of the system, and no external agency
is doing any work on the system. This is contrary to the second
principle of thermodynamics. Consequently B cannot be more efficient

than A.

The above theorem is called Carnot's principle.

It can be shown by similar reasoning that all engines working in

reversible cycles between the same two temperatures have the same
efficiency, for, if the less efficient engine be reversed so as to convert
work into heat, and if the work done by the more efficient be employed
in working it, the second principle of thermodynamics will be again
infringed.

Since all engines working in reversible cycles between the same
temperatures have the same efficiency, it follows that the efficiency of

the Carnot cycle is independent of the working substance used. It is

independent of q2 , for if q1 be increased n times, since

S1-I2

must remain the same, q2 must also increase n times. It is independent
of qlf for if we have two engines working in Carnot cycles between

<j and t
2
and the first takes n times as much heat from the source as the

second, the second performs in n cycles exactly the same quantity of

external work as the first and gives up exactly the same quantity

of beat to the sink. The efficiency of any substance working in a

Carnot cycle between t
x
and t

2
is therefore a function solely of these

temperatures, and may be written f(tv t
2 ).

§ 141. Carnot's function.

Suppose now that a substance is working in a Carnot cycle between
t
Y
and t

2 , taking in a quantity of heat q1
from the source, that the

external work done in the cycle is q1 f(t-l , t
2 ) and that the heat given

back to the sink is qx {\ -/(^, t
2)} . Let another substance work in a
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Camot cycle between the temperatures t
2
and t

s , using the first sink as

source and taking from it the quantity of heat ^{1 -j(tv t
2)} given up

by the first substance. It does external work ^{1 -f(tx
, t

2)}f(t2 , h)
and gives up heat ^{1 -/(^, t.,)} { 1 -f(t2 , t

3)} to a second sink.

Now let another substance work directly from the original source to

the second sink, taking in the same quantity of heat qx
from the source.

The work done in the cycle is q-Jif^ , t
s ) and the heat given back to the

sink is ft{l -/(*,, £,)}.

As in each case the maximum quantity of work has been obtained

from the original quantity of heat qlt the amount of heat given up to

the second sink is in each case the same. Therefore

?i{i ~f(h, y} {i -/(*„ «.)} =?i(i -/ft, yi-
Suppose that t

Y
is constant and t

2 , t
s

are varied. Then, since in

thatcase

x f(t M W(*i. h) Hh)

where F(t
3),

F(t
2 )

are respectively functions of t
3
and t

2
alone, it must

be always possible to write

If </2
be the heat given up to the sink at temperature t

2 , obviously

g2 = F fe)

<7i
F d)'

Carnot's function is a quajitity /x, such that the efficiency of a

reversible engine working between the temperatures t and t - dt, where
dt is very small, is /u. dt. If t

x
- dt be put for t

2 , /(^ , t
2 ) becomes

'

_ F(t,-dt) _ FitJ-dt F'(t
1
)_F'(t

1)
'

FW ">&> ~
Fft)

Dropping the suffix, we see that fi at temperature t is given by
F'(t)/F(t).

§ 142. Kelvin's scale of absolute temperature.

So far nothing has been said about measurement of temperature.

When heat flows from A to B, A is said to be at a higher temperature

than B. Temperature is measured by the expansion of an arbitrary

substance in terms of an arbitrary scale. The temperature readings

of two thermometric substances can be made to agree at any two pre-

arranged temperatures, but then they will in general agree at no

other temperature. It is immaterial on what scale t has been measured

in the preceding sections, but to fix our ideas we may suppose it to

have been the centigrade mercury-in-glass scale.

Kelvin has introduced an absolute scale based on the properties

of a perfect heat engine working in a Carnot cycle. This scale is

entirely independent of the properties of any thermometric substance.
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Let an engine work in a Carnot cycle between the temperatures t
x

and t
2 , taking in a quantity of heat q1

at /j and giving out a quantity

</o at t
2 . Then the work done is q1

-q
2

. Let a second engine work
between t., and f

g , taking in q2
at t

2
and giving out qa at t

s , and let the
work done by the second engine, q2

-qit be equal to ft-f2 . Let a
third engine work between t

s
and tit taking in qs at t

s
and giving out

qi at /
4 , and let the work done by the third engine, q3 -qit be equal

to qx
-q

2 - And so on.

If qlt q2 and t
x
are given, we can in this way arrive at ti in three

steps and at /„ in (•» - 1) steps, and the values of t4
and tn are absolutely

the same, no matter what the working substance may be. We take such
steps as units on the absolute scale.

From the preceding section,

Since q1
- q2 = q2

- qn
= qB

- qi etc.,

F&) - Hh) = F (k) - F(g = F(f
3)
- F(*

4)
etc.

Consequently the increase of the absolute temperature is propor-

tional to the increase of F(t). We shall denote absolute temperature
by T. Assume that when F(t) is zero, T is zero. This defines the

position of zero on the absolute scale and makes T always proportional

to F(t). We have now only to define the size of the unit on the

absolute scale. We do that by assuming that there are exactly one
hundred of them between 0° and 100° on the centigrade scale.

The efficiency of a substance working in a Carnot cycle between T
1

andT
*
is

!
F(g T

2

F(y tv
Let Tj be constant. Then, as T

2
decreases, the efficiency increases.

At zero on the absolute scale, the efficiency is unity, that is, all the

heat received from the source is converted into work. The efficiency

cannot be greater than unity; T
2
cannot become negative. Hence

the absolute zero is the lowest temperature that can be attained

by any body. It is not possible to decrease the temperature without

limit; there is one definite temperature, the same for all bodies,

beyond which it is impossible to go. At this temperature they are

entirely devoid of heat. It is found as a result of experiment that the

absolute zero is 273° below zero on the centigrade mercury-in-glass scale.

The efficiency of a substance working in a Carnot cycle between T
andT-tft-is F(t-dt)_ T-dT_(lT

1
F(0

1_
~T^-~T'

so that Carnot's function is 1/T when the absolute scale is used.

§143. Entropy.

Entropy bears somewhat the same relation to the second principle

of thermodynamics that energy bears to the first. The name is
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due to Clausius. In this section it is defined only for reversible
transformations.

If a substance works in a Carnot cycle between the temperatures J
1

and T
2 , taking in qY

at T
1
and giving out q2 at T

2 ,

Ti T
2

•

This follows from § 141 and the definition of absolute temperature.
If heat imparted to the substance be regarded as positive and heat
given out by the body as negative, this equation may be rewritten

f +f^O (1)
Ti

Suppose now that the substance is traversing any reversible cycle

not necessarily a Carnot cycle. Then this reversible cycle can be
decomposed into a number of elementary Carnot cycles.

For example, let the working substance be a gas and let the closed

curve (fig. 70) represent the reversible cycle on the indicator diagram.

Draw a number of adiabatic lines so as

to divide the area of the curve into

elements ; let the ends of the elements

be bounded by elements of isothermal

lines. Then every element of the closed

curve is equivalent to an element of an
isothermal followed by an element of

an adiabatic. The temperatures corre-

sponding to the successive isothermal

elements will of course all be different;

call them Tlf T2 , T8 , ..., and let qlt q2 ,

P

- i* - y - a> • •• i iii iv
Fio.ro. %-, ••• respectively be the quantities of

heat received at the temperatures T
lf

T
3 , ... by the substance working round the equivalent stepped

Suppose now that we replace the single engine working in the stepped

curve by a number of engines, each working in one of the Carnot cycles

into which the area is divided, and each completing a cycle in the

time taken by the single engine to work round the closed curve.

Then, for the system of engines,

|l+|2 +^...=0, (2)
'l '2 '3

since equation (1) holds for each engine of the system. But the single

engine receives qlt q2 , q3 , ... at temperatures Tj, T
2 , T3 , ... ,

just as the

system of engines does and does exactly the same quantity of external

work. The single engine and the system of engines are thermo-

dynamically equivalent to one another. Hence equation (2) holds
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for the single engine, i.e. for an engine working once round a reversible

cycle

s|=o,

or, in the limit when the elements are made infinitely small,

It is not necessary that the working substance should be a gas.

The above proof holds for any substance the state of which can be
represented on the indicator diagram, i.e. which is a function of two
independent variables. The theorem is also true when the state of

the working substance is a function of more than two independent
variables, for the path can still be resolved into elemental isothermals

and adiabatics when it can no longer be represented on a plane. Hence

#-°
holds for every reversible cyclical process, no matter what the working
substance is.

If A and B denote two different states of a substance, which can be

connected by a reversible transformation, then l^r between the limits

corresponding to the two states must always have the same value, since

the cycle may be completed by a definite invariable transformation.

The change of entropy of the substance in passing from state A to

state B is defined by p gg
sb -sa =] aT

.

Since I
—% depends only on the state of the substance, S, the entropy,

like U, the intrinsic energy, is a function only of the coordinates

defining the state of the body. During any adiabatic transformation

dq is always zero, and hence also SB
- SA ; all adiabatics are therefore

isentropics.

§ 144. Transformation of thermal coefficients.

Let the state of unit mass of a homogeneous substance be denoted

by P, v > t> where p, v, t are connected by the equation

f(p,v,t) = 0.

This gives % dP +%dv +%dt = °'

and hence
\?ir)

=
~df' '

H.P. M
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where the suffix denotes that during the differentiation t is to be kept

constant. From (3), ^ ,^.
^

with two similar equations. Also

fdp\ fdv\ fdt\ dv dt dp _
\&) t

\v)p\dp)- WWWT '

dp dv dt

Let a quantity of heat dq be given to the substance. Then, in

general, p, v and t will suffer increments dp, dv and dt. Since p, v

and t are not independent, dp, dv and dt are not independent ; hence

dq can be written in either of the two following forms :

dq = yvdt + lv dv, dq = yp dt + lpdp (4)

In the above equations /„ is regarded as a function of v and t, and

lp as a function of p and t ; lv is called the latent heat of expansion

and lp the latent heat of pressure variation. They are different from

the latent heat of change of state. y„ and yp are respectively the

specific heats at constant volume and constant pressure. Of course dq

is not a perfect differential.

Equations (4) are quite independent of the laws of thermodynamics.

Similarly, dq =Mcfe+N dp.

The six thermal coefficients yv , yp , lv , lp , M, N are not independent.

For, eliminating dt from (4),

j_ = yp lvdv-yv lpdpcq
7p-y.-

hence M = -^-, N =-^—
7P ~7v lv- JP

The first member of (4) can be written

dq = yv dt + lv(^j dt + h(^j dp,

whence yp = yv + lv(^j , I =h(~jj
)

Similarly, 7. = %> + «p (^); ^(|f/(

Hence four relations exist between the six coefficients, and when two
of these are known, the other four can be found.

§ 145. Carnot's function. Otherwise.

In deriving Carnot's function in § 141, both the first and second

principles of thermodynamics were used. Both the principles of thermo-

dynamics were unknown to Carnot, and he derived the function in the

following manner.
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Consider the limiting case of Carnot's cycle when the heat taken in

becomes infinitesimal. Then ABCD is a parallelogram.

Draw BFP, CEQ parallel to Op. By (4), the heat received from the

source is lvdv. The work done in the cycle

Now PQ = dv and BF
therefore the work done

= ABCD = BCEF = BF . PQ,

P(1)5

\-dtJ,
dt dv,

and the efficiency is (J-) 1-—u.dt.
\atJ,,L

^
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§ 147. Clapeyron's formula.

Consider unit mass of a Homogeneous solid or fluid, the only external

work done being done against hydrostatic pressure. Then, if t be

measured on any arbitrary scale, we have, as in the preceding section,

dq = yvdt + lvdv, dq = dU +p dv.

Hence dl) = yvdt + (lv -p) dv,

and since d\J is a perfect differential,

£-!<"•-*> - l=f-t (5)

The increase of entropy, dS, is given by

dS^^dt + ^dv,

where T is the absolute temperature. Since dS is a perfect differential,

dv\Tj dtKT,

Jl ^h _JL 5^_^5Z h."?L — ^h- ?Z? (Q)"'
T dv~l dt T2 dt' Jdt~dt dv

K}

In equations (5) and (6) the right-hand sides are the same ; hence

l„dl dp , -/dp\ dt_

T dt dt
°r lv ~ T

{dtJv dT'

which is Clapeyron's formula.

It should be observed, that in deriving Carnot's function in § 145,

we have already almost proved this formula by another method.

§ 148. An analogous formula to Clapeyron's formula will now be

derived. dq = yp dt + lp dp,

dU = dq -p dv = yp dt + lp dp -p dv.

dv\ , . /'dv
Now dv = [^)dp +^

therefore dU = \yp -p (^j j
dt + Up -p (~£)\ dp.

Since this is a perfect differential,

^Zs-ff^ y
^ - dlP p

dh
or ^.-^hJ^E (1)

dp \dtjp
J dp dtp dt *dtdpt dty dp dt

v '

Now dS = ^dt + ^dp.



THERMODYNAMICS 181

Since dS is a perfect differential,
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Now let the pressure be kept constant and decrease the temperature
to 273°. By Charles' law, v' becomes v , v being connected with v' by
the equation j

Hence ^=w . __ r p?=RT,

where R is constant.

The modulus of elasticity at constant temperature of a gas is the

limiting value of the ratio of an increase in pressure to the decrease of

volume per unit volume it produces. Let e denote the modulus of

elasticity at constant temperature, let Sp be the increase of pressure

and let Sv be the decrease of volume. Then

£=Lt {£--.(!

V

The minus sign is necessary since p increases as v decreases. In the

case of a perfect gas, ,g.

Hence e = p.
W<= "

7
The specific heats at constant pressure and constant volume are

respectively yp and y„. We have

d\J=yvdT,

substituting T for t.

_ dq _ yvdT +p dv _ 3»
7j>
=
^T~

=
~~df Jv+P 5^'

u 'p u 'p const. u
' p

But since pv = RT, p ^— = R.

Hence
7i>

~ 7« = R-

It should be remembered that yp and yv are here measured in

dynamical units.

We shall next find the relation which must hold between p and v

during an adiabatic change. During an adiabatic change no heat is

received by or escapes from the gas. Hence dq = and

yvdT +pdv = 0.

But from the equation pv = RT,

dJ = —(pdv + v dp),
R

whence, on substituting for ilX,

yv (pdv + v dp) + Rpdv = 0,

/ r,\ dv dp dv dp .

i.e. (?„ + R) — + y„— = or yp — + y„— = 0.
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On integration this gives yp log v + y ll
logp = const., or if k be written

for yp/yv , the ratio of the specific heats,

k log v + logp = const.,

logpv* = const, or pvK = c.

This is the required relation. In the integration we have assumed
that yp is independent of p. According to Regnault this is the case.

If the volume of the gas changes from v
1
to v

2 , the external work
done is

f„2

I p dv.

If the expansion is an isothermal one, T is independent of v and

f
— dv = RT log — •

V ° V-.

If the expansion is an adiabatic one,

pdV=\ -dV-
Jv1 J 1>! "

1

)V1 j n
-"- K-IVV" 1

l
'i

§ 151. Work done by a perfect gas in a Carnot cycle.

Let the cycle be traversed in the direction ABCD ; let p^i\, p./2 ,

p^v
3
and jj4

v
4
denote the pressure and volume at A, B, C and D respec-

tively. Let Tj denote the temperature on AB and T
2
the temperature

on CD.

Then, since AB and CD are isothermals and AD and BC adiabatics,

PlVl=P^ iW)=W4» (
10

)

Pi<=PlVl

K
> PiV2 =PsK-

The work done by the gas during

RT\log?f
AB is

V

The work done by the gas during

CD is

-RT„log-3 .

2 & v
4

The work done during BC is

MilA L\

p2
v
2

K being substituted for the constant c, and finally the work done

during DA is PK_(_}_ l \

On eliminating pv p2 , pz
and^;

4
from equations (10),
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Hence the total work done on the isothermals can be put into the

form

The total work done on the adiabatics is

M'' r^-^) +P*'&-^=t)}
1 f PiK , PaK\

1

, . iWi-T^i+PiTV ,

^Ti {PM-Psh +Pi"i -Pih) = 0.

§ 152. Entropy of a perfect gas.

Given the entropy, S , of unit mass of a perfect gas when its pressure

and volume are p , v
Q , it is required to find the entropy, S, when its

pressure and volume are p and v.

ds
_dq_ yydT+pdv

^

Since pv = RT, \ogp + log v = log R + log T.

tt dp dv dl
Hence -J- -\— =—

.

p v T

Substitute for — in the expression for dS ; then, since the entropy

depends only on the state of the body, the right hand must be

integrable.

On substitution,

,„ /dp dv\ „ do dp dv
dS = yJ-i + — + R — = yv

+- + y —
' \p vj v ' p lp v

Hence S = yv log p + yp log v + C,

where C is the constant of integration. When C is determined by
substituting the initial conditions,

S-S = 7ilogJ + y„logy.
Fa "o

EXAMPLES.

1. Show that, for a perfect gas undergoing an adiabatic transformation,

rt, K. — 1 -, K — J.

T2 T,

2. Supposing the earth to have been originally a nebulous mass dissipated

through space, show that the heat produced by its condensation is 90 times
the amount required to raise an equal mass of water from 0° to 100° C.
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3. If the sun be contracting in consequence of its own attraction, show
that an annual contraction of 77 10~ 8 of a diameter is sufficient to maintain
its temperature constant. (The heat emitted, by the sun in one year would
raise the temperature of an equal mass of water 2° C.)

4. A gas at p r
and v

1
is allowed to expand into a perfectly empty vessel

and its pressure and volume become p2 and v.2 . No heat is imparted to or
taken from it during the process. Determine the change in temperature and
show that the increase of entropy is

Rlog?a

v

5. A vertical cylinder of cross-sectional area A is filled with gas at the
atmospheric pressure pu the absolute temperature being Tl5 and closed by a
piston on which is placed a weight w, which pushes it down. No heat passes
in or out of the cylinder. Determine the temperature and increase of
entropy of unit mass when equilibrium is established. (Note that the
change is irreversible and not adiabatic.)

6. Compressed air is contained inside a vessel at a pressure p,, a little

greater than the atmospheric pressure, the temperature of the air being the
same as the temperature of the atmosphere. The vessel is opened for a
moment to allow the pressure to change adiabatically to that of the
atmosphere and then closed. The pressure then rises to p2 as the temperature
of the air attains its old value. Show that the ratio of the specific heats of

air is given by ^log^-logp,
logp2- log ft'

p being the atmospheric pressure.

7. Calculate the difference between the two specific heats of air, being
given that a cubic metre of air at a temperature of 0° C. and under a
pressure of 76 cms. of mercury, the density of mercury being 13 -

6, weighs
1"2932 kilogrammes. State any assumptions made in the calculation.

8. The state of unit mass of a perfect gas is represented on a coordinate
diagram by its entropy and its absolute temperature. Show that if the gas
is put through a reversible cycle, the area of the closed curve traced out is

equal to the area of the corresponding curve on the indicator diagram.

9. For any gas whose specific gravity referred to air is p, show that

,
0-069

yp=y>+—p—

10. Show that the quantity of heat which must be imparted to a gas

to enable it to expand at a constant pressure px
from the volume v, to the

volume v9 is v

11. Calculate, in dynamical units, the increase of entropy of a kilogramme
of water which is raised in temperature from 0° C. to 100" C. and evaporated

at the latter temperature.

12. A body is surrounded by a medium of unalterable temperature T and
is cooled to that temperature by the performance of work by a perfect engine

at the expense of its heat. Prove that the whole work done is

U-U -T (S-S ),

where U, U denote the internal energies, S, S the entropies, in the initial

and final states respectively.
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13. A system of any bodies isolated from without is imagined divided up
into parts, the thermal capacity of each of which is the same. Show that the
utmost useful work obtainable from the system, by perfect engines working
between its parts, is equal to the product of the thermal capacity of the
whole system by the excess of the arithmetical mean of the temperatures of

the parts of the system over their geometrical mean.

14. If two bodies of equal thermal capacity at absolute temperatures
Tj, T2 respectively are brought to the same temperature by a reversible

process, their final temperature is n/TjT2 .

A rod of length I coated with an opaque substance is heated so that the
temperature at a distance x from an end is a+ bx. The temperatures of

the different parts of the rod are then allowed to become equal by conduction ;

find the energy dissipated.

15. A body is put through a reversible cycle of operations consisting of

two opposite isothermal strains of a given type and (equal and opposite)

small changes of temperature at constant strain. Show by the consideration

of the cycle of operations, that if W be the work done by external forces in

the first isothermal strain, the change of the body's internal energy arising

from that strain is TiwwW-T^—
dr

where T denotes absolute thermodynamic temperature.

16. Show that if y p , y v are the specific heats of a body at constant pressure

and volume respectively, at absolute temperature T,

dy,_ -ftp , dyp__ cPv
-^- i

3T2
ana ^ -

I 3j2
.

It is stated that the specific heat of carbon dioxide at constant pressure

increases with the pressure, attaining a maximum at about 110 atmospheres,
after which it diminishes. How would you expect the coefficient of

expansion to alter with temperature ?

17. Assuming Nernst's theorem, that the entropy of all solids is zero at

the absolute zero, show that the specific heat of every solid becomes infinitely

small as its temperature approaches the absolute zero.

§ 153. The porous plug experiment.

So far the gases considered have been perfect gases. Real gases

do not obey Boyle's law absolutely. It was shown in 1854 by Kelvin

and Joule in a classic experiment that Joule's law is also only

approximately fulfilled.

In this experiment a steady stream of gas passed through a copper

spiral in a water bath and then through a tube in which there was
a plug of cotton wool. The pressure of the gas fell considerably

in passing through the plug. The temperature of the gas was read

by two sensitive thermometers before and after its passage through
the plug. The tube containing the plug was surrounded with water

in order to keep its temperature steady.

Immediately on passing through the plug the temperature of the

gas suffered a small change indicated by the difference of the readings

on the two thermometers (any arbitrary scale, positive for an increase).
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But when heat had time to flow in or out, this change disappeared
and the temperature recovered its former value. Let j»j, v

x
be the

pressure and volume of unit mass before passing through the plug,
and j>2 ,

v
2
the pressure and volume of unit mass after passing through

the plug, when equilibrium is re-established. Then, since it is the
volume and not the pressure that alters while the temperature recovers
its original value, the heat escaping from unit mass during this process,

measured in dynamical units, is

y,e.

Let us now find the work done by external forces on the unit mass
in its passage through the plug. In fig. 73 let the plug be represented
by the aperture a. Let o- be the cross-sectional area of the tube.
Consider the gas between the two planes A and A'. After a short time
it will be enclosed between the planes B and B' ; A'B' > AB since the
pressure is less to the right of the plug. During the time considered
the external work done on the mass of gas considered is ^jO-AB ; the
external work done by the mass of gas considered is j?2

o-A'B' and the
quantity of gas that passes through the aperture is o-AB/Vj =crA'B'/v

2
.

Hence, when unit mass passes through the plug, the total external
work done on it is

A B > A' B'

IE
Fio. 73.

This gives the external work done on it from plane A to plane A',

from the plane where the pressure and volume of unit mass are plt v
1

to the plane where they are^
2 , v

2
.

Let d\J be the increase between the two planes in the intrinsic

energy of unit mass. Then

dl> = -ypO + ip^-pfa) (11)

The work done against friction in the plug does not enter into this

equation, because it returns to the gas immediately in the form of heat.

If the gas obeys Boyle's law, PiVl
—p

i
v
2
=

l
smce the temperature

is the same at A and A'. Also, if it obeys Joule's law, d\J equals

zero. Hence, for a perfect gas, 9 must be zero. If dU is positive,

it of course represents increase of intrinsic energy due to work done
against internal forces ; it is a gain of molecular potential energy.

The advantage of the arrangement employed by Kelvin and Joule

is, that owing to the small thermal capacity of gas 6 is relatively

large and is easier to detect than if the work done against internal

forces were measured by the change in temperature of a mass of

water. Also, owing to a stream of gas being employed instead of a

definite and necessarily smaller quantity, any disturbing action due

to the sides is minimised.
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For air and carbon dioxide yp was found to be negative and

Pivi~P2v2 was a'so negative but not at all so large; for hydrogen
6 was positive but extremely small and •p

1v1
-p$2

positive. For all

three d\i is positive.

Let us return to equation (11). Write dq for —yp 0, the heat

received per unit mass of gas. If the complete change had been a

reversible one, which it is not, we would have had

dq = yp dt +

1

2>
dp or dq = lp dp,

since here dt = 0. The increase in intrinsic energy would then have

been given by dU = lpdp-pdv.

But the increase in intrinsic energy depends only on the state of

the gas and not on the manner in which that state is brought about.

Hence the above expression for dl) may be substituted in (11). Also,

since the deviation from Boyle's law is small, p2
v
2 -p^j may be written

d(pv). Equation (11) thus becomes

dq = lpdp -p dv + d(pv) = (lp + v) dp

§=*>+*-. (
i2

>

Here dp is the increase of pressure in passing through the plug.

We have, from § 148, putting t= T,

_ dv , dv
- T ^r=r or L = -

;

•dTp
p 3(logT%

On substituting, (12) becomes

dv dq ,, „x

wrr*-^ (13)

By the porous plug experiment ^ can be found as a function of v,

and hence the absolute temperature can be found as a function of the

volume.

Bose-Innes (1901) finds that the largest correction necessitated by

the J^ term on the scale of the nitrogen thermometer between 0° and

100° C. is -0 ,0026°, and that the largest correction on the scale of the

hydrogen thermometer within, the same range is only - 0'0007°.

We shall now derive the characteristic equation of a real gas on the

basis of the porous plug experiment.

It is found experimentally that ^ is nearly proportional to =%

Hence, on writing ~ = =2, (13) becomes

n _ dv

~v= Twp

-*-
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On multiplying both sides by —r, this becomes

tulT

-(f)

and, on integrating, -=~=-
3
+H, (14)

where H is the constant of integration. Assume that, when T is very
great, the gas has the properties of an ideal gas, for which pv = RT.

Then H=— ; hence (14) becomes

PV = RT +^ (15)

If n be put = 0, this reduces to the ordinary form of the characteristic

equation.

§ 1 54. Van der Waals' equation.

Equation (15) is intended to hold only for a gas. Van der Waals
has proposed the following characteristic equation,

(j> + 5)(«-&) = RT, (16)

as applicable both to the liquid and gaseous states. When p and v are

large, it is obvious that this equation reduces to the ordinary form for

a perfect gas. Van der Waals arrived at the additional terms on the

basis of the kinetic theory of gases. We shall not go into the method
of deriving them here, but merely remark that they look plausible

;

when T is zero, the volume does not vanish, but tends towards a

fixed value b, and when the volume is small, the additional term a/v2

diminishing the pressure becomes appreciable, and may be supposed

due to the attraction between the molecules.

On rewriting (16), it becomes

p = —» + --
,

(17)

If T be regarded as constant, this is the equation to an isothermal.

For a given value of p the equation is a cubic in v. Now a cubic equation

must have either one or three real roots. Hence, for T constant and a

given value of p, the equation gives either one or three values for the

volume of unit mass. We have the one real value in the case of a gas

;

then T is greater than the critical temperature. We have the three

real values in the case when T is less than the critical temperature;

the greatest of these values gives the volume of the saturated vapour,

the least gives the volume of the liquid into which it condenses,

while the middle value has no practical significance.
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At the critical temperature all three values of v are equal, k say.

Writing Van der Waals' equation at length,
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putting T = 273, 1_ = 80 eals. = 336 107 ergs, V = l-00 c.cs., «=1'09 c.cs.,

dp = 1 atmosphere = 10s dynes/sq. cm.,

Equation (19) can be used for calculating the density of saturated

steam, which is difficult to determine experimentally. For ^~ is known
o i v

from the relation between the pressure and temperature of saturated

steam, v can be taken as 1 and the value of L at different temperatures

can be found from Regnault's formula for the total heat of steam,

Q = 606 -5 -0"305<. The total heat of steam at any temperature t is

the quantity of heat necessary to raise 1 gramme of water from 0° to

t° C. and to evaporate it at that temperature.

Equation (19) can be derived very easily from consideration of a

Carnot cycle. Suppose we have some water and aqueous vapour all

at a uniform temperature T contained

by a cylinder and piston, and that

the piston is raised so that exactly

1 gramme of water vaporises, the tem-

perature being kept constant all the

time. The isothermal traversed is

represented on the indicator diagram

by the straight line AB. Next let the

water and vapour expand adiabatically.

The temperature will fall to T - dJ. Fi„. 74.

In reality some aqueous vapour also

condenses, but we neglect that. The adiabatic is BC. Next compress

the working substance isothermally so that exactly 1 gramme condenses.

The state of the substance is now represented in the indicator diagram

by the point D. Finally compress adiabatically so that the temperature

rises once more to T.

AB = V - v. The perpendicular distance between AB and DC is g^T -

Hence the whole work done in the cycle, i.e. the area of the parallelo-

gram, is given by
{y _ v)^ dT (20)

I y

dT
The heat taken in is L. The efficiency of the cycle is -^ ; hence the

work done is Aj
On equating (20) and (21) we get (19) again.

§ 156. The specific heat of saturated vapour.

The specific heat of a saturated vapour (/) is the quantity of heat

necessary to raise the temperature of unit mass 1° C, keeping it

saturated.

A T B
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Consider a mixture of liquid and saturated vapour, the total mass
of the mixture being 1 gramme and the mass of the vapour being
x grammes.

Let the temperature be T and let the latent heat of vaporisation

be L. Then the system is completely defined by the two independent
coordinates x and T. Let y be the specific heat of the liquid.

Let a quantity of heat dq be given to the system. Then

dq= {(I -x)y + xy'}dT +Ldx, dS = ^
~ Z^ + Xy

'dT + ±dz.

Since this is a perfect differential,

y -y _l 9L L ,_ _3J-_L
"^"TaT^T* or y y_

§T
_
f

Everything except y can be easily determined, and hence the latter

can be calculated.

For water y is negative, i.e. if the temperature of aqueous vapour be
raised, heat must be taken from it in order to keep it saturated. For
ether y is positive.

§ 157. Change of temperature produced in a wire by stretching it.

Consider a wire hanging vertically with its upper end fixed and a

pan attached to its lower end for the purpose of holding weights.

Then the state of the wire at any time may be regarded as a function

of two independent variables, F the stretching force and T the absolute

temperature. Let % denote the vertical displacement of the lower end
of the wire.

If T and F suffer small changes, the heat received by the wire is

given by dq^ydT + adf (22)

In this equation y is not the specific heat, but the thermal capacity

of the whole wire.

The work done on the wire when x is increased is F dx. Let U be

the intrinsic energy of the wire and S its entropy. Then

UCC OCT
rZU = dq + F dx = y dJ + a dF + F ;=— dT + F ^— df

oT oF

3«\ ,_ / ~dx\=
(
T+F^) f(T+ („ +F|),F

and «"S =y dT + y ĉ f -

Since these are perfect differentials, we have the following two
relations: ^ ^_^

3F
+
3T~c>T

, 1 3y 1 3a a 3-y 3a a
and TSF

=
T3T-T* °

r
??

=
3T-f
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Eliminating ^ - ^= between the two equations, we obtain

"dx a

T
- .(23)

dx
Since the wire expands on heating, ^— is positive, and hence a is

positive. If the wire is suddenly stretched, the change may be
regarded as an adiabatic one, at least approximately. Putting dq =
in (22), we obtain ,v ; ydT + adF = 0.

Now y, a and df are all positive ; dJ must be negative. Hence, on
stretching the wire, its temperature falls.

A very accurate experimental investigation of this fall in temperature
has been made, and its magnitude has been found to agree with the

formula within the error of observation.

India-rubber contracts when it is heated. Consequently for it a is

negative, and, on its being stretched, its temperature rises.

Equation (23) can also be derived by considering a cycle. For, let

the wire expand isothermally from A to B at temperature T taking in

a quantity of heat dq, let it expand from B to C adiabatically, let it

contract isothermally from C to D at T - dJ giving up heat and finally

let it contract adiabatically from D to A. The efficiency of the cycle

is -=- and dq — adf = a<SK. Hence the work done in the cycle is

dl 7 adTJK

This is equal to the area of

ABCD = KGAB = KJ x BK =

On equating, we obtain

oT

whence

H.P.

KJ^T =

oT

"dx
_

N

adTKJ

a
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§ 158. Effect of temperature on the E.M.F. of a reversible cell.

By a reversible cell is meant one like a storage battery, in which all

the chemical changes are gone through in the reverse order, when the

current runs the other way. Let T be the absolute temperature of the

cell and e the quantity of electricity which has passed through it.

Then, according to the laws of electrolysis, these two quantities com-

pletely define its state. When a quantity e passes through the cell,

let he be the chemical energy liberated and Ae the heat absorbed by
the cell.

The cell is to be the working substance. Suppose that it is used to

drive a motor and that the motor works without friction. Let R be

the total resistance of the circuit and E the E.M.F. of the cell ; then the

rate at which energy is being dissipated in heat in the circuit is Ri2
,

and the rate at which useful work is being done is Ei - Ri2
, i being

the current in the circuit. The ratio of these quantities,

Ri2 Ri

Ei - Ri- E - Ri

approaches zero when i is made very small. If i is very small, all the

energy is thus spent in useful work, and the transformation taking

place in the cell may be regarded as a reversible one. We shall

suppose i to be very small.

When the temperature of the cell is T, let a quantity of electricity e

pass through it. The heat absorbed is then Ae and the work done by
the cell is Ee. Next break the circuit, cool the cell adiabatically to

T - rfT and let its E.M.F. become E - dE. Then make the circuit and
work the motor backwards so as to charge the cell isothermally, letting

a quantity e pass through it. The work done on the cell is in this

case (E-dE)e. Finally, break the circuit and suppose that chemical

changes take place in the cell so that it heats adiabatically again to T.

The efficiency of the cycle is — , the heat taken in is Ae, and hence

the work done is Ae— . But the total work done by the cell in the

cycle is

Ee-(E-dE)e = edE.

Hence Xe-— = edE or A = T^- (24)
T oT

But, when the temperature of the cell remains constant, Ee is equal

to the heat taken in plus the chemical energy liberated, that is,

Ee = Ae + he.

Thus, on substituting for A in equation (24), we obtain the final result

E=h+Tw
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Generally the e.m.f. increases with the temperature ; E is then
greater than h, i.e. heat is absorbed by the cell, and the latter will cool

if no heat is supplied to it.

§ 159. Second definition of entropy.

Suppose that a substance is working in a Carnot cycle between
temperatures Tj and Tn , taking in a quantity of heat ql

at T
1
and

giving out q at T
, q1

and q being measured in dynamical units.

Then the work done in the cycle is ql
-q . Let T be the lowest

temperature available for a sink. Then qn
is heat energy that cannot

be turned into work, or, in other words, it is unavailable energy. Now

a -^1.% ~ T
x

The wholly unavailable energy associated with a given quantity of

heat is thus

:

(1) directly proportional to the lowest absolute temperature
available for a sink and

(2) inversely proportional to the temperature of the body which
the heat is leaving.

We may regard ^1 as a measure of unavailability or factor which
' i

only requires to be multiplied by any assumed auxiliary temperature
T in order to give the quantity of unavailable energy relative to that

temperature.

If from any cause whatever the unavailable energy of a body with

reference to an auxiliary medium of temperature T undergoes any
(positive or negative) increase and if this increase be divided by the

temperature T , the quotient is called the increase of entropy of

the body.
This definition is much more suitable than the former one for

irreversible phenomena. It is easy to see that the two definitions are

identical for the case of a perfect gas and a reversible cycle. Both

definitions define only increase of entropy, and hence involve an

arbitrary constant.

If a system is taken from a state A to a state B by a reversible

transformation,

SB

If the transformation is irreversible,

8b-8*>S|
J

§,l[
Bd
l,

because irreversible changes, for example friction, loss of heat by

diffusion, etc., always involve an increase of unavailable energy. The

summation is to be taken over the different bodies of the system, and S

here denotes the entropy of the whole system.
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§ 160. The second principle of thermodynamics.

In § 134 we gave the statement of the second principle due to

Clausius. Lord Kelvin has stated it in the following manner :—It is

impossible by means of inanimate material agency to derive mechanical

effect from any portion of matter by cooling it below the temperature
of the coldest of the surrounding objects; and Clerk Maxwell has

given it another enunciation, namely :—It is impossible, by the unaided
action of natural processes, to transform any part of the heat of a body
into mechanical work, except by allowing heat to pass from that

body into another at a lower temperature. Perhaps the following

enunciation is the most useful of all :—The entropy of an isolated

system of bodies cannot decrease ; it remains constant in the reversible

processes and increases in the irreversible processes that take place

within the system. As a result of this definition, the second principle

of thermodynamics is sometimes referred to as the principle of the

increase of entropy. It is connected with the doctrine of the dissipa-

tion or degradation of energy.

The second principle of thermodynamics thus states the direction in

which changes in nature are taking place. There is in nature a
quantity which changes always in the same sense in all natural

processes.

If an irreversible change can take place, it will. The reversible

cycles which we have studied are either cases of equilibrium or limiting

cases of irreversible cycles. Irreversible changes, on account of their

complexity, do not lend themselves readily to calculation or illustration.

In the second principle of thermodynamics we have a glimpse of a

very general law, that possibly transcends physics and which is not

yet fully understood. Hence the different ways of stating it.

EXAMPLES.

1. Prove that if T denote absolute temperature, dT the heating effect due
to the flow through the porous plug in Kelvin and Joule's experiment from
pressure p to pressure p+ dp, v the volume of a gramme of the gas, yp , y, the

specific heats at constant pressure and constant volume respectively,

1 3T + ^3T„_ 1

T dvp v - fj.y„ v - fiyp
'

where
fj,

denotes —

.

Hence, assuming the equation pv= RT for the gas, show that

Compare this with the result of the ordinary supposition as to the difference
between the specific heats.
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2. Assuming Van der Waals' equation, show that if v1} v2 are the specific

volumes of a liquid and its vapour in contact at temperature T, the latent

heat of vaporisation is
t,

RTloge^=|.

3. Show that if y, y 1
are the thermal capacities of a stretched wire under

constant tension and at constant length respectively, I the length of the
wire at absolute temperature T under stretching force F and a the coefficient

of linear expansion, then
/?)F\

yi= y + alT^).

4. If F denote the superficial tension of a film of water, experiment has

shown that ^=p= -0'1425 in dynes per cm. per degree Centigrade. Hence

show that about half as much energy must be given to the film in an
isothermal extension to prevent its temperature from sinking as is spent by
external forces in stretching the film.

5. A wire is suspended vertically, the upper end being fixed and the

lower end being stretched by a force F and twisted by a couple L. If x denote

the extension and 6 the angle of twist of the lower end of the wire, show that

dx_dd
3L~3F"
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