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Preface to the Third Edition

The first edition of this text appeared i 1956, and it was 5o well received that
it went through & second printing the very next year. Thyoughoot e next theee
decades it maintined its position as the acknowiedged standard text for the intro-
ductory Classical Mechanics course in graduate kvl physics carsicule through-
out the United Statas, and in many other coangeies arpund the world. Some magor
institutions afso used it for senior level undergraduate Mechanics. Thisty years
fater, in 1980, 2 second edition appearstt which was “a through-going revision of
the first edition” The preface 1o the second edition contains fhe following state-
ent; ] have tried to setain, a5 mach as possible, the advaniages of the first edition
while aking into account the developments of the sulject itself, its position in the
curicnium, and its applications ¢ other fietds” This is the philosophy which has
geticed the prepasation of this third edirion twenty more years jater.

The second editon introduced one additionat chapter on Fertirbation Theory,
and changed the ordering of the chapter on Small Oscillatdons, In additton it added
a significant amount of new material which increased the nurcber of pages by
ahout 68%. This third edition adds wtill one more new chapter on Nontinear Dy-
namics or Chaos, but conpterbalances this by reducing the amoust of material ia
several of the other chapiers, by shortening the space atfocated to sppendices, by
considerably reducing the hikliography, ang by omitting the long }ists of symbols,
Thus the thind edition i compasable in size to the second.

In the chapter ox relarivity we have abandoned the complex Minkowski space
in mvornfmenﬂwsmuda:dreai metric. Two of the authors prefer the complex.

f its pedagagical ares (HG) and becansa it fits in well with
Clifford Algebrs fumnimuas of Physics (CPP), but the desire to prepare students
who can easily move forward into other areas of theory such as fietd fheory and
generil relatvity dosmd d over personal Some moderm: sotatice
such as 1-forms, mapping and the wedge product is introducerd in this chapler.

The chapéer on Chaos is 4 necessary addition because of the current inferast
in nenlinear dynamics which has bague to play & significant role in applications
of classical dynamics. The majority of classical mechanics probleros and apph-
cations in the real world meluds i and stig i for the student
10 have @ grasp of the complexities fawolved, and of the new properties that can
emnerge. It in also important 1o realize the role of fractal dimensionality in chacs,

New scctions have been added and otheis combined of eliminated heve and
there thrcughout the bogk, with the omissions (o a great extent motivared by the
desireniof o extend the overall length beyand that of (be second edition, A section
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was added en the Exler end Lagrange exact sofutions to the three hody problem.
1 several plaves phase space plots and Lissajous Bgures were appendead to -
e solvtions. The damped driven pendulum was discuesed as an example that
explains the workings of Josephson junctions. The symplectis approach was clar-
ifted by writing out sowe of the matices. The harmenic oscillator was weated
with anisotropy, and also in polar coordinstes. The last chapter on continna aad
fields was Formulated in the modern sotation introduced in the relativity chap-
ter. The significances of the special unitiy group in two dimensions S15(2) acd
ke special orthogonal group in three dimensicns SCH{3} were presented in mone
up-tomdate notation, and an appendix was added on groups and algebras. Special
1abes were introdtced 10 clarify propesties m‘elhpses, vectors, vector fislds and
-forms, i and the ips between e spacetine
and symplectic approaches.

Severat of the new features and approaches in this thind edition bad been men-
Honed as pmssihilities in the preface 1o the second edition, such as properties of
group theory, sensors in non-Enclidear spuces, and “new mathematics” of theoret-
ical physics stich #5 mamfulds ’msreﬁcram to “Oné area amisted that deserves
special attenti and fated stability questions™ now
constimges the subject matter of our new Chapter 11 "Classical Cheos™ We de-
bated whether to place this new chapter after Permutbarton theory whers it fits
more logicatly, or bfore Perturbation theoey where it s more Hkely to be covered
in class, and we chose the latter, The referces whn seviewerd out rannserlpt were
eventy divided on this question,

The mathemetical level of the present edition is about the same a5 that of te
first two editdons. Some of the mathematical physics, such a3 the discussiofis
of henmitean and unitery matrices, was omifted because it periaing much more
o guantem mechanics than it does to classical mechanics, and lede used nota-
tigms like dyadics were curtaied. Space demmd mpower law potenuais Cayley-
Rlein p Roath's p dura, time ind theoty, sid
mzsuessmdgymnsorwas reduced. }.nsomecasearefemwewasmm!emthe
second edition for more details. The probiems at e end of the chapters wese
divided inw “derivations” and “exercises,” and some new ones were added.

The suthors are especially indebted o Michast A, Unseren and Forrast M,
Hoffman of the Ok Ridge National laboratory for their 1993 compilation of
errata in the second edition that they made available ort the Hernet. i is hoped
that 80t too many new emors have slipped into this present revision. We wish ta
thank the stadents who used this text in courses with us, and made & number of
useful suggestions that wery incorporated into the manuseript. Professars Thomas
Sayettn and the late Mike Schuene mude helpful comments on the Chaos chapter,
and Professors Joseph Johnson and Jumes Knight helped fo clarify our ideas
cn Lis Alpebras. The follewing professocs reviewed the saewsoript and made
many heipfol suggestions for improvements: Yoram Alhasald, Yale University;
Dave Blita, University of Toledo; Johs Cirsber, San Joss State; Thomas Haudker,
niversity of Tennessee; Dandel Hong, Lehigh University: Kara Xester, Idabo
State University: Carelyn. Lee; Yannick Meurice, University of Iowa; Dantef
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Marlow, Princston Liniversity; Tulian Noble, University of Virginia: Muh d
Numan, Indiana Univessity of Panngyivaria; Steve Ruden, University of Califer-
nia, Brvine; Fack Serntizs, Portland Srare University; Tammy Ann Smeckae-Hane,
Usiversity of Califoraia, Irvine, Damiel Stump, Michigar State University; Rohert
Wald, University of Chicago: Doug Wells, Idaho State University.

It has indeed been an honor for two of us {CFP and JES) to collaborate 48
oo-aithors of this thid edition of suck & classic book fifty years afler s first ep-
pearmcs. We have acmired this text since we first studied Classical Mechanics
frons the firat edition in ovr graduate student days (CEP in 1953 and 5L in 1960),
and each of ns used the firse and second editions ir owr teaching throughout the
years, in g5 to be ded for kaving written and Jater an-
hanced such B ontstanding contribution fo the classic Physics Hteratare.

Above all we register owr appreciation and acknolwedgement in the words of
Psalm 15,1

O otpaver ujyoivea Sokav Geol

Flushing, New York HRBERT GOLDSTEN
Cofumbia, Soutk Caroling CHARLES P. POOLE, Jk.
Cofumbia, Seuth Caroling Foun L., SAFKe

July, 2008



CHAPTER

Survey of the
Elementary Principles

The motion of material bedies formed the suliject of some of the earliest wesearch
pursued by the pionsers of physics. From their efforts there has evelved a vast
field known as apalytical mechanics or dynamics, ot simply, mechanics. In the
present century the term “classical mechanics™ has comne into Wide use i Jenote.
this beanch of physics in contradistinction to the newer physical theories, espe-
cially quanmm mechanics. We shall folfow this usage, mremreting the name i
include the type of mechanics arising ont of the specizl theory of refathvity. iy
the purpise of this book to develop the stmacture of classical mechanics and 1o
outling seme of its apphications of present-day interest in pime physics. Basic to
any presentation of mechenics are a nember of fupdamental physical concepts,
sich 2s space, time, simultaneity, mass, and force. For the most part, however,
these soncepts will ot ba analyred cotically bere: mther, they will be assurned ag
undefined terms whose meanings are familiar 1o the reader.

MECHANICS OF A PARTICLE

T.et # be the madius vector of a particle from some given ongin and ¥ 8 vectar
vetetiy:
dr
LSRN | B
i (14
The lirnear mamention p of the pasticle s defined an the groduct of the paticle
mioss and iis velocity:

Pp— 12

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, ©.p., gravitationa! or eleckodynanic; the vec-
kor suen of these forves exeried on the particls is the wtad force F. The mechanics
of the particle is contained in Newson's second law of porion, which states that
there exist frames of reference in which e motion of the pasticle is Jegoribed by
the differential equation

"dp N
l?—Er—ssp. (13

1



Chapter 1 Survey of the Blementary Principles
or
d
F Z(m). (1d)
In most instances, the mass of the particle 1s constant and Eq. (1.4) reduces to
dv
F=at - =ma, )
tET" G
where 2 is the vector acoeterition of the purticle defined by

&
art’
The equation of motion is thes o differentiad equation of second order, asswming
¥ does not depend on higher-order derjvatives.

A reference frame in which Bq. (1.3) is valid is called an inervial or Galilean
sysiem. Bven within classical mechanics the notion of ap inertial system is some-
iing 0F an idealization. In practice, however, it is usually feasible to set up 2 oo~
ordinate systesm that comes a5 ¢lose (o the desired properties as may be required.
For mamy purposes. a refesence frame fixed in Earth (the “laboratory system™) is
a sufficient appreximation to 4n inertial sysiem, while for soroe astronorical pur-
poses it may be fecessary to constract an inertial system by reference to distant
galayies.

Many of the important fusions of mechanics tan be exp d it the form
of conservation theorams, which indicate under what conditions various mechan-
feat guaneities are constant in tme. Equaton (1.3} directly furnishes the first of
s, the

] (16)

Canservation Theorem for the Linear Momentuns of a Particle: ) the total foree,
F. is zero, ther = 0 and the linear momertion, p, is conyersed.

The engular momentun: of the particle about poirs O, dencted by £, is defined
a

L=rxp, (L7}

where T is the radits vector from & L the particle. Notice that the order of the
factors is important. We now define the moment of force or torgue about O as

N=rxk (1B

The equation anslogoes to (1.3) for N is obiained by forming the cross product of
T with £q_ (1.4):

rrFeN=rx S-E(mv)‘ [£25]
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Equation (1.9) car s written in a different form by using the vecton identity:
d(rxmv)fvxmv-g-rx d(m\‘) i
ar - dr ' )

where the first term on the right obvicusfy vanishes. In consequence of this iden-
tity, Bg. (1.9} takes the form

d I T
o e g N 1.3
dt(r X v} & (Li1)
Not that both N and 1. depend om the point 0, about which the moinens are
taken.
As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Comservarion Theorem for the Angulor Momentum of a Farticle: If the total
torque, N, 74 e thea Lo o= 0, and the axgaler momensim L (s conserved.

Next consider the work done by the external force F upon the particle in geing
from point § to point 2. By definition, this work is

2
wu:[ F-ds (1.42)
]

For constant mazs (ps will e assumed from now on unless otherwise spectfied),
the integral ln Be. (112} reduces to

dv m [d g
fF-dsmmfI~vdzm?fI(u Ydt,

Wip= %(v;z ey (L13)

anid thevefore

“The scatar quantity mu?/2 is catied the kinetic energy of the particle and is de-
noted by 7', so that the work dome is equal 10 the change v the kinetic anergy:

Wip =Ty~ 1. (L.14)

If the force field is such that the work Wi is the same for any physically
possible path hetween poings | and 2, then the fores (and the system) is said to be
conservative, Ax altertative descrption of & conservative system is obtained by
imapining the particls befng taken from poin: | to point 2 by one possibls path
and then being retermed to point 1 hy another path. The independence of W) on
ihe parricuiar path implics thal the work done around such 4 closed circait is 2ern,
i

fp.ds;c, (115}
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Physically it is clear that & system cannat be conservative if friction or other dis-
sipation forces are present, because F + ds due (o fiction is always positive and
the integral caanot vanish.

By a well-knowa theqtern of vector analysiz, 2 necessary and sufficient condi-
tion that the work, W2, be independent of the physical parh wken by the particle
b that ¥ be the gradient of some scalar fmotion of position:

Fa= -V, (1,16

where Vs called the. potential, or potensial energy. The existence of V can be
inferced imtutrvely by 2 simple srgoment. 3 Wyo is independent of the path of
integration between the end polnts 1 and 2. it sheald be possible to express Wy
a8 the change in & guandty that depends culy opem the positions of the end points.
This quantity may be designated by — V., so that for & differentiat path length wo.
have the refation

Fods = ~dV

or
v
P

s’

which is equivalent ta Eq. (116}, Note that in By, (1.16) we can add to V auy
4uantity constzni in space, without affecting the resalts. Hence the zers level of ¥
iy arbitrary.

For a conservative system, the work done by the foress is

Wig = V) = Vo aamn
Combining Eq, ¢1.17) with Bq. (1.14), we have the resait
B+ Vi=T4 1, (L18)
which siates ln syrbols the

Energy Conservation Thearem for o Farsicle: If the forces acting on 2 particie
arg conservative, then the total erevgy of the particle, T 4 V, I catiserved.

The Jorce applied to a particle may i some cioumstmees be given by the
gradient of a scalar function diat depands explicitly on both the position. of the
particle and the time. However, the work done on the particle when it wavels 2
distance de,

av
Fodsm - ds,
L3 P £

is then no longer ihe wial change in —V during the displacement, since ¥ also
ehanges explicitly with time as the particle moves, Hence, the work done as the
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particle goes from point 1 to point 2 is no longer the diffevence in the functien ¥
berwean those points. While a total energy T+ ¥ may stifl be defined, it is not
conserved during the course of the particle’s motion.

E2 W MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we roust distinguish between the exrermef forcer aciing on the particles dus to
soarees oulside the system. and bueraal forces on, say, some particte § due to all
other particles in the systen. Thus, the equation of motien (Newton's second Jaw)
for the ith particle is written as

P, (119
7

wivers T stands for wn extemal foroe, and ¥, s the internal fores on the ith
particle dug 1o tie jth paticle (F,,, naturally, i zero), We shail assume tha the
¥, like the F*) obey Newton's third law of motion in its original form: that the
forces two particles exert on cach other ave equal and opposite. This assumption
{whick docs not hold for el types of forces) is sometimes referred to as the weak
law of action and reaction

Summed over all particles, Eq. (1.19) takes the form

dz
m}:m‘r, =3 F T, .20
; ; of
iy

The firsl stz on the right is simply the total external force B, while the second
<erm vanishes, since the law of action and reaction states thar each pair F,; + ¥,
W zeno. To redoce the left-hand side, we define a vector B as the average of the
radii vectors of the particies, weighted in proportion 1o their mass:

R %’iﬂ - 2:«;-"4’_"". (L2

The vector R defines a pot Known a8 the cenfer of mass, or more Joosely a the
center of gravity, of the system (of. Fig. 1.1}, With this definiden, ¢1.20) reduces
©

4R

Mo = PR R (122
:

which states thar the center of mass moves as if e total externat force were
actig on the entive mass of the system Concentrated at the conter of mass, Purely
intersal forces, if the chey Newton's third law, therefore have no effect on the
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FIGURE LI The center of raes of 2 system of particles.

smation of Dy of mass_ An of-quated ple s the motion of an exploding
shell—the center of mass of the fragments waveling as if the shell were sl na
single piece {neglecting sir resistance). The same principle is involved in jet and
rockel propulsion. Tn order thet the motion of the center of mass he upaffecied,
the gjection of the exhaust gases st high velocity must be counterbalanced by the
forward motion of the vekicle at 2 slower veloeity.
By Eg. £1.2£) the total bnear womentut of the system,
dr; aRr

P=3 m = M, [iE)
is the 1wtal mass of the system times the velocity of the center of mass. Conae-
quently. the equation of mmotion for the center of s, (1.23) com be restated o8
the

Conseration Theorem for the Linear Momentum of 8 System of Particles: If the
rotal external force is zero, the total linear momentan is conserved.

We obtain the total angular momentum of the systom by forming the @oss
product r; % Py and summing over £, If thls cperation is performad in Bq. (119,
Crere results, with thie wid of the identity, B (1.16),

N 4 s
Tinxt e T omxpimb=n B Dnox B (24
The last fesm on she right in {1.24) can be considered a sum of the pairs af the
form

xFy e xFy=En-r)xf,, (125



1.2 Mechanics of & Systern of Partictes 7

FIGURE 1T The vector r;; hersveen the 18 and jth particles.

using the equality of action and raction But iy ~ r, i identical with the vector
1.3 fom, j fo (of Fig. 1.2), so that the right-hand side of Hq. (1.25) can be watien
as

ty x Fp.

If the internal forces betwesn two particles, in addition to being cqual and oppo-
site, also b aluny e e pining the particles—a condition known &s the serong
{aw of aicrion and reaction—then all of these cross products vanish. The sum over
pairs is 2ero under this assusption and Bg, {1.24} may be writien i the fonmn

4L

LN 1.24;
T (128
The time derivative of the total angular aomentum is thus equal o the moment
of the external forcs about the given point. Corresponding 1o Eg, (1.26) 35 the

Conservation Theorem for Total Angular Momenton: L is constany in jine if the
applied {exiernal} torque is rere.

(It is perhaps wunhwhﬂc to emphastzs that this is a vecror theorem; ie, L,
will be conserved if N- is Zero, aven afN(" and N"ﬂ are not zero. }

Note that the conservation of Huear tomentn in lhc abgence of epplied forces
assumes that the weak law of action and reaction i valid for the internal forces.
‘The conservation of Ge total anpufar momentum of the system in the absence of
applied torques soquizes the validity of the strong law of actioe and reaction—that
the internal forces in addition be central. Many of the familiar physical firees,
such as that of gravity, satisfy the strong form of the law. Bot if is possible to
find forces for which action and reaction are equal even though the forces ars not
central {see bzlow). ln a system involving moving charges, the forces befween
the charges predicted by the Biot-Savart faw mey indeed violate both forms of
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the uc!ion and reaction lsw. ™ Hguations (1.23) and (1,26}, and their corresponding

servation th . ar¢ not applicable in such cases, at least in the form given
hcm Ususlty it is thep possibie to find some gem:mhmuon of Por L that is
conserved. Thus, in an isolated system of moving cbargcs it Is the sum uf the
mechanical angolar momentam and the el ie “angular " af
the ficid that s conserved.

Equation (1.23) states that the total linear mowaentum of the system s the same
a8 if the emiire Mass were couctairaied al the ceater of mass and moviag with it.
The sbslogoas theorem for spgular momemtnm 1s more complicated. With the
ongin O s reference point, the tole] angeiar momentom of the syster i

Lmzr,xp,.
v

Let R be the radius vectar from O 1o the center of wass, and let £/ be the radiug
vector from the center of Mass to the 13h particle. Thea we have {cf. Fig. 1.3)

n=¥+R (127
and
v, = b
where
dR
V=
ar

Center
of mass

FIGURE 1.3 The vectors uvolved in the shuft of ref: potm for the angudar momen-
.,

“H o clratges ure moving oy with parallel velocity vectols that ar aot pompendicnas fo e
Tine jodtdng tho chariges, the the not mintuul forces ar equal amt appostts but do et be elng the
vector betwean, dig chatpss. Comsider, further, 1o charges moving (insERmEouly) 56 25 10 “c20s4
he T 3.2, onc charge woving dieecty t the othes, which in hurm 35 moving st tight angies w she first
Then the second charge sxerts » aonvanishang magncsic foree o1 the firat, without expenencag A1y
Dusgnetic reactian fotcs 4 thit mstast.



1.2 Mechanics of a System of Particles 9

is the vefocity of the center of mass relative 10 O, gad

dr!
V=
di
15 the velocity of the ith particle relative to the center of mass of the system. Hsing
Bag. (1.27}, the toal angalar momenturn. 1akes on the form

L Ekxm}v&Zme, (Zm:’)xv+Rx-——me’

The Jast rwo terms in this expression vasish, for both comain the factor y my)

which, it wil] be recogized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is thevefore a null
vestor, Rewriting the rmaining terms, the total angular momentum about O is

L=RxMv+ 3 1 up. {128
;

In words, Bg. {1.28) says that the total sngulyr momentum about & point O is
the saglar momennim of motion concentrated at the center of mass, phu the
aagolar momenttn of motion about the center of mass. The form of Fq. (1.28)
cernphiasizes that jn generat L depends on the origin €, through the vector R, Only
xf dee centee of mass s at rest with respect to O will the angular momentum be
of the point of refk 1n this case, the Grstierm in {1.28) vanishes,
and B always reduces to Gie angslar momentum taken ahout the center of mass.
Finally, let us consider the coergy equation. As in the case of a single particle,
we calculate the work done by all forces in moving the system fioen an sitdad
e ion 1, to a Anal Hon 2t

2z 2 2
wuﬂzﬁ F,.dslmzf ?,‘"-ds,+zj Fj-ds. (.29
i [ g
#

Again, the equations of motion can bs used to reduce the ntegrals ko

2 2 2 1
Efj F:-dsmzf m;if.w,d{uzfci(émm?).
~ ~ J

Hence, the work done can 56l be wiitten as the difference of the final and migal
kinetic ensrgies:

Wig=T1 -1,
whese T, the total kinetic energy of the system. is

= % omk (1.303
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Making use of the wansformations 1o certer-of-mass coordinares, given in Eq.
(1.27}, we may also wiite T as

P
Tmzz:m,cv+ﬂ;-<v+ﬂ)

I H da
= EZM’62+§’EM‘1¥+V' a(?mﬁ:):

and by the ing alrcady employed in calcalating the anpul . the
last tenn vanishes, leaving

sl 2
= gy +§$mev, a.3n

The kineric energy, like the angular momentom, tis alo consists of two parts:
the kinttc ety obinined if all the mass were concentated al the center of mass,
plus the kipetic energy of motion about the center of mass.

Consider now the right-hand side of Eg. (1.26). In the special case that the
external forces are derivable in terms of the gradient of a potential, the first term
can be writen ag

E_:flzl“f‘*-ds =~}fov.v.-ds,=42mi

where {he subscripi § on the del operator mdicates tas the derivatives are with
respect 1o the components of v, If the itternal forces are also consesvative, then
the wstual forces betwoen the ith and jth particles, Fy, and ', can be obiained
from o potentsal function V,; . T satisfy the strong law of action and reaction. ¥,
can be & function only of the distance between the particies:

2
H

Yy = Vyll e -0l (13
The two forces are then automatically equal and opposite,
Fp= V¥, = +7,V, = ~Fop. 13y
and }ie along the line joining the twe particles.

YVplin -, D=ty -1 f (L34
whers § is some scalar function, X V,; were alvo a function of the difference of
same other pair of vectors associated with the particles, such as theiv velocities
o (e st inta the domain of modern physics) their intrinsic “spin” angular me-

raenta, then the forces woukd yill be equal and opposite, bat would not necessarily
He along the direction betveen the particies
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When the forces are all conservative, the second term i Hg. £1.29) can be
rewritlen 4§ a sum over pairy of particles, the terms for sach pair being of the
form

2
wfl Vi 8 5V, Wy - g

1f the diffarence veotor ©. - ry ks denoted by 1,;, and 1 ¥y stands for the gradizat
with fespect to r, then

LA A AR
and
a5, —ds, =dr, —dr, =dry;,

5o Bhat the. lerm for the §; pair has the form

- [, an,.

The tota] work arising from internst forces then redoces to

i * 1 :
—EE f Vuvlj'drq’”"‘iz Vz;l- {135
o JE iy H
e IEd]

The factor % appears in By, {1.35) becawss In summing over both 7 and § each
member of 2 given patr °s meladed twice, first in the ¢ swomation and then in the
1 surmmation.

From these considerations, it i clear that 5f the externat and mieraal forces are
both derivable from potentials il is possible to define a toral potertial energy, V,
of the sysiem,

veY ez Tk, (136)
‘ o
such that the total enerzy T + ¥ is conserved, the analog of the congervation
theorem {1.18] for a single particle.

The second term on the right in Bq. {136} will be calted the internal potential
energy of the system. Iy general, i need not be zero and, mops important, it may
vary &s the system changes with time. Orly for the partionlar olass of yysemn
known 85 righd Dodies will the internal polential always be constant Forgtally,
& tigh body can be defined as 2 system of particles in which the distances r,,
ate fised and cannot vary with time. Jn such case, the veciors dy;; can only be
perpendieular to the corresponding ¥y, and sherefore o tha Iy, Therefore, m 2
tigid body the internal forces da na work, mud the internal potentiul raust remain
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constant, Since the total potential bs in any case unceriain ro within an addidve
constant, an unvarying interpal potential can be completely disregarded in dis-
cussing the motton of the system.

CONSERAINTS

From the previous sections one might cbitain the impressfon that all problems in
mechanics have been reduced to solving the set of differettial equations (1.19%

m s F - 3 F,.
E

One wmerely substitstes the vadous forces acting npon the particles of the system,
turna the mathermatical crank, and grinds out the snswers! Even from 2 purely
physical standpoint, however, this view is eversimplified For axample, it may be
necessary ¥ take mnto acconnd the constrainny that limit the motion of the vystem
We have already met one type 0f system invobving consteaia, navely dgid bod-
1&9, whma the constrainis on the motions of the particles keep the distances r,;

d. Osher ples of ined systems can easily be frnished. The
beads of an abacus are constratned to one-dimensional motion by the supporting
wires. (ax mok within 2 iner are ined by the walls of the ves-

sei to move oaly invide the container. A particle placed on the surface of a solid
sphere is sobject to the constraint that it can move only on the surface or in the
region extenior te the sphere.

Consaints may be clarsified In varous ways, and we shail e the Eo}iowmg
systene I the ditions of int an be {as
the coordinstes of the pariicles {and possibly the lee) }mvmg the form

firprr, . ) =0, (137

then the ints axe said to be f ic. Peritaps the simplest example of
nolenomic constraints is the rigid body, where the constraints are expressed by
equations of e form

(=) — ufl =0,

A particle constrained to move along any corve or on a given surface is another
obyiouy example of a holonowmic constraint, vith the equations defining the curve
or surface acting as the equations of A consiraint.

Clonstiaints aul expressible it this fashien are ceiled nonholonomic, The walls
of 3 gas container constitate 2 nonholonomic constraint. The constrant invelved
in the example of 2 panticle placed on the surface of a sphere is also nogholo-
aoemic, for it can be expressed as an ineguality

r2—xz?'zﬂ
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{where i is he radivs of the sphere}, which is not in the form of (1.37). Thus, in
a gravitationa} ficld a particle pleced on the top of the sphere will slide dows the
surface part of the way bt will eventaaly Gl off.

Constraints are further classified sccording to whether the equations of con-
straint contuin the time us an explicit vasisbie {rheonomaus} or are not exphestiy
dependuent on time {scleronomons). A bead stiding om 2 rigid curved wire fined
i space s chviously subjeet to & scleronomous constraint; If the wive Is moving
i aome ibed fashion, the 15 rh Note that if e wire
moves, sy, 85 a peaction, to the head’s motion, then the time depeadence of the
consTaint enters in the equation of the constraint ondy through the coordmates
of the ciived wire (which are now purt of the system conrdinates). The overal
constraint is then sclernomous,

Copstraints iniroduce two types of difficuities in the solution of mechanical
prabiems. First, the conrdinates r, are oo Jonger all independent, since they are
connected by the tons of int; hence the equations of motion {1.19)
are not all independent, Second, the fomes of consraint, e.g., the force that the
wine exerts an the bead (or the wall on the gas particle), is not furnished o pri-
ori. They are among the urknewns of the problem and must be obtained from the
sofution we seek, Indeed, imposing constraints on the system 15 Simply another
method of statng thut there wre forees present In the groblem that cannot be spec-
Hed diveetly it are known mibier in terms of their cffect on the maotion of the
RyStem.

Tn the case of holonomic constrains, the lirst difficuly ks soived by the intro-
duction of generolized coondinazes. So far we have been thinking mmplicitly i
terms of Cartesian coordinates. A system of ¥ particles. froe from constraints,
has !N independent cuozd.mdﬁes ar degeees of freedom. T there exist holonomic

Iy din & iong in the form (1.37), then we may use these
equations to eliminate & of the 3N coordinates, and we are left with 3N ~ E inde-
pendent coordinates, and the system is said to have 3N — k degrees of freedom,
This eltmination of the dependent coordinutes can be expresved in ancther way,
by the introduction of pew, 3N — &, indspendent variabiles qp, g2, ... gan-p in
terms of which the old coordinates £y, £2, .., rx are expressed by equations of
the form

£ =TG5 G2 FIN i £}
{138}

[l S CITE Y I

the ints in them implicitly. These are rangformediion
frore the set of (17} vatizbles ta the (gy) set, or aliematively Bgs. (1.38) can bc con-
sidered as parametric representations of the {rs} variubles, Tt s slways assumed
that we can aiso transiomm back from the {57} o the {r)) se1, te., that Bgs. (138}
combined with the & equations of constraint cun be inverted to obtain any g, as &
functiom of the () varisble and tme.
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sually the generalized coordinates, g, wnbike the Cavtasian coordiaates, will
ot divide into convenient groups of three that can be associated tagether 1o faon
veetors. Thos, i the case of & particle constrained to move on the surface of @
sphese, the two angles :&pmumg pmmon o the sphere, suy kattude and longi-
tade, bvious possible O, 0 e example of adouble
pendulom moving in 4 plane (two particles connected by an inextensible hight
Tod and saspended By u similar sod fastenad o one of the partices), satisfactory
seneralived coordinates are the two angles 8, &, (Cf. Fig, 1.4.) Gesteralized co-
ordinates, in the sense of cosrdinates ather than Caresiun, are nften aseful in
systems withaumt canstraints. Thus, in the problem of 4 paricle moving in an ex-
ternal central force field (¥ = V(r)), thers is no constrainl knvelved, but it is
clearly more convenient to use sphericat puiar cooniinates than Canesian oourd:-
nslas Do mz bowever, think of : i fry terns of

1 position di . Al sorts of guantities mey he lnp d 10 serve

a5 generalized co Thus, th Jited in & Fourker expansion of r) may
be used as generslized coordinates, or we may find # comvenient o employ quan
rities with the dimensions of energy or angular momentam,

1f the constratne is nenholoaomic, the equations expressing the censtraint can-
not be used o el the d d di . An oft-quoted example of
& nonhalonemic constraint is that of an ohiers rolling on & rough surface with-
out slipping. The coordinates wred 1o desceibe the system will generaily involve
angular il o specify 1he o fon of the body, pius a set of ennrdis
nutes describing te jocation of the point of contact on the serface, The constraint
of “rofling” connects these two sets of coordinumes: they are not independent, 4
changs in e position of the point of contact nevitably means 1 change in its
orfentation. Yer we cannot reduce the number of coordinates, for the “roiling”
condition is not expressibie as % equation between the coordinates, in the manner
of (.37}, Rather, it is a comditias on the velacitics (i e, the point of contact is
statiowary), 3 differential condition that can he given in an integrated form oaly
wfter the probiem Is sobved.

FIGURE 1.4 Double peadulam.
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@
FIGURE 1.5 Venicat disk rollmg o a horizontal plane,

A shinple case will lustrate the point. Consider & disk rofling on the horizoatal
xy plme constraned (o ™ove 5o that the plane of the disk bs always vertical
The coordinates nsed 1w describe the moton might be the x. y courdinates of the
eenter of the disk, an angle of totetion ¢ sbout the axis of the disk, and an angle
@ between the axis of the disk and say, the x axis (cf. Fig 1.3}, As a result of the
:ors;axza.’ml the velocity of the center of the dsk, v, hay o megnitude propontional
10,

v g,

whete o 1s the rudins of the disk, and its girection is perpendicular to the axis of
The disk:

i =ysind

Yo 2088,

Coinbining these conditions, we have two diffe il jons of

dx ~avinfdg =0,

(1.39)
dy +acosfdg =0,

Neither of Bgs. {1,39) can be integrated without in fact solving the problem; i,
we cannot find an ifegrating factor f(x, 3, 8, ¢} tiat will s either of the equa-
tions inte perfect differentials {of Derfvation 4).* Hence, the constraints cannot
be reduced to ihe form of Bq. (1.37) and are thexefore nonholonamic, Physically
we ¢an see that there can be o direct functional relation belwesn ¢ and the other
conedinates x. y, and 6 by woting that at any point on s path the disk can be

“In prinziple, ais tiegeating Eactor att aioways be fourd fot 5 fitet.ooder diferearial equauot of con-
Stealas 1n systerns dnvolvig orly 1o coondinates aind stch oonsteaines e therefore holoomic, A
Fuomtiae example s the two-dhensionad moton of a cirle folling of &b lnckned Wane.
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made to toll arcund in & circie tangent to the path and of arbiwary radius, At the
end of the process, x, 3, and 4 have beee retrned to their onigina values, but ¢
hag changed by an amoint depending on tre radius of the drcle.

Nomintegrable differensial canstrains of the form of Eos. (1.39) are of course
not the only type of nerholenemic constraints, The constraint conditions may
involve higher-order derivatives, or ney appear in the form of inegualities, as we
bave ssen.

Partly because the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints ave always amenabie (o 2 formal sefution. Sur hers {s
1o genetal way to attack nonkal ic les, True, if the int is nonin-
tegiable, the differcntial equations of construint can be intmduced inta the prob-
jem alomg with the differential equations of motion, apd the dependent equations
eliminated. i effect; by the method of Lagrange multiphiers.

W shall retarn 1o this method at & later poine, However, the tore victous cases
of nonbelopomic congtraint must be tackled individually, and consequently inthe
developmet of the mors formal uspects of clussical mechanics, it is almost ipvagi-
ably assumed that aoy constraint, if present, is holopomic, This restriction does
not greally limit the applicsbility of the theory, despite the fact that many of the
canstaint encoantered in everyday kife are nonbolononuc. The reason is tiat the
entire concept of constraints impased in the system trough the redium of wires
or surfuces or walls is particularly appropriate only in macroscopic o large-scale
protlems. But today physicists are more interested 10 atomic and nucear prob-
iems, On this scale al ohjects, hoth in and out of the system, consist alike of
medecales, aionts, or smaler particles, exerting definite forces, wad the notios of
copstraint becomes artificial und rarely appears. Conswaints are then wed enly
s mathematical idedlizations to the actoal physical case or as classical approxi-
malions o 4 quantam-mechanical propenty, .g., rigid body rotations for “spin.”
Such zonstraints are always holonomic and ft smoothly into the framework of the
theory.

To surmount the second difeulty, namety, that the forees of consteaint are
untknown a priad, we should Hke to so fonmulate the mechanics that the forees
of consiraint disappear. We need then deal only with the known spplied forces. A
hing as fo the procedure 10 be Followed is provided by the fact that in a pardenfar
system with constrainis ie  arigid body, the wark done by internal forces (which
are here the forees of constraint) vanishes. We shull follow up (his clae in the
ensuing sections and peneralize the ideqs contained in it

T4 W D'ALEMBERTS PRINCIPLE AND EAGRANGES EQUATIONS

A viraad (infinitesineal displacenens of a system refers to a change in the con-
figuration of the system as the esult of ay wrhitery infinitesingat change of the
coordinates 8, consistent with the forcer and constraints inposed on tha system
at the given instant ©. The displacement is codled virual to distinguish it from an
aetnl displ of the system occutdng in o Sme interval &t during which
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the forces und construing mey be changing. Suppose the systeu is in equitibriom,
i.2., the total force on each particle vanishes, F, = €. Then clearly the dot prodecy
¥, - &x,, which is the virual work of the force ¥, in the displacement 8, also
vamishes. The sam of these vanishing products over all particles must Kkewise be
Z&rD:

YR -8 =0 .40
i

As yet nathing has been said that has any new physical content, Decotupose F,
into the spplied force, B, and the foree of constraint, ),

=T g (141}
5o Ehar Ba. (1403 hecormes
SR g+ SR A =0 (147
T 7

We now festrict ottseives 1o systents for which the met virtugl work of the
forces of consiraint iy zera. We have seen that this condition holds wve for rigid
bodies and it is valid for 2 large namber of cther constraints. Thug, if a particle is
constraimed 1o move o a seface, the frete of constraimt iy perpendicalar o the
surface, while the vira dsplacerment nust be taygem 10 1, and kencs the vinead
work, vanishes, This is no longer true if sliding fricton forces are present, and
we mast exclude such systems from oor fm‘mnlauoﬁ The restriction Is not ug-
Guly hampering, since the friction is ic ph on. On
the other hand, the forces of rolling friction do noL Vwistu thes vondition, since the
forees acton a ;:oam thatzs momentasily at rest and can do no work n ap inBnites-
imal displ with the relling int. Nate that if 4 particle is
canstraried 1o a seefuce that is iself moving I tme, the force of constralnt is
instaptzneously perpondicular io the surface and the work during a virtual dis-
placement £s sl zero even thouglh the waork during an sensal displacement in the
time dt does not necessarily vanish.

W therefore hiave as the condition for cquilibcium of 2 system that the virmat
work of the applied forces vanishes;

TR =0 (1.43)

Eguation £1.43) ks often called the principle of virtael work. Note that the coef-
ficients of 3¢ can no 1us:gcr be set oqual fo zoro; i, in general l“"’ A O, singe
the 4r, are not pl but are Ly the frets. Tne
arder to equate the coefficients 1o zera, we must tansform the principle into a
form involving the virtaa] displacements of the g, , which are independent. Eque-
tion {143} satisfies ooy needs in that # dees not contain the £, bt it deaks only
with statics; we want a condition isvolving the general mation of the system.
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To obtain such a principle, we use » device first shought of by James Bemoull
and developed by D" Alembert. The equation of motion,

Foow gy,
cap be writlen as
~pe=0,

which states that the particles in the system wilt be in equilibrivm under a force
equal 1o the actual force plus 2 “reversed effoctive force™ ;. Insiead of {1.48),
we can immediately write

AR -y dr = 0 (1.44)

ond, miking the same resoluhion o applied torces and forces of constaint, there
resalty

TP g+ Tk B 0
i ¢

We ngain restrict oursclves to sysicms for which the virtuat work of the forces of
constraint vanishes and therefore obiain

SE e gy br =0, (1.45)

which i5 often called 2'Alembert's principle. We have achieved our aimm, in that
the forces of constraint no fonger appear. and the superseript ‘¥ ean now
dropped without ambiguity. It is still not in a nsefil form © fumnish equations
nfmonon for e system. We must now tm.sform the priaciple iito an expression
Iving virtuat displ of the i i which are ther in-
dopendent of aach nther(!’ar i ines), so that the coeffich of the
Ag, can he set separately squal w0 zer,
The trensiation fromx, o g langaage sarty from the transformation equations
41.38),

o= T0g g0 dn, 2} (145"

{ & i and is carvied! out by means of the usual

“chain m]es of the calaalus of parifal diffe ion, Thus, v is exp d in
terms of the g by the formula

¥y = L = f.l:‘.'k *. dr, {1.46)
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Similurly, the arbitrary vittual displacement 5T, can be connected with the. virtsat
displacerments &y, by

an
A= S A 14N
zj‘: B
Note that oo varkaton of time, 8z, is frvolved here, since a vignsel displacement
iy definiti iders only disph of the i (Only then i the
virnsal displ dcular o the farce of int if the it itself

is changing in time.}
In terms of the generalized coordinates. the virmial work of the ¥, becomes

&,
BBy = YO,
2 1 - dr; E g
=308, (14%)
i
where the (2; are ealled the components of the genenlized force, defined as
g, =3 % o (149
f da,

Note that just as the ¢'s need not have the dimensions of Jenpth, sa the $sdo
10t necessarily have the dimensions of force, but O dq, must always have the
dimennions of work. Forexample, 0, might be 3 torque ¥, and dg, a differential
anygle df,, which mukes N, d, & differential of work.

We mr now in the other nther term mvolved m Bg. ([.45) which mey be
writien as

E;&, “BF = Zm;?, B,
3
Expressing 51, by (1.47), this becomes
w8
B fy s gy,
e
Congider now the celation

. o d . o
Tt 32 - E[a s -

Lood fan
) L F ('é;;)] . {3.30)

i the last term of Bq. (1.50) we can interchange the differeriation with respect
to ¢ and g, for, in anulogy ta (146}
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d far ah #Frn o, | Pn
= fs= G+ —.
4t \ 3a; aq, a3y, By dg,9r
i
aq, )
by Hiq. (1 46), Further, we also see from By, £1.46) tha
LA (151
¥y, Ay

Substitation of thess changes in {1.5¢) laads to the msnl that
Lo 4 v v,
=Emm %‘ —:E[d‘ (m‘\’. 'r)q')) g

and the second torm on the left-hand side of Bg. £1.45) can be expanded into

slélé pie]-5 0 o)

Idenritying T, %m,vf with the system kinetic #pergy T, D" Alembert’s principle

{ef. Eq. (1.45)) becomes
T a7 -
(g)-il-omm e

Note that in a system of Cartesian coordinates the pardal derivative of T with
respect 1o g, vanishes. Thus, speaking in the language of differensiut peomeny,
this tenn arises from the curvature of the 2 q,- In polar i

e, itis in the partial derivalive of T with respect to an angle coordnae that the
centripetal acceleration lemm appears.

Thus far, ao restriction has dean made on the nanie of the constraints oter
than that they be workless in & virraal displecement. The vanisbles g, can be sy
seLof coordinates used te describe the motion of the system. 3, however, the con-
straints are holopomic, the:a it s poss:bl: 5] hnd sets ofmdcpendenl mdmms

g; thatconlain the inth
(1.38). Any viraal displ 44, 16 then independent of Sgz, and therefore the
only way for {1.32) hold is for khe individual coefficients (o vanish:
d (HT ) ar
[ ) LI (L.53)
2,/ By, !

‘There are n such equations in all,
When the forces ane decivable from & sealar potential fonetdon ¥V,

F, o= -V, ¥
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Then the generalized {orees can be written as
dr; Eh',
=5 el v
A

which is exactly the same expression for the pardal devivative of a function
—V{Fy, ¥z, ., Ty, 2} with respect w40

&y
= 1.54)
&= ¢
Equations (1.53) can then de rewritten as
d 781 ar—
_(_')_Mgg‘ (155
A A

The equations of motion in the form (1.55} are notnecessanty restricted 1o conser:
vative systems, only if V is not an explicil function of time is the systemt conmorva-
ve {of. p. 43, As here defined, ihe potential V doss not depend on the generalized
velocities, Bence, we can include o tevm i ¥ in the parstal derivacive with retpect
w gy

d [T - ¥} MB{T—-V)MQ

at % gy '
Or, defining o new function, the Lagrangion L, as

LT =V, {1.56}
the Egs. {£.53) become
d /3l BL
=0 157
(3‘71) 27 43

expressions referted w as “Lagrange’s equations.”

MNote that for a particular set of equations of motion thers is no wiigue chotee
of Lagramgien such that Frps (1 573 kead tn the squations of motion in the given
generabized coordinates, Thus, in Derivations § and 13 it s shown that if L(g, g, 1)
is an approximate Lagrangium and Fig, 13 i sy differentiable function of the
generalized coordinates and time, then

. dF
L'tg,g.8 = Lig. 4.0 + — {1.57)

is & Lagrangian alsa :Esuumg in the sume equations of motion, 1t i also often
possibile to find af L ians beside toge d by this prescrip-
tion {see Exercise 205 While Eg. (1,56} &s always a suitable way 10 construct 4
Lagmngian for a conservative systemn, I does not provide the only Lagiangian
suitahle for tie ghveyn system.
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1.5 W VELOCITY-DEPENDENT POTENTIALS AND

THE DSSIPATION FUNCTION

Lagrange's equations can be put in the form (1.57) even if there b no potential
function, V, inthe ustal providing ihe Lized forces are obained fom
afunction g, 4,} by the prescrption

av 4 fau
=i () asn

In such case, Egs. (1.57) still follow from Bqs. (1.53) with the Lagrangian given
by

Laa T -4 {159

Hers &7 muy be caHed a “genesalized potential,” or *velocity-dependent poten-
Gal” The possibility of using such & “potential™ is not academic; it applies to one
very importait type of force ficdd, namely. the electromayuetic forcas on moving
charges. Considening its fmy adi tan on this subject ks well worth-
white,

Comsider an electric charge, ¢, of mass m moving at a velocity, v, in an othep-
wise charge-free region containing both an electric feld. B. and a magnetic field.
B, which may depend upon time and position. The churge experiences 4 foros,
cadled the Lorentz foree, given by

Fuz g[E+ (v x B). (1.60)
Both B{7, x. v, 2} and Blf, x. 3, 7} are continuous functions of time and posinon

Gerivable from a scalar potential £{¢, x, 3, z) and 2 vector potential A, ¥, ¥, 2}
by

L
I i K
E 3 W {1.618)
and
B=V x4 {1698

The farce on the charge can be derived fom the following velocity-depandent
poential eastgy

Yegp—gA-v, {162}
sothe Lagrangian, L = T~ U, s

Lo dme® — gf 4 gA -y, {163
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Considering just the x-component of Lagrenge’s cguations gives

84 44 34 & dA,
mizq(u,—;}+l{y—:+v¢—g) q(af-r- on ) (1.64}

‘The mtal ime derivative of A, is related to the particle time derivative thotgh

LT % +veVA,
de
an FA. &4y Ay
v e - 1L.6%
a TiEr TR TRy (165
Equasion (1.616) gives
A 34 34, A
Wy o, 22 L LE
B n’(af 3?) yé(a.r Sz)
Combining tese expressions ghves the equation of motion in the x-direction
mE = g (B + (¥ x Bl (1.68)
Cnae by parison. Fgs. £1.66) and {1.60) are idemtioal,

showing that the 'Lcm-.m.z force equation is derivable from Bgs. (5613 and (162},
Note that if not all the forces acting o the sysws: are desivable from a poten-
tial, then Lagrange's equations can atways be written i the form

4 (3 3L -0

EEAEN AT
whete L contalns the potential of the conservative forces gs before, and (, rep-
resents the forces not arising from 2 potentiel. Such a simation often oecurs when

frictional forces are present. Bt frequently happens that the frictionat force fs pro-
portiozial to the veloeity of the particle, so that its x-component has the form

Fry kot
Prictans) foroes of this type may be denved in terms of a function F, known as
Rayleigh’s dissipation function, ind defined 2y
i
= Ez(k,ufxmyu:ﬁ,nzn;). .67
¢
whers The summation is over the particles of the system. Frorm this definition it is

cheay that

.

* Buy
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oF, syrsbolically,
Fpw —VF. (1.68)

‘We can also give 4 physical interpretation to the dissipatton fupetion. The werk
done by the system agains? frickion is

@y oKy odr e —Fp vdt = (ﬁ:,u§ +hyt - kz»:l) s

Hence. 27 is the rate of coergy dissipation due to friction. The component of te
generalized force resulting from the force of friction is then given by

vy dr;

=Y, Mo Y B

Gi=2F gy " g
=-Tur- T wasn,

By

3F
wo— (169}
Ay
An example 15 Stokes” law, whereby a sphere of radius 2 moving at a speed
4, 1n a reedium of viscomty 5 experiences the frictional drag force ¥y = Gungau.
The Lagrange equations with dissipation become

d {BL aL &
e | e g e e mf- o, (279}
de\dg, ) a4, 8

so that two scalar funetions, £ and ¥, must be specified 1o obiain the equations

of motion,

1.6 M SIMPLE APPLECATIONS OF THE LAGRANGIAN FORMULATEON

The previous sections sfiow that for systems where we can define a Lagrangian,
ie., holonomic systems with applied forces derivable from an ordinary or gen-
eratized potential and workless congimainia, we have 4 very convendent way of
setting up the equations of motion. We were led to the Lagrangian formulation
by the desire o chiminate the forces of constraint fTom the equations of motion,
and in achieving fhis goal we have obtaioed many other benefits. [n sering vp the
original form of the equations of motion, Bgs. {1.19), it is necessary to work with
meany vecror forces and accelerations. With the Lagrangiss method we only deal
with two seelor functions, T and V, which greatly simaplifies the problom.
A sired Tonting p can now be estably for atf o
of mechanics to which e 1 ian formulation s applicsble. We have onfy t
write T and V in geaeralized cogrdinates, form L from them, and substitote in
{3.57) 1o obtain the squations of motian. The needed wansformation of 7' and V'
from Cartesian coordinates to generalized coordinates is obtsined by applying the
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transformarion equations {1.38) and {1.45). Thus, T is given in general by

2
T:z}:—m,y z}:—m‘( B +%:i) .

Tt is elenr that on carrying out the fon, the expression for T in lized
coordinates will have the form
1
T = My Mg+ M6 1G5 178
o+ E, it g ;E.e 14454 (171}

where Mo, M, b j are definite functions of the T°s and ¢ and hence of the s
and £, In fact, a comparison shows that

1 Ja
o= 5 3 (3) .
re ar‘
Zm, "R (!

and

drp O
Mo Y mi e
T

“Thus, the kinetic energy of a system can abways be writien a8 the vam of three
t jons of the tized velocits

T=Tu+ 1+ 11, (L7

where T is independent of the geacralized velocities, Ty is Iuear in the velocites,
and T; is quadzatic in the velocities. If the transformation equations do not contain
the time explicitly, as sy occur when the constraints are independent of time
(seleronomens), then onty the last term in Eq. (! 71} xs nuavazushmg, and T is
olways a b dratic form in the

Lt us now consider axmpls examples of this procedure:

. Single particle ie space

{a) Cartesian coordinates

{b) Plate polar coondinates

Atwond’s machine

. Time-dependent constraini—bead sliding oo rotating wire

g

. (3} Morion of one particle: using Cartesian coordinates. The generalized
forces needed in Bq. (1.33) axe obviousty Fr, Fy. and F. Then
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P gm0 3747,

at BT _ar
ax Gy Bz
ar : ar . ar i
i m ik, - =my, Eve s
3 Fri 3T
end the equakions of motion e
i d a
Lmiy=Fy. L= Py, Ae{md) = Fa. 174
a,!(mx) Fy dr(m)’) F dr(mz) By (.34

We: arz thies led back 1o the anginal Newton's equations of motios,

(b) Marion of one particle: asing plane polar coordinates. Here we must ex-
press T in terms of # and @, The equations of transformation, j,¢., Eqs, (1.38), in
1his case are simply

x = oosf

¥ = g,
By analegy to (1.46), e velocities are given by

i eosd — rf sing,

s Fuing 5 ricosd,
The kinetic energy T = -%m(}rz + 52 shen veduces formally to
= jm{P + ]. RES

Analternative derivalion of By, {1.75} is obtained by recogpizing that the plane
polar components of the velacity are # along r, and r along the direction per-
pendicular (o 7. denoted by the umit vector . Hence, the square of the velocity
expressed i polar conrdinates is sinply #° + (rd)%. With the ald of the sxpression

dr w Fdr 4 1B de + Rz

for the differential posidon vector, d¥, in a)hndncal unordmalas where F and
# arc unit vectors in the £ and -ci y, the p of the

generalized furce cun be ublained from the dnﬁmxion Eq {1,493,

O =F EwFebmp,
Ep

ar 2
Qo=Fog =Furb=rk,
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FIGURE 1.6 Derivateve of r with respect w8

since the derivative of © with ®spect to § 5, by the definitan of a dervative, a
vegtor in the direction of 8 (ef. Fig. 1.6). There are twe gencralized coordinaies,
and tiereduie we Lagrange cquatlons. The derivatives occurring in (he ¢ equation

ane
= mrd?, EI = mF, 4 (g-}:) = mF,
ar aF

ar

and the equation itself i
mF el = L

the serend 18R being e centripetal acosleration tern. For the # equation, we
Have the derivatives

T ; N .
W % s, (w9} = e amesd,

0 that the equation becomes
dy . 5 .
& mr 8 e 4 2ot e By,

Note that the et side of the eqnation is just the time dedvative of the angular
momentur, and the right side is exactly the appied torgue, 5o that we have simply
rederived the torgue equation (1.26), where L = mr?f and N = r Fy.

2. Aswooed i machme_-{Sca Fig. L7} an example of 4 conservative sysem
with hok int {the pulley is susumed frictionfess and
sassiess). Clearly there s oniy one independent coordinate x, the position of
the ather weight being determined by the constraint that the Tenpth of the rope
between them is 1. The potential encegy i

s e Mg Magll = %),
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FIGURE 17 Awwuod's machine.

while the kinetic energy is
T o My M 2,
Combining the two, the Lagrengian has the form
L+ Vom § (M) + MY + Migx + Maall - x).
There & anly one equation of motion, involvieg the derivatives
g-i- ={My ~ A} g,
% = (M B) A,
so that we have

My b Mgy = (MY - M2 g,

My — M2

which is the familiar resuic obtained by mose elementary means, This trivial prob-
Tem empbasizes that the forces of constaint—here the tension in the rope-~
appear nowhese in the Lagrangian formulation. By the same token, neither can
the tension in the rope be found directly by the Lagrangiun method,

3. Abead (or ring} shding on & uniformly rotating wire in a force-free space.
The wire is straigu, and i3 totated upiformly abowl somse fixed axis perpendicular
to the wire. This example has been chosen s & simple iHustoutdon of a constraint
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being time dependent, with the rolation axis aleng 7 and the wire in the ry plate.
The fansformation eguations explicity contain the thne,

x = ro0s ot {e = anguiar velocity of rotation)

¥=rsinwt. {r == distance along wire from rotation 2xis)
White we could then find 7' (here the sage 45 £) by the same procedurt used ©
obtain (1713 ig is simpler 10 take over {1.75) direcdy, expressing the constraint.
by the relation & = a;

T %m (r'z 4 rzwz) .

Note that T is rot 2 hotnogeneous guadratic fanction of the generatized velocitics,
since there is now an additional serr not involving £, The equation of motion is
then

it = mret =0

Foworet,

which 15 the familiar simple harmonic oscillater equation with a chaage of sign.
The solstion r = ¢/ shows that the bead moves exponentially outward becatse
of the centripetal acceleration. Again, the zethod caunot farmsh the force of con-
sienint that keeps the bead on the wire. Hquation {1.26) with the aagular momen-
tum, L = mrlwe® . provides the force F = N/v, which profuces the consiraint
foree, F x mra e, acting perpendicular 1 the wite and the axis of rotation.

DERIVATIONS

1. Shew that for 2 single partscle with constant mass the equation of motion Lmples the
following differential equation fot the kinetic energy:

LA
df
while if the mass varics wirh dme the cocresponding equation 34

demTy

@ =EE

2. Prove tha the magnimde R of the position vector for the center of mess from an
arbitrary egigin is given by the sguation

!
MR s W T el 3 e
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3. Suppost a system of twe particles is known 10 obey the equations of meton, Eqgs.
(1.2%) and (1.26). From the equuions of (e metion of the individual patticles shovw
that the internat Fostes between pasticles sutisly hoth the wask #pd the smong Laws
of action und reaction The arguiment may be generalized to & systsm with arbitvary
number of parieles, ths proving the converse of the srguiments Jeading ro Egs. (3.27)
and (3.286},

“The equations of consiramt for the rofling disk, Bgs. {1.39), ae speciad cases of gon
erdl hmeny diffeceanal syuations of eonstraint of the forms

rs

P
Zsi(-rx‘ e Ep i =0,
=t

A constrmt condition of this cype is holononno aly if an imtegrating funchion
FOr), .- mad oan be foond that tuess it o an exact difforentil, Clearly the func.
tion muost be sach that

3ty _ )
Bx; ax;
for alt j # j. Show it no such misgrabing fuctor can be found for either of Egs,
11.39)
3. Two wheels of radius o are mouted on the ends of o commun axle of kgt b such

thet the wheels rotate i The whol b tels without slipping on
a phane, Show that thers we two Bonholonvmic cqestions of constraint,

cosfdx + sinddy =0
sinfdz ~ cosfdv m $a (dip -+ d¢'},
{where &, ¢, and 4" have meanings similar to those i the problem of a singlc vertical
ik, andt (x, y5 ov0 the coardinates of u point on the axle rudway betwesn the twe
whaels) undt sne hotononde espation of constraint,
a
Ba=f 5(@-¢'}-

where € is 2 constant.

"

A garlicie moves i the x¥ plane onder the consiranl that is velosity vector is el
ways directed tpwards 3 polal i e 2 sxis whose sbscrssa is some given fanction of
time f (7). Show that for £ (7} differsatiabte, but otherwise arb.viary, the constoaint is
norhelgnomie,

bl

Show thar Lageange’s equations in the forr of Eqs, {1.53) can 4150 be wyitton a8

These awe sometines known as the Melsen foem of the Lagrange squations,

3

If L isaLagrangian for a System of n degrees of freedum satisfying Lagrange’s aqus-
tiens, show by direct substiturion that
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e

16.

aFgy .. qn i}

dr
o saiisfies Lagrange's equations where £ is any arbitracy, it differentiable, fone.
tion of its arguments.

Vsl

The elecuomagneshc fied is invarant under = gauge transformation of the scular and
vestor porential gved by

A = A4 Ve G,
LBy
L il

where W 15 arbavary (but differentipbic). What effect dous this guuge transformation
ieve en the Lagrangian of 2 particle moving in the elecwromagnetic fiekd? &5 the motion
affected?

Let gg.....qn be u st of independent generabized covsdinass Tor o system of n
degress of freadom, with a Lagrangian Lig, §, 2. Suppase we tmansform 19 another
st of mdependent coonditates s, .., 34 by means of transformarion equations

G = @l dnth [ IRRPE Y
{Such & rassformation is catled 2 pown? trargformerion. Show that if the Lagrangian

funetdon is expresned a3 4 fenchon of 5, £, and ¢ through the equations of rassfo-
o, then L satisfies Laprange’s equations with respedt i the & coondinates:

Ak
Z 31') LI
I

Tn ether words, the form of Lagrange’s equations is isvariant under a pomt transfor
mation.

EXERCISES

1

Commider 3 uniform thin disk that roks sithout sppmg on. a herizontal plae. A hor
zontal force is applied fo the center of the drsk aud in 4 directioe pasallel (o the pline
of the disk,

() Denve Lagrange's squations sad find the generslized forve.

(h) Eriscuss the metionf the force is nol applied parallel (o the plams of the disk.

“The escape velocity of a paricle on Barth is the mitimons veloaty tequired s Earth’s
surace in onder thut the partinie ta escape from Barth's gravitational field. Neglecting
s eeaistence of the atnosphere, the system is conservative. From the conservation
thevree fur pulenbal plus Kiactic tadigy show that the sscape velocity for Earhy,
giaring the presence of the Moon, is 11.2 krads.

Rockets are propelied by the momentam wactior of fe exhaust gases expedled from
the i, Since Hese guses arwe From the renction of the fuels cerried in the racket, the
erying of the rocket is not constar, bat decrenses @ the feel is expeaded. Show that e
sqeation of motion for a recket projetted vertically wpward io 2 unifornt gravitational
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14,

15,

field, neglecting atmospheric fricuon, 55

witere i ks the nass of the rocket and o isthe velocity of the escaping gases relanve o
i rocket. Integrate this equation to obtain v 33 a fanction of m, dssrming a consant
time cate of s of mass, Show, for 2 rochel stacting istially from rest, with »' squal
0 2.1 mis and a mass doss pet second squal to 1,/60th of the ntisl mass, that in order
to rorch the excape wolecity Hie ratio of te walght of the fuel 1o the weiglt of the
campty reckes must be almost 3001
Two points of mess a are joined by a nigid weightiess vod of fength 1, the center of
which s constrained lo move on & crecle of mdius o, Bxpress the ket snesgy m
geperahend coordimates.
A pojtdt purtick moves in space under the influence of a force derivable from & pener
witzed powential of the form
Ufe, ¥) = Vi or o - L
where ¢ is the radus vector frore o Fxed peint, L 1s the angalar mometturn aboug that
peint, and & is & fixed vestor in space,
(at Fnd the components of the force on the partcle m both Earesian and sphetical
prdar conrdmares, on the basis of Bg.11.58),
thy Show that the 18 the toed oposi systeme ere tedated (o each other
a5 m g (1.39).
{ch Obrase the squatans of mebon in sphencal polar cordingtes.

A pagticle moves in ¢ plane wnder the infuence of & Force, aating towied « center of
feron, Whose [maghitce 1

1
F= 1-
;i‘ (
whete r 5 the distance of the pasticle to the center of fors. Find the genealized
potentiad thar will result in such » foree, and from that the Lagrangtan foc the motion

w5 plane. (The expression for F sepresents the fores between lwo charges in Weber's
alectrodyrmmies.

Amucleus, originally 2 rest, decuys radicactively by emiiug i elecon, of momen-
mm 173 MeVie, snd eg sight angles to te direction of the eiccon 8 newnne wath
momentum .00 MeVie, (The MeV, millon clecason vk, 74 8 unit of snergy vsed
i medstn: physies, oqual 30 160 » 1073 & Comespondingly, MeVh 3% & unit of
iimear momentu equal to 534 X 1679 kgamfe) T what deection does the u-
cletss secoil 7 What is ts momentam 1 MeV/e? If the muss of the residual nuclers
52,00 % 13 kg what is its Kinetic cncrgy, in electron vols!

A Lugrangian for a pasticular physical sysiem can be wiitien o8
LM coa i Kp 2 o
2% {u? + 2089 4 057 > (rzx +2bxr 45t

where a, b, and ¢ are wrbitrary constants bt sbiect 10 The condition tat b7 —ae 0.



Exercises 33

0.

23,

M,

Wihat sre the squetons of mation? Bxarmne particolarly fhe tw eases @ = 0 = ©
and b= 0, ¢ = —a_ What is the physical syssem described by the dbove Lagrangien?
Show that the tsuat Lagrangun (or this system as defined by Bq. (1.57") is related
b &7 by 2 point transformatics {cf. Dethation HY), What is the sigmificance of the
corditon on the value of B2 — aot

Oltain the Lagrange squations of motion tor a spherical pendubun, ie., o mass paiat
susponded by & rigid weightiess rod.

A particle of mags m mmoves in one dimension suck that i has the Lagrangan

1.4
Lo "‘i;-- S+ VG — ),

where ¥ js sonae di Famction of . Find the eq matian for x(7} and
describe the physical natere of the systers on the basts of this equatton

T mass pairtts of tss my and ney are conpected by 3 strng prssing Guough e
hole i a smaoth table so that my sty on the teble surface amd iy hangs swepended,
Assaming m3 moves only in a vertical Hne, whet e the generalizad coordinstes far
the system? Wilte the Lagrange equations for the sysem and, if possible, dzscuss
the physicsl sigaificance any of them might have, Redace the problen to & single
secong-order differential squation and cbiain a fitst integral of the equation, Whar is
its physical significance? {Censider the makion only uatid ) reaches the hole.)
Obtam the Lageangran and equations of metion for the dovble penduinmm #lustratec in
Fig 1.4 where the leagths of the pendita sre £y and /s with comasponding masses my
and my.

Obtata the equatian of motion fm— a pamdc faEimg westically inder the influsnce of
gravity when friction foroes ion function +ku? are present.
Tnlegrate the eqiation o ohtain the velocty as a function of ume and show fhat the
maxienem possible velocity for  fall from rest is v == mg /&,

A spstug of zost longl Ly (no wosion) is connooted 1o 8 support at one end and has
a mass M axtached at the ather. Negiect the mass of the spring, the dbvenston of the
mass M, and asaime Bat the Motlon 18 covfined 19 & vertical piane. Also, assume {at
the spring only streiches without hendig bt it con swing wm the plane.

(a) Ustnp the angular displacement of the mass from G vertical and the Jength that
the string hag steetched from its sast Jlength (Rangiag with the mass m), find La-
grange’s squations.

{b) Solve these equenons for small stetching dnd angular displocements.

{1 Solve the eguaiions in part (3) io the maxt onder in both strewhing and angular
displicemnent, This patt is mmenable to hand caloulations, Using some reasomabie
assmptions about the spring constan, the mass, and the rest lengtl, fiscuss the
otion. Is @ resonance likely undey the sssymptions stated i the problem?

i {For spalytic cowputer progranis) Consider the spring to have & total mass
m <& M. Negtecting the bending of the spting, st p Lagrange's equations
cormestly 1o xSt order in 1 and the angular and linear displacements.

{e} (For numencal compater anatyss.) Make sets of reasonable asannpaens of the
conelants i pirt () and make a single plot of the two coordinmies as functions of
ke,
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Variational Principles and
Lagrange’s Equations

2.1 W HAMIETON'S PRENCIPLE

34

The devivation of Lagrange’s equations presented in Chapter 1 started from &
consideration of the instantanecus state of the systern and small virual displsce-
ments sbout the instaptanecus state, ie., from 4 “differential principle” such as
D’ Adesbert’s principle. I is slso possible to obtain | agrange's squations from a
prineiple that considers the entire motion of the system between times £ and £,
and small virtuad variations of this motion from the actual motion. A principle of
vhiz nature is Kpown us an “inegra) principle ™

Belore presenting the integral prineiple, the meaning atached to the phuase
“motien of the system bstween times F and 5" must first be stated m more pre-
cige Jspguege The instantaneous configuration of a systein is describad by the
valpes of the x genexalized coordinmes gy, . . ., g, and coriesponds to a particy-
ot pont in & Cartesian hyperspace where the g's form the n coordinate axes. This
r-dimenstonat space is therefore knawn as configuration space. As Hine goes on,
the state of the systern changes and he sysiea point moves ik configuraiion space
tercing out @ curve, deseribed as “the path of motion of the yystem.” The “motion
of the system,” s used above, then refers ta the motdon of the system point along
this path ip configuration space, Time can be considered formally a5 2 parame-
tev of the carve; to each point on the path here is associated one or more values
of the time. Note that configuration space has no pecessary coanection with the
physical thiee-dimensional space, just as the gencralized coordingtes are not nec-
essarify position coordinates. The path of motion in cenfiguretion space has 1o
sesembignce to the puth in space of any actas} parricle; each point on the path
represents the enrire systern configuration a some given insiant of lime.

The integeal Hamilton's principle describes the motion of hose mechanical
systems for which all forces (except the forces of constraing) are derivable from 2
genaralized scalar potential that may be a function of the conrdinates, velasities,
and time. Soch systems will be denoted as monogenic. Whers the potential is an
exphivit fanction of posidon 5t anly, then & enic systet is also
vonservative (e, Section 1.2).

Formonogenic systems, Hamilien’s principle can be stated s

The mation of the system from fime o o time 1y ix such that the Hre
integral {called the action ar fhe action iptegral)
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i
Iz[ Ldt, {213
n

where [« T = V, hay @ stationary value for the actual path of the
mation.

“That is, out of all possible paths by which the systetn point could travel from,
its position at fime 1; to its poskion ak time 1, it will actuslly travel slong that
path for which the valne of the integeal (2,13 is staionary. BY the term “station-
ary vajue” for & line integral, we mean thal the integral abung the given path has
fic same valne to withis frst-order infinicsimals a5 that along ai} neighboring
paths (e, those that differ from it by infinuesimal displacements). (CF, Fig. 2.1}
‘The nelion of 2 stationary value for 4 line integral thus comesponds in ordipary
function theory 1o the vanishing of the Brat denvative.

We can summarize Hamiiton's principle by sayimg that the mation is such that
the variation of the line integral 7 for fixed &3 and & i5 zet0!

L)
armsf LGt oo @ndte e G )1 26, @2
dl

Where the ¢ystem constraints are holonenyc, Hamilton's principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange's equations, Bas, (1.57).
Fhuss. i can be shown that Hamilion's principle follows ditectly front Lagrangs's
equations, knstead, however, we shall prove the converse, namely, that Lagrangs’s
eguations follow from Hamilon's principle, as being the more important theorem,
That Bamilton's principle is a sufficient condition for dexiving the eqoations of
motion enables bs (o construct the mechanics of monogenic systems from Hamil-
ton"s principle 45 the basic postolate rather than Newion's laws of motios. Seck
# formulation has advantages, e g , since the integral 7 it cdrvioasly invasiant 1o
the system of generalized cocrdinates used 10 expross L, thhe equations of mation
wust always have the Lagrangian form no matter how the generalized coordinates

FEGORE 2.1 Path of the sysiem paimt i configuration space.
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ar Mote i e i in terms of o variational prin-
iple 13 fhe roule that js generally followed when we try to describe appsrently
Aodriechanical systems in the mathermatical chothes of classical mechanics, as in
he theory of fields,

SOME TECHMIQUES DF THE CALCULLS OF VARIATIONS

Befors demonstrating that Lagrange’s cauations do follow from (2.2), we must
first examnine the methods of the caloulus of vasiations, for a chief problem of this
wafouins is to fnd the curve for which some given line imtagral har a stationary
vajue.

Consider first the problem in an essentiafly one-dimensional form: We have &
fumetion f{y. ¥, x) defined on a path ¥y = ¥(z} between two values x3 end 13,
where ¥ is the detivative of y with respect 0 x. We wish 1o find 3 particular puh
¥{x) svich that the lne integral / of the function f between x) and 2z,

.

Fu
2

J=/ S 3 xhdx, @3
i

has a stationary value relative to paths differing infinitesimatly from the conect
function y(x}. The variable ¥ here plays the role of the parameter ¢, and we ol
sider only such varied paths for which p(nt) = y1, y(x2} = . (Cf, Fig. 2.2}
Note that Fig, 2.2 does ae/ represent configuration space. In the one-dimensional
configuration space, both the corract and varied paths are the segment of the
straight fine connecting y1 and ¥1; the paths differ only in e fctional wis-
Hon between v and x. The problem is one-dimensional, v is a function of ¥ 7ot &
coordinate,

’ .25}

N

x

FIGURE %2 Varied paths of the function of yix} in the one-dimensionsd extremuin
probiem,
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We put the problem in 4 form that ensbles us 1o vse the famitiar appamtus of
the differential calcalus for finding the stationary points of & fundtion. Sice J
trst have 4 stationary value for the corvest path refative to ey neighboring swdh,
the variation must be zero relative 1o some particelar set of neighboring paths
Jabeied by an infinitesia) parameter ¢, Snch a ser of paths might be denoted by
¥(x, e}, with y(x, 0} representing the comect path, For example, if we select any
fanction 7(x) that vanishes at x = xy and x = x3, then a possible set of vared
paths i5 given by

w{x, &) = v, 00 4 an(x). 24}

Por sirapHeity, it is assumed that both the correct path p(x) and the anxilbisry
function 7(x} are well-behaved functions—continnous and nonsinguiar batween
x; and xp, with continuous first and second derivatives in the same interval, For
any such parametdc fanily of curves, J in fig. (2.3) is also 2 function of o

o= [ o s, & @5
&t

and the condition for obraining & stationary pobat is the familiar ot that

df
(:‘r‘:)vm ={ 26

By the usual methods of differentiating under the integral sign, we find that

4l fmgafdy A ey
af L [rfas A 29
da fx. (By Fulrr) el @n

Consider the sevond of thes lntepraly,

/ﬁ L VY g
.

Ea T, Hia

4

Integrating by pans, the inegral becomes
a5 2y Kz %7 Ay
f & &y dx 3 3y _.f = (?ﬁ)f‘:".ix o
2 o dx \B1) u

By oxae 3y o
The conditions on all the varied curves are that they pass through the pownts
{x1, 31} (%2, 1), and hence the partial derfvative of y with respect Lo a1 xy and
s st vanish, Tharefore, the frst term of (2.8) vanishes and Bg. (2.7) redoces to

Y[ Luya,
de Sy, \By dx8pjae

t

‘The condition for 4 stationary value, Fg. (2.6}, 18 therefore equivelent to the equa-
Hon
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2 CaF d AN [ By n
i (5-%5) (?)" - i

Now, the pastial desivative of 3 with respect to ¢ acourring in Eg, (29} is 2
fanchion of x that is asbittary except for contingity and end point conditions. For
exammple, for the particular parsmetric family of varied paths given by Fa. (2.4),
it is the arbitrary function y(x). We can therefore apply to Eq (2.9) the so-calied
“fendamental lemma” of the ealenlus of varistions, which says if

*1
f Mxin(x)dx =8 {230
x4

for alf arbitrary fonctiops 7{x) continuous through the second derivative, then
FF(x} raust identically vaaish in the interval {1y, x3). While 2 formal mathemat-
feal proof of the jemsia can be found in texts on the calouhus of variations, the
validity of the lemma is easily seen imitively. We can imagine constructing a
function 3 that is posiive i the wnmediate vicity of any chosen poust in the
interval and zero everywhere else. Equation (2.10) can then held only if M (x)
vanishes at that {arbitrasly} chosen point which shows M must be zeto twough-
out e interval, From Eq. {2.9) and the findementa} lemma, 1t therefore follows
that J can bave s stationary value only if

8r d fary
& (Hj)mo' 218
The differentinl quantity,
a
{l) do = oy, @1
3o Jy
represents the infink 3 dap of the varied path from the comest path 1(x)
atthepoint x and thus popds 10 the virtual disp} E in Chap-
@y 1 thence the notation 4y}, Simiarly, the infinitesimal variation of J about the
correct path i be designated
(d—',) do m 7. {2.13)
da )y
“The assertion that J is stationary for the correct path can thus be written
I F8F 4 BF
BF = _— - dydx — 0.
s. (ay dx aﬁ) e

requifng that y(x) satisfy the differental equation {2.11). The 3-notation, intro-
duced theough Egs. (2.12F and {2.13), may be used as & convenient shorthand
for treating the variation of intagrals, remembering siways that it stands for the
manipulation of paraneiric families of varied paths such as Bg, (2.4).
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Some simple examples of the application of Eg. (2.11) (which cleady
resembles a Lagrange equation} mey now he considercd:

1. Shortest dirtance between twe poinis in a plane. A element of length in s
plane ia

ds = \}drz +dy?

and the total length of any curve going berween points 3 and 2 3¢

[—f ds-mj;‘ \/l+( ):!x

The condition that the corve be the shortest path is that / be 2 minimum. This is
an examyle of the extremun: problem as expressed by Bq. {2.3), with

Fafteg

Substitatng in (2.11) with

-
B STt
we have
d ¥ .
FV\ArR
ar

=g,

TR
where ¢ 5 constant. Thig solution can be valid only if
j=a,
where a is 3 constand related to ¢ by

<
EE] .
[

But this is clearly the equation of 2 straight fine,

y=ar b,
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wheze b is another constant of integration. Strictly speaking, the styaight line hes

wlybemprweélobemmemmpmﬁ,hﬂfur&upmblmmsomﬂyﬂm
of integration, a and b, are inadt by the condifi

maztbeampasstﬁmughmtwomdpom. (xy. »3, Cez. ).

In & sindlar fashion we can cbéain the shortest distance between two points
on 2 yphere, by setting up the arc tength on the swiice of the sphee i teoms of
the angle coordinates of position on the sphere In genaral, curves that give the
shortes Sistance hetwesn two points on & given surface are catled tie geadesics
of the sueface,

2. Minimum surface of revolurion. Suppase we form a susfece of revelution
by taking some ciirve passing between two fixed end points (xy, yi) and {zz, y2)
dedlming the xy plane, and vevolving itabont the v axis (of. Fig. 2.3a). The problem
then is to find that curve for which the surfacs area 1a a stinimum. The ares of a
stifp of the sucface is 22x d5 = Lorxo/1 T 32 dx, and the tolal erea i

2
fo Tt ds,
1

‘The extremunm of this integral is again giver by {2.11) where

Femayflt s

nd
Mo, ¥ w
[ S T

Bauation (2.11) becomes in this case

ey

l'x!,J’,

/» S

FIGURE 230 Moo surfaoe of revoludon. MNete far tas Sgare is Srawn For yp and
¥ having the same sign relative to the roation axis. This is nod assemed in the genend
solation.
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whére a is some constant of integration clearly stosfler than the mindmum vales
of x. Squaring the above squation and factoring terms, we have

PP gty =t
or sofving.

dy a
dx Xt —a

“The: general solution of this differcptial equation, in light of the nature of a, 35

d.
J‘“ﬂf o +bwamcmh§+b

b
X 7= @ cosh e,
a

which ig the equation of a catenary. Again the two constants of integtation, @ and
b, are derermined in principle by the requirements that the corve pass throngh the
tave given end petats, ss shown in Fig. 2.3b.

Curves satisfying the preceding equation all scale as x/a and y/o with ane
independent parameter &/a. This suggests thut when the solutions sre exemined
in detail they turm owt to be a great deel more complicated than these ¢onsidera-

FIGURE 2.3b  Generad catesazy soRiton for sinimum sarface of revolution.
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tions suggest, For some pates of end points, unique constants of integration 4 and
b can he foupd. But for other end pojnts, it s possible to draw two different cate-
nury curves through the end points, while for additonal ¢ases no possible valoes
can be found for @ and &, Further, recall that Eq. (2.3 1) represents & condition
for tinding curves y{x) continuous through the second derivative that render the
fswegral stationary. The catenary sohebions therefore do not always represent min-
inam values, bat may tepresent “inffection pointy” where e Tength of the curve
is stationary but not miniomm,

For cortain combinations of end points (an example is xy and xy both posi-
tive and both much smalier than y; ~ v}, the absolute minimwm in the surface
of revolution is provided {cf. Exercise 8) by a curve composed of straight Yne
sepments—~rom the first end point papatiel 1o the x sxis until the p axis is reached,
then dong the ¥ axis ensit the point (2, y2) and then out in & sraight line 1 te
second end point comresponding 10 the area (¢ + 7). This curve sesults whet
@ = { forcing either x = 0 o7 ¥ = constant. Since this curve hes discontinuaus
fiest derivatives, we should not expest to find &t ay a solution to Eq. (2.1}

This example i valoable i emphasizing the restrictons that surramd the
derivation and the meaning of the stationary condition. Exercises 7 and 8 exam-
ire the conditions for the pathological behavier for & symmeinic example, More
informatorn can bt fousd in many ex on the calcalus of varations.

3. The brachistochrone problem. {See Fig. 2.4a.) This well-known problem is
t fiud the curve joining two points, along which a particie fafling fromh rest under
the influence of gravity travels from the higher to the lower point in the least fime.,

I ¢ is the speed atong the corve. then the time required to fall an ave Jength ds
is ds /v, and the problem b to find a minimam of the integral

2 ds
nges f -
[

L 2

FIGURE 242 The bruchistochrons problem.
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1 ¥ is measured doven from the initial point of release, the conservation theorm
for the energy of the particle can e wrillen 33

Im? = mey

= /28y
Then the exprassion for ¢z becomes

IW‘
]

and £ is idenlified ag

¥
2y

i=

The integration of B, {2.11) with this form for f is straightforward and is left us
an exercise,
“The solution in terms of ifs one parameter, 4, given by

¥ ‘[L.__ {3t Mf],
eF aQ

is sketched in Fig, 2.4b for the first cycle (0 £ x < 2ma) and the beginoing of the
second cyche, Three cases of sotutions are indicated. A power-teties expansion of
the selution for the fmit ¥ < g gives

The brachistochrone problem is famous in the history of mathematics, for it
was the analysis of this problem by Jobn Benout that led 1o the formal founda-
tion of the catenlus of vanations,

m

e
« B ¥,
”
24 -
= I
3

¥

FIGURE 2.4b  Cajerary soluton w the brachwtachione problem: showiag positions on
the curve far the three cases ©7 & Yo, £ = Sy, and Xy 3 ¥y
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2.3 M DERIVATION OF EAGRANGE'S EQUATIONS
EROM HAMILTON'S PRINCIPLE

The fundamental problem of the caloulus of variations is sasily generalized w the
cast where £ is a funenion of many indes varigbles y;, and therr denvaly

. {OF conrse, all these quantities are considered as functions of the parametsic
varigble x ) Then a variation of the integral J,

T
8= sj; FOER 2l e O P2l 2V, 214

is obtatned, as before, by constdering J as & funciion of parameter o that Iabels a
posgible set of curves ¥, {x, w}. Thus, we may introduce = by sefing

yylx @)= yilr, )+ apla)
yalx, &) == s, 0) + amedad, 2.15)

where yiix, @), yalx, 0), ete., are the schutions of the exwemnm problers (10 be
obtained) and iy, 5z, sic., aze independent funetions of x that vanish at the ead
points and that are continuous through the second derivative, but otherwise are
completely arbitrary,

The calculrtion proceeds as before. The varation of J 15 gven o reoms of

. of by L OF 3k 2
= a~/ Z:(ﬁy, 3 da b g du) dx. 2.16)

Again we integrate by parts the integral involved in the second sum of Eq. (1.16)

a2
f I &
i T

where the first term vanivhes because all curves pass through the fixed end points.
Substituiing in (2.56), §/ becemes

d o
54 =f E(a», gy )53, dx, [+ 57/

whete, in analogy with (2.32), the variation 8y s

n
Sy {22 aa,
. (W)u “

Since the v variables ae independent, the varations 8y are independent (e.g..
the functions n.(x} will be independent of each other). Hence, by an obvions
extension of the fundamentat Jeruma (of. Bq. (2.103), the condition that 8.7 is zexo
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requires that the coefficients of the 83y separstely vanish:
aF 4 Bf

g dxdy

Bauations {2,18) represent the appropris generakization of (2.11) to severs]
variables and are known o8 the Ender-Lagrange differentialf equations. Their so-
Tutions represent curves for which the variaton of an integral of the form given
in {2.14) vanishes, Further rattons of the fund ! varistionat problem
are easily possitle. Thus, we can ke f a3 2 function of higher derivatives ¥, 3.
ete., leading to equations different from (2. 48). Or we cun extend it to cases where
there are severs} parameters x, and the integral ks thew multiple, with £ also in-
volving ns vartables detivatives of ¥ with respect 10 each of the parameters 5.
Finally, it is possible to conmder variatons ja which the ¢nd polnts ate not held
fixed.

For present purposes, what we have derived here suffices, for the integral in
Humilion's principle,

a, i= 2.0 (2.18)

.
rmf Lig a4, @19
i

has yust the form stipolated in (2,34} with the transformation
x et
Yo g
FO Fu %) > LG G ).
1 deriving Eqgs. (2.18), we assumed that the v, variables ove independent. The
corpespoadimg condition m connechion with Haulton's princaple s that te gen-
sralized coordinates g be independent, which requires that the constraints be

holonemic. The Buler-Lagrange equattans commesponding to the integral 7 then
become the Lagrange equations of motien,

and we have accomplished our oniginal 3. 1o show that Lagrange’s equations
follow from Hemilton™s principle—for monogenic systems with holonowic con-
siraints,

EXTENSION OF HAMHTON'S PRINCIPEE
TO NONHOLONOMIC SYSTEMS

1t is possible © extend Haailon's principle, at least in 2 format sense, to cover
cersuit fpes of nonkolonomic sysems. In deriving Lagrange's equations from
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either Hamilton's er I¥ Alembert's principle, the requirement of holonomic con-
suraines does not appear unt the last step, when the variations ¢, are considered

as independent of each other. With benhol ic: systerns the ized coor-
dinates are not independent of each other, and it is not possible to reduce them
furiher by means of equations of constralie of the form £lg1. ¢2..... Gu 7 =8

Henee, it 1 no fonger true that the g, s are all independent.

Another difference that must he cousidersd i treating the variational principle
is the marmer in which the varied paths are consitucted. In the giscussion of Sec-
sion 2.2, we poimted out that §» (or 5q) represents & victusl dispiacement from
point oa the actual path to some point an the neighboring varied path, But, with
independent coordinates it is the final varied path that is significant, not how it s
constructed. When the coordinates are not independent, but subject 10 constraint
relations, I becomes impartant whether the varied path is or is not constracted by

with the ints, Virtuad displ in
may of may sot setisly the constraints,
It appears that 2 bly st ard of nenholonomic sys-

tems by a vartational principle i possitle only when the equations of constraint
can be put in the form.

Jalgnec @ d1en duy =0 (2200

whes this can be done the iits ape called seri-hok ic. The index o
indicates that there may be more than one such equation. We will assume dere
are ;1 eguatons inall, ie, « = 1.2, .. .. m. Equation (2.20) commonly appears
in the restricted form

g dgebuedt = 0 (220
k

We might expect that the varied paths, or equivatently, the displacements con-
stracting the varied path, should satisfy the constraints of Eq. (2.20% However, i
has beest proven that ne such varied path can be consiractad unless Bas. (2.20)
are imegrable, in which case the consiraints are sctually holenomic. A varisdonal
principle leading o the commect equations of motion can theless be obtained
when the varied paths e constructed ttom the actual motion by virwal displace-
REnts.

The procednre for eliminatng these extr virtwal displacements is the method
of Lagrange underermined multipliers. 7 Bay. (2.2} bold, then it 55 also true that

m
Y afa=0, 221
=)

where the Ay, & = 1, 2. ..., m, @ some undetermined quantities, functions in

general of the coordinates and of the time ¢. In addition, Hamilton’s principle,

12
L] f Ldr =09, @n
4
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ig assumed to hold for this semiholonomic system. Following the development of
Section 2.3, Hawilton's principie then implies that

2 3L 4 3L
as (m - nﬁ,‘,),s =0, 227
l k,c— a diag ) @

The variation cannot be taken as before sinee the g are not independent; however,
combining (2.2} with (2.2} gives

sfn (L + Z}..,fq) =0 @23
n =1

‘The variation can now be performed with the # 54, and m A for s independent
variables, For the simplifying assomplion that ke = Ay (1), the resulting equations
front fg, become®

d § 8L al
o § S} e S = 2.24)
4t (atn) B & £
where
L e d B dhg Bfy
i {’w[""""""'"'("":") ~-m,w}. @19
i EZ_; g0 & \Bge & B
while the Sk give the equations of (2:20), Bquations {2.24) and (2.20)
together constitute n -+ m equations for & 4 m unkaowns. The system can now
be interpreted as an 4 n b ic system with ized forces 5. The
generafization 10 Ly = hefqL. -+ 1 Gni gl -« Gt 1118 straightforward,
As an example, let us consider a particle whose Lageangian is
Lem{@ 43+ ) - Vs (226)
subject to the constraint
fx 3= rky=0 (2an

with & 4 constant. The resulting equations of matian are

oL, BY
mi +)~5‘»+Ajr+ma—mn, {2.28)

x

. 1
my 4+ hE - kot A+ B o, 229

av
mE 4w, 230

az

3. Ray, Amer £ Phys. 34 (06~} 1996
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and the eguasion ef consizaiat, {2.20), becames
i ky =1

in this process we have obtuined move information than was origlaally sought.
Not onty do we get the g,'s we set out {o find, but we also get mA;’s, What is
the physical significance of the 4,’s? Suppose we remove the congraiis on the
system, but instead apply extemal forces @} in such a manner as to keep the
mation of the system unchanged. The equatons of motion likewise remain the
same. Clearly these extra applied forces must be equal to the forees of constraint,
for shey are the forces applied to the system s¢ as W satsfy the condition of
constraint, Under the infiuence of these foross (3}, the equatons of motivn are

Ll il g 241

But these must he identical with fgs. {2.24), Hence, we can ideatify (2.25) with
Qv the generalized forces of constraint, In this type of problem we really do not

inats the foroes of int from the lation. They are supplied as part
of the answer.

Although it is not abvious, the version of Hamilon's principle adopted here
for semiholonomic systems alse requires that the constraints de no work in virtual
displacements. This can be most eastly seen by rewriting Hamilton's principle in
the form

sf Ldrmsf Tt 5 Udrssi) (232}
@

if the variztion of the intepral over the generalized potential i8 carried out by the
procedures of Secrion 2.3, the principle takes the form

v
j, Tdt= f“ Z[am (aqk)]qudr (233

o, by By (1.58),

2 1
3[ Tdr =_f Z:ka.;;,d:. €234
1y L

1ot this dress, Harailton's principle says that the difference in the time integrat of
the kinetic energy between two neighboring paths is equal 1 the negative of the
time imegral of the work done in the virtnal displacements beeween the paths.
The work involved is that Gone only by the forces derivable from the generalized
potential, The same Humilton's principle holds for hoth holonomie and semiholo-
nomic sysiems, it must be required that the additional forces of semiholontomic
constraints do no work i the displacements Sgu. This resiriction parallels the ear
lier condition that the virmal work of the forces of holonomic constraint else be
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zero {cf. Section 1.4}, In practice, the restriction presents little handicap to the
applications, as many problems 1n which the semiholonomic formalism is used
refate ko rofling without slipping, where the constraints are obvicusly workless.

Naote that Eq. {(2.20) s nes the most general type of nonbolonomic consiraint;
e it does not inchude equations of constraint in the form of inequatides. On
the other hand, it does inclade hel i iy, A hol i¢ equation of
CORSTAINL,

A gregn - quth =1 23%

is equivatent to (2,20} with no dependence on gz, Thus, the Lagrange muitipher
method can be used also for holonomic copstraints when (1} it is incanvenient Lo
reduee all e ¢°s 1 indepeadent coordingtes o (2) Wwe might wish 1o obtals the
forces of constraint.

As mnother example of the method, let w consider the following semewhat
uivial Mustration—a hoop rofling, witheut slipping, down an inclined plase. In
this example, the sonsiraint of “rolling” is acualty holonemic, but this fact will
e immaterial to oar discussion. On the other hand, the holonomic constraint that
the hoop be on the inclined plane will be contained implicitdy in our choice of
generatized coordinares.

The twe generatized coordinates are x, #, a5 i Fig, 2.5, and the equation of
rolling constraint is

v =

The kinetic enesgy can be resobved e kinetic energy of motioi of the center
of masy plus the kinetic energy of motion about the center of muass:

T = §M4° + iMrih
The potenbal eneigy is
Vo= Mpll ~ x}sing,

where { it the Jengeh of the inclined plane and the Lagrangian is

FIGURE 2S5 A hoop mifing down an inclined plane.
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Ll —¥
Mi* MrAR
= a BT

3 S - Myl = Aysing. (236}

Since there is one equation of comstraint, only ome Lagrange wwuitiplier A is
needed. The cocffcients nppearing in the conswaiat equation are:

g =,
e =~
The wo Lagrange equations therefore are

MX o~ Mgsig + 3= 0, 237
My~ =, (238)

which along with the equation of constrain,

ré = £, {259

2 three eq for three unkn N
Differentiatiog (2.39) with respect (o time, we have

rém i,
Henee, from (2.38)
ME =5
and {2.37) becomes
Bsing
5
along with
5= Mgsing
2
and
s ksing
4= pra

‘Thus, the hoop rells down the incline with only one-half the acceleration it would
have shipping down a frictioniess plane, and the fricdon force of constraim is
ho= Mg sing/2.
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2.5 Advantapes of a Variational Preiple Formulaton 5%
ADVANTAGES OF A VARIATIONAL PRINCIPLE FORMULATION

Abthough we can extend the eriginal formutation of Hamilion's peineiple (223 to
fuciude some nonholonomic constraints, in practice this formulation of mechan-
fes ts most usefud when o Lagrangian of independent coordinates can be set up
for e system, The variational principle forraulation has been jusdy described us
“elegant,” for in the compact Hamilton's principle is contained all of the mechan-
ics of bolonomic systems with forees derivable frem potentiads. The principle has
the further merit that it involves onfy physical qnanlmes thaa can be defined with-
out 10 & particular set of i , namely, the kinetic
and potential energles. The formelation is therefore automaticatly nvartant with
respect 10 the choice of coordinates for the sysiem.

From the vagattonal Hamilon's principle, it is also obvious why the La-
grangian is always aocertain 10 & ot dme derivative of any funcdon of the
coaordinates and time, as mentioned at the end of Section 1.4, The time integrat
of such a total derivative between points | and 2 depends ondy on the vaines of
the arbitrary function at the end points. As the variation at the end points is 2er0,
the addition of the arbirary fime demivative to the Lagrangian docs not affeet the
varigtional behuavior of the tntegral.

Another advantage is that the Lagrangian formulation can be easily extended
to describe systems that are pot normally sonsidered in dynagics—such as
the elostic field, the clectromagnetic field, and Beld properties of elementary
particles. Some of these gencralizstions will be considered Inter, but as three
simple examples of its application outside she usual framework of mechanics, ot
ws constder the cases of an R L cirenit, an LC cireuit, and coupled cirouits,

We: consider the physical system of 4 bateery of voltage ¥ in sevies with an
mductance L and & resistance of value R and choose the elecwic charge g as
the dynamical variable. The inductor acts as the kinetic energy tenm since the
inductive effect depends spos the tme rate of change of the charge. The resistor
provides 2 dissipative term and the potential energy is ¢ ¥ The dynamic terms in
Lagrange’s equation with dissipation (1,70} are

T bLg® e LRg?
and potential energy = ¢ V. The equation of mation 15
Vo= L+ Rg = LI+ BRI {240

where £ w5 4§ is the electric cmvent. A solution for a battery connecied o the
circuit at time ¢ = s

I T Y

whete fy = VR is the ful steady-state current Bow,
‘The mechanical analog for this is a sphere of radins a and effective mass m'
failing in 2 viscous fiuid of constant density and viscosity n under the force of
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gravity. The effective mvass is the difference berween the actuat mass and the mass
of the displaced fuid, and the direction of metion is slong the y axis, For this
system,

T dm's?,  F e duqgei?,

and potential energy = gy, where the frictional deag force, Fr = 61t pay, called
Stokes™ law, was glven at the end of Section 1.5,

The equation of motion is given by Lagrange’s equations ¢1.70) us

m'g = m'} -+ 6mnai.
Using v = J, the sofution {if the motion stants from rest atz = 03, is
2 w71

where 7 = ' /(B ne) is & measure of the dme it takes for the sphere fo reach
1/e of 3ts 1erminal speed of vg = 'y /B nu.

Another example from electrical circuits is ap indectance, £, in setigs with a

capacitanos, . The capacilor acts as @ source of potentiat energy given by q2/C
where g is the eleciric charge. The Lagrangion produces the equation of mation,

o4
L+ F & @41
whick: has the solution

4 = 4neos eht,

where yp is the chaige stored {n Gie capactior ot ¢ = 0, and the assustpden is thai
Do chasge s Aowing at ¢ = (. The guantity

is the resonant frequency of the sysiem.

The mechanicul analog of t.h:s sysm is the simple harmonic asciliator de-
soribed by the Lagranglan L = me - 1"" whick gives an equation of mation,
w4 kx =0,

whose solution for the same boundary conditions is
E= ggeosagf Wi g = R
These 1w exampies show thar an inductance is an inertisl term, the cheetrical

aralog of mass. Resistanee is the analog of Stokes' lew type of frictional drag,
and the capacitance term 1/C represents & Hooke's law spring constant. With this
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FEGATRE 2.6 A yystem. of conpled oirenits 1 which the Lagrangian formulaton can be
applied.

background, a system of conpled electrical circuits of the type shown in Fig, 2.6
has & Lagrangian of the form

2
1 . 1 . g
=5 LAt 3 T My~ 3k 0,00,
Fl I 7 ’ !
a3k
and 2 dissipation function
1 .
Foz 3 R4
I

where the muteal induciance erms, M,id;4r, are added 1o take into account the
coupling berween induciers. The Lagrange cquations are

g it Cl i
Ly d!; +2Mﬂ et + 2w B, (2423

i

where the £, (1) ters are the external emf's.

This deseription of wwo different physicat systems by Lagrangians of the same
form means thar all the results and technigues devised for investigating one of the
systems can be taken over immediately and spplied o the other, in this particular
cuse, the study of the behavior of clecireal clreuits has been pursued intensely
and some special fechniques have been developed; these can be directly applied
1o the correspanding mecharical systems. Much work has been dome in formulat-
g equivalent clectrical probl far : i ar ical systems, and vice
versa, Terms hitherto reserved for electrical cireoits {) 158
are now commonly found tn treatizes an the theory of vibrations ef mechagicr]
Sysiems,
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Additionally, one typs of Lization of mechanies is ue 1o o subiler form
of eqtiivalénce. We have scen that the Lagraugian and Hamailun s pnncxplc e
gether form 2 compact nvariam way of obtaining the of

motion. This possibility i not reserved for mechanics only; in almost every Held
of physics variational principles can be used to sxpress the “equations of motien,”
whether they be Newton's equations, Maxwel's eguations, or the Scheidinger
equation, Consequently, when a variational principle 18 used as the basis of the for-
rmiulation, alt such fields will exhibit, at Iease i some degree, a strucrural anafogy.
When the mesulis of cxperiments show the need for alteraring the physical content
in the theory of one field, this degree of snalogy has ofien indicated how similar
slterations may be carried out in other fields. Thus, the expcnmens performed
early in this century showed the need for guantization of both eleciromag
radiation ard elementary particles. The methods of :;uanuzaim hewevyer, were
first g d for particle i clznrung ially from the L

fath ofciasslcal hardcs. By & g the ek i field by a
L ian and pending Hamilton's variaannai principie, if is possible to
carry aver the methods of pamc}e quantization te construct 4 quantum electiody-
narics (cf. Secions I35 and £3.4).

CONSERVATION ¥HEOREMS AND SYMMETRY PROPERTEES

Thas far, we have been concerned primarily with obtaining the equations of ma-
tion, but litde has been sald about how to solve them for a particular problem
unce they ans obtained. In general, this i3 4 question of mathematics. A sysiom
of # degrees of freedom will bave » differential equations that are secand arder
in time. The sotution of each equation will require two integrations resulting, ail
tald, in 2 constents of integration. In a specific problem these constants wilt be
determined by the initial conditions, Le. the inital values of the rg;'s and the
A, 's. Someimes the equatons of motion will be integrable in terms of known
fonctions, but aot always. In fact, the majority of problems are not compiesely
integrable. However, even when complete salutions cannet be obtained, it i3 often
possible to extract & targe amount of information about the physical nature of the
system motion. Indeed, such information may be of grearer intercst to the physt-
cist than the complete sofution for the generalized coovdinates as a function of
Hime. It is ioportant, therefore, to see how mrch Can be staied sbout the motion
of a given system withoui requiring a complets integration of fhe probiem.*

Irs mamy problems & number of first integrals of the equations of reotion can be
obrained immediately; by this we mean relatians of the type

Figugn .. g1 g7, ... £} == constant, {2.43)

I this s suocendisg ssouons st wit) b s sarmed, voless ohierwsss apecuied, the syatem i such that
Ies Erotion is comptetaty described Yy s Hamilian's principle of the form (2.2).
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which are first-order differential equations. These first inegrals are of interest
becavse they rell us something physically about the system. They imclude. in facr,
the conservation laws obtained in Chapter 1,

Let us consider a5 an exsmple 2 sysiem of mass points under the infuence of
forces desived from potentials dependent on position anly. Then

AL AT Y 8T 4 ! (o5t )

v B e o TR — T e =m; (3 F ok 7

BLOTRE TRL TaL TER Lo ymAnTHTH
= ek = Pry.

which Is the x compoment of the linear momentsn associstzd with the fth
particle. This resalt suggests as obvions extension to the concept of momenturn,

The tized momentim tated with the dinate g, shalt be defined as
AL

E e (244

2 5 {244)

The terms canonical and arg often also used for

;. Notice that if ¢, is not a Cartesian coordinate, p, does not necessarily have
the dimensions of & linear womentur., Fosther, i there is & Veimi(y depend.cm
potential, then even with a Cartesian di g; the 4 F
mementum will pot be dentical with the usual mechanical mementurm. Thus,
in the case of & group of particies it an slectromagnete Bedd, the Lagrangian is
{ef. 1.63)

b .
L= gmit = ¥ agtur+ T oaata) -k
: v T
{4, here denotes charge) and the generalized momentum conjugate © 1, is
aL .
Pex = a—x; ERE Y {245)

1.£., mechanical momentnn plus an additional term.

I the Lagrangian of a system do2s not contain o given coordinate g; (although
it may contain the corresponding velocity §;), then the coordinate is said 1o be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here, The Lagrangs eguation of motion,

d 4L 8L



36

Chapter 2 Variational Princigles and Lagrange’s Squations

or

4,

=0
dr

which mean that
7y = CORSEANE. 246

Hence, we can siaie a5 a general conservation theorzm that e peneralized mo-
mentm confugate (o a cyelic coprdinate is conserved,

MNote that the derivaiion of Eq, (2.46) assumes that ¢; is a gencralived coordi-
aute; ane that s Jinearly independent of all the other coandinates. When equations
of constraint ¢xis¢, all the coordinates sre not linearty independent. For exame
ple, the sngular comdmatn # 15 not present in the Lagrangan of & hoop rolling
without qlrpi:mg inak i plane that was pr 1y d, but the angle
appears in the constraint equations rdf = dx. As aresult, the angular momentum,
pe = mrgé, 15 0ot & constant of the motton.

Equation {2.46) constitutes a #irst integral of the form {2.43) for the equations
of motior, It can be psed fovmaly to eliminate the cyclic coordinate from the
problem, which can then be solved entirely In termos of the remadning general-
ized coordinates. Bricfly, the procedure, eriginated by Routh, consists in modify-
ing the Lagrangian so thar if is no Jonger a funclion of the generalized velociy
coreespanding to the oychic coardinats, but instead involves only its conjugate
mamentun, The advanrﬂge tn so doing & is lha.l Py can then be considered one of
the of § and the tons invelve only the non-
cyclic coordinates, We shall defer a detailed discussion of Routh's method ungl
the Hamiltonian formulation {to which & is cinscly miamd) is treated,

Note that the itions for the o of d are more
general than the (W momentum conservation thearems previcosly derived. For
example, they fornish 2 conservation thearem for 4 case in which the law of ac-
tion and reaction is violated, namely, when electronugnetic forces are present.
Suppose we have a single particle in 2 field in which neither ¢ nor A depends on
x. Then x nowhere appears in L and fs therefore cyclic. The comespending canon-
oAl momentum pr must therefore be conserved. From {1.63) s Mmomentim naw
has the form

o= mX b g Ay = copstant. 247

In this case, iLis got the mechanical Haear momentum mi that 1s conserved but
rather Hs som with ¢ A, Nevertheless, it should still be true that the conservation
theorems of Chapler § are contained within the general nide for cyclic coordinales;
with proper restrictions (2.46) shoald teduce to the thearems of Section 1.2,

1 b shos £rom chiocad loctrodymarcs S andes ihess condhnes, ., e & i ¢
Qeponhag i x, tha g Ay is exactly 1he x-comp of the
field wssocked With fhe chatie ¢
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We first consider a generalized coordinaie g,, for which a change dg,; repre-
sents & translation of the sysiem as a whole i some given direction. An example
would be one of the Cartesian coordinares of the center of mass of the system.
“Then clearly g, cannot appear in T, for velocities are nor affected by & shift in the
origin, and thersfore the partial derivative of T with respect to gy wust be zero.
Further, we will ussime conservative system& for which V is not 4 function of the

ities. so a5 W elimi sitch as eb ic forces, ‘The
Lagrange equation of motion for 4 coordinate so defined then reduces 10

dar o v .
LA LA y
drag, DT Tag TH

We will now show that {2.48) is the eguation of motion for the total lincar
momentuzm, Le., that @, represents fhe corponent of e totat force along the di-
rection of wanstation of g, and g, 33 the component of the fotal linsar momentm
along this direction. In general, the generalized force 2, is given by Eq. (149%

Er‘
E:F r")q,

Since dy, correspands to & ransiation of the system along some axis, the vestors
Folg,) and b4y, + dg,) are related os shows in Fig, 2.7, By the definitien of 2
derbvative, we have

dg,)~r, dn;
o nlntdgionia) der a0
g, dgy0 A, dq,

where i is the unit vector along the direction of the fmanslation. Hence,
Q=% F a=mn-F
which {as was sisted) is the camponent of the total force in the direction ofn. Ta

prove the other half of the siatement, note that with the kinetic energy in the furm

den

nig)

54, +idg, 3

FIGURE L7 Change in 2 position vector utdtr translution of the systom,
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1 .
¥ 3 Zm,r'?‘
the conjugate momentum is
ar P
By = LCEr Ry
SR JZ " g,
i
= Z"’J Y,
T aq;
using By, {1.51). Ther [rom fig, 12,49}
Py n. }::m,v,,
v

which again, as predicted, is the component of the total system linear momenturm:
along .

Suppose now that the translation coordinate ¢, that we have been distussing is
<yehie, Then ¢, cansot appeer in V and thercfore

But this & simply the familiar conservation thearen for linear momentun—that
i a given component of the tatel applied force vanishes, the corresponding com-
poneat of the Tinear momentum is congerved,

In z similar fashion, it can be shown that if & cyclic covrdinate ¢, is such that
dg; comesponds to u rotation of the system of partictes around seme asis, then
the conservation of lis conjugate momentum corresponds t0 conservation of an
angular momenture. By the same argument used above, T cansiof contain g, for
a rotation of the courdinate system cannet affect the magnitude of the velocities.
Hence, the partial derivaiive of T with respect to g, must again be zeso, and since
V is independent of 4}, we onee more get Bq, (2.48). But aow we wish to show
thas with g, a ratston inate the ized force is the comp of the
totat applied torque about the axis of rotarion, and 7, is the component of the totst
anguiar momentum along the same axky.

The generalized force G is upait given by

o,
0, =3 F -
=g

only e derivative now has a different meaning. Here the change in g, rast cor-
respond to an infinitessmal rotation of the vecior 1y, keeping the tmagnitede of
the. vector gonsiant, From Fig. 2.8, the magnitude of the derivative can easily be
obizined:

fdrd = ¢ sing dg,
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FIGURE 2.8 Change of 4 position vector under rolation of the system.

o,
44,

stad,

and s direction s perpendicudar to both r, and ». Clearly, the decivative can be
written in vector form as

&
2 axn, (.50
¥
With this result, the generatized force becomes
g, =3 F.rxy
= E:n- L x F,.
i
reducing to
sza-f:N;mmN,
T

which praves the firt part. A similu masipulation of 3, with the ald of Bg. (2.50)
provides proof of the second part of ihe stateaent;

ar ar,
Py o= F A A £ Wk X PRV R e Ly X
== Do = Ten = T




27 e

Chapter 7 Varianonal Principles and Lagrange's Equations

Summarizing these results, we see that if the rotation coordinate 4, is cyclic,
then £, which is the component of the applied rorque along B, vanishes, and
the component of I. along # is constant. Here we have recovered the ungular
miementam conservaiion theoram out of the generi conservation theorem relating
e eyclic cooedinates,

The significance of cyctic translation or rotation cooxfinates in relation to the
propertics of the system deserves some comment at this point, If a generalized co-
ardinate cosresponding 10 a displacenent is cyclic, it means that & translation of
the system, as if rigid, has ne effect on the problem. fn ather words, if the system
is emvarianr ynder wanstation dong & given direction, the corresponding linear
mementem is conserved, Similarly, the fact that a generalized rotation coordinate
is cyclic (and therefore the conjugate apgular momentum conserved) indicates
thit the system is invariant under cotation abourt the given axds, Thas, the momes-
T conservation theorems are closely connected with the symmetry properties
of the sysiem. If the system is spherically symmetric, we can 55y without further
ade that al] components of angular momentum are conserved, Or, if the system is
symmetric only shout the 7 axis, then anly L, will be canserved, and so og for
fhe other axes. These symmetry considerations can often be used with relatively

phicated p tor 4 ine by § jon whether ceriain. of the
motion exist. {cf, Noether's theoreme~Sec. 13,7}

Suppose, for example, the system consists of & set of mass points moving i
a potential field generated by fixed sources unifonmly distributed on an infinite
planc, say, the 2 == O plane. {The sources might b 4 inass distribution if the forces
were gravitational, or & chasge distribution for efectrostatic forces.) Then the sym-
mety of the problem is such that the Lagrangian is invariagt ynder a transhation
of the system of particles in the - or y-directions {but not in the z-direction) and
alyo under a potation shout the z axis. It immediately follows that the x- and ¥-

P of the toial linear Py and Py, arg of the motiog
atong with £.., the z-component of the toral angular mementum. However, if the
sources were resticted only 1o the hall plane, x = 0, then the symmetsy for wans-
Iation along the x axis and for rotatien about the 7 axis would be destrayed. Yo that
case, Pr and L could not be conserved. but Py would remain 4 constant of the
motion. We will the ions between the of motion and
the symmelry properties of the system several times in the following chaprers.

ENERGY FUNCTION AND THE CONSERVATION OF ENERGY

Another conservation theorem we should expect to obtain in the Lagrangtun for-
mulation is the conservation of total energy for systems where the foroes are
derivabie from potentials dependent ordy upon position. Indeed, it is possible to
demonstrate & conservation thearern for which conservation of total energy repre-
sents unly a special case. Consider & genere! Lagzangian, which will be a function
of the conrdinates g, and the velueities 4, snd mey also depend cxplicidy on the
itne. {The explicit time dependence mey avise fom the thme variation of exemat
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potentials, or from time-dependent constrainis.) Then the total tine derivative of
Lis

dL ALdy, < BLAY,
@ T g @ Z g, dr az @3l
;
From Lagrange’s equations,

8L d /L
dg;  di1\#g, )"

and {2.51) can be rewritten as
dL e d £BLY aL dg,
@ ‘E;dr (aq,)“fJ‘}: &, @ ‘o %

or

Tt therefore foliows that

aL
5 (Z ’h"‘"‘" - 1‘-) s (252

‘The quantity in parentheses is oftentimes called the energy function® and wil be
dencied by k-

; . , 8L
B G D= Fdig kb 255
7 )
apd Bq. (2.52} can be fooked on as giving the twotal time derivative of b:
dh 8L
punh e ot
dt 8’ @4

1f the Lagrangian is not an explicht function of time, ie., if ¢ dogs not appear
i I explicidy put only mmplicitly trough the time variation of g and §, then
Eq. (2.54) says that # s conserved. It Is one of the first integrale of the motion and
1 sometimes referred to as Jacobi's integral !

*The cnesgy function 4 & wenticel in value sath ths Hamdeonian ¥ iSee Chaptes B) Ui gven:
a different nayme and symbal hore to eaiphastis thit & (s consudered & functeon of # independcat
vinablen g, nd it e derlviives 3, {Along with the nme). whavesy the Hamutonian will te
wreated as 2 function of vargblas, g, . p; {3F possibly e nme

¥Fhis dibvrgnatian 5 Mact it Confted 10 & Bt integral n the resmrcted dhree-bidy probiem. Have-
sut, The integral there IS merely & specisl case of the energy Fancnon A, wnd there Js some histoncat
recedent tp apipty $ie nomue Jacab itageal to S Riore peneral situzton
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Under certain circusnstances, the function f1 is the total cnergy of the system.
Tir determine what these clrcwmstances are, we recall that the total kinetic energy
of a system can always be wrilten as

T Ty+ 1)+ 12, €113)

where Ty is a fanciion of the generalized coordinates onty, Ti (g, 47 is lincar in the
generulized velocities, and T3{g, ) is & quadratic function of the 5. For a very
wide sange of systems and seis of generalized coordinates, the Lagrangian can be
stmilarly decomposed as regards its functional behavior in the § variables:

Lig.§. 0 = Lofg. 3 + Lg, 4.0 + £9(q. 4. 83 {255

Here L3 is a bemogeneons function of the second degree (ot mercly quadratic)
in g, while L| is homogeneous of the first degres in 4. There 13 no reason intringie
10 mechanics that requires the Lagrangian to conform 10 Eq. (2.55), but in fact &t
does for most problems of interest. The Lagrangian clearly has this form when the
forens are dertvable from a potential Rot involving the velocites. Even with de
veloeiiy jals, we note that the 1 ian for a charged particle
in meimmzrmgncur: tield, Bg (.63}, satisties By, (2.35). Now, recall thay Buler’s
thearem staves that if £ 1s 2 homogeneous function of degres # in the variables x,,
theq

i =t (2.56)

Apphied o the function fi, Eq. {2.53), for the Lagrangians of the forne (2.55), this
thearem implies that

he gL — b=y~ Ly 257

If the u : jong detintng the tzed i . Egs. {1.38),
4o not invalve the ume explicitly, then by Hos. (LI T = T, If firrther, the
potentind does not depend on the generalized velocities, then Lz = F and Lp =
~V, so that

ke T+ Vo B, {2.58)

and the snergy function is indeed the wtal energy. Under these clrewmnsiances,
H ¥ Goes not invelve the time explicitly, neither will L. Thus, by Eq. {2.54), &
{which is bere the sotal energy), witl be conserved.

Note that the conditions for consevvation of & are in principle guite distinet
fromm those that ideatify & as the fotal energy. We can kave a set of generalized
coardinates such that in a particular problem k is conserved but is not the total
energy. On the other hand, & can be the total energy, In the form T + ¥, bot not
be conserved. Also note that wheress the Lagrangian is uniguely fixed for cach
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system by ke prescription
L=T U1

independent of the chuice of gengrahized coordinates, the energy fanction % de-
peeds in magnitde and fonctiopal form on the specific ser of generatized co-
owbastes, For one and the same sysu:m varioas energy fonctions k of :hfferem
physical confent can be pending oa how te i

are chosen.

The most common case that cocurs in classical mechanics is one in which the
kinetic eneigy terms are all of the form mq'ff‘lor pf‘,’lm and the potential snergy
depends only npon the coordinates. For these conditions, the energy function is
both conserved and is alse the tota} energy.

Finalty, note that wheve the System is 101 consarvative, bot there ate frictionat
Forees derivable from a dissipation function F, it ca be easfly shown that s ve-
lated ko the decay rate of k. When the equations of motion are given by Bg. £1.70),
inchiding dissipation, ther: Eq. (2.52) hes the form

:th EiL
b ):

By the definition of F, Bg. (167}, It 13 a homogensous fincton of the ¢'s of
degree 2. Hence, applying Euler's theorem agein, we have

ﬁq,

dh at

o s L e 2.59

dz ar @55}
I £ §s not an exphicit fenction of time, and the gystenm I8 such that i is the same
as the energy, then Eq. (2.59) says that 2.7 is the rate of energy dissipation,

dEg
- =R (2.66)

a statement proved above {cf, Sec. 1.5) in less peneral circumstances,

DERIVATIONS

1. Complete the sohmion of the brachistochrone problem begun in Section 2.2 and show
that the desired turve is & oycloid with a cisp at the Srinal poine at which the particle
is reteased, Show also that if the pardcle @8 projoced with an initiad Rinetic cocny
4mf} that the brachistochrone s still a cychoid passing throngh the two points with &
chsp 6t & height z above the initial point given by v = 2gz.

2

Show that if the poleasial is the Lagrangian wmams velocity-dependeat terms, the
caponicat g 3] of rotitiok # of fie sngire sysmm
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3
4.

s n longer the mechamcal angular momentum Ly bt 15 given by
Pa= Ly MER SFp X VU,
v
where Ty 18 tho gradient operator it which the derivativas ae with respact 1 the

velogity components and B is 8 juit veesor in fhe dircetdon of rorstion. 3 the forees are
electromagoetic in chagacter. M canontedd momeatum is thercfore

- . 2
p\gMLg+§;n 5 x Ay

Prowe that the shortest distance between bwo points m space is & siaight line.

Show that the geodemcs of a spherical surface are great circles, Le., carcles whose
cetiers ise at the cepter of e sphers,

EXERCISES

5

b

b

& paricle 1 subjected o the potantal ¥{x} = —Fx, whore £ i u constant, The
pazitcle travels from x = G to x = o0 a bume interval &y, Assume the motion of the
particle can b exprossad an the form x(1) = A -+ Bt + C 1%, Pind the values of A, B,
and C such that the seiton is 2 minimam,

Find the Buler-1. adquat the i curve for @ purtcls
mowing invide a sphencat Barth of niform mass deasity. Obtain o fiest integrel for
thiz defforentianl equation by avalogy 0 the facob mtegad £, Wit the help of this
mtegral, show that the dasired curve 15 a Hypocycloid {the curve described by a point
ot a circle rolling on the inside of a lasger circle). Obtain an exgression for the fme
of tavel along the brachistoohrons berwsen 1wo prints on Barth's suface. How lopg
wonld 1 take to g0 fram New York (o Loy Angeles fassumed to be 4800 ke apart on
the surface) alotg & drachistochrons wnek fassuning o0 faeion and how far Delow
the surface would the deepest point of the et beT

. Bxampte 2 of Section 2.1 we considersd de protlent of the weniman surface of
revoluton. Bxaming the symmetric case X7 = &3, ¥ = —¥; > 0, and express e
woadition for the parameter @ 8s a ranscendenta] eqration in terms of the diménsion-
less Quantities & == yo/a, amd & = yz /2. Show that for o greater thate 2 certan value
apy two values of k ate possible, for o = oy only one value of & is possible, while if
o = o N0 real value of & {0 a) can be Forpd, 50 that no catenaly solution esists 18
shis rogson. Find the value of ay, nemericaliy if nacessary.

8. “The brokea-segrent sotution desctibed in the taxt {af. p. 42), 18 which she ares of

vevgiution is onky that of the end gireles of radius y; and vy, respectively, is kaown as
the Galdschaidy sotution, For the symmetic siuation distussed in Exsrcioe 7, obtain
an oxpression for the o of the ares gonerstnd by the catenary solutions o that gmven
by the Goldsehmidg solution. Your result shoald e » function only of the parameters
& and «. Show that for sufficienely large valses of o at feast ome of the cxenuncy
gives an avea below that of the Goldschmidt solution. On te other hand, show thar il
o == g, the Gokbsclimadt solakon gves o lower aren than the catenaey,
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9

1

L4

A chaln or rope of indefinite Ieogth passes frealy over pulleys st heights vy and yq
abive e plune sbrfice of Berth, with ¢ hetizomtal disamee 3 — ¥ between them.,
the chain or rops has 2 uniform lngsr dass deasity, show that the groblem of Gnding
the eurve sssummed hevween the pullays is idengicat with thar of the protlem of mini-
e surface of revolution. {The transition to the Goldschmid! solution as the heights.
¥y and pp are changed makss for & steiking lecture demonsation. See Exercise 8.3

Suppase (s known exporimentally that o panicle fell a given distance 3y m 2 hme

I3 = 2/ g, but the times of fal for distances other than y  nor knowa. Suppose

forther that the Lagrangian for the probiem is knows, but that instead of solviny the

egnaton of motion: for ¥ as a fenction of 1, it is guessad ther the functional form is.
y=at 4 b2

If the constants o and & ae adjusied Always so that the fme to fall ¥y i comeetly
gwen by 1, show directly that the imegral

]
f Ldr
]

15 2m extremum for ecal valaes of the coefficients only whow a = 0 and b = /2.

. When rwo brlitard balls ooilde, b instantaneous foroes Petwesn themn e vary jarge

it act ondy i aw infinstesinal fme Ar, in such & manner that fhe gusnlity

f Fdr
e

ey fte, Such foroes are destribed as impudrive forces, and the wmtegral over
Af 15 known as the fmpudse of the [orce. Show that if impalsre Forces o preseat
Fagrunge’s equations may be transformed o

&), )

where the subscripts / and F fefer o the Mate of e systord before and after the
inpuise, §; i the impulse of the gencrdizod impulsive force corresponding 10 4,,
and £ s the Ligmangian ncluding alf the nonimpulsive forces.

n

Fhie wain hiay come 1o des a vagiety of classical mechan-
ios in which the Lsgrangian contsins ime derivatives of g, Righer than the fitst, Prob-
lems fur which x = fir % X, l) have been referred ko @ “jerky” miochanies. Such

Fanoticn bave i ications in chaos theory (of. Chapter 51}, By
npplvmg she methods of the catcalus of variutions, show that 1f thets 15 & Lagtangian
of the forem Lig,. 4. §,. 0, and Hamikon's principle holds with the 2270 variation of

bt g, and d; atthe end poluts, thew the Ealer-Lagrange ciutions e
AN N AT
iy L L L e
dr? (Bq,} (Bé;} 4, ‘ "

Apply s reselt to the Lagrangian
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it

L= Ty i

Do you recpgnize the equations of monon?

A heavy pariicle » placed af the 1op of a vermical boop. Caloulate the reactos of
the hoop on the paticte by meuns of the Lagraage's underermined moltiphers and
$ogrange’s squations. Find the heigire at which the particlc falls off

A umform hoop of mask m and cadeus ¢ solls withony slipping on a fixed cylinder
of radius R as shown in the figere. The only externa) fores is that of gravity, i the
stafler cylteder starts rollivg from rest on top of the bigger cylinder, use the methad
of Lagrange nmlipliers i Snd eha poipt at which the hoep falls off the cylmdes

A form of the Wheatstone impedance brdge has, in adgitcon w the usnal Eour rasis-
rances. an inductance i otic srm wnd 2 capacilance in the opposste ame. Set up L and
¥ far the unbalancod bndge. with the charges it the elements ax coordinates. tsing
the Kiechhioft juncteon conditions s constraints on the currents, obtam the Lagrange
spstivae of mobio, and show that elumineting the L's redtices these b the aaual nee-
work equations.

. In ceman bieaony, paRitany one- o;menuunaj aysoms, 1€ 15 possible 0 incompo-

e fretonet without i fom function. mple, find
the equations of marion For the Lagrangian

i2 2
R L L
Lo ( £ 1
How would you describe the systam? Ars there any constants of motion? Suppose a
poin ansformation s muds of the Sorm
=¥y,

What 1s the effcctive Lagrangian in terms of 7 Find the equation of moton for s.
What do those Fesults say it the conserved quranities Tor dbe system?

big i occurs that the it s sppear separately in the kaeuc
enerzy and the potentsel energy in such o manner that 7 and V oy be written in the
form

Ty fled me v=3 ¥
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Shaw that Lagrange's equabions then sepevate, and thar the problem can always be
reduced 1o quadratures,

A pdns tass is consirumed to move or 2 massless hoop of radivs & fixed m 2 vertical
plane thae sotatas shout jts verncal syminetry axis with constant angalar sposd o,
Obuain the Lagrange equations of motion ssseming the only external forces arie from
aravity. What are the votlantd of mation? Shaw that if & 15 greater than a criticat
wale 2, shere can be & solution 1n which the particls remains stationary o the hoap
at a poial other than at the bettom, ixt thut 1f @ < wg, de only swtionary point for the
particle is at the boltom of the houp. Whal 1% the valne of ex) 7

. A partcls moeves without friction in o conseevative field of foree produced by various

mass distnbuttons. Fn each wstance, the force generated by 4 volune slement of the

Hseibution is derived from a puential hat 18 propertionak ks the mass of the volume

alement and s 8 functron onby of the scalar distasce from the volume element. For the

Foltowiny fixed, bomogenents mass diseributions, state the consended gquantities i 1he

motion of the particle:

{#) The mase 18 aniformly distributed i the plune 7 = 0.

{b) The muss 15 epiformiy distibeted in the halfplane 2 = 0,3 > .

£} “The thags ¢ wiformly distrbiuted in o creuler cylinder of wfine length, with
ants along the 1 axis.

{d} The mass 15 amformly dutrbued i @ clrcular cplinder of fnite length, with axis
atong the z axis.

fr) Tho muass iz enifarmby diseribired i 2 ight cyhinder of eltiptical cross section and
mhutte Jength, with exis atong the 2 anis.

(€} The masy 1 unttormly distnbuted 1n a dombbel! whose axis s ordented along the
2 axik.

() "The mass ts  the form of a unifornl wire wound in the geometey of an infimte
bretical solomoid, with axis atong the 7 usi

A paricle of mass w stides without friction on s wedge of angle e and mass M that car
move without fricrion on 8 smooth honzontal surface, as shown in the figure. Treating
the congeaint of e partcls oo the wedge by the method of Lagrange nwltipliers,
find the equations of imoton for the particle and wedge. Also obtain ah exprasaion for
the forces of constraint. Calewlete the work dong i time ¢ by the forces of consteaint
seting o the partich: and on the wedge, What dre the constants of motea for the
systemt Contrase the reselts you have found with the situation when the wedge 15
fined, FSuggestan: For the pavtcle you may either use a Castesian coordiaate xystem
with y vertical, or ooe vwith ¥ normat (o the wedge of. sven more Ingumctively, do itin
bk systerms. ]
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2L

A carriage Funs alonyg rails on a rigid beam, as shown i the figiwe bebow, The catriage

1 sttached to one end of a spring of equilibrium lengeh ryy and force constant &, whase

otier end is fixed on the beam. On the carrtage, another ser of ratltss parpeadicntsr 1o

the first along which # pasticle of tiess m moves, hetd by a spring fised on the beam,

of Torcs conssant & and zex equilibriom lengeh, Beam, rafls, springs, and oxetisge are

assumed {0 huve 7ero mass, The whele sysiem is forced 4o move in a planz abour the

paint of attachment of the fest sprng, with 2 constant angular speed w. The fength of

the second sprisg i a1 alf imes considered small compared 1 rg.

{a) What is the cnergy of the system? I e consseved?

thy Using generalized coordinates i the Iaborkiory systerm, wha is the Jacobt integeal
for the system? Is it conserved?

(e} In reems of the generalived coordinates refative 10 a systemm rotating with the angn-
far speed . what is the Legrangian? What isthe Jacobi integral? s it conserved?
Discuss the refatianship betwesr 1he 10 Tacold integeals.

Suppose @ punlcle moves in space subject o & conservative potentiat V{r) but 18
cogstrained W abways move on & susface whose equation is o (., 1) = 0. {The explicit
dependence on ¢ indicates that the surface may be moving.) The Insentansous foree of
constrain is falcen as always perpendicular 4o the surfuce, Show nalytically that the
ehigy of the partecle is not conserved if the surface moves in Sime. What physically
is the reagon for sopcomyerymtion of te enerey wadsr 1his circamsranes?

Consider 1wo panticles of masses oy and . Lot my be confined to mave o a ciele.

of radiue o 5 the ¥ == © plane, centered at x = y = @, Let my he corfiaed to move

on 2 circle of radios b i the 2 = o plane, cemterest at ¥ = = U A Lpht (passless)

spring of speing conswet & m altached between fie twe particies.

(=) Find the Lagrangian for the sysmem,

{b} Solve the probiom using Legrange mubtipliars and give a physicai interpretation
Forr each multiplier.

The one-dimenstons) Bastonic oserllatos has he Lagrngian L = mx%/2 — ka2,

Suppose you did sl kaow the solution to the motor, but reahized tar the motion

mast o perwdie mid herefore could be destribed by o Fourter sanes of the form

xie) = za, <0s Jeot,
J=i
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15,

b

kS

(taking 2 = O &t o turning point) whese o is the funknown) mgular frequency of e
mation, This representation for x{¢) defines a diany-parameter path for the system
point in configuration space. Consider the acdon integral § for two poitis, f; and &
sepasated by the period T == 27 oo, Show that with this farm for the system path, / is
an éxirerhem for noavanishing x only i a, = G, for j # 1, and onty if e = k/m.

A disk of radwss R rolis without slipping inside the stationary parsbota y = ax2. Rind
the aquatigns of constrain;. Whar condition allows the disk to w0l 5o that it touckes
the paraboly at ane and osly sae point mdspeadent of its pasition?

A paricle of aass m o mspended by 2 massioss spring of leagth L. 1 hangs, without
winal mouon, in & graviistional field of strength g- It is struck by an impulsive hor-
rzoneal Blowy, whish wiroduces oo atgular velocilty e, If o 15 sufficrently small, it is
obviows that the mass moves 25 3 semple pendulim. I o bs sutficlently lerge, the mass
will rotafe aboet the support. Use o Lagrange multipher ro detersne the conditions
vnder which the string Becomes siack at sone poind op the motion,



CHAPTER

Ky

The Central Force Problem

In this chapter we shalf discuss the problem of two bodies moving under the fa-
Hluence of & mutual central foree 48 an application of the Lagrangian formulation,
Not all the problems of central force motion are integrable in terms of welt-knewn
functions, However, we shall artempt (o explose the problem as thoronghiy as is
possible with the (ools already developed. In the last section of this chapier we
consider some of the complications that foltow by the presence of a third body,

REDUCTION TO THE EGLIVALENT ONE-BODY PROBEEM

Consider & mOROgenic system of two mass poims, iy and sy (of. Fig. 3.1%, where
the only forees are those due to @0 inleraction poential U, We will assume at first
that {f is any function of the vector between fhe rwo particles, To — 1y, or of their
relative velooity, £7 - by, or of any highes dmvamcs of ¥y ~ n Snch & ay.;crﬂ
s six degrees of freedom snd hence six P

We cheose these 1o be the three components of the radzus WECIOT (o lhe center of
vouss, R, plus the three components of the difference veetor ¥ = ¥z — rp. The
Lagrangian will then bae the form

L= PR H -~ U E,. 0. 3an

FEGURE JI  Coordinatas for the two-body problem.



3.1 Raducton to the fquivalent Ore-Body Problen n
The kinetic energy T can be writien as the sim of the kinetic energy of the
motion of the center of mass, plas the kinetic energy of motion about the ceater
of mass, T':
T gy 4 ma) R+ 17
with
T bt o+ matf

Here £} and ¥, are the nadii vestors of the two particles relative to the center of
mass and are related to rhy

14 = e,
ap b my
P an
iy by

Fupressed in werms of 1 by means of Bg. (3.2), T/ takes on the form

P e LT 2
2y + 2
and the total Lagrangian (3.1} is
myrmyey 1 omomy .
Lo 2T TERE e BLR e L 5.3
= +2m1+m: {rd, ... {3.3)

1t is seen that the three coordinates R are cyclic, 5o that the center of mass
iy either ot rest of moving uniformly. Nonc of the equations of metion for ¢ will
coptain terms involving R or R. Consequently, the process of invegration is par-
Heularly simple here. We merely drop the first terts from the Lagrangian in all
subsequent discussion.

The rest of the Lagrangian is exactly what would be expected if we had a fixed
center of foree with a single partele st a distance ¢ fron §t, having a mass

mm

et 4
* my + Gh

where i is known as the reduced mass. Frequently, By, (3.4) i written in the form

11

— (3.3
wome o omy

Thus, the central force metion of two bodies about their center of raass can slways
be reduced to #n equivatens one-hody problem.
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3.2 M THE EQUATIONS OF MOTEON AND FIRST INTEGRALS

We now restrict ourselves (¢ conservative central forces, where the potential is
¥{r), a fupetion of r only, so that the force s afways along r. By the results of
the preceding section, we need anly cousider the problem of 2 stagle particls of
reduced mass m moving about a fixed center of foree, which will be ke 23 the
orrgin of the coordinate system. Since petential energy fmvolves only the radisl
distance, the problem has spherical symumenry; e, any sotation, about any fixed
axis, can have no effect on the solution. Hance, an angle coordinate representing
sotation 2bout & fixed axis most be cyclic. These symmetry properties result in a
considerable simplification in the problem.

Since the problem is spherically symmetric, the waal angular momentam vec-
or,

Lsrxp

is conserved. Tt therefore follows that £ is always perpendicilar to the fixed dirce-
tion of £, in space. This can be trae only if ¥ always Tes in 2 plare whose normal
is parailel to L, While this reasoning breaks down if L is 2e20, the motion 1 that
case must be along a straight line going through the center of force, for B =
requires ¥ to be paraliel 1o F, which can he satisfed only in siraigh-line metion *
Thus, central force motion is always motion in a plane,

Mow, the motion of a single particle in space is described by three coondinates;
in spherical pelar coordinates these are the azirmuth angle &, the zenith angle (o1
colatitude) o, and the radial distance r. By choosing the polar exis o be i the
directon of L. the metion s always in the plane perpendicular to the polar axis.
The coordinate o then hias ondy the constant value 77 /2 and can be dropped from
the subsequent dxacusamn The conservation of the angulur momestum vector for-
sishes three indep of motion {corresponding 1o the three Carte-
sian components). Tn effect, fwa of these, expressing the constant direction of the
angelar momentum, have been used to reduce the problesm from Guee 10 two de-
arees of freedom. The third of these constants, comresponiding to the conservalion
of the magnitade of L, remaing st at our disposal in compledng the sofusion.

Bxpressed now in plane polar coordinates, the Lagrangian is

=T - ¥
= bm(7? b P48 V() 3.6}

As was forseen, 8 i 8 cyclic coordinate, whose covespending canenical momes-
tum is the argolar momenturm of the syskem:

s :Z —

*Earkally F = iy + g, Botce ¢ o £ o 0 tequires & o B



12 The Equations of Motion and First integrals 73
One of the two equations of motion is then simply
Ao
Pa == o (mr 9) am ), (&%)
with the inunediate integral
w6 = 1. A8

where [ is e constant magnitnde of the angrler momentum. Prom (1.7} 15 also
follows that

LA TAN
i (2r 9) = L a:

The factor 4 is inserted because §7% is just the areal velocity—the avca swept
out by the radias vector per uait time. This interpretation follows from Fig, 3.2,
the differsntial area swept out in time dr being

da = br(r 2,

and hence

da 1 ,d8

e 32 P e

dt 2 dr

“The conservation of angutar momentin is thus equivalent 1o saying the areal

veloeity is constant. Here we have the proof of the well-known Kepler's second
aw of planetary motion: The radius vecior sweeps ot equal dreas in equat times,
it should be emphasized however that the conservation of the sreal velacity is 2
generad property of central force motion snd is not restricted {o an inverse-squars
Taw of force,

7

FIGURE 3.2 The avcs swept out by te radivs vector i a time dr.
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The remeining Lageange equation, for the coordiaate r. 15

4 . ]
E"””_ mrd® + w

P {3103

Designating the value of the force along r, —8V/2r, by f{7} the equation can be
TEWTHHER #%

mi— mrd? = Fir). {311}

By making use of the first integral, By, {3.8), & can be efiminated from the cqua-
tiop of metion, yieiding a second-order differential equation involving r only:

T Sl FERYAY

There is anather first integral of motion available, numely the total energy,
singe the forves are conservitive. On the basiy of the general energy conservation
theorem, we can immedsalsly state thal 4 constant of the motion is

E = $mfi? + 0%+ Vin), (3.13)

whers £ 15 the energy of the systemn. Alternutively, this first integeal could be
derived agaln dizecly from the equations of wmotion (3.7) and {3.12). The latier
can be written as

. Fi 17
mr--AE:(V+§;‘;i}. (3.143

If both sides of Eq. {3.14} are multiptied by 7 the left side becomes

g1
wif o (i)

‘The right side similarly can be woitten as a wial 5me derivetive, for if g6} is any
funetion of r, then the total dme derivative of g has the form

z #} ==
a1 v

Hence, Eg. {3.14) is equivalent 1o

401 d 1N
iy s ) LA X T L
dr (Zmr ) dr( +2mr2)
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and therefore

P i
Gt gy + Vs comsant. 13.1%)
Equation (3.15) it the statement of the conservation of total energy, for by us-
ng (3.8) for £, the middle term can be writien
L8 nE
Trmr  dmel
and {3,159} reduces (o {3.13),

These first two niegrals give us ia effect two of the quadratures necessacy o
camplete the problem. As there are two vatiables, r 4nd #, a tolal of four inte-
grations are needed 1o Selve the equations of motion. The first two integrutions
Tusve oft (he l,agrangc eqnauuns as two first-order equations {3.8) and (3.15); the

o can be accomplished {formally} in a variety of ways.
Perhaps wie simplest procedure starts from £q. (3.15). Solving for 7, we have
2 2
fox [ [ B =¥ - s :
Fay (E 2».,—1)' (3,16}

oF

dy == —dr——« {347

2lE-v- i)

ALtime t == 0, 1ot r have the inftial vaiue rg. Then the integral of both sides of the
equation from the initial state (o the state 2t time ¢ tukes the form

f " dr

tm ] mr———
w lifg v £
V3 (g-v L)
As it stands, Bq. (3.18) gives ¢ as a function of r and the constarss of integration
E, 1. and ry. However, 1t may be inverted, at least formally, to give v as a function

of ¢ and the consmms, Onge the solution for r is found, the solution 8 follows
smenediatety from Eq. {3.2) which can be woitien a8

{318y

df = (219

T the initial value of @ 3 6y, then the integral of {3.19) is simpty

aszf U, (3.20)

mr«{f}
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Equations (3.18) and (3.20) ;e the 10 refieining ml:gnmons, and fumna!iy
the problem has been o , with four £,
1, ny, Bp. These consiants arfe not the nn!y Ones thas can be cunsnéered We mdpht
equally as well have taken r, B, F4, 8y, bt of course E and { can always be doter-
mined in terms of this set. For imany applications, however, the set containing the
encrgy and angular momenturh is the patural cne. In quantum mechanics, such
constants as the inital values of r and 8, or of 7 and £, become mesningless, but
we can still talk in rerms of the system energy of of the sysiam engular Mmomen-
rim. Indeed, two salient differences between classical and guantum mechagics
appear in the properties of £ and { in the two thearies. [n order o discuss the
trapsition to guartium theories, it is therefore important that the classical descrip-
tion of the systers be in terms of its energy and angylar momentum.

THE EQUIVALENT ONE-DIMENSEONAL PROBLEM;,
AND CLASSIRICATION OF ORBIFS

Although we have solved the one-dimensional problem formally, practically
speaking the integrals (3.18) and {3.20) are usually quite inmanageable, and in
any specific case it is often more convenient 10 perform the integration ky some
other fashion. But before obtaining the selution for any specific force Jaws, let
us see what can be leamed abowt the motion in the genersl case, using only the
equations of motion and the conservation theorems, withowt requiring explicit
sohutions,

For exumple, with & systemn of known ensigy wid angular momentum. fhe mag-
witude and direction of the velocity of the particle can be fmmediaiely Setermined
in terrms of the distance r. The magnitude » fultows at once from the conservation
of energy in the form

ve= 3(E Virn. {321)
m

“Thi radial velacity—the component of I along the radius vector-—-has been given
in Bg. {3.16), Combined with the megnimade v, this i3 snfficient information to
farnish the direction of the velocity.* These msu!ts and much more, can also be
ohtained from. ¥ ion of an equival ional proble.

The sqaation of motion m r, witn § expresyed in terms of §, Eq. (3.12), invelves
only roaud He delvatives. I is the same equation as wonld be obtaned for a

\ the ot sngular frmishes &, the angufar velacisy, 2nd this 10
gather with £ givas borh the magattude snd direction of £,
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fictitlous ane-dimensional problem in which a panticle of mass m is subject o a
force
”
Flom f ooy (323
mr
The significance of the additional term is clear if it i wrtien as nerf? = maulfr,
which is the familiar centrifugal force, Ap equivalent stateiment can be obtained
from the conservation theorem for anergy. By B, (3.15) the motion of the particle
f r ig thit of 2 ene-dimensional problem with a fictidons petentnl energy:
I

Vi Vg

g 3.23"
2mr? ¢ ’

As acheck, foie that

. By Id
F=—gr=find o

which agrees with Eg. (3.22). The energy conservation theorem (3.15) con thus
also be written as

E= V' fat. (3159

As ars iHustration of this methed of examining the motion, consider 2 plot of
¥’ against r for The specific case of an attractive toverse-square law of force:

(For positive k, the minus sigh chsbres that the force is /oward the center of force.)
The potential energy for this force is

vk,
¥

ard the corresponding fiotiticus potendal is

5 8
V' .
P

Such & plot i shown in Fig. 3.3; the two dashed Jines represens the separate com-
poments

and the solid ling is the sum V7.
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FIGURE 33 The equivalent one-dimensionat palental for aftractve imveme-square law
of force,

Lt us consider now the mation of & particle having the energy E;, as shown in
Figs. 3.3 and 3.4, Clearly this puticle can aever come closer than vy (¢f. Fig. 3.4).
Otherwise withr < ry, V' exceeds £, and by Eq. (3.15") the kinetic energy would
have to be negative, comesponding to 2n imagisary velosity! On the other hand,
there ig no upper limit to the possible valus of r, 5o the orbit is not bounded. A
particls wilk come in from infaicy, suike the “repulsive conuifngal barrier” be
repelied, and travel back oot to infinity {cf. Fig. 3.5} The distance between E and
V'is ’imt‘z. i.e.. proportional to the square of (e radial velacity, and becomes
zero, naiuraily. ot the furning poinf ry. At the same time, the distance between E
and ¥ on the plot is the Kinotic enezgy {my® wt the given value of r. Hence, the
distance between the ¥ and ¥ carves i3 Smer?07, These carves therefore supply
he magnitude of the particle velocity and #s companents for any distance r, at the
given energy and angular momentum. This information is sufficient to produce an
appioxinate picture of the form of the orbit.

For the energy Ep = O {cf. Fig. 2.3}, a roughly similsr pictare of the orbit
hehavior is obtained. But for any fower energy, such as Es indicated jo Fig. 3.6,
we have 4 different story. Tn addition 10 2 fower bound ry, there i also & maxknom
value ry that cannot be exceeded by r with positive kinetic energy. The motion is
thet “hounded,” and thers are two frming poims, £ and £, also known as apsidal
distances. This does not necessarily mean that the orbim ure closed. AN tat can
be said Is that they are bounded, contained between twa circles of tadios ry and
rq with tuming points atweys bytng on the circles {ef, Fig. 3.7,
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FIGURE 3.4  nbounded moticn at positive energisy e mvepss-square law of foice.

FICHRE 35 The ortst for £ corresponding t vnbounded motion.
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£y

FEGURE 3.6 The equival i poecatiyd for b &t Inw of fores,
Whestrating ounded mofion 81 negarve chergies,

If the enexgy ¥ Eq at the minbaum of the fctitious potential as shown is
Fig. 3.8, ther the two boundz coinesde. fn such case, motion is possible at only
one radi = (3, atud the orbit is & clicle, Remembering that the effective “foree”
is the pegative of the slope of the V' cnrve, the requirement for circular erbits is
spaply that 7 be zero, of

‘e have here the familiar elementary condition for a gireular othit, that the ap-
phied force be equal snd opposite o the “reversed effective force” of centtipetad

FIGURE Q.Y The nature of the aebits for bounded motion.
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Ey

FIGURE 38 The equvak 3 potential of quare aw of force,
Hlustrating the condition for circular orbits,

aceleration.® The properties of circuiar orbits and the conditions for them will
be studied in greater detutl in Section 3.6

Note hat all of this discussion of the otbits for vavious epergies has bean at
ong vadue of the angular momenturm. Changing ? changes the guantiative detatls
of the ¥ curve, but it does not affect the general classification of the types of
orbits.

For the atmactive inverse-square law of force discussed above, we shall see
that the orbit for £y is a hyperbola. for Ey a pambola, and for £y mn eflipse.
With other forces the orbits may not have such simple Torms. However, the same
gewernt qualitative division into open, bouaded, and circalwr orbits will be ue
for any stttactive potendal that (1) falis off stower than 1/r® as 7 > 0o, and
(2} becomes infinite slowey than 177 g5 r -+ B, The first condition ensures fhet
1he potemial predominates over the centrifugat term for farge r, while the second
cotdition it such that for smalf » it is the centrifugal term that is important.

The qualitative matare of the motion wilt be altered if the potential does nat sat-
isfy these requiremenis. but we may still use the method of the equivadent poten-
tial to examine features of the ofbiis. As o example, let vs consider fhe attractive
potential

3
Viry= —%, with f:m;j;.

The energy diagean: is then as shown in Fig. 3.9. For s energy E, thewt art two
possible types of motion, depending upon the initial vadue of r. If ry is less than
ry the motion will be hounded, + wilt always rmain less than ry, and the particle
will pass through the center of force, If 7 is iitialiy greater than 7, then it will

"rhe case £ < Eg does ol corespond o physically prisdble sonon, for then % wonld have 10 be
negasive, o7 7 sginary.
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FIGURE 39  The equwalent one-dimensional potenigl for an agractve inverse-fourth
$aw of force

abways remaln so; the motion i unbounded, and the particle can never gel inside
the “poential” hole. The initial condition ry = rp < ry is again not physiedily
possible.

Asncther interesting example of the method occurs for a linear restoriag force
{isctropie batmonis oscillator):

F o= kr, ¥ = ékrz.

For zera angular momentus, cormesponding o moticn alang a straight fine, ¥ =
V und the siteatian i3 as shown in Fig. 3. 10, For any positive enevgy the motion s
bounded apd, 4s we know. simple harmenic, ' f # 0, we have the ssate of affairs
showa ia Pig. 3.11. The motien thes i3 always bounded for af physically possible

[p—

FIGIRE 330 Bfiective poreyual for 2860 apguinr momentym,
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FIGURE 311 The equivalent one-dimensional poential for & Tnear rertormg forea,

energies and dees not pass through the center of force. In this particuler case, itis
ensily scen (hat the orbit is elliptic, for if £ » ~kr, the x- and y-components of
the force are

o= wkx, Fo=—ky.

The total motien s thes (e resuliant of two simple harmonic oscillatioss ut right
angles, and of the syme frequency, which i general leads to an elliptic otbit

A well-known example is the spherics) pendolum for small amplitedes. The
familiar Lissajous figeres are obtained s the composition of two sinusoidal os-
ciltations at right angles where the 1atic of the frequencies i ¥ rational mumber,
For two osclliations at the same frequency, the figure s a straight line when the
oscillations are in phase, a circle when they are $0° out of phase, and an elliptic
shape otherwise. Thus, centoal force motion wnder a Eoear restoring fore there-
fore provides the simplest of the Lissajous fignres.

THE VIRIAL THEOREM

Another property of central force motion can be derved as a special case of 2
general thearem vaiid for 2 Iarge vaviaty of systems—the viviaf theorem. Tt differs
in character from the theorems previensly discussed in being starisical i najure;
L.e., it s concerned with the time averages of various mechanical quantities,

Consider 2 general system of mass pointe with position vectors v, and applied
forees F, i ding any forces of int). The fund; ] jons of mo-
tion are then

Pe = ¥y (133

We are interested in the guantity
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whese the sunwnatios is over all particles in the system. The toral time derivative
of this quantity is

4G N .
D ILE R A (223
i ¥
The first term can be transformed to
b= Dy b= om0,
g T T
while the second ternm by (1,33 is
oboen =Yk
: v
Equation £3.23) therefore reduces to

P
SR =+ Fox (.24
: ‘

The time avernge of Eq. {3.24) over u time imerval ¥ 15 obuained hy integrating
both sides, with respect to 1 from 010 7, and dividing by 11

PorTaG Fic————
:fa ;;a:gﬁ_zrfrz:m-n

or
e ]
zr+gy, 3= G - G} (3.25)

H the motion is periodic, i.6., af] coordinates repeat affer a certain tme, and if ¢
is chosen to be the period, then the tight-hund side of (3.25) vanishes, A sirnilar
conchsion car be reached even if the motion is not pertodic, provided that the
coozdinates and velosities for all particles remain fnite 3o that there Is an upper
hound to G. By choosing 1 sufficiently long, the right-hand side of Eq. (3.25} can
he martde as small as desired. In both cases, it then follows that

= t
T 3 ;l 7. (3.26}

Equation (3.26) is known as the viria] theorem, and the right-hand side s calied
ihe virial of Clausiys. In this form the teorer is imporant in the kinetic theory
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of gases since it can be used to derive ideal gas Iaw for perfect gases by means of
the following brief argument.

We consider & gas consisting of ¥ atoms confined within a container of vel-
ume V. The gas is forher assumed o be al a Kelvin temperature T (no! w be
confused with Lhe syzahol for kinetic energy). Then by the equipartition theorem
of kinetic theory, the average kinetic energy of each atom s given by %-kgT, kg
being the Boltzmana constant. & relaton that in sffect is the defimition of temper-
ature. The lefi-hand side of By. (3,26} is therefore

ENkpT

On the right-hang side of He, (3.26), the forces ¥; include bow the forces of
interaction between atoss and the forees of consiraint on the system. A perfect
gas is defined as one for which the forces of interaction conwibute negligibly to
the virial. This oocurs, e 1€ the gas is s0 tenuous that coilisions between atoms
veeur rarely, compared 1o collisions with e walls of the contaiver. It i5 these
walls that constitate the constraing on the system, and the forces of consteaing, Fe,
are localized at the wall and come into existence whenever a gas atom cotlides
with the wall. The sum on the right-hand side of By (3.26) can therefore he re-
placed in the average by an integral over the surfrce of the container. The force
of consteaint represents the reaction of the wall (o the collision forces exerted by
the stoms on the wall, $.e., to the pressure £ With the nsual outward conventior
Tor the vnit vector 1 in che durection of the normal to the surlnee, we can therefore
write

o, = —PrdA,

1 Is
EX_:F"“—:WEIH'MA

Bat, by Gauss's theoren,
fx:-n.ift = vardV =3V,

The virial thearern, Eq. (3.26}, for the systemn sepresenting a perfect gas can there-
fore be written

INkgT = §PV,

whick, cancelling the comsmon factor of g on both wides, is the familiar ideal
gas law. Where the intesparticle forces contribute to the virial, the perfect gas
1aw of course ne fonger holds, The virial theorem is then rhe principal too!, in
classical kinetie theory, for calenlating the squation of state ding to such
imperfect gases.
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We can further show that if the forces F, are the sum of nonfrictional forces Ff
and friettonal forees §; proportional 1o the velocity, then the virial depends only
on the ¥7; there s no contribation from the £ OF course, the molion of the system
must not be allowed to die down as a result of the frictional forces. Energy must
constantly he pumnped into the system t0 maintain the motion; otherwise all time
averages would vanish as ¢ increases indefinitely (of. Derivation 1.)

if the foroes ave derivable from u potential, then the theoremn bhecomes

P
3L Gam

and for a single particle moving under 2 central force it reduces to

= 1a¥
T=ygor 3.28
3" {3.28)
H V is a power-law function of r,
Vo= ar?H-l‘

where the exponent is chasen so that the foroe law goes a5 »™, then

i‘ir = {rt 4 11V,
&r
and B, (3.28) becomes
T ’-'-;-EV, (329

By an application of Eoler's theomm for homogenaous functions (cf, p. 82, itis
clear that Fig. {3.29) ulso holds whenever V is & homogeneous function in r of
degree n -+ 1. For the further speciel case of inverse-square law forces, # is -2,
sind the visial theorem takes on a weli-known form:

i

Fa ol

<

. £3.30)

THE BIFFERENTIAL EQUATION FOR THE ORBIT,
AND INTEGRABLE POWER-LAW POTENTIALS

n treating specific details of sctual central force problems, a change in the orien
tation of our discussion is desimble. Hithero solving a problem kas meant finding
¥ ant & us functions of tme with £, {, etc., 85 constantt of integration, Bt most
often what we rmaly seek i the eguation of the osbit, i¢., the dependence of 7
upon &, elpninating the parameter {. For central force problems, the elimination is
particutarly simple, since ¢ ocours in the equations of motion only as a vadable of
differentiation. Indeed, one equation of motion, (3.8}, shuply provides 2 definite



3.5 The Differantial Equatton for the Qrbit 87

refarion hetween # differential chunge df and the conesponding change J6:

tdt = mi® 4. BN
The corresponding relation between derfvatives with respect 16 ¢ and 8 js

d i 4

—am—— 3,32

gt mrt dé B30
These relations may be used o convert the equation of metion (3.12} or {3163 to
& differential equation for the orhit. A swhstitution into Bg. (3.12) gives a second-
order differential equation, while a substitatien into Eq. {3.17) gives & simpler

first-order differsntial equation.
The sebstination into By. {3.12) yields

1d /1 dr 7
) (m ;5) =3 631

which vwpon substituting & = 1/+ and expressing the reselts in terms of the poten-
tiaf gives

d md i
B A EA D 334
PR 2 du (u) a3

The precedmg equation & such that the resolting orhit is syrumetrie ahout tvo
adjacent tuming points. To prove this statement, nofe that if the orbit is symmei-
rical it showld be possible w reflect it ebout the ditection of the teming angle
without producing any change. I the coordinates are chosen so thet the ruming
point occurs for 8 = 6, then the reflection can he effected mathematically by
substituting —& for 6, The differential equation for the orbit, {3.34), is obviously
invariant under such g substitation. Further the initiat conditions, here

du
PETHUY (d9)070' forg =0,
will likewise be unaffected. Hence, the orbit squation muost he the suwe whether
expressed in lerms of § or —{, which is the desired conclusion. The orbit is there-
Jfore invariant under veflection about the opridal vecrors, In effect, this means that
the eomplete orbit can be traced if the portion of the orbit hetwesr any two turning
poins is known. Reflection of the given portion about one of the apsidul vectors
produces u neighboring streteh of the orbir, and s process can he repeated in-
definitely until the vest of the orbit is completed, as ilfostrated In Fig. 3.12,

For any particolar force law, the actual equation of the orhit can he cbtained by

sliminating ¢ frorm the solution (3.17} by means of (1313, resulting in

P L A 339

mﬂ‘i;’ - Vi) - g;i,}
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FIGURE 312  Exiension of the orbit by refection of a portion about the apsidal vectors.

With shight rearrangetsents, the inregral of (3.35) s

v dr
[ S —— X
f e + 8o (.36
A RTINS
ox, if the varfable of intepration s changed low = 1/,
" d.
Gseomf SR — a3m

Ag in the case of the sguation of motion, Bq, (3.37), while solving te problem
formaly, is not always a practicable solution, becanse the integrel often cannot be
expressed in terms of wel-known functions. In fact, only centain types of forcs
taws bave been investigated, The most imporrant are the power-law fanctions of 7,

Vo= apit (3.38)

s that fhe force varies at the mh power of r.* With this potential, (3.37) hecomes

Bty | mm—— (3.39)
oy JIE g, o

‘This again is imtegrable ip terms of simple funetions only in certadn cases. The
partieutar powet-law exponents for which the results can be expressed in terms of
wigoaometric functions are

g=1,-2,-3

*The east = ~ | 15 to e excluded o dhe discussion. I the potntal (3.38), 1 ooresponds 10 a
comstanl potewial. 12 10 farce st il f s am copolly ancmalons cast € tho S5ponent 45 W i he
fiopee Jaw direcsly, wnoe 4 furve varying a5 r= corresponds to  lagandhmic poteniial, which i ok &
povier faw ol AL, A logardrn poiential b wnosoat for seotion about & poine, #§ is more

of a line sousce. Fusther detaits of these cases arc geven i 1he second edition of (s Tt
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The resalts of the integyal for

nw83,0, -4, -5 -7

can he gxpressed in terms of efiiptic ions. These are all the possibilities for an
integer exponent where the Formal integrations are expressed in terms of simple
well-known fanctions. Serte fractional exponends can e shown to lead to eltipic
functions, and many ofher sxponents can bs exprossed in terms of the Byperge-
ometric function. The wigonometrc and eRipical functions are special cases of
generatized hypergeometric function tntegrats. Equation (3.39) can of course he
numetically integrated for any nonpathological potential, but this is heyond the
scope of the rext.

CONDETIONS FOR CLOSED ORBITS (BERTRAND'S THEOREM)

We Bave not yer extracted sff the information that ean be obtained from the eguiv-
alent one-dimensionat problem or from the orbit egnation without explicitly solv-
ing for the motion. In particular, it is possible 1o derive a powerful and thought-
provoking theorem on the types of atwactive central forces that fpad 10 Closed
orbits, ie., orbits in which the purticle eventually retraces its owa footsips.

Conditions have already been described for one kind of closed orhit, namely 2
citele about the center of force. For any given I, this will oocur if the sguivalent
potential V'{r} has a minimum or maximum at some distance rg and if the energy
E v just equat 1o ¥/ {r). The requirement that V' have an extrermum is equiva-
lent to the vamshiag of /" at rp, leading 10 the conditton derived previously (cf,
Section 3.3},

lZ
Firm) = =g, (a0}
mru

witich says e force must be attractive for sircutar orbits to be poassible, In addi-
ton, the energy of the particle must be given by

b2
E = Vi) + %rﬁ‘ (341
which, by B, (3.15), cormesponds to fhe requirement that for # circular orbit £ is
zego. Equations {3.40) and (3.4} ave hoth elementary and familise. Between them
they imply that for apy attractive central force it is possible to have a ciroular
othit at some athitrary radbus rg, provided the angular mormentam [ is given by
Eq. {3.40) and the particle enerky by By. (3.41).
The character of the circular erbit depends on whether the extremum of ¥ is
W mieimem, 28 in Fig. 3.8, or s maximum, as if Fig. 3.5. ¥ the energy is shightly
above that tequized for a cirowlar orbl at the given vaiue of £, then for a minimum
in ¥’ the motion, though no longer circular, will stifl be hounded. However, if
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V' exbibits 3 maximum, then the sfightest raising of £ above the clroviar value,
Edq. (3.34), reschs in motioy that is unbounded, with the particle moving both
theough the center of force and out t6 infinity for the potential shown in Fig. 1.9,
Borrowing the terminology from the case of static equilibrinm, the circular orbit
arising in Fig. 3.8 is said 1o be steble; that in Fig, 3.9 is unseable. The sability
of the circular orbit is thus determined by the sigm of the szcond derivative of ¥
at the radius of the ciscle, hemg stable for positive second derivative (¥ concave.
up) and unstable for ¥ coneave down. A stable orbit Lherefore occars if

#ty i 3
-—Z B =0 (342)
IS . W |y mrl
Using Eq. {3.49), this condition can he wriren
A a5
[ Nu— fa
ar
dla f -
Fr |, 7 49

ey

where f{ry)/rg is assumed {0 be negative and given by dividing Eq. (3400 by .
I the force hehaves Tike a power law of r in the vicinity of the circwlar radius sy,

= kT,
then the stability condition, Eq. (3.43), becomes
—fp™l e 3l
or
nw -3, (3}

where k is sssumned to be positive. A power-law attractive potential varying more
slowly than /7% is thus capable of stable ciroutar orbits for all values of rp.

1f the circular orbit is stable, then a yinall increase i1 the particle energy above
the vafue for 2 civeula obit reswlis in only a slight variation of r about rg. % ¢an
be easily shown that for such smalt deviations from the circularity canditions, the
particle executes a <imiple barmomc moton 1 eis 1/r) shoal ug:

= g+ ooes B9, (3.45)

Here a is an amplitede that depends upon the deviation of the esersy frotn the
value for circulae orbits, and f is 8 quaniity arising from a Taylor series expansion
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of the force law Fir) ubout the circular orbit radiug ry. Direct substitption it the
foree law gives

Fa=ib L] (3.46)

As the radius veetor of the pasticle sweeps completely arcead the plane, ¥ goss
throggh £ cycles of jts oscillation (cf. Fig. 3.13). If § is a rational nurther, the
ratio of two integers, p/q, then after g revolutions of tbe rading voclor the orhit
would begin to retrace itself so that the orbit is closed,

At each ry such thar the inequality in Ho. (3.43) is satisfied, it is possible to
establish 4 wable circular ovbit by giving the pardele an indtial energy and angutar
momentum prescribed by Egs. {3.40) and (3.41). The question nuturally drises as
to what fovm the force law must ke in ovder that the shightly perturbed orbit shout
any of these cirentar orbits should be closed. Nis clear that under ihevs conditions
£ must not only he # rationsd number, it must alse be the same rational anmber at
all distances that & circular orbit is possible. Otherwise, since § can take on only
diserete values, the number of oscillatery periods would change dismminmusl{
with rg, and indeed the orbits condd not be closed af the discontinuity. With §
everywhere conitant, the defining equation for ,52, Eq. {3.40), becomes in effect
a differential equation Tor the force law f in terms of the independent varable ry.

We can indead comsider Eg. (3.46) to be writlen in terms of r if we keep in
mind that the equation is valid ooty over the ranges & r for which stable chioglar
orbits are possible. A sHght rearrangement of £q. (3.46) Jeads to the equartion

dinf g3, (347)

dhar

FIGURE 303 Orbet fix tantion b # centrul force deviating shiphdy from a circulac orbat
fas fiem 5.
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which can be immediately integrated to give a foroe Jaw:

3
£ =

S (3.48)
Al force laws of this form, with 8 u sationad pumber, lead 10 closed stable orbits
for initial conditions that differ only slighily from conditions defiping a ciroular
orbit Inchuded within the possibilities allowsd by Bq. (3.48) are some familiar
forces such as the inverse-square faw (F = 1), but of course many other behaviors,
suchus f = —kr 2308 = 23 ure also permilied,

Suppose the initial conditions deviate more than slightly from the requirements
for cirsular orbits; will these same foree laws stilf give civeular orhits? The ques-
tion ¢an be apswered directly by keeping on additional 1erm in the Taylor series
expansion of the force law and solving e resultant orbit equation.

I Bertrand solved this probiem in 1873 and found that for more than Srst-order
deviations from circularity, the ozbits are elosed only for 27 = 1 and #7 = 4. The
first of these valwes of £2, by By (3.48), leads 16 the familizr attractive inverse-
square law; the second is an atractive force proportional to the mdial distance-w
Hooke's Jaw! These force laws, and only these, could possibly produce closed
orbits for any arbitrary combination of [ and £(E < 0), and in fact we know
from direet solution of the orbit equation thar they do. Hence, we have Bertrand's
theoreny. The anly central forces that result i closed orbity for adl bowund parrictes
aie the inverse-square law and Hooke's Tew,

This is & rentarkable result, well worth the tedloas algebea required. i is a com-
menplace astronomical observation that bound celestial objects move in orbits
that are in Brst approximation closed. For the most part, the small deviations from
a closed orbit are raceable to pesturbations such as the presence of other bodies.
The prevalence of closed orhits holds true whethes we consider only the solarsys-
tem, or look to the many examples of true binary stars that have heen observed.
Now, Hooke's law is & most unrealistic foree law to hold at ol distances, for it
implies & force increasing indefinitely to infinity. Thus, the existence of closed
oxbits for a wide range of inital conditions hy Hself leads 1o the coscinsion that
the gravitational force varies as the inverse-squarc of the distance.

We can phrase thiy conclsion in 2 skighRy differems manner, one that is of
somewha more significance in modermn physica, The orbitel motion in g plane
cant be looked on as compounded of two oseiliatory motions, one fn r and one
in & with the same period. The character of orbits in o gravitational field fives
the form of the force Tow. Later on we shall encounter other formulations of the
telation between degenersey and the nature of the potential.

3.7 B THE KEPLER PROBLEM: INVERSE-SQUARE LAW OF FORCE

The inverse-square faw is the most important of afl the central foree faws, and it
deserves detatled treatment. For this case, the force and potential can be written
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as

& &
J oy & e, £3.49)
T r
“There are severst ways to integrate the equation for the orbit, the simplest being to
subsdtie (3.49) i the differentiad eqoation for the orbit (3.33). Another approsch
is 4o start with Ba. (3.39) with x set equal o 2 for the gravitations? force

. f R
ﬂ&ﬂﬁé -+ 3'_;!& Wt
where the inmegral is vow taken 5 indefinite. The quantity 87 appearing in {3.50)
is & constans of integration determined by the initial conditions and will not nee-
essarily be the same as (he mita} angle 8 at ime 1 = O The indefinile integral i
of the standaed form,

£3.50)

B+2yx

dx i
s T s UG OO {3.51)
fxfu+,8x+yz1 P i
whers
g = day.
Ter apply this 0 (3.50), we must st
2mE ek
@mis, fal oyl (3.52)

and the disoriminant ¢ 15 therefore

2mk 2 281°
g (TZ) (1 * m;zz)' (3.53}

With these substitates, Eq. (3.50) becomes

& = @ are o (3.54)
Finally, by sclving fou 1w, = 1/r, the equation of the orbit is found to e
1 mk 2E1 y
Pty (l+ 1 s s.os(e--é)). {3.55)

‘The constant of integation & can tow be tdentitied from B, (3.53) v ane of the
tarning aungles of the orbit. Nate that onty three of the four constants of integration
appear in the orbit cquation: this is slweys 8 characteristic property of the orbit. in
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effect, the fourth constans locates Ge initial posiion of the particle on the orbit I
we are interested soleby in the orbit equation, this information is clexly brelfevant
and hence does net appedr it the answer, OF courre, the missing constant has o
be supplied if we wish to complete the solution by finding r and § as fanctions
of tme. Thus, if we choose to invegrate the conservation theorem for angular
monenim,

et dfi = L,

by raeans of £3.55), tre musi additionally specify the initial angle .
Now, the general equation of & conic with one focus at the origin is

% 2= Cf b + geos(d ~ 7], {3.56)

where e i% the eccentricity of the conic section. By comparison with Bq. (3553, 1
Fallows thet the orbit is alweys a sonic section, with e eccentricity

2ER
em Jf+ i (3575

The nature of the orbii depends apon the maguitude of ¢ according to the follow-
ing schese:

el E= hyperbola,

e= I, E=0 parabols,

e<l, E <tk ellipse,
i i

=), Ea 5 circle,

This classification agrees with the qualitative discussion of the arbis on the
energy diagram of the equivalent one-dimensional pateatial V. The conditdon for
eironkar Motion Appears hete in a somewhat different form, but it can casily be
derived ne a consequence of the previous conditions for cirewlarity. For a circular
orbit, T and V are constant in time, and $rom the virial theorem

v v
E¥T+V=w~5+i’n-é-.
Hence
&
[ == 5
E T {3.58)

But from Bq. (3,41}, the statement of equilibrinm between the central force and
the “effective force,” we can write

B

=

Pt
oM
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of

o= {3.59)

With this formuia for the orbital radius, Bg. (3.58) becomes.

mk?
E=
the above condition for cireslar motion.

In the case of eHliptic orbits, it can be shown the major axis depends solely
upon the enargy, & theorem of considerable importance i the Boir theary of the
abowl. The semimajor axis is one-balf the sum of the two apsidal distances 7| and
ry (of. Fig. 36}, By definition, the radial velocity £ zero at these points, and the
vonservation of energy implies thut the apsidal distances are therefore the roots of
the eguation {cf. Eq. (3.55))

E # L
P
or
k i
2 Lp o e
I (360

Now, the cosfficient of the lnear wrm i 4 quadrafic equation s the negative of
the sum of the ronts. Hence, the seadmajor axiy is given by
ity k
LT 3.41
2 oF G610
Note that in the circelar Hmit, Bg. (3.81) agroes with Fg, (3.58). [n terms of the
sermimajor axis, the eceentricity of the cllipse can be written

(385

(a refation we will have use for in a later chapter). Further, from Eq. (3.62) we
have the expression
2
e (] - ), 13.63)
nk
in teres of which the elliptical orbit eguation (3.35} can bo writien

Ltk
T ot~ 8 @54



46

Chapter 3 The Central Force Problem

FIGURE 314 Fllipses with the vame major asey snd secentocitios from (0w 0.9,

From Eq. {3.64), 11 follows that the two apsidal distateey (which ocour when 98"
is 0 and x, respectively) are equal to a{l ~ &) and a{l -+ £), as 8 to be expecied
from the properties of an effipse.

Figure 3.14 shows sketches of four ellipticat orbi with the same major axis
«, and henee the same energy, but with ecoentricities £ « 0.0, 8.5, 0.75, and 0.9
Figuse 3,15 shows how ry and ry depend on the eccentricity £,

The velootty vector v of the particle along the elliptival path can be resolved
00 4 racial COMPOnEnt Uy = T = prfar plus a0 angubur component ug = rff =
ifmr

i = ud + ved,

‘The radial compouens with the magnitnde v = fwpsing/(f — sz} wanishes
al the two apsidal distances, while vp attains its saxbnam vubue at perihelion
and its mintrim 2t aphelion. Table 31 lists angolar velocity velues at the ap-
sidal distances for several ecoentricities. Figure 3,06 presenss plots of the ra-
dial velotity component vy versus the radiug vector ¢ for the half eycle when
v points outward, L.e.. it is positive. During the remaining half eycle vr is negar

ophehon, discapce

pesitelion distrace

a4

£

FYGURE 3185 Dependence of nurmatized apudal distances #y {lower fine} and r; (upper
Line) an the eceentaeity &
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TABLE 3.} Normatized angular speeds 8 and ug = ré at perihelion (r}) and sphebion
{ral, respectvely, m Keplerian orhits of vanos ecoentnicities {£), The aormatized rudial
distances ut peribelion and aphelon ar bisted i colomns 7 and 3, respectively. The
nocmatization 15 with respect w motion in 4 circle with the radias a and the angulay
momenm | = merg = matly.

Boeemtricity  Perthehos  Aphelive Aagubar speed Lineur angular speed
nia nfa Aty By v v
. 1o i+ ! ! !
fOTeE (R T+¢
0 t ' i 1 ) 1
0. 08 I 1234 082 nil IR
0.3 1% 13 2040 0392 1420 0769
o3 05 15 4000 0448 R0 0667
o7 03 17 TLEE 0346 3333 o9
09 03 19 16GM00 0277 OO0 0526

ve, and the plot of Fig. 3.16 repeats fself for the negative range below vy = 0
{not shown). Figuee 3.17 shows anglogoes plots of the angular velocity com-
ponent vy versus the angle 8. In these plots and m the fable the velocines are
normalized relabive to the quamities w and fp obtained from the expressions
! me2d = mrvy = maty = meup Yor the comservation of angular momentum
it the elfiptic orbits of semimajor axis a, and in the circle of radiva 4,

&3 t 1s

FIGURE 316 Normalizad tadial veloelty, ve, vezlss 7 For thiee valdes of the eecenizic-
ity £,
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24

v=81

£ 03

FIGURE 417 Notmahved ofbual velority, vg, verses & for three valves of the ccoen-

trienty &,

3.8 M THE MOTION IN TIME {N THE KEPEER PROBILEM

The orhital equation for motion in a central inverse-gruare force faw can thus he
sotved in & fairly siraightforwand manner with resube that can be stated in simple
closed expressions. Deseribing the totion of the pasticle in time a5 it raverses the
orbit s however & much more involved matter. I principle, the relation between
the radial distance of the particie » and the time {relative o some Maring poing
i3 glven by Eq, (3.18), which hiere takes on the form

IWJfW

(3.63)

Stmilarly, the potar angle 6 and the time are connected through the conserve-

Hion of angular momentuim,

2
mr

= e g4,
di gd

which combined with the orbit equation (3.51) leads 1o

Y]
o |
mk® _[,;0 {1 + ecos(g ~ 8NF

il

(3.66)

Either of theae integrals can be carried out in terms of elemeniary functions. How-
evey, the relstions are very complex, and their imverginng to give r or § as func-
tions of ¢ pose formidable problems, especiatly whenone wants the high precision

needed for astrononical observatons,

To illustrate some of these involvements, let us consider the situation for
parsholic motion fe = 1), whore the imegrations can be most simply carried
ouk i is customiry o measure the plane polfar sngle from the radiug vector at
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the point of closest approach—a point reost usuxlly designated as the perthe-
fion.* This convention corresponds 1o setting 87 in the orbit equation (3.5} 2qual
tor zevo. Correspondingly, thoe {5 measmred frora the moment, T, of perthelion
passage. Using the trigonometric identity

H-mSH*“stzz

Eg. (3.66) then reduces for parabolic motion in the form

roe e
o | et T,
Gk fp R

‘The integeation is eafly performed by 4 change of veriable o x = tan{@/2),

teading io the integral
;o panle
r:m/g (4 xhdx,
or
f“ir%(“%*;;mi%)‘ Q.67)
In this equanon, ~n < 6 < m, where for 1 ~+ ~oc the particle starts ap-
proaching fromt infinitely far away located &L = ~x. The fime r = § core-

sponds 0 # = 0, whete the particle is af periticlion, Finalty ¢ -» 60 corresponds
i —+ 7 &% the particle moves intimitely far awzy. This is & sraightforward reta-
tian for ¢ as & fapction of &, inversion 1o ohtain & at 2 given dme requires solving
& cubic equation for tnff/2), then finding the comesponding aretan. The radial
distance at a given thne i given thraugh the orbital equstion.

For efliptical motfon, Bg, (3.65) is most conveniently integrated through an
aexibiary varisble ¥, deneted as the eccentric anomaly,* and defined by the refa-
tion

r = a{f — ecos ). (3.68)

By comparison with the orbit equation, (3.64}, it is clear that  alse covers te
terval 0 1o 2 as £ poes through & complete revolation, and that the perthelion
GLouts at = 8 (whete # = 0 by convention) and the pphelion ai wr =m =4,

Laeraiy, the ferm sheud b eancid 0 orbts s the S, ik e e getarsl drm shosld
e pectupsis. Hiowaver, 1 has b fion oo mtter i of force
& Bves for spice craf crbiing the Moos, offcist desceptions of he ochital puraeivss tler ©
pesihelion whers pericytihion wauld be the pedntic tem

“Medicval ustronomens sxpovied the egulas motin 0 be conseat, Fhe angle siculoted by Kl
b s otuge ol veociy (elpefod) by th s vince the fau periblion pumage war
<alled the. toears dnosiraly SRt the anomaly coud be calontaled and then
used 10 calcubits the wrus anomaly, The angle 8 v cafied the true ancmaly st os it was b medieval
DEDORDY,
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Expressing E snd £ in terms of g, e, and &, Bg. (1.65) can be rewsitten for
elfiptic moton &5

P Vfi [ s 6
2% by }__%_upw

where, by the convention on the starting time, rg is the perthelion distance. Substi-
sation of r in teoms of ¢ from Bq, {3.68) reduces this intagral, after some algebra,
o the siraple form

w
j {1~ e cos ) dyp. (370
o

First, we may note that Eq. (3.79) provides an expression for the petiod, t, of
edfiptical motion, if the integral is carmied over the full range in 3 of 21

I 2;:33"2‘/? 371

This liportam seselt cant also be obiained directly &om the properties of an el-
hipse. From the conservation of angular momentum, the arcad velocily is constant
and is grven by

g (3,72}

The ares of the orbil, 4, is to be found by integreting (3.72) over 3 complate
period 7

Bymnn it
Now, the area of an eilipse is

A = wab,
wheze, by the definition of icity, the semiminor axis b is relsted to @ ac-

cording to the formula

By (3.62), the semiminer axts cant also be weitien as

e |

b=a oy
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and the period iz therefure

T = w—vfra ‘!W —lnrs:"’z\/m

e was found previousty, Equation (3.71) statey that, other things belng equal,
the square of the period is proporticsal to the cube of the major axis, and this
copelusion i5 ofien referred © as the third of Kepler's laws ™ Actyaily, Bepler
wis foncethied with the specific problem of planetary motion in the gravitational
field of the Sun. A more praciee starement of this third law would therafore be:
The yquare of the periods of the varions plotiets are proportional w the cube of
their major azes. T this foom, the faw js anly approximately true. Recall that the
motion of a planet ahous the Sun is 4 two-body problem and m m (3.71) must be
replaced by the reduced mass: (¢f, B, (3.47)

Mty
my by’

where my may be taken ax referting to the planet and mo (o the Sen. Further, the
gravitational law of attraction is

ey
£ Gortet,
r
30 that the constant & is
k= Gmying. {373

Under these conditians, (3.71) becomes

mR ¥
e 8 D
SCm v mz) /G

if we neglect the muss of the plaget compared o Bhe Sun. It is the spproximate
version of By, (.74} that is Kepler’s third law, for it states that v is proportional
10 &%, with the same constant of proporionality for all planers. However, the
planetary mass my is not atways complesely negligible compered 1o te Sun's; for
exmnple, Jupiter has & mass of about 0.1% of the mass of the Sun. On the athes
hand, Kepler's third law is fgoroushy tre for she electron orbity in the Bobr atom,
sigee g aod & are then the same for all otbits i 4 ghven stors.

To retun to the geperal problem of the position in thme for an elliptic orbit, we
may rewrite Ba. (3.70) slighily by introducing the frequency of revolution oy as

(3.74)

TKepler's ree luws of plenetasy moticn, putitished aronnd 1640, were the result of hus groncerig
analysiy of phatstiy obsreations ad 1nd the groundwosk for Nowtan's great advances The second
Tawe, the conservatlon ol ased veloolty, 45 & gonorst thenret for contrat fesce manan, &5 has been
nuted previously. However, the sttt the planets movs 5 siliptcal orbits sbour the Ses at s
Tous—and the thivd ace restciceed spscifically to e invetse-quars law of fasce,
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2
ke
r

. {3,783

mal

The integration in Eg. {3.70) s of course easily performted, resalling in the refation
wf = - g st (3,76}

known a8 Kepler's equatéon. The quantity uy goes through the range 0 to 2,
abong with ¥ and 9, in the course of a complete orbital cevolution and is therefore
alss denciad s an anomely, specificslly the mean anomaly.

To find the position I orbit at a given time r, Kepler's equation, (3.76), would
first be inverted 10 obtain the comesponding eccentric anomaly ¢ Eguation (3.08)
then yields the radial distunce, white the polar angle & can be expressed in terms
af # by comparing the defining equation {3.68) with the orbit equation (3.64):

Pead
1 e
R yepre
With & fiwe algebraic imanipulation, this can be simp 0
cos P — ¢

L ] chi

o8 1 - acosy ¢ )
By feely adding and sub g bots sides of B, (3.77) from unity and

taking the ratio of the resulting two equations, we are led fo the altemative form

p [TTF v
gy Py 7
mnz }metazaz (3.78)

Either Bq. (3.77) or {3.78) thus provides 6, once ¥ i known, The solution of
he wanscendental Kepler's equation (3.76) to give the value of ¥ corresponding
10 a given time is & problers that hes stiracted the sttention of many famous math-
ematicians ever since Kepler posed the guestion sarly in the seventeenth cenwry,
Newton, for example, contribated what today would be called an anulog solution.
Tndeed, it can be clatmed thal the practical need to soive Kepler's equation to ac-
curacies of a sevond of arc over the whole range of eccentricity fathered many
of the ip in i i jes in the eigh h and ol h
venturies. A few of the more than 106 methods of solution developed in the pre-
compaier era ave eonsidered I the exercises to this chapter.

23 M THE LAPLACE-RUNGE-LENT VECTOR

The Kepler problem is abso distugeished by tre exi of &n additional con-
served vestor bosides the angular momentusn. For & general central foree, New-
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ton's second law of mokion can be written vectorially as
. r
B S {599)
The cross product of f# with the constant angoeler momsntum vector L therefore
cun be expanded as
pxl="0 iy
r
L (.50
r
Equation (3.80) can be further simplified by noting that
o4 .
L E:ﬂ(lwr) =rF

{ot, in less Formal terms, the component of the velocity in the radial direction is £}
As L is constant, Eq. (3.80% can then be rewriven, after a Rule manipulation, as

d s mmpewt{E T
@ x L= —mf(ryr (r r;)-

or
4 ad (T
Lo xb=mpryis (T (381}

Without specifying the form of f{r}, we can go no further. But Eg. {3.81) can be
immediately imtegrated if F{(r} is inversely proportionat to r2-—the Kepler prob-
lemn. Writing f(r) in the form prescribed by Eg. {3.45), Eq. {3.81) then besomes

which says that for the Kepler problesn there exises o conserved vecror A defined

A=p xL—mkE, asn

The telationships berween the fhree vactors in By (3 82) and the conservation of
& are iltustrated in Fig. 3.18, which shows the three wectors at different positions
in the orbit. Ja recent times, the vector A has become knowa amongst physicists
a5 the Runge-Lanz vector, but priority belongs to Laplace,

From the definition of A, we can easity see that

AL, {3830

since L. is perpendicular to p x L and ¥ is perpendicular to L == r % p. It follows
from this orthogoenality of A 1o L that 4 must be some fixed vector in the phane of
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A ok P opxlL
(AR, I S " et
pxL ke
¥ s
v
pxLi o
A

FIGURE 318 The vectors P, B, and A a7 teee positions i Keplean orbil, AT poirhe-
Yion (exiroms 1Rt} {p x L] = mk(1 +¢} and ar aphelion (extreme tight) [ < L| = pek{s =23,
The vectar A always points i the same direehion with & magnitude mie.

e ofr, 1F B s bsed w Bencte the angle between ¥ and e Hi2d direction of A,
then the dot product of v and A is given by
Aerm Arcosd s ro(p x L} ~ mir. {3.84)
Now, by permutariop of the terms in the triple dot product, we have
ropxEy=L-{txp =~
50 that Ey. (3.84) becomes
Arcostl = 1% - mike,

or

U ak A
2 e — . RS
b Y+ fovs cosB) D35
‘The {.aplace-Runge—TLenz vector thus provides suil another way of deriving the
orbit equation {or the Kepler problem! Comparing Eq. (3,855 with the orbif equa-
fion in the form of Eq. {3.55) shows that A is in the direction of the radivs vectar
10 the perihelion point on the erbit, and bas a magnitude

A = ke, (3.86)

For the Kepler problem we have thus identified two vector constants of the
motion L and A, and & scatar £. Since & vector must have all three independent
camponents, this comespondy to seven conserved quantities = all, Now, a system
such as this with three degrees of freedom has six independent constants of the
motion, comesponding, say to the three components of both the witial position
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and the initis} velocity of the particle. Further, the constants of the motion we
nave found are Al algebmic finctions of r and p that describe the orbil as s whole
{orientation it space, eccentrcity, eic.); none of these seven conserved guastitics
relate to where the particle fu Tocsted in the orbit at the initial time. Since one
constant of the motion mwst refate 1o this information, say in the form of 7. the
time of the peahelion passage, there can be only fve independent constants of the
motion describing the size, shape., apd orientation of the orbit. We can therefore
conclude that not alt of the quantities makiag up L., A. and £ can be mdependent;
there must i fact be two relations contecting these quantities, One sach relation
has already been obiained s the orthogonality of A and £, Bq. (3.83). The other
follows from Eg. {3.86) when the eccentricity is expressed io werms of £ and {
from Eq. (3.57), leading 1o

A% = mPiE 4 2mER, (387

ihos confimming that there art only five independent constants out of the seven,

The angular memenin vector and the energy alone concain only four inde-
pendent copstars of the motion: The Laplace—Runge-Len vector thus adds one
more. It is ramural to ask why there should not exdss for any general cenwal force
Jaw some conserved quantity that together with Lo and £ serves (o defing the orbit
i1t 4 manner siomiiar to the Lapisce-Runge—Lenz veetor for the speciat case of the
Kepler problem. The answer seems to be that such conserved quansifies can in
fact be coustructed, bus that dey are in general rather pecubar fumctions of the
motion. The constants of the mation relating to the orbit hetween them defioe the
orbit. fe., lead o the orbit equation giving + as 4 function of 8. We have seen
that in general orbits for central force motion are nol closed; the argumenis of
Seciion 3.6 show that closed orbus imply rather stringent conditions on the form
of the force taw. Itis 2 propedy of nenclosed orbits that the corve wiil eventoally
pass through any arbitrary {r, &) point that lies between the bounds of the ttoning
points of », Intuitively this can be seen from the nonclosed natare of the orbil; as
& goos around 8 fill eyele, the particle must never 1etrace its footsiaps on any pra-
vious orbit, Thus, the orbit equation is suck that » is a multivalued function of 8
(raodubo 2i 3: in fack, it is an infinite-vedued fune tion of 8. The comresponding con-
served quantity additional to L and E defining the orbit must sisilarly involve an
infinite-valned function of the particle motion, Suppose the r variable is peviodic
with angular frequency o, and the angelar coordinate 8 is periodic with angubar
Frequency ay. I these two frequencies have a ratio (o /oy ) that i an intoger or
integer fraction, periods are said 10 be commensurate. Connnensurate erhits are
closed with the orbiting mass continuelly retracing its path. Whes g > @ the
arbit will spiral about the origin as the distunce varies hetween the apsidal (max-
imum and minimum} values, tlosing omly if the frequencies are commensurate.
1F, &% in the Kepler problon, @, = ., the penods are said to be degenerate. ¥
the orbits are degencrate dhers exisls an additional conserved quantity that is an
algebraie function of 1 and p, such ax the Rungé-Lens vector.

From these arguments we would expect 2 simple analog of such 2 vector to
axist for the case of a Hooke's law force, where, as we have seen. the orbits are
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alse degenerate. This is indeed the case, except that the natural way to formulate
the eomstant of the motion leads not 10 & vector but to 2 tensor of the second
rank (¢f. Section 7.5). Thus, the existencs of ax addiional constant or integral of
the motion, beyond E and L., that is a simple algebraic function of the metion
ia sufficient to mdicate that the motion is degenetate and the bounded orbits are
closed.

SCATTERENG N A CENTRAL FORCE FIELD

Histavically, the interest in eentral forces srose out of the astronomical problems
of planetary motion. There is 5o reason, bowever, why centrsl force metion must
be thought of only i teoms of such problems; mention has already heep made
of the orbits in the Boix stom. Anather fiskd that can be imvestigated in esms of
chassival mechanics is the scatrering of particies by central force fields. Of course,
if the parucles are o the stomic scale, it st be expocted that the specific results
of 2 classical treatment will often be incorrect physically, for quantam effects
ape ssually farge in such regions. Nevertheless, many classicsl predictions remaia
velid te & good approximation. More important, the procedures for describing
seattering phenomene are the same whetber the mechantes is classical or guan-
Hm;, we can leam to speak the ianguage equally as well on the busis of elassicat
physics.

In its ome-body formulation, the scaltering problem is concerned with the seat
tering of particles by a center of force. We consider a uniform bean of purticles—
whether electrans, of a-particles. or planets is imelevant~all of the same mass
and energy incident upon a center of force, tt will be assumed that the force Dils
off to zero for very large distances. The incident beurn is chavacterized by specd-
Fylag ¥ fniensiiy 1 (uve valle? Nux demsity), which ghves the mumber of particles
CTOSSIRgE unit area pornial to the beat In unit Hme. As o particle approaches the
center of foree, 1t will be either attracted or repeled, and its orbit wiff deviate
from the incident straight-live vajectory, After passing the center of foree, he
fopes acting o the particle will eventually diminish se that the orbit once sgain
approachies a straight line, In generzl, the fnal direction of motion is not the sane
as the incident direction, and the particls is said to be scanerad. The cross secrion
Jfor scutrering in a given direction, o (£3), 1s defined by

nember of particles scattersd imto solid angle d £ per bult time

(1) =
slihdi incident insensity

(3.88)
where d52 1y a6 elereie of soBd angie 1t the dhectins €2, Ofion o () §s abso des-
ignated as the differentiol scattering cross section. With central forces these must
be compiote syfmnetry avound the axis of the incident beam; heace the element
of solid angle can be written

A8k = Tn Sin B de, (3,50
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FIGURE 319 Scactering of an incident beam of particies by a comer of force.

where €2 it the angle between the scattered and incident divections, known as the
seattering angle (cf. Fig. 3.19, where repulsive scattering is ilhusirated ). Note that
the miame “eross section” is deserved in that o (€)) has the dimensions of an area.
For auy given purticle the constants of the orbit, and hence the amount of seat-
tering, are determined by us energy and angular momentum. It is convenient to
express {he angular momentum in terms of He energy and a quantity knovwn as
the impact pargmerer, 5. defined a5 the perpendionin distance betwesn the center
of foros ad the incrdent velockty. If ¥ is the incident speed of the particle, ten

{ == maps = 54 2ImE. (3.800

Once E and v dre fixed, the angle of scattering @ s then determined vniquely.*
For the moment, it will be assumed that different values of 5 cannot fead to the
same scafteting angle. Therefore, the numbee of particles scattered e 2 sokid
angle dft lying bstween © and © 4 J© must be equal 1o the number of the
incident particles with impact parameter lyiag between the comesponding & and
5k ds:

2 delds] = 2re (@Y sin 8 O, [eX:H)

Absolute value signs are introduced in Eq. (3.91) because members of particles
must of course always be positive, white s and © ofien vary in opposite directions.
If & is qonsidered as 2 function of the encrgy and the corresposding scattering
angle,

LR ON (aan
ARt 15 al v point 1 the farmuletion fher classiest sid quaRtem mechpicy pat coppary. indeed,

it is fupdamentyily cherectedstc of quanmm mechames that we canant ypenpivecally pridiel the
trajectory of wny pasticular pasiicle. Wecan oaly gve it eatiering in varions dircions.
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$EGURE 3,20 Relanon of orbit paramerers and seattering angle 1 an exampis of repal-
SIVE SCRUCTIHE

then the dependence of the differential cross section on 4 is miven by

A
48

5

sin &

{8} . (3.53)

A formal eapression for the scamering angle © as a funciien of § can be di-
recily obiained from the orbit equation, Eq. ¢3.36). Agein, for simplicity, we will
cemsider the case of purely repulsive scattering (ef. Fig, 3 20). As the orbit must
be symmetric sbour the direstion of the pertapsis. the scatierng anple is given by

@ oo - 20, (3.54)

whese ¥ is the angle between the direction of the wcoming avyrptote and the
periapsis (clorest approach) ditection, P tem, W can be obtainad from Bq. (3.36)
by setting rp = o0 when 8y = # (the meommg directions, whence 8 = 1t — W
whist £ = £y, Ui distases of closest spprosch. A trivis} resmmgesnent then loeds
jul

oo

¥ :f w«wﬂ«««m (595
e 2 /;.néng,f_zu,\?

Expressing 1 in terms, of the impact parmeeter 5 (Bg, {3,900, the resultant exprex-

son for @{s) i

o
S5y = - 2[ S A 3.06)
e e (1 e ‘%’l)
o, chenging r @ 1/a
o
@'\s):rr—zf L — 97
o 1- % )
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Exquanons (3.96) antd (397} are rarcly used except for direct aumerical compu-
tation of the seattering zngle, However, when an analytic expression is svailable
for the orbits, the relstion between & and 5 can ofien be oblained almost by in-
spection, An histaricatly important il of suchap dure is the repolsive
scattering of charged particles by a Coulamb field. The scattering force fialdis tant
produced by a fised charge ~Ze acting on the incident particles having a charge
- Z'e 50 that ghe force canbe written &3

zz'e
e,

¢, o repulsive inverse-square faw, The results of Section 3.7 can be taken over
here with no mote chatige that writing the force constant as

= wZZ'e 398

‘The wmergy E is greater than zogo, and the orbit is 2 hyperbola with the sccentiiciry
given by

i 2
2E ! 2Es
‘-J”W-W(m)’ @
where use has been made of Bq. (3.90). 118" in Bq. (3.55) is chosen to be n_

periapsis cormesponds to # = O and the orbit equation becomes

mZle
T

1
; = {e cosf - 1) {3.168;
This hyperbolic oibil equation has the same form sy the elliptic orbit sgua-
tiom {3.56) sxcept for a change in sign. The direction of the incoming asymproe.
W, s then determined by the condition r — oo:

1
oos ¥ = —
¢

or, by Eqg. £3.94).

Hence,

and using Eq. (.99)

T avenic confuston wiih the elecrron charge e, the eccentnierty il remporarly be dencted by £,
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o — o
22

‘The desived {unctional selationship between the impact parameter and the scaner-

Ing angle is hesefowe

e @

& cot

g .00y

sa that on carrying through the menipulation required by Eq. (3.93), we fnd that
o) 15 given by

O = Ly i

ot AV
! (1221) csc“g. (207}

Eauation (3.102) gives the famous Rutherford scattering cross section, orig-
inaly demived by Rutherford for the scanering of o particies by atomic nuclel.
Quatitun mechunics in the nonrelativistic Himlt yields & cross section identcal
with this elassical result,

Tn atomic physics, the concept of a womal scanering croas section o, defined
as

*
Ty = [ rr(ﬁ)dﬂ::lfrfu (B sinGd 460

Jan

1§ of considernble importance. However, if we altermpt to celovlite the Lotaf cross
section for Coulomb scattering by substilating Bg. (3.102) in this definition, we
obtain &n infinite result! The physical eason behind this bebavior is not diffi-
cult to discern. From its definition the tolaf cross section i the number of pacti-
eles scattered in aR divections per unit tine for unit incideat intensity, Now, the
Coulomb field is an example of 2 “long-range” force; bs effects extend to infinity.
The very smalf deflections occur only for particles with very large impact param-
eters, Hence, alf particles in an incident beamn of infinite Jateral exiont Wil be
scattorsd to sorme extent apd must be included in the total scattering cross section,
Tt is therefore chear that the infinite value for o7 is ol pecaliar to the Coslomb
fiold; # eccors in classical mechanics whenever the scattening fisld is different
from zero at afl distadees, oo matter how lazge.* Only if the foree Seld “cuts off)"
Le., is zero beyond a certain distance, will the scattering cross section be finite,
Physically, such a cut-off eccurs for the Covlomb field of a nucleus as a rosalt of
the presence of the alomic electrons. which “screca” the nucleus and effectively
cancel its chirge outside the stom.

*op v alto oot for e Coulomt neld i quantam mechRuics, suce it has besn staced that
Eqf (3 102} reaneny viad thete, Howeser, ot ail “long-rangs” Forcas gIve mus 4 infinate otal cross
~ectios i Ut techatics. B oenng ot this &l porentiah et i ofF faseer at Yarger distances
than 1/¢? praduce a finite o uatieal totsd scamaring i it
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in Rutherford scaticring, the scatiering angle © is a smoath monotonic func-
tion of the impact parameter 5 From By, (3104} we see that as 5 decreases from
infinity, & increases monotonically from zeto, reaching the value 7 25 1 goes 0
zero, However, ofher types of behavior are possible in clasical systems, requiring
some modification in the prescription, Eq. (3.93), for the classical cross section.
For example, with a repulsive potential end partigle energy quatitativety of the
watire shown in Fig, 3.216a) it is easy 10 sec physically that the curve of © ver-
sus 5 ey behave as indicated in Fig. 3.21%). Thus, with very large values of
the impact parameter, as noted ahove, te particle always remains at large radisf
distances from the center of force and suffers culy mivor deflection. Al the ather
extremie, for 5 = 0, the pasticle tmvels in & siraight line into he center of fore,
and if the energy is greater then the maximom of the powatial, it will continve
on throngh the center withous being scattered a1 all. Hence, for both Bmits in s,
the scattering angle goes to zero. For some intermediate value of ¢, the scatier
ing angle must pass through a maximum &, When § < @, tere will be nve
values of < that can give rise 10 the same scaftering angle Each will contribute
o the scanering cross section ai that argle, and Eq. (3.93) shondd accordingty be
modified to e form

ooy =T |2

2,10,
bt (e

T ¢
wher for € == 6, the mdex  takes on the valves 1 and 2. Here the subscript 1
distinguishes the various values of 5 giving nise 1o the same value of 6,

Of particalar interest is the cross section @t the maximum angle of seattering
Eim . As the derivative of £ with respect o 5 vanighes at this angte, it follows fror
Bag. (3.97; or (3.103) that the cross section wnst become infinfie at © — Gy, But
for all fwger mmgles e oss seolion is zem, since the scattering angle cannot
exceed Oy The phenomenon of the Infinite tise of the cross seotion followed by
abrupt disappesrance is very similar to what occurs in the geometrical optics of the
scartering of sunlight by aindrops. On the basis of this similarity, the phenomenon
in called rainbow scattering.

= -ty

far by

FIGURE 321 Repulsve nonvnguler seastenng potental sad double-valued eurve of
scatiening angle & versus imgact paramerer sy for sufficiently high energy.
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Sofar, the examples have been for purely repulsive scatiering, If the seattering
involves bve farces, farther complications may arise. The effect of anraction
will be to pult the particle in toward the center instead of the repulsive defiection
ontward shown in Fig. 3.20. Tn consequence, the angle W betwaen the incoming
direction and the periapsly direction may be grealer than 7r/2, and the scatering
angle as given by Eq. (3.94) is then negative. This In itself is no great difficuity
as clearly It is the magnitide of © that i inwelved in finding the crass section.
But, wmder circurastances € a8 caleulated by Bq. (3.96) may be greaer than 2.
That is, he particle undergoing scattering may circle the center of foree for one
or more revolutions befone going off finally in the scattered direction.

Toser how this may cocur physicatly, consider a scattering potential shown as
de ¥ = ) curve fn Fig, 3.22. 1t is typical of the intermolecular potentiats assumed
in many kinetic theory problems—~an attractive potential al large distimees falking
off more rupidiy than 1/r*, with & rapidly dsing repulsive potential at small dis-
tances. The other cowves in Fig, 3.22 show the effective ono-dimensional potential
V/{r), Eg. {3.22'), for varicus values of the impact parameter s {equivalently: var
ious valves of /3. Since the repulsive centrifugal barrier dominetes at large r for
i values of = 0, the equivalent potential for small 5 wil} 2xhibit 2 homyp.

MNow let ug consider an meoming partrele with impact pecameter v and at the
energy £1 coresponding to the masinuim of the bump. As noted in Section 1.3,
the difference betwesnt E; and V'{(r) is proportional to the square of the radial
velooity st that distance When the incoming particle reaches ry. the location of
the taximum in V', the radial velacity is zero, Indesd, recalf front the discussion

Lali]

FIGURE 3.22 A combired attructive and repuisive scatiering poteteal, and the come-
sponding equivalent one-dimensional potential a1 several values of the Lmpact parametar s,
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in Section 3.6 that we have here the conditions for an unstable ciroular orbin at the
distance r¢. In the absence of any perturhation, the mcoming particle with param-
eters £ and §1. once having reached r, woeld circle arcand 1he center of force
indefinitely at that distance without ever emerging! For the same impact param-
efer but &t an energy E skghtly higher than £;, no frue cireulur orbit would be
establishad, However, when the paricle is in the immediate vicimity of #; the ra-
dial speest would be very siall, and the particle wowld spend & disproportionately
targe time in the neighbourhood of the hump The angular velocity, #, meanwitile
wand not he affected by the existence of a maxifeum, being given at », by (3,800

Thus, i the time i takes de particle to get throogh the regice of the hump, the
angular velgcity may have caried the particle throogh angles larger than 2m or
even muitiples thereof, In such instances, the clagsical scattenng 8 sand (o exhniic
orbiting of spiraling.

As the wmpact parameter is increased, the well and hump in the equivalent
potential ¥ tend to faen out, unl st some parameser sz there is onfy a poim
of inflection tn V' at an energy E; (¢f. Fig. 3.22). For particle energies above
Ey, there will no longer be orbitinp. Buat the combined effecs of (he attractive
and repulsive components of the effective powential can Tend even in such cases to
zero defiection for some fimte value of the impact parameter. Atlarge energies and
smalt impact parzmeters, Sie major scatlering effects are cansed by the strongly
repulsive potentials at smali distances, and the scattering qualitatively resembles
{he behavier of Rutherford scareriag.

We hiave seen thal the scaftered particle may be deflected by more than 7 when
Otbiting takes place, On the other hand, the observed scaltering angle in the lab-
oratory les between 0 and v, 1t is therefore helpful in such ambiguous cases to

istinguish hetween a arrgle @, as calcatared by the right-hand sides of
Eds. (196 or {3.97). sd the ohsorved scattering angle 8, For given ®, ihe angle
€ s to he determuned from the refation

2 1 - Do, m & positive integer,

‘The sign and the value of m are to be chosen so that & lies berween ¢ and x. The
sant s Bxg. (3.103) then covers all values of € leading ro the same ©. Rigure .22
shows curves of € versus x for the potential of Fig, 3.22 at twu different energies
The orbiting that takes place for £ == E; shows up as a singularity in the curve at
£ = 3. When £ = E», orbieing no Ionger takes place, but there s a rainbow effect
at € = & {although thete is a nonvanishing cross seclion at higher scaniering
angles). Note that € vanishes &t s = 53, which means from Eq, (3.93) that the
cross section becomes infinite in the forward direction through the vanishing of
&€, The crows section can stnilarly become infintte in the backward direction
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FIGURE 323 Carvesof deflection angle @ versus 5, for the potenta) of Fig. 3.22 arwwo
ditferent energies.

providing

s

remutns fisite a1 @ = &, These inftouties in e farward or backward scastering
angles are refered o ay glory scattering. agatn in malogy 1o the comesponding
phenammenon 1 meteorplogical opties

A mioTe general meatinent would fnvolve quantom corrections, but in some in-
stances guantumm effects are small, as in the scatiering of Jow-energy ions in crystal
iattices, and the classical calculations are direetly wseful. Even when quantar
mochantcat corrections are hmpurlant, it often suffices © yse an approximatkon
method (the “semiclassical™ approximation for which a keowledge of the clas-
sical trajectory is required. For almost afl potentials of pracdcal inletess, it is i
possitle to find an analy e form for the orbit, and P {3.96) (or variant forms} is
elther approwimated for particulas regions of 5 or integrated namerically,

3.11 W TRANSFORMATION OF THE SCATTERING PROBLEM

TFO LABORATORY COORDINATES

In the previous section we were concerned with the one-body problem of the
scattering of a particls by a fixed center of force, In practice, the scattering always
invotved two bodies; e.g, In Rasherford scattering we have the o particle aad e
atomic pucleas, The second particle, my, is nut fixed but recotis from itd inidal
positian a5 2 resut of the soattering. Since it has heen shown that any two-body

*The Buckward gory i TanLbar to arpfate tewelass # it ong of bt abserved 19 enclecle the
shiadow of the plae projected on clouds widstmenth
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BIGURE 3,24  Scattcring af two partictes e viewed in the Jaborarory system,

cantral force problewm can be redpced to a one-body problent, it might be thought
that the only change is to repiace m by the reduced mass . However, the matter
is 0ot quite that simple. The scattering angle acimally measured in the laboratory,
which we shall denote by &, 15 the angle betwsen the final and fncident directions
of the scatered particle in Iaboratery coordinates.’ On the other hand, the angle
@ cuteuhated fiun the eyuivalent one-taady problen b the sugle between the final
apd initial directions of the refative vestor between the two particies in the cen-
ter of mass coondinates. These two angles, 8 and 63, would be the same ondy if
the second particle remains stationary through the scattering process. In general,
henwever, the second particle. though inkdally at rest, 33 itself set in motion by the
wwstual furce berween the two particles, send, as is mdicaed in Fig. 324, he two
angles hen have different valoes. The equivalent one-body problem thoe doss
not directly furnish the scattering angle as d in the b i
Sysiem.

The reintionship betwees the seatlering eagles @ and & can be deteninined
by examiring how fhe scartering takes place in a coordinste yystern moving wilh
the cemtet of mass of both pardceles. In such a system the wtal Enear momsnum
5 220, of course, and the two parucles abways move with equal and oppomie

. Figure 3.25 i the app of the scafiaring process o an
observer in the center of mass system. Before the scattering, the particles are
moving directly toward each other: after, they ave moving directly away from each
other, The angle between the initial and fina] directions of the relative vector, &,
must thereiore be the same a5 the scattering angle of either pacnele in the centar-
of-mass system. The connection between, the two scattenag angles & and & can
thies be obtained by considering the transformation between the comer-of-mass
system and the laboratory system.

TThe seatierng sugie @ must nor be confused weeh $he angle comrdinare 8 af the elative vestor, £,
betwesn the wo patticles
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FIGURE 325 Scegering of iwo paticles 5y viewsd in the center of mads systern.

His convenient hietrt 1o use the lerminology of Section 3.1, with shight modia-
cations;

pyemd ¥y are the pesition and velocity, after scuttering, of the incident particle,
niy, in the kabortory system,

cfand ¥]  wre the position and velacity, after scattering, of particle my i the
center of mass system, and

Rand ¥V are the posidon and {consant) vejocity in the center of mass in the
laboratary system.

At any instant, by definition
r=Rer
and copssyaently
v = Vv (3.104)

Frgore 3.26 graphically postrays this vector relation evaloated ffer the scatlering
has taken place; st which time v; and v, make the angles & and €, respectively,

B
vk
o2

FIGURE 326 The refations betwesn the velociteey i the cester of mass and laboratory
eoofdmates.
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with the vector ¥ lying along the initial direction, Since the target i$ initially sta-
tionary in the laboratory system, the incident velocity of particle | in that system,
wo. is the same as the initial selative velocity of the pasticles. By conservation of
total linear momentun, the constunt velocity of the center of mass is therefore
given by
{ate + mg)¥ = myvy,

o

v (3165
iy

wiiere . = siymg/(my + mip). From Fig. 3.26, it is readily seen that
vy sind = v sin@
atd
v oos # = Uy cos @k V. (3.106)

‘Fhe ratio of these Two equations gives 4 relation between o and ©:

s @
ag = 3307
B et Gam
where £ is defined
£ 3.108
Az v

An slternative relation can be oblainad by 2Apressing vy in terms of the other
speeds through the costue law a3 apphied 10 the trizngle of Fig. 3.26:

of = vk VR BV econ ©, (3.109

When this 15 wsed to elismimnate v from By, (3, 106) md ¥ is expressed in terms of
i by B, (3.105), we find

R}

Both these lations S8l invelve a ratio of speeds through p. By the definition
of eester of mass, the speed of particls | in the center-of-mass system, v}, is coa-
nected with the relative speed v after the collision, by the equation fof, Eq. (3.2)),
where v = [#{:

v a
my
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Heace, p can also be writien as

PR (3.158)
mz v
where v, it should be emphasized, is the relative speed after the colliston, When
the collision is efestic, the total kingtic energy of the two particles remains unal-
tered and v must equal vy so that p is simply

oot (elamtic collision) 31

indepencent of energies or speeds. If die collision is ielusiic, te total kinetic
energy of the two particles is altered (e.g., some of the linetic energy goes mio
the form of intemal excitation energy of the wrges), Since the total ensrgy is con-
served and momentum is conserved, tie energy change resulting from'the colli-
slon can he expressed as

2 2
L. GHD
2 2

The so-called @ value of the melastic collision is clearly negative in magaimnde,
Tt the rignt conventon is chosen ta conform to that vsed in general for atomic
and nuclear reastions. From Bq. (3.1123 the ratie of relative speeds before and

after colilsion can be writizn
. *\ju”’_‘*ﬂg 3113

s E

where & = Jnrud is the enavgy of the jacoming particle {m the laboratory sys-
e}, Thos, for inclastic scattering o decomes

7= el {inelastic i .14}
mgvf |+ e g

Nt only are the scattering angles # and © in gonern] different in magnitug,
bt the values of the differential scaneting cross section depend upon which of
the two angles is used as the argoment of o. The connection batween the two
functional forms is obtained from the obsorvation that ia B particular experinent
the number of particles scattered into a given element of solid angle raust be the
same whether we mensure the event in terins of ¢ o @, As am equation, this
statemment can be wiitten

2 lo @) sin @6 = 2mfo'{8)sin P Lad,
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or

in® {8
sini | d#

d{cus @)
Ficas o'

{0} = {8}

160}

(315

where o'{#¥) is the differential scatiering cross section expressed in terms of the
seartering angle In the laboratory systemn. The derivative can casily be avalyated
fromm B, (3.110), leading 1o the result

£l 2pc0s @ 4 pHHV2

T =a (@) I poos @

(3.116)

Note that  (8) is et the cross section an observer would measure in the
cemterof-mass system, Both o {8) and o' {(#) a2 cross sections measurad in the
1aboratory system; they are merely expressedin terms of different coordinates. An
observer fixed in the cemer-of-mass system would see a different Rux density of
incidens particles from that measured in (ke laboratory system, and this transfor
mation of fiux density would have to be included if (for some reason) we wanted
10 relate the cross sections 48 measured in the o different systems.,

The two scatering angles have a particultarly simple refation for elastic soat-
sering when the two masses of particles are equal. X then follows that g = }, aud
from Bg, (3.119) we have

1+cos€9 o
cos b = \f €08 7

&
?ow c = 1)
7 {r=1)
Thus, with equal masses, scatkering angles greater than 90° cannot occur in the
taboratory system; aB the scatterlng ks in the forward hemisphers. Cortespond-
ingly, the scattering cross section is given in ©rms of © from By, (3.116) as

Sy mdcp 0@, Bl =l

Even when the scattering i¢ isotropie in terms of 8, Le., o{8) is constam, in-
dependent of @, then the cross section in terms of § varies as the cosine of the
angle! When, however, the wattering mass my is very large compered 1o the inci
dent partivke sy my and the scanering Is elpstic, then from Bg. (317115 =0,
30 ¢'(#) ~ o(8) from Bg, (3116

We have seen that even in elastic collisions, where the toal kivetle energy
Temaing constant, 2 coltision with an injtially stationary target results in 2 transfer
of Kinetic encrgy to the target with a comesponding deceease in the kingtic energy
of the incident particle. In other words, the collision sfows down the incident
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particle. The degree of slowing down can be obtained from Eq, (3.108) if v) and
V arg expressed in terms of v by Bgs (3.108) and (3.105). respectivaly:

&2 PRt
F% = (;;;) (L4 2pcos @ 4 o8 (3217
1

For elasuc cotlisions g = my/my, and By, (3.117) can s simplified 1o

Ey i+ lpcosth4 ot

Ey (s
where £y is the initia] kinetic enerpy of the incident particle in the laboratory
system end K} the comesponding energy after scattering. When the particles are
of equal mass, this refation becomes

. {elustic collision} (3.50177

3} 5+ cos &

Ep 2
Thas, at the maximem scattering angle (8 = 1, # = 1/2), fhe incdent particle
toses all its enevgy and is completely stoppsd in the Jaborasory system.

This transter of kinetic energy by scatiering K, of course, the principle behind
the “moderator” in 8 thermal neutron reactor. Faut ngatrons produaced by lssion
make successive elastic scatterings ontil wsir kinatic energy is reduced o thermal
enaggies, whee they xis wmors liable to cavse fisson thim 16 be captared. Clendy
the best moderators Wil be the light elements, ideally hydrogen (p = 1). Fora
nuclear reactor, hydrogen is practical only when contained as part of 2 musture
or compound, such as water, Other Hght elements pseful for thel moderting
properties inchude desterium, of mass 2, and carbon, of mass 12, Hydrogen, as
present w paraffin, water, or plastics, i frequently used in the laboratory o stow
GOWR NEUtTons.

Despite theur cument useful applications. these calculations of the wansfoma-
o feom laboratory 50 center of mass comrdinates. and of the tansfer of kinetic
energy, are not particularty “modemn” or “quaniem” in nature. Nor is the clussi~
oal mechanics Bvolved particotardy advanced or difficuls. AT that has been used,
essentially, is the conservation of momentum and encrgy. Indeed, similar caloola-
tions may be found in freshman wxtbooks, eseally in torms of clastic collisions
between, say, bilfiued bally. But it is their clementary nature that results in the
widespread validity of these calculations, So long as movaertum iy conversed {and
this will be frae in quantum mechenics) ad the @ value is knewn, the details of
the scanerng process ape rrelevant. In effect, the vicinity of the scattering par-
ticle 15 a “Black box." and we are concerned only with what goes in and what
<omes cut. i matters not at all whether the phenomens occursing inside the box
are “classical” or “qoantum.” Conseguenily, the formolae of this section may be
used in the experimentsl analysis of phenomena cssentially quantam in natere,
a5 for example, TRAOR-Proton Scaiterng. 50 long as the energies arg Jow epough
that relativistic effects may be aegleced. (See Section 7.7 for & discussion of the

Tativist of the ki ics of collisions.}

cos B,
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THE THREE-BODY FROBIEM

Thus far, we have wewted integrable problems in witich the equations of mation
can be integrated to give a closcd-form sojution. For the two-body case of te
inverse-square faw, we found solutions invelving motion in elliptic, parsholic,
and hyperbolic orhits, the former of which coustirete closed orbus. Solutions can
also be found for some addidonal power laws of e fonn Vir) = ar”. Neverthe-
Teds, for almaost a] other possible centrat force potentials, the equations of motion
canmot be mtegrated. When oae more mass is added, the sitraton becomes mach
wiore complex. Bven for taverse-square law foroes, fais three-body Keples-type
problen has oo known general solution. By the present section we shall examine
some sirnle examples of what happens when this third mass is edded.

The Newwonian tires-body problem mvolves thrte masses my., my, and my at
the respective positions £y, 12, and £3, interacting with each other via gravitational
forces. We assume that fhe position vectors 1, £z, and r3 are expressed in the
center of mass system. It 18 easy o write the equation of motion of the first mass
since by Newton's second taw m ¥ eqoals the gravitations] forces that the ether
two masses exert oR Mg

“ n-—r N -1
P - LI 3
) m;m Gmsir, e (3.118)

and analogously for the other tweo masses, 1f we meke use of theselative-position
vectors defined by

Somr, e .11
i Fig. 3.27, then cleatly

sp+sr+8y =i [ERY:1]

FIGURE 327 Position vecors 5, = ¥ - by for he thrse-boddy probkas., Adapted from
Hestencs, vew Foandanons for Classical Machanics, 1999, Fig, 5.1,
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After a fietle algebra, the equations of metion assume the symumetricat form
b G G G
5

where { = 1,2, 3, the quantity m is the sum of the fhree masses

m s 4w g (3122
and the vector G is given by
C=c{h+a+a). (3 123)
Eri 32_ Ll

The three coupled equations in the symmetrical form, (3121}, cannot be solved m
general, but they do provide solutons 1o the Biree-body problem for sowe simple
casos.

There is a solitdon due to Euler in which mass my always tes on the straight
tine berween the other two masses 5o that Ty, T3, T, 5, 82, S, and G are all
cellingar. Figure 3.28 shows Eoler's uegative-cnergy {i.e., boond-seate) solution
for the mass ratio my < mo < m3 in which the masses move afong confocal
eliipses with the same period r. During each pedod, the masses pass through
buth a petiliclivn codiguration, fie whivh dey s close uystle alomy the sk of
the ellipses, and an aphelion configoration, i which they be along this sarae axis
but far apart. The aphelion positsons in the erhits are indicated in Figure 3.2%,

T ehe vector G == 0 the equations of motion decouple, tnd Eq. (3.121) reduces
1o the two-body form of the Kepler problem,

 emti X, (3.124)
5

i

with esch mass wmoving afong an elliptical orbit lying in the same plane with the
same focal point and the same period. This decoupling occurs when the three

FIGURE 328 Eufer's collinear solution to the tuee-body problem for the mnss ra-
tio my < My = mg Three of the dors show aphelion posidans. Adspted from Hes-
Tenes, New Fowndanens for Classival Mechanes, 1999, Fig. 5.2
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FIGURE 329 Logrange's eguilsteral riangle solution to ihe tieebody problers for
the mass ratio sy = Wy < sy Adapted ftom Hestenes, Mew Foundarions for Class-
cal Mechames, 1999, ig, 53

masses are at the vertices of an equilateral triangle. As the motion proceeds, the
equations remain uncoupted 50 the equilateral tiangle condition continves to be
satisfied, but the trizngle changes in size and orientation, Figure 3.29 presents La-
grange's effiptic solution case with e same mass mtio as before, my < ma < my.
The fgore shows e configuration when tho massos sre close togathier, sach at its
respective petibelion poktt, and abo indicates the snafogous aphelion amange-
meat.

Various szymptotic solutions have bean worked out for the three-body prob-
term. For example, if the total energy is jpositive, then all e masses can move
away from each gther, or one can scape, carsying away most of the enargy, and
feuve the othir fwo behind in clipuc obits, I e enegy 15 negative, one cn
escape and Teave the other Two it a boond state, or af] three can move in bousd
arbits,

The restricted three-body problem is ene in which two of the masses are large
and bouad, and the. third is smal} and merely permushs the motion of the other tko.
Examgles me & spacecraft in orbit betwesn Earth aad the Moon, or the pertur.
bation of the Sun on the Moon's orbit. In the spaceeradt cuse, the fost wpprouch
is to assume that the Eanth and Moon move in their uape.z'mrbe& orhis, and the
sateltile interacrs with them through their rspecti
forces. We should also aote that sateffites orbiting Eanh st a}tmm:s uf 968 mifes
or 150 kilometers have their orbits perturbed by Earth’s nonspherical mass disti-
barion.
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A complicating focror in the restricted three-body problem is the diswibution
of gravitational potential energy in the vicinity of the Earth-Moen systen. Cloge
0 Earth, we experience ¢ gravitational force directed toward Barth, and close tw
the Moon, the force is directed toward the Moon, This means that the equipoten-
tiaks, or curves of constant gravitationa! energy, are closed curves that encircte
the Earth, ()} and Moo, {mg), respectively, as shown in Fig. 3.36. In contrast
to thus, far Frows the Earth and Moon, the equipotentials encircle the Barth-—Moon
pair, as shows in the figure. Al some point, called Lagrange point Ly, along the
horizontal fine in the figure between the Barth and Moon, the atraction o the two
bodies is equal i magmtide and opposite in directon so the fores expenenced by
& stoall mass placed there is 2ere. Int other words, L is 4 local potential minimum
afong this fne. Move precisely, thiz point is a saddle poin: because te potential
energy ks 8 minimum oply along the Earth-Moon axis, and decreases in dirsctions
perpendictlar 1o (s axis. Two other Lagrange points, L and L3, along tis same.
axis between the Rarth and Moon are Tocated at the mransition poiats between or-
Ints thiat encirele the Barth and the Moon individually, snd orbits that encircle the

FIGURE, 3.3¢ Contour map of eguiposential curves of bwo inasses 17y = miz plotied i
& refervice systen motneg With the 1wo messes aiond exch other. From Hextenas, New
Fowndations for Clasnica! Mechanics, 1986, Fig. 5.5,
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cwo together as & pair. These are also saddle points. The fourth and fflk Lagrange
polas, Lg and L, which ane not collingar with the ofber e, correspond 1o lov
cal mimima in (he gravilational potential energy, Masses in the vicinity of these
W0 points expenience & foree of atmaction wward them, and van find themsetves
in stable efbiptical-shaped orbits around them.

We can verify the preceding statements by considering the solutions found
in Sections 3.7 and 3.8 for two massive bodiey in the center-of-mass frame and
asking if there are locations whers 2 smull test body will remain at rest relative 10
the two bodies. By a test body we mean one whose mass is sufficiently small that
we can neglect its effect on the motions of the other two bodies. For simplicity,
we wikl fimie ol atterdion (o the estiicted cars where the bodies vadergo circular
motion ehout the center of mass. The Lagrangian for the moton of (e st hass,
m, can ba written, in general, as

L= dmii? 4 P05 e Vin g, 0, £3.125)

where V{r, 8, () is the ime-dependent potential due to the two massive bodies,

As a consequence of the circula mation, the tadius vector. b, between the two
bodies i3 of constant leagth and rotates with a constant frequercy, e, in the inestial
frame. if we go o 2 coordinate system rotating al the froguency, the Iwo massive
badies appear to be at restand we can write the Lagrang:an in teoms of the rotating
system by nsifig 8" = & o as the fomsfoemption o the eitating frame Thus, the
Lageangian in the rotating courdinates cam be written in terms of Ge eylindrical
coordinates, g, & = @' ~ an, and z, with » being (he distance from the center
of s ad & the counterelockwise angle from the line joining the two masses
shown in Fig, 3,30, So

L= g (a2 @ 0 87} - Ve, B2, (5.126)
ar
Lo dm(pt 4 M7 4 8 - (mwzé’ - kmpet 4 V' (g, B,Z)) ¢3.127)

The fifth and sixth rerems ate the potentals for the Coriolis effect (of. Section 4,70}
and the centrifugal effect, respectively.

The procedurs then is (o find the Laprange equations and look for solutions
with the condidons that p = § = & = 0, The solutions are the fve Lagrange
points shown in Fig, 3.30. Stabifity can be determined by investigating the ef-
foore of ymad] digplscements from shese positions nsing the methods discussed m
Chupets 6 and 12, Only Ls and Ly are stable.

Even though the Ly point is not stable againg displncements along (he Ling
betwsen the masses, it has been usefu! for studies of the Sun, The L3 betwesn the
Earth und Sus is the approximate location in the 1990s for the solar and helin-
spheric observatory, SOHO, which orbits the Lo point1n a plans parpendicylar o
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ihe Earth-Sun line. The sarellite cannot be exactly ar the Lz point, or we could
et receive its wansmissions against the bright Sun. Small steering rockets correct
for the slow drift sowand, or away from, £

DERIVATIONS
1. Consider 2 system in which the intat forces acting on the parneles consist of conserva-

nve Forces F, and frictionat forces §; propurttonal to the valocity. Show that for sieh,
A systen the vighal theorem hotds 1 the form

providing the motion reaches a steady sige and is not giowed 10 die down as & resslt
of the foctional forces.

2 By expanding ¢ in a Fourier series in w1, show that Kepler's equation bas the
formaat sefuton
a2
W ?:1 = Juine) wnwr,
whers Jy 15 the Bessel funenon of order . bur smald seguemend, he Besset {uncnon
cat be approximated in 4 power seties of the agument. Accordingly, from s resale
derive the first fow teems in the expansion of ¥ in powets of ¢
3. iTthe differcnce b — eat 1§ sepreseured by, Keplet's eguation can be written

P gsinfur + 53,

Successtve Rpproxinialions {o & cim be obtained by expanding sin » in a Taylor series
i 2, snd theat replacing p by its expression given by Kepler's equation. Show tha the
first approximarion by 2 48 pr. grven by

At that the aekt approximation & found from
sty - o1} = e sinfot + g5)l  esxs eath,

an expressing A is aceurate through wrms of order ot

4. Stow that f0r repulsive scamering, Ba. {3.96) for the snglc of seancring 44 2 funcunn
ot the impact parasnetsy, <, can be rewntin as

E
@x,_@,&f OUTTRIII. .. S
o
i {-) 2t - p%
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ar

3
@tnm-uf . A
b Ta -
;f%(V(l’m’ - Vi sP(E

by changing the variable of lamgration to some function e{r). Show that for a re-
puisive potential the mmg,mnd i n:w;r stngelar in the Hmit r - rp. Because of
the definite kimite of & ions bave ad for arencal
cafenfations of S} wnd aBow mwraﬂy fior the use of Gowse-lLegendre guadrame
schemes,

“

Apply the formudatton 0f the precediag exercise to compuie ramencally 8(s) and the
differential cross section of {8} for the repulsive potentiat
vt
41
snd for 5 weal onergy E = 128 I is suggested that 16-point Gansi—Legondse
quadratare wit! give adequate accuracy. Does the scattering exhibit a rainbew?

kel

H a repuisive poientil drops of menolorjeally with r, then for cnergies mgh cot-
paved 20 ¥ {rp:) the angle of scattering wHl be small. Under these conditions show that
By, {397) cun b2 wanipuiaced 5o thut the deBection ungle 1s given approxipately by

o=l (V) - ViR dy
El THEAETT

whers y, Chvicusty, 18 «/um.
Show further, that & V{u} 14 of the form Cu®, where nis a ?DSLE!VE nteger, then in
the high-energy timit the criws seetion i propertionst ne =2

7. {a) Show that the mmghe of tecorl of e aget particle relagve 1o the incadent divaction
afshe scanered particle is simply ¢ = dix — @)
(b} jtus obsareed that in elastic sr:uu:nng the scattering cross sextion i isotropic in

terms of &. What aze the for the staticred
energy of the incident pamicie, E;, amt forﬂm recoit enargy of the targer pasticle,
Es?

8. Show that the angle of scartering in the aborotory systern, ¥, is mlated (o the coergy
before seamtering, Fg, and (e enecgy dter soanering By, according o the equation

myhmy (E)my - my mafd
58 o
T J:o Ty .E‘ *mim

9. Show that the centrat force problem 15 soluble in terms of elliptic functions when the
foree 1 2 power-law fustetion of the distance with the followitsg fraetional exponsnts:

" 5 1. 8 1
= -3y

T3
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EXERCISES

1k

15,

A planet of mass M s in an orbit of eoeenirivity ¢ = | — o whee o € 1, ahout the
Bun, Assame the motion of the Sun can be neglected and that caly gravitationat forces
act. When the planesss # it prealest distaoue from the Sun, f 15 strack by a comet of
mass m. where m <€ M troveling in a wogential direction. Asssmmg the collston is
campletely inslastic, find the minimura lonetic energy the comet must have to change
the new oebit 1o 2 parbols,

“Two parucies move zhout each other w circultar orbits under the influence of mavita-
iona$ forcey, with B 2erod ©. Thewr moton is suddenly stopped at & green wstant of
vme, and they are then released and allowed o fall igro gach othey. Prove that thay
coftide aites  tine /42,

Suppose tha there ans long-range wiersctions between auums in & gos ta 1he form of
wentral furces derivable from a potentiel

¥
U(e)—:;n

whers 7 1 the dwtance between sry pair of atoms smad m i 3 posstve inieger, Assame
Further that relative © any given atom fhe other atoms are distributed in space such
that theat density 15 given by the fatrs

FLITR
wry = o HT |
where & 15 the fotal manber of atons m  volune ¥, Find the addstion to the vinat of
Clausius resubting from these forces betvreen puirs of stoms, and Comprte the resolting
ourtechon 1o Boyie's tuw, Take N 30 kuge that sums may be rentaced by insegrals
While cosed resuits can be found for any positive i, of desited, the mathematics can
be sunplified by tiding m o 41
{a} Show that 1t a pardcle describes a civoutar orbit under the influsnce of an adracave
cenuat force directed 1oward a point on the circle, thea the force varies as the
imverse-fifth power of the distance.
{h} Show that for the orhit described the total energy of the partiche s zero.
) Find the period of the motion.

(4 Find &, 7, and v oy 2 furction of angle around the circle ard show that all diee
quantities aze mtane as the perticle goes through the center of force.

{a) For circular and pasabolic orbits in an awxoctive 1/ porentisl having the same
angular momentum, show that che perihelion distance of the paratiola 15 one-half
e ractius of the drele,

(b} Prove that i the sume venl force us o port (u} the speed of o particle ol any
pointin & paraholic orhu is /2 tmes the spaedt in a circular orbut passing Wrongh
the some point.

A meteor is observed to strioe Earth with 2 speed v, makdng an angle ¢ with the

zonith, Suppose thit for framn Earh the mefeor's spead was o' and i, was proceediteg
in a dirsction making a zenith angle ¢”, the etfecs of Eanth's gravity being ro puit it mo
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& hyperbolic orbit intersecting Eurth's surface. Show how o' aid ¢ con be decermined
from v und ¢ 1n terns of known coustunts.

Prove that in & Kepler elliptic arbit with small eccentricity ¢ the angular motion of
w purticie as viewed from the empry fosus of the eflipsc ie antiorm (the emipiy foses
iz the focus that is woi the cemer of awracnon) o firet order in . & is this theorem
that enables the Prolemaic pictre of planztary motion to be a reasonsbly accuzute
approxsmation. Or this pietuts e Sun is assuresd 1o move wniformty on a circle
whese center 13 shifte¢ from Earth by a distance called the equant, If the squant is
uilien as the distonce betwesn the two forr of the comect elliptieal orhit, then the
angatar motios 75 fs descaibed by the Protormab plotuse aecirately 10 frst order s
e

. One clasgic theme i acience fiction is a twin planer {“Planet X") 1o Barth that is

ideatical in mass, energy, and momentem bt is lecated on the orbit H2” out of phase
with Barth oo thatt ot B hedden froe the San, However, becmise of the eRiptical natwe
of the prbit, it 15 ot dways completely Rdden. Asssme this twin phanet s i fre
same Keplepen orbie ey Barth in such a manner than it Is in apbebon when Eath
s in pecthelion, Calcalue to firse order in the ecoontricity ¢ e maximam angolar
separstion of the bwin nd the Sun a8 wewed from the Harth. Could yoch o twin be
visible froms Bieih? Suppose the (win plivel 33 i an efliptical ordal havng 1he same
size and shape 53 that of Barth, but ratsted 1807 from Banh's orbiz, so that Barth and
the twite 252 a0 perihelion ot the same fime, Repeat your enjoulmtion and compure the
vislbifity m Hhe two siteations,

. At persgee of an eflipric gravnationat orbit 2 pattiele expenences an impalse S (cf.

Exereise 11, Chapter 2} in the radial direenion, ending the particle inta sncther lhpie
oibit. Determine the new semimayor Bxis. eccentricity, snd orieatation tn tetms of the
old

. A pariicle moves i a force fietd described by

Firy= -;kgew {'ij)

where & and @ are posttive.

(B} Write the equanons of moton snd reduce them 1 the equivatent one-dimensionsl
protiem. Use the offective potenual o discuss Hie qualitative nature of the orbis
for different vatues of the energy imd the angatar mommenti,

b) Show that if the ot is nearly circalar, the apsides will advance approximarsly
by mpja per revolmion, where g is the radius of the ciroular orbit.

A uniform distvibution of dust 8 the solur system adds to the pravitatdienal atiraction
of the Sun on o planet an additional foree

F=-mCr

where r1 iy the mess of the plaset, C i & comstant proportonat o te gravitational
constant and the densiy of the duat. and x is the radws vectr from the Sun 1o the
planet (bof considered as peiats). This additional force s very small chmpased to he
direct Sun-planet graviaiional fore.
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{&) Calculate the pedod for & cireular orbit 0f radins rg of the plimst i this combised
field,

b Catetlate the period of radiz! oscitlerions for sHght disnutances from ths cireatar
ontbir.

fc) Show thee nsarly circutar orbits car be aprroximated by 3 precessing ellipse and
find the precession frequency. s the precession in the same 01 opposite direction
I the orbita? angutay vetociy?

Stow that the motion of 2 particle in the potegtiat feld

L]
Viry = - + a
18 the 3ame as that of the mation under the Kepler potential slone when expresscd in
teams of & coerdingte system Muatng or precessing around the center of fures,
For negative total energy, show Hhat if the addional potertial serm 55 very amall
compared Lo the Kepler potential, then the angulur speed of precession of the elfipucal
arb i

2nmk
Q= =
e
Th hation of Megsary is observed to {ufter cormeston 07 known planetary

perrarbations} ai e rate of shout 407 of arc per century. Show thet this precession
could be accountod for classicnly i the dumensonless quantey

T
{which is a measure of the perrarbing Inverse-squane polzntial relative 1o the gravita-
tonal porential) were 2s small as 7 x 107%, (The sccentricity of Mercary’s orbit i
32006, and jts poriod is .24 vean)
Fhe additionn] term 1 the potentiat behzving #n r—7 in Fxerise 21 Jooks very mach
fiks the cemrifugid basvier term in the Aquivalent one-dimensionat parenial, Wity s it
than that the additional force serm causes & procession of the orbit, while an addince
tothe barrier, through a chagge in {, does oot?
Evaluate approximately the reito of mass of the Sun to that of Eartht, tsing only the
Jenpths of the year and of the Jonar month (37,3 days), and the mean radii of Banb’s
ot (1,49 x 10% km)and of the Moon's orbit (3.8 x 10° k.

Show thate for elfiprical srouon 5 & gravitmonul field the radial speed can be writles
as
J JRCY
oy {r —ayt,

Intraduce the eccenec anomaty vazable i in place of + and show that the resalung
differential equation in  can be ivegrated fmmediatcly to give Kapler's equition,

1 the ecrentricity ¢ i semall, Kepler's squunon for the ecoentns anomaly 3 a5 & func-
tror of wt, B, (3,76}, is sasily solved of a computer by an ierive technique that
teaty the esiny term as of lower order then . Denoting dry by the nih iterative
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slution, the ohvious eration relation ir
¥ = sty

Using this iferation procedure, g the sniytic form for an expansion of ¢ in powers
of & a1 hesst throngh terms in 7.

Eurth's pereod belwesn successive peribelion transits (the “enomalistic yowr™
365.25%6 mean solar days, snd the eccentriciry of iis orbit {s D0067504. Assuming
modion in a Kepleran elliptical orbit. how far does the Ewrth move in angle in the
orbit, swarhg from perihelion, in a tinte equal 1 one-guacter of the anommkliste yeur?
Give your resubt i degress 19 a0 acoracy of ong second of ae or better. Any methad
may be used, including sumencal computation with a caleulstor oz computer.

In hiyperbolsc monon in 2 1/¢ potential, the analogue of the ecosntric anomaly 1 F
defined by

r=afecosh F— 1)

wiere aie —~ ) is the distance of closest apmoach. Find the dealogee 10 Keplee's
cquation giving 2 from the time of closest appraach #s « function of 7,

A magneric monapol: is defined {if one exists) by 4 rangnete field savgularity of the

formB = br/r?. whege f is 3 Constant (a neasuge of the magnen o charge, as it were).

Suppose 4 particle of musy m moves in the field of ¥ magnetic monvpole snd a central

force field derived from the patential ¥ir} = ~&/r,

{a) Find she form of Newion's squasion of moton, usiag the Lerents force glven by
Eq. (1.60) By locking at the produet ¥ xX 3 show that while the mechontcsl angelar
momentar 15 poz copserved (il fedd of force by noncenical) thene is 4 conservad
vestor

P L
cr

by By paralieliag the steps lsading from 54, (3.7%) to Bg. (1323, show that for some
Fir} there 1s 2 comserved veotor analogous (o e Loplace—Rutge—Tanz veosy in
which D plkys the sarue role as B in the pure Kepler force problem,

3 dlf the momentum vectars of & particl along its trajectory are transtited so @ 10

stast from the conter of force, then the Feudy of the ventors trace out the panicle’s

Badogreaph, & locus carve of considerabls antiquity in the history of mechamues. will

hung of o tovive in on wilh space velicte . By wiing the o
product of L with the Laplace-Ronge-Lenz vector A, show that the hodogragh for
eliiptical Kepler motion js 2 circle of redius ed /7 wath otigin on the ¥ a5l displaced
adigtance A1 Frow te censer of force.

What chnges, if any. wind thete be in Ratherford scattering if the Coulomb forte
were aitractive, instesd of repulsive?

Exarame the scatlerieg produced by a cepulsive central force § = kr . Show that
he differential cross section [s given by
& §F —xddx
BB = — .
TS = S G A ey

whete x s e ratio of © /o and K s the energy.
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33

.

A central farce potential froquently encountered in nuclesr physics 15 the recvwrpalar
wetl, defined by the poteniesal

VD rea
=W r=a

Show thet the soattering producced by such a potemial in clisscal mechanics is wen-
tical with the refruction of tght rays by a sphere of radios 2 apd relative index of

refraciion
EL
=

(This cquivalence demonstrates why i was possible to explain refraction phencmens
bath by Huyger's waves und by Nowtos's mechamcal corpuscles.) Show aleo that the.

dffersutial crors ssction o
w2t fros§ - Y{n-en)

fos (1ha? - dces %)1

What is the waial cross secugn?

() =

A pusticle of mass m is constrained (o move under amavity withow fction on the
mside of 4 parabotord of revolution whes2 axs 1s verticsl P the ona-dirneazinnal
problem equivatent toits motion. What is the condition on the particle’s initinl velovity
o prodiee Greular enotion? Find the perod of small sscilatons abowt this cireuliy
mogan,

Conyider a troncatedt sepulyive Conlomth potential defised as
3

Vo rea

= reag,

r
k
M =
For a partile of total energy £ > ki, obtsin expressions for the scastering angle &
as 2 fumction of £75g, #hete s it the mmipsct parameter for which (he periapsts ocouss
atthe pointr = . (The formalas can be given m olosad oz bt they are ot rimptet)
Miake 3 numencal plotof & versus /o for the sposial case £ = 2k /a. Whas can yon
deduce about the angutar scagtering crosy seclion from the depsndence of 81 o 8/p
for this particular case

Another vesston of the trancuted Conlomb poteatal has the form

=) rea

Dtz closed-fowm expressions for the scaltering angle and the differential scamening
crons section. Thess are most convenienth expiessed in terms of 2 parameter measur-
ing the distance of ciosest approach i ualts of a. What is the tota onss section?
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36, The restncted thoee-body probiem consists of two masses 1 cxrclar ordits shout sach
ather and o thard body of swich smaller mass whese effect on the Twa farger bodisy
caw be neglected.
£} Tiefine an effective priegtial V{r, v) for thic problem where the » axds is te lre
of the two larger masses Sketeh the function V (x, 0) 2nd show that thare are fwo
“valleys” {points of stable equilibrivmm} corresponding & the two masses, Ale
show that there ars theee “hills” (thres points of unstable equilibrinm).

i) Using = computer program, calculate some orbits for the testricted three body
prodiers. Many orbits witt end with ejestion of the smaller mase, Smrt by assum-
ing 2 position and A vactor velocity for the smalt mass,



CHAPTER

The Kinematics of
Rigid Body Metion

A ngld hudy wag ﬂeﬁned prewously as a systemn of mass pounts subgect to the

tht the o between all pairs of points remain con-
stznt throaghout the motion. Although something of an idealization, the concept
is quite usefui, and the machanics of rigid body motion deserves a full exposition.
In this chapter we shall discuss principally the kinematics of rigid bodies, Le.,
the nature and characteristics of their motons, We devore some fime 10 develop-
mg the mathematical techniques involved, which are of considerable interest in

Ives, and have many wp lications to other figlds of physics.

Of essential importance is the votatianst mation of 2 vigid body, These consid-
aratiang fead directly to the relation berween the time rate of change of & vector
in an mertdal frame and the time rate of change of the same vector in & rotating
frame. Since & is approprinte at thal poim, we leave kinematics and develop the
deseription of the dynamics of motion in 3 rotating frame. In e nexs chapter we
discuss, using the Lagrangian formulation, how the motion of extended objects s
genierdted by apphied forces and torgues.

4.1 M YHE INDEFENDENT COORDMNATES OF A RIGID BODY

34

Before discussing the motion of a rigid body, we mupst first establish how many
independent coordinates are secassary to specify its conBguration. From exper-
eoce, we expect that theve should be six independent coordinates. Three external
woordinates are nesded fo specify the position of some reference point in the body
and three more to specify how the body is oriented with respect 1o the extesal
coordinates. in this section we show that these Inwuitive expectutions ars cotiect.

A ngid body with IV particles can at mest have 3V degrees of freedom, but
these ate greutly reduced by the constraims, which can be expressed 8 aquations
of the form

Fip = L [C33]

Here r;, is the distance hetwees the ith and jth particles and the ¢'s are constants.
The actual number of degress of Feedom cannot be obtatned sinply by subtrack.
Ing the number of constiaint equations from 3N, for there are %N(N-— 1} possible
equatiens of the form of Eq. {4.1), which is far greater than 3N for large N. Ip
truth, the Egs. (4.3 aze not al independent.
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FIGURE AT The location of a golat i 1 rigid body by its distances from three referance
poifds.

To fx a point in the tigid body, it is not necessary to specfy ity dstances to
it other points in the body; we need anly state the distances to any three other
woncolinear points (of. Fig. 4.1). Thus, once the positions of thres of the paricles
of the 1igid body are determined, the consiaints fix the positions of &l remaiaing
particies. The pumber of degrees of freedom therefore canmot be more than nine
But the fires ref; oS are Ives not ind dent; thers are in fact
dree equations of rigid constraint imposed on Hem,

Fip =iz, 23 =23, P13 = e

that reduce the number of degrees of freedom 1o six. That only six coordinates
are needed can #is0 be seen from the foflowing considerations. To cstablish the
position of ore of the reference points, thres coordinates musl be supplied. But
arce poist § is fixed. point 2 can be specified by ondy two coordinates, since it 1s
constrained t move an the surface of a sphere conterad at point . With these two
points delesrnined, point 3 has only one degree of freedom, for 1t can only rotate
abant the uxis joining the other two points, Hence, & total of six coordinates ks
sufficient,

A rigid body v space this needs six ol ized coordi 0
specify its configuration, no watter how mapy particles it may contain-—even in
the limit of 4 continuous bedy. OF course, thare may be additicnal consiraints on
e body hesides the constraint of tlgidity. For example, the body may be cop-
sirained 10 move b & surfice, or with ons point fixed. In sych casz, the rddisional
consteaing will further reduce the mumber of dagrees of freedom, snd hence the
nuaber of independent coordinates,

How shall these coordinates be assigned” Note that the set of configuration
of & rigid body s completely spacificd by Jocating 2 Cartestan set of coordinutes
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FIGURE 4.2  Unprirsed axex represent an exiernal reference set of axes: e prmed fxes
ate fixad o the figid bidy.

fixed in the Agid body (the primed axes shows in Fig. 4.2) relative 10 the coor-
dinate axes of the external space. Claarly thiee of the coordinates are needed to
speciy the coordinates of the otigin of this “body” set of axes. The rewmaining
thiee coordinates mast then specify the crientation of the primed zxes mwlative 10
= coordinate system pavallel to the external sxes, but with the same origin as the
primed axes.

There are many ways of speeifying the orieatation of a Cartesian set of axes
rafative to another sst with common origin. One fraitful procedure is 1o stute the
direction cosites of the primed ases reladve to the unprimed. Thus, the x” axis
could ba specified by its three direction cosines oy, o, oy, with tespect 10 the x,
¥, ¢ axes. If, At customay, §, §, K are fhree unit vectors along %, .z, and ¥, | K
perform the seme fonction in the primed system (cf. Fig. 4.3% then these direction
cosines are defined s

FEEN

FEETN

FEGIURE 4.3  Direction cosines of the bady tet of aves relative to an external set of axes.
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confyp = cosli iy =i b=
oty == cosi i m ¥ JafoF
cosfay 2 cos(f D= § 4 —k-F
cosfiy = cos B =i -j=}-F 4.2}
aud simifarly for cos g, ¢o5 y, ete. Note that the angle 4, is deflned 5o that
the first index refers to the primed system and the second index to the unprimed
system. These direction cosines can also be nsed 1o express the nnit veetor in e
primed systam In terms of the ane vectors of the unprimed system giving
¥ = cosbsk + cos o + cosfak
J == cosBasl 4 cos B + eosfink
K = cosdyck + cos fhz] + cos Bk, 4.3

These sets of nine directions cosines ther completely specify the ion of
the &', 3, 2" axes refative 1o the », ¥, 7 set, We con equally well invert ths process,
and use the direction rosnes w express tie &, § X unit vectars in tenmy of thelr

camponents along the primed axes. Thus, we can write
T T P R N A (4.4
ay
& = (7 ¥} = cosByyx 4 cosfy 4+ costhaz

¥ = (z- ') = cosflarx +cos fagy +costhyr
¢ = {r.X) = cosfyx -+ cos Bayy o cos gz (4.5)

with analpgens squations far i, j and k.

The direction cosines 2lse furnish direcly the relations berween the coord:-
nates of & given point in one system and the coordmates in the other system.
Thus, the caordingtes of & point in A given reference frame are the componants of
the position vector, ¢, along the primed and snprimed axes of the system, respec-
tively, The primed coordinates are then given in tezms of x, v, and 7, a5 shown in
£ (4.5). What has been done here for the components of the r vector can obvi-
ously be done for any arbitrary vector. If & is some vector, thet the compenent of
G aleng the &' axis wHI be related {0 5t x-, y-, 2-compotients by

G G = 0081 Gy + cosf2 Gy + s 813G, 4.6}

and 50 cit. The set of nine direction cosines thus completely spelis out the trans-
formation between the (%o coordinate systems,

¥ the primed axes are taken as fixed in the body, then the rire direction cosines
wili be functions of time as the body changes lte origntation It the course of te
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motion, In this sense, the direction cosinzs cas be considered as coordinates de-
seribing the instantaneous orientation of the body, relatdve o a cocrdinate system
fixed in space but with origin @ common with the body sysiem. But, clearly. they
ate 9ol indepandent coardinates, For there are nine of them and it has been shown
that only three coordinates are needed to specify an orientation.

The connections between the direction cosines ixise fiom the Tact that the basis
vectors in both coordinnie systems are orthogonal to each other and bave unit
magritude; fm symbols,
wnd Biml-hokeimp @7

feisjojek ket

with siviiar relations for ', 5, and kK. We can obtain the conditions satisfied by the
wine coefficients by forming all pessible dot products among the three equations
fori jand kinterms of ¥, §', and k' (a8 in Bq. {£.4)), making use of the Fiqs (3.7,

3
Y oosthy costhn =0 mpEm
Is)

4.8
a .8
Z cos? G = 1.
Lt
These two sets of th Guations each by sufficient to reduce the rumber

of independent quantiies from nine to fires. Formally, the six equetions cas be
combingd inte cae by Lsing the Kronecker S-syrabol Sy, defined by

Gim = 1 t=im
=0 I#m

Equadons (4.8) can then be written as

3
3 08 O 584 = Bt 9
t=t

It is herefore not possible o set up a Lagrangion and

of metion with the nine direction cosines as gensralized coordinates. For this
PWTOsE, We ™St use some set of three independent functions of the direction
cosines. A number of sach sets of independent varisbles will be described tater,
the rmogt importsnt being te Eoler angles. The use of direction. cosines to de-
seribe the conRactions between two Cartesian coordinate systems neverteless has
& number of important advastages. With their aid, many of the thearems about the
motien of rigid bodies cun be expressed with grest elegence and generahity, and in
& form naturally Jeading to the procedures used in special relativity and guantem
mechanics. Such 2 mode of description therefore merits an extended discussion
here.
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CRTHOGONAL TRANSFORMATIONS

To study the propetties of the nine direction cosines with greater case, i 18 con-
venicat to change the notation and dencte alf cocrdinates by r, distinguishing the
axes by subseripis:

X+ Xy
¥oE R {4.10y
PR
% shown in Fig, 4.3, We also change the notation for the direction cosines 10
o, = cotf, @an
Equations (4.5} and (4.5} constitute a graup of transformation equations frum
= sct of coordinates ¥y, Xy, X3 10 4 DOW sefxj, x5, x§. In particular, they form an

example of a neat of vector i, defined by 104 eQUAtIOnS
of the form

¥} =y Grarn + aaan
X m a4 @ ka3 (4.12)
xh e agexn + @32 + G33E,

where e 4y, @12, ..., e Ay set of constant {independent of x, x') coeffi-
tiemts.* To sirmplify the app F imeany of ioms, we will also make
use of the ion corvention first introduced by Binstein: Whenever an. index
DTCUTE tWe or more times in 2 erem, ity fmplied, without any forther symbols, that
the termns sre 10 be spmimed over af possible values of the Index. Thus, Egs. (4.12)
cun be wrinen most comp in dance with this jon a3

= agX, i=123 4120

The repeated appearance of the fndex ; indicates that the lefi-hand side of
Eq. (4.52) is a smm over the dumny index 7 for ali possible valves thee, j = I,
2, 3). Some ambiguity is possible where powers of an indexed quantity oceur, aad
for that reason, an expression such ag

appears under he SWMmAGCN convention &

A Xi.

*Equations (4.12) of caurse are nor the ost geaecal ss of ransFortation aquoats, of . for example,
0t fram the P the g5 (1-38),
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For the rest of the ook the fe inn showld be fcall
arsumed 1n reéuding the equations wnless atherwise explicitly indicated. Where
convenient, ar to remove ambiguty, the ton sign may be jonally

displayed explicitly, e.g., when certain valves of the index are to be exsiuded
from the summation.

The tmosformation represented by Eqs_ (411} i5 only 3 speciai case of the gen-
eval Hnzar transformation, figs, (4.12), since the direction cosines are ot all inda-
pendent. The <o ions between the coeffici Egs. (4.8} me rederived here
in terins of the aewer notation, Sines both covrdinate systems are Cartesfan, the
magnitude of o vector is given in tertns of the sum of squares of the components.
Further, =ince the actoal vector zematts unchanged no mader which coordinate
systest s used, the magaitude of the vector must be (he sume in both systeras i
symbols, we can state the invariance of the magnimde os

AN 4.13)
The: Jefi-land side of Bg. (4.13} is therafore
2,03 E) X
and it will reduce to the right-hand side of Eq. (4.13%, )f, and only if
2y = | =k
wl gk, [oar
o5, in & more compact form, if
g = e, jkm 123 (.15

Wihen the a,; coetherents are expressed in termss of the. Jirection cosines, the six
equatiens contained in £g. (4.15) bacoms identical with the Egs. (493

Any Hnesr transformoation, Bq. (4.12), that hes the properties required by
Eq. (4 15) b called s orthogoral tmasformation, and B, (4.15) itself is knows
a8 the orthogonality condition. Thus, the tamsition from coordinates fized in
space o coordingtes fxed in the rgid body fwith commen otiging 18 accom-
piished by means of an orthogonal £ ton, The army of t
Guantides {the direction cosines}, written ay

Gty aip A3
ay ap an |, @16}
qapam 0n

is eafled ma matric of tmmfommrmn, and will be denoted by A capitd fener A,
The g 2 kagwn &S the matrdx efements of the twans-
formation.

To ke these formal considerations more meaningful, consider the simple ex-
stmiple of motion in a plane, so thag we are restricted 10 two-dimensiona] rotations,
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and the transformation matrx reduces to the form
ayp my D
ay am
LU B 4

The four mawis elements. @, are 4 by three orth ity conditi

D2y = B, k=12,

and therefore only one independent parameter is needad to specify the transfer-
mation. But this conelusion Is not surprising. A two-dimensional ransformation
fram one Cartesian coordinate system to another corresponds to & rotation of the
axes in the plane (cf. Fig. 4.4), and such a rotation can be specified completety by
only GRe quantity, the totation angle $. Expressed in terms of this single parames
ter, the twaosfarmation eguations become

= Ay cOSg o+ Ky S g

o
*
5"- —xy sing + xp cos
o
Ay =

‘The marrix clements are therefore

apy = oo hp =sing
1) it g agz =<osd
asg g e

{£.17

30 that the matrix A cas be writian

L]

FIGURE 4.4  Retntion of the coondinete 2xes, 4 equivalent to twe-dimensional orthog-
emal wansformadon,
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cosp sing G
A | —ging cos¢ 0 (417)
0 ] H

The three nontrivial ovihogonality conditions expand mto the equations

a5 + azazs = L
arzzy +onan = 1
apydrg -+ dypg w6

These conditions are obvicusly satisfied by the matrix (4-17°), for in terms of the
malrtx elements (4,17) they teduce 10 the identities

cot g +uinl o 1
sin® ¢ cos’ ¢ = }
cos g sing ~ singcosd == O,

The transformation matrix A can be thought of as an aperaror tat, acting
on e unprismed sysiem, transforms It into the primed system, Symbolically. the
process might be written

() = Ar, 4.18)

which is 1o be read: The matrix A operiting on the components of 2 vectar in the
uriptimed system yields the components of the vector in the primed system. Nots
that in the developmen: of the subject so far, A sots on the coozdinate system onky,
e vector is unchanged, and we ask merely for its comnponents in two different
coordingte frames, Paventhesas have therefore been placedt around 1 o the left in
By (4,18} to make clear that the same veclor is involved or both sides on the equa-
tion. Oaly the components have changed. In shree dimensiens, e transformation
of coordinates, as shown sarkier, is simply a rotation, md A is then identicsl with
the retation operator in a plane,

Despits this, note thar without changing the formal mashematics, A cen also be
thought of as an aperator acting on the vecsor T, chasging it 10 o different vectar £’

1 = Ar, {419

wwith both vectors expressed in the same coerdinate systern Thus, in twe dmen-
sions, instead of rotating the coordinate system counterclockwise, we can rotate
tha veolor ¥ clockwize by an angle ¢ Lo anew vectos 17, as shawn in Uig. 4.5, The
comporents of the new vector will then be related to the corponemts of the old
by the same Eqs. (4.12) that describe the ransformation of coordinates. From a
formal standpoint, it is therefore not necessacy 1o use parentheses in Eg. (4.18)
rather, it can be wiitten as in Eq. (4.193 and inerpreted equally a5 an Operation an
the voordinale system of on the vactor. The slgebra remains the same no malter
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2

FIGURE 4.5 Jnerpremtion of aa orthugonal mansformation as a ratation of the veety,
Teaving the coordinate gystern unchanged,

which of these twe peints of view is followed. The interpretation &s an operator
acting on the coordinates is the more periinent one whes csing the srthogonal
transformation to specify the onentation of a rigid body. On the other hand, the
nmmn of an operator changing one vector into another hes the more widespread

p ion. Tn the mathemutical discussion either interprettion will be freely
vsed, o5 sults the corventence of the sitastion. Of conrse, note that the nature
of the operation represented by A will change according to which interpretation
is selected, Thus, if A correspouds 10 a coumerciociovise rotion by an angle ¢
when applied o the conedinate system, it will correspond to ¢ olockwize rotation
when applied Lo the vector,

The same duality of roles aften accurs with ather typer of goordinate transfor-
smations thar are more geners! than orthogone! ransformations. They may at times
b foaked oit a5 affectng only the coordinate systen, SXpressing some given fuan-
tity or function in terms of a new coordinale system. At other times, they may be
considered as operating on the quantity or fanctions themselves, chunging them to
new quigiities in the same coordimate systen When the gansformation is taken
as acting onfy on the coordinate system, we speak of the pussive role of the traas-
formation. In the active sense, the ransformalion is Iooked on as changing the
vector ot other physical quantity. These slirmative interpretations of a transfor-
mation will be eno d in various fosaulations of classical hanics to be
considered below {of. Chapter 9) and indeed occur in many fields of physics

To develop firther the kinematios of rigtd body mutmn about 2 fised origin, we
shall rnake mech wse of the algebra the fon of the wansi
sion matrix. The foliowing section is therefors a brief susamary of the elementery
aspects of matnx algebr with specific application t orthogonal matrices. Fo
those unacquainted with this branch of mathematics, the section sheunld provide
an introduction adequate for the immediate purpose. The materal also detatls the
pazticular lerminology and notation we will employ, Those already thoroughly fa-
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wiliar with matox algebra muy however omil the section and proceed directly to
Srction 4.4,

FORMAL PROPERTIES OF THE TRANSFORMATION MATREX

Let us consider what hﬂppens w?!arﬁ WO SuCcessive Lanstormations are wade-—

p g 10 twe of the rigid body. Let the firsl
zmnmmmmn from r to ¥’ be denoted by B:

*h b, 1426}
and the succzeding transformation from ¢ 1 a thind coordinate set r” by A
& g 42

“The relation between 1 and x, cam then be obtained by combining e two Eqgs.
{4260 and {423y

7 b x).

This may also be witten #s

=y (422)
whens

iy o= by “@an
The successive application of (wo onthogonal transfonnations A, B iy dms
equfvu!em to n third Hyear ransformation €. ¥ can be shown that € is alse an
in of the orth ity of A and B. The

detaifed proof will be left for the exermsa_ Symbolically, the restltant operator €
can be considered as the product of the two cperators A and 8:

C = AB,
and the mavrix elements ¢, are by definition the elements of the square wartix
obitained by mualtiplylng the two square mutrices A and B.
Note that this “matrix” or operator multiplication is not commuative,
BA # AB,

for. by definition. the elements of the transformation B = BA are

dyy == by, (428
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which generaily do not agres with the matix elements of C, Ey. (4.23). Thus, the
final coordinate system depends upon the order of application of the operatars A
and B, Lz, whether Rrst A then B, or first B and then A. However, matix mud
tiphication is associative; i1 & product of three or move matrces the order of the
mudtiplications i unimportant:

(AB)C = ATBC), 425

n £q. (4.19) te juxtaposition of A and £, 1o indicate the opesation of A on
the coordinate system (or on the vector), was said 10 be merely symbolic. Bot, by
extending our corceprt of mawmlces, i tixy alw be taken a3 indicating an actual
matrix mwitiplication. Thus far, the marrices used have been square, ie., with
squal bumber of rows and cofumnas. However, we may also have one-column
matrices, such as x and ¥’ defined by

x; o
x=1x {, ¥y | (4,26}
EN X

The product AN, by defimtion, shall be takert a3 8 ont-colwnn matrix, with the
elements

CAXY, = %, = X
Hence, Eg. ¢4.19) can alse be written a5 the matrix 2quation
X' = AXL

The addition of two matrices, while not 45 dportant a concept as maltiplics:
ton, it a frequently wsed operntion. The sum A -+ B 15 5 matnx € whose sloments
are the suns of the corresponding slements of A and B:

Gy 22+ by
Of greater impostance s the wansformation mverse 10 A, the aperation that

changes r’ back ta 7. Thiy wunsfirnmtion will be called A~1 and its reatrix cle-
ments designated by a,,. We ther have Be set of equations

= “;;Ij* [4.27)
which must be consistent with
xj Ak (.28

Subutituting x, from (4,.27), Bq. (4.28) becomes

xf = gy @29
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Since the components of r’ are independent, Bq. {4.29) is correct onfy If the sum-
mation teduces identically to x;. The coefficient of X} must therefore be T for
J = k and (for § ¢ X in symbols,

ap ey, = 8. 4309

‘The left-hard side of B, £4.30) is easily recognized as the marrix alement for the
produce AA™C, while e right-hand side is the elesment of the matrix known as

the uait poatrix 1:
1o o
TI=|0 1 01, 431}
[ I

Equatzon (.30} can therefore be written as
AN =1 (432)
which indicates the reeson for the designation of the inverse matrix by AL The
ransformation comesponding to T is known as the identity trangformation, pro-
ducing no change in the coordinale system:
X=X
Similarly multiplying ary mattix A by 1, 1o any order, Jeaves A unaffected:
TA = Al = A

By slightly changing the order of the proof of Eq. (4.28), it canbe shown thut A
imd A" commuie, Instesd of substitating x, in Eg. (4.29) intevms of x', we could
equally as weli demand vonsistency by eliminating ./ from the two equations,
{zading in apaiogous fashion o

a,’]an = B

Tus snvagrin, notation, this wads

AR =T, 433

which proves the statemsnt.
Now ot us consider the double sum

auuﬁ,a;p
which can be written either as

cpa) with o = gyae

t
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Or 4%
anidiy wigh di; ma,hcz,'[.

Applying the erthoponality conditions, g, (4.15), the som in the first form re-
duces

Ska:J = aj.
Ot the other Jand, the same sum from the second point of view, and with the help
of kqg. (4.34), can be vntten
Ay =y
Thus, the slements of the direct matrix A and the reciprocal A are related by
afy = ay. (34

In geners!, the matrix obrained from A Yy interchanging rows and columns is
known as the frurspesed matrix, ndicated by the dide thus A. Equation (4.34)
therzfore states that for arshogonal matrices the reciprocal malrix is to be identi-
fied s the mansposed matrin, symbokically.

A m A 4.35)
T¢ this result is substilnted in Eq. (4.33). we obtain
AA =t (4.36)

which 15 identical with the set of orthogonality conditions, By, (4.15), written in
abbrevigted formy, as can be verified by direct expansion. Simtlarly, an alternative
forms of the onthogonatity conditions can be obtafned from Eq. {4.30) by substi-
titing (4.34)

Ay, = by @37
In symbolic foxm, (437! can be wntlen
Ad =t

and taay be derived direetly {frova (4.36) by multiphying it from the left by A and
fronm the right by A™.

A rectangular matrix 13 said to be of dimension m x & it has m rows and n
coltmes; ie., if the matrix glement is iy then § rung from 1 to m, and § from 1
o 1. Clearly the wanspose of such 4 mateix has the dimension # x m. B a vector
colEnn matx i ] &% 8 tar ety of di jon m X b, e
transpose of a vector & of dimension | x m, Le., a one-row matrix. The product
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AB of two reclanghiar matrices exists ondy if tre number of columns of A is the
sape 43 the. purnber of rows of B, This is an obvioes consequence of the definition
of the muldphication operation leadinig 10 & matly element:

o)+ sy

Bron this viewpoint, the product of @ vector eoluriin mateiy with 2 squace matrix
does not exist. The oniy product between these guantiies that capn be formed is
that of a square watrix wih a single colemn. matdx. Bot notz that & single row
Watix, fe., & vector transpose, can indeed pre-muliply L square matrix, For a
veciue, huwever, 1He distlinction between the colzmn matnx and s franspose is
ofter of no consequence. The symbol x may therefore be wsed w0 denote sither
& column or & pow matriy, s the siteation Wicrams.? Thus in the expreasion Ax,
where A is 2 square metrix, the symbol X stands For 2 colums matrix, wheress in
the expression XA it represents the same elements arranged in = single row. Note
that the ith component of AX can be written as

Agxy = (A0

Hence, we have 2 usefol commutation property of the product of & vector and &
square magnx that

Ax = KA.
A square matrix chat is the same a5 its transpose,
Ay = Ay, {438

is said (for obvicus reasons} to be symmetric. Whea the trinspose is the Regative
of the eriginal matrix,

g, (439}

the: matrix is anisymmetric or skew symmetric. Clearly in an antisymmeric ma-
irix, the diagonal elements are abways zero.

The two interpretations of an operstor as iransforming the vector, or alterna-
tively the coordinate system, are both involved if we find the transformation of an
operator eader a change of coordinates, Let A be considersd an operator acting
epon 4 vector F (o7 a single-column matrix F) to produce & veotor G:

G == AF,

I the coundinute system 35 wansformed by o mamix B, the compotients of the
vector G in the new sysiem wit he given by
BG == BAF,

*The [CSPOSE BN g veiar Itrices will occastonally be retamed white 3t 1s useful (0 emphuszs
the dstincrion betwess eoltinn and row matrices
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which cant also be written
BG = BAB'BF. @A

Eguation (4.40} cas be stated 35 the operator BAB~} acting 1pon the vector ¥,
expressed in the new system, produces the vector ©, Likewise expressed in the
new courdinates. We may therefore consider BAB™ (o be the form taken by the
aperator A when transforred © a new set of axes:

A BAB™ 41

Any transfermation of 8 marix having the form of By, (441} is known as a sing-
Larizy rreisformation.

It is sppropriate &t this point to consider the properties of the deteriminant

formed from the elements of a square mutrix. As 1s customary, we shall denote

such a determiinant by vertieal bars, thos: 1AL Note that the definirion of matrix
mrluphcatot i identical with that for the multiplication of detervainants

|AB] = | - 1B]. 4419

Since the detersingns of the unk Mauix 1+ 1, the dererminanml form of the or-
thogonality conditiong, Eg. (4.36}, can be written

A} - (A =1,

Further, 23 the valoe of a } is by & sows and
columns, we ¢an Write

[LECEEN A7)
which implies that lhe determinant of an orthogonal matdix canenly be +1or — 1.
(The genmetrieal significumee of these two values will be considered in the next
secon.)

When the matrix is pot orthagonal, the determipant does not have these sivmple
values, of course, It can be shown howaver that the vaive of the determinant is
nvariant weder & similrity wansformation, Multiplylng Bq. {4.41) for the trans-
formed matdx from the rght by B. we obtaia the relation

A'B == BA,
or in determinantal form
A - 18 = 1B1 AL
Since the feterminant of B s merely a aumber, and not 2e00,* we can divide by

#TE 4 were 72, thete coutd be to mverse aperasor B {by Cramer's rule), #hnchl 15 required for
Eq. (4 41} 1a meke seme.
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1B on both sides to obtain the desired resalt:
|AT] = 1A},

In discussing rigid body motion fater. all thess properties of matrix transfor-
mations, especieily of orthogonsl matrices, wii be employed. In addition, other
properties are peeded, and they will be derived 28 the occasion requires,

THE EULER ANGLES

We have noted (cf. p. 137) thal the nine elements a,; are not suitable as generalized
coordinstes because they are not independent guaatities. The six ralations Hat
express the orthogenality condidens, Egs. (4.9 or Egs. {4 13), of course reduce
the number of independent clements to three. But in onder to cheracterize the
motion of a Rgid body, thera is an additional requirernent the marrix elements
must satisfy, beyend those implied by orhogenality, In the previons section we
pointed ont that the determinant of & reaf orthogonal matrix could have the value
+1 or —1. The following argement shows however thal an orthogonal matrix
whase d i i -1 cannot rep & physicad disph of & vigid body.
Cansider the simplest 3 x 3 matrix with the determinant —1;

-1 0 0
Sx=f 0 -1 8§=~1
0 9 -1

“The transformation § has the effect of changing the sign of sach of the componenls
ar condingte axes (of, Fig. 4.6). Such an operation transfonns a dghthanded
coordinate system into a lefr-handed one and is known as ar inversion of the
coordnete dxes,

Ome wethed of performing an isversion is to rotate ahout a coordinaie axis by
180" snd then reflect in that coopdingte axks divecuon. For the z-direction, this

gives
roralz reflect
hy £80° inthe = mversion.
x

shout 7 ¥ plene

}o

FIGURE 4.6 Inversion of the coandfaate axes,
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En matrix notation, this hay the form

—100?100 ~1 6 8
o -t 0jfo 1 ofl=| 0 -t of,
001[004 0 0 -

where the 1507 sotation is obtained by setting ¢ = 180° in Eg. (4.17),

From the nature of this eperation, it s clear that an inversion of a right-handed
systorn into 2 Jeft-handed one cannot be accomplished by sy rigid change in the
nriantation (f the coordinate azes An inversion terefore never comresponds o a
pirysical displacement of a dgid body. Whar is true for the inversion § is equally
valid for any mateix whose determinant is -1, for aty such maiix can be writ
ten a8 the product of § with & matrix whose determinant is +1, and thes incudes
the inversion operation. Consequently, it cannot describe a rigid change in or-
entation Theretors, the tramsformations representing rigid body motion saust be
Testricted to matrices having the determinent +1. Another method of reaching thie
conclesion stats from the fact thas the matdx of ransformation must evolee con-
tinuously from the unit matrix, which of covese has the detezminant +1. 1 would
be incompatible with the contineity of the motien to have the matrix determinant
suddenty change from its initea valde +1 to —1 al some givea time. Orthogonsi
wansformations with determinant +1 are said 10 be proper, and. those with the
determinant —1 are called improper.

In order to describe the motion of dgid bodies in the Lagrangian formulation
of meciumics, it will therefore be necessary w seek three independent parametens
that specify the orientation of 4 rigid body i such s manner that the comrespond-
ing orthagenal mattix of gansformation has the determinant +1. Only when such
genershzed coordinates have been found can we write a Lagrangian for the sys-
tem and obtein the Lagmogian cquations of motion, A numtber of such sets of
parameters have been described in the iteratare, bul the most common and sseful
are the Enler or Lulerian angles. We shall thesefore define these angles at tis
poini, and show how the elements of the orthogonal tramsformstion matrix can be
expressed in terms of them.

We can carry gut the wensformation from a given Caresian coordinate sys-
tem to onother by means of dive successive roudions performed In a specifie
sequence. The Huler angles are then defined as the (hree successive angles of rota-
tion. Within limits, the choice of rotation angles is arbiwary. The main convention
that wili be followed here is used widely in celestial mechanics, applied mechan
ics, and frequently in malecular and solid-state physics. Other conventions will
be descrbed below and in Appendix A

The sequence employed here is stuted by rotating the initial sysrem of axes,
xyz, by en angle ¢ counterclockwise about the £ axis, and the resultant coordinate.
system is labeled the £n¢ anes. In the second stage, the intermediate axes, En¢,
are rotaled about the & axis counterciockwise by an angle # 1o produce another in-
termedine set, the &9’ axes. The &' axis is at the intersection of the xy and £'7’
planes apd is known as the line of nodes. Finally, the £t axes are rotated coun-
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terciockwise by an angle ¥ aboutthe ¢ axis 10 produce the desized x'y'z’ system
of axes. Figare 4.7 lustrates the various stages of the sequence, The Bnler angles
6, i, and yr thuy completely specily the ovientation of the '3z’ system relative
1o the xyz and can therefore act as the three needed peneralized cocrdinates,

The elements of the complete transformation A can be obtained by weiting the
mateix as the wipke product of the sepmrale retations, each nfwhich hes 1 relasively
simple matgix form. Thus, te mitial rotanion about z ¢m be deseribed by a matrix
24

£ D,

where £ and x stand for column matrices. Similarty, the wansformation fam Dgf
e 57 can be described by a matos €

FA torehes of tinor vasskons watl be found in e biembare sxen wihim dis convention The dhifer.
EACTS d AL very Biat, Bt Bey aft offten sufficienl to frustee casy compagison of the ond formuiae,
echs 85 he fnat slenenrs, Gieatest cunfosion, perhips, amses from the cesasionl wse v lofl-banded
coardinue systems
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&= CE,
and the Jast rotation to x'y'z by a mateix B,
X = BE.

Hence, the mareix of the complete tranzformation,
x = AX,

18 the product of the stceessive matrices,
A= BCD.

Now the D trapsformation is & rotstion about 7, and henice has 4 mawix of te
form {ef. Bg. (4.17)

T ocosgp  sing 0]

D= |—sing ws¢ 0
¢ [y

a3

‘The € transformation coTresponds 1o 2 rotation abot £, with the nxrix

i l 3
L= |0 cosf  sind |, (.44}
£ -sind cosd

and finaily B is & rotation aboot £ and therefore Hias the same form as D:

Fcos  siny u:l

B \:siw sy D (4.43)

o 3 1
The product matrix A = BCD then follows as

~smg s - COSASAGEON Y - SRt ING + Coad CoRpo0rd  couan
wndsing - stnd con g ol

{ca;wmw-msuwsmw 208 o g + cosB eovd s g smwmm?]
A= .
{4460
The inverse transformation from body coordinates 1o space axes
x= A

is then given immediutely by the trausposed mateix A:
AT

_ SO oS — CaRB kAT - smdootd ~ cond yngopstr  wndsipd

A | conysing dcosdoos puing - sinod g g cosd o8 QooS - SmOCO8G |,

smp gy sind oo cnf

{4.47)
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Verification of the mukiplication, and d fon that A & proper,
orthogonal matrix wit ta left to the exercises.

Note that the seqbesce of rotations used to define the finel crientation of the
coordinale system 35 to some extent arbimary. The initial rotation covld be taken
ahour any of the three Cartestan axes. In the subsequent tTwo sotations, the auly
liriration s that 1o two suecessive rotations can be about the same axis. A totd
of 12 conventions is therefore possible in defining the Euler angles {in s right-
handed conrdinate system). The two most frequently used conventions differ only
in the cheice of axis for the second vortion. In the Buler’s angle definiions de-
scribed above, and used throughowt the hook, the second rotation is ahout the
intermediate x axis. We will refer to this choiee 8 the r-comvention. Tn quas-
{tnm mechantos, nuclear physics, and particle physics, we often take the second
defining rotaton sbowt the inteediate y axis; this foon will be desoted as the
yeconvention.

A thirdt convention is commonly used in engineering applicatons relating o
the orentation of moving vehicles <ach at aireraft and saellites Roth the r- and
y-conventions have the drawback that when the primed coordinate systern is only
slighty ditferem from the unprimed sysiens, the angles ¢ and o become indistin-
guishable, as their respective anes of rotation, £ and 2° are then neardy coimcident,
To get arcund this problem, afl three rotations are taken around different axes.
“The fiest rotation is sbout the vertical axis and gives the heading or yaw angle.
The second is around 2 perpendieniar axis fined in the vebicle and normel twthe
fignre awiis; it is measored by the pirck or aninude angle. Finally, the thicd angle
is one of rotation aboul the figure axis of the vehicls and is %e ol or bonk an
gie. Because all thres akes ave involved i the rotations, it will be designated as
the xrz-canvention (altbough the order of axes chosen may actually be ditferent).
‘This last convention is sametimes rofermed 10 as the Tris-Bryan agles.

VWhile only the x-convention will be used in the text, for refaretos purposes
Appendix A lists formulae invoiving Buler's angles, such as rofation matrices,
both the y- aud xyz-convertions.

THE CAYLEY-(LEIN PARAMETERS AND RELATED QUANYITIES

‘We have seen thar only (hree independent quanizies are needed 1o specify the ori-
entation of & rigid body, Noaetheless, there are oceasions when & iy desirsble 1o

use sets of variables intag more tas the mind member of ities o
describe a rotation, evea though they are not suitable as generafized cocrdinates.
Thus, Felix Kiein i d the set of fous p braring his name tc fa-
cilitate the i jon of ticated 4 1 The Ealer angles are

difficalt ko use in numerical Lumputnl:m hocanss of the $arge number of trigeno-
metric functions volved, and the four-parameser representations are much betrer
adapted for use on compirters. Further, the four-parameter sets we of great the-
oretical interest in branches of physics beyond the scope of this book, wherever
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otations or roladional symmetry are involved. It therefore seemns worthwhile to
Briefty describe these parameters, leaving the details 1o Appendix A.

The four Cayley-Rieln parameters are complex numbers denoted by o, 2, ¥,
and & with the constrains that § = »* and § == &%, In termy of these mambers,
the transformation mariz of a rotated body iy given by

%(:z’ —ytp st gy %(yz —ol Y yi-ap

- \ i )
M Sty o) ety ) ib oy

BS —cey ey £ B ad + By
“the matix A b real in spite of its appearance, as we can see by wiiling

ey s

f = ep +tey,

where the four real quantities ey, €1, €1, 4nd e3 are oftes whersd 10 s the Cayley—
Klei parameters but should be calted the Euler paramerers to be correct. They
satisfy the relation

Gtcfredred=il

A bit of algebraic mantpulation then shows that the matrix A can be written in
terrns of the four real parameters in the form

[fg -+ e% -~ a% - e'g 2erer 4 eney) 2epes — epep}
A=l 2eer - epest  efeitelodd  eertepsy) | 44T)
Megerb et Uerer - ever) e —ef kel

The reatity of the matrix clements it now manifest. & can also Je easily demon-
strated that e mawix A fnterms of these parameters cannet e put in the form of
the inversion transformation §. An ¢xamination of the off-diagonal elements and
sheeix drunsposes shows that they i vanish onfy of at feast thiee of the parameters
are zero, We cannot then choose the remaining nonzero parameier such that all
thes of the diagonal elements (or only one of them} are ~ 1.

EULER'S THEGREM ON THE MOTION OF A RIGID BODY

The diseussions of the previous sections provide 2 complete mghematical tech-
gique for describing the motions of arigid body. Af any instant, the oxientation of
the hody can b specified by an orthogonal ransformation, the elements of which
may be expressed i tepms of some suitable set of parameters. As time progrosses,
the orientation will change, and hence the matrix of transformation will beq fune-
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tion of time and miay be written A(7). If the body axes are chosen coincident with
the space axes at the tme £ = {, then Me wansformation is mitally simply the
identity bansformation:

Ald =1,

At any later time, A¢t) will in gencral differ from the identity transformation, but
winee the physical motion must be continuous, Afr} must be a continuous funetion
of dme. The transformation may thus be said to evolve sontimely from the
identity pansformation.

With this method of describing the motion, and using only the mathemation]
apparatsy abeady intioduced, we are now in 4 position o obiein the important
chargeteristics of ripid body motion. Of basic impogance i

Fuler’s Theorem: The genernl displacement of  rigid body with one
poinl fixed is a rotation about some axis.

The theorem means that for every such rotation # is always possible 1o find a0
axis drough the fixed point oriented at pardeuiar polar angles 8 and ¢ such the
a rotition by the partieular angle o about this axis duplicates the general rota.
tior, Thus, three parameoters {anghes) characterize the genesal totation. It s alse
possible to find theee Euler angles to produce the same rotztion.

If the fixed point {not necessaniy at the center of mass of the obyect) 15 taken
4as the origin of the body set of axes, then the displacemen of the rigid hody
volves ao transistion of the body axes; the only change is in orientation, The
sheorsim then states that the body set of axes al any tme ¢ ¢an Bways be obiained
by 4 single rotation of the initia} set of axes (tsken ay coicident with th space
set). In other words, the aperation implied In the magix A describing the physical
maton ot the rigid body 15 2 mrarion. Now # 15 characteristic of 3 rotation that one
direciion, namely. the axis of rotation, is left unaffected by the operation. Thus.
any vector g along the axis of rotation must have the same componests i both
the fnitia? and final axes.

The other necessary condition for & rotation, that the magnitade of the vectors
be unaffected, i sutematically provided hy the orthogonality conditions. Hence.
Fuler’s theorem will be proven # it can he shown that there exists § veetor R hav-
g the same companents in both systems, Using mandx notation for the vector,

R =AR=R (4.48)
Equation {4.48) constitates a special case of the mare general equation:
R == AR == AR, 4.Ad

where A is some constant, which may be complex, The valoes of A for which
Bg. (2.49) is soluble are known 8s the characteristic values, or eigenvalnes* of

*Thus teom 15, derved from the Gemman Ergemwerte Lieralfy “proper values™
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the matiix, Sioce equations of the form of £4.49} are of genoral interest and wilt be
uzed in Chapter 6, we shall exumine Hq. (4.49) and then speeiskize the dlscassion
o Eq, {448},

The problem of finding vectors that satisfy Tq. (4.49) is therefoze called the
gigenvglue problem for the given matrix, and Eq. (4.49) itself is refereed to as the
eigenvalue equation. Comespondingly, the weetor solions ar the eigenvecton
of A, Buler's thearem can sow be restaied in the following language:

The real orthogenal matrix specifying the physical motion of @ rigid
body with one point fixed abways hos the eipenvalue 41,

‘The sigenvalue eguations {4.49) may be winen
(A~20R =0, 4.50)
or, i expomded form,
@y~ MK tap¥ -an =0
anX + (o = )Y wanZ =B (451
anX +agn¥ + - 0L =0

Beuations {(4.51) comprise 4 ses of three b i ions for
the components X, ¥, Z of the elgenvector R. As such, they can never furnish def-
inite vaiues for the three components, bt onty ratios of components. Physicaly,
this corresponds to the circumstance that only the direcrion of the eigeaventor can
be fixed; the magnitude remains undeterrained. The product of 4 constant with an
eigenvector is also 40 eigenvector. In any case, heing homogeneous, Hgs. (4.31)
can have a nontrivial solution only when the determinant of the cocfBolents van-
shes,

ag — A az ayx
Wedd|m| ay  ap=h  ap | =06 “.52)
a1 gy @ —A

Bouator (2.57) Js known ay the charicleristic of secufar eguation of the manix,
and the valves of  for which the equation is satisfied are the desired eigenvalues.
Euler's theorem teduces te the statement that, for the real orthogonal matrices
amder consideration, the secular equation must have the roet A = +1.

In gemersd, the secilar equation will have thrze roos with dree corresponding
sigsuvectors. For comvenience, the notation Xy, X, X3 will often be used instead
of ¥. ¥. Z. In such % notation, the components of the eigenvectors might be
labeled as X, the first subscript indicating the partioular component, the second
deroting which of the thiree sigenvestors in Involved. A typical member of the
group of Egs. (4.517 would then be written (with explicit sunamagion] as

Y ay X = ¥y
?
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or, slematively, as
oAk s YK b 53
k) i

Bath sides of Eq. (4.33) then have the form of & matrix product element; the left
side 38 the groduct of A with 2 matrix X having the elements X ., the right side
a3 the product of X with & matrix whose Jith element s &,:3;. The last matix is
diagonal, and ils dizgonal slements are the eigenvalues of A, We shall therefore

designate the manix by A:
PR )
A==} O Ak 0. {4.543
8 8 i3

Eqpaion (4.535 thas huplies the matrix squation
AX =XA,
or, multiplying from the lefl by X!,
XTAN = AL 4353

Now, the teft side is in the form of 2 simijarity ransformalion operating on A {We.
have only to denots X~ by the symbiol Y to reduce B to the form Bg, {4.41).) Thus,
Eq. (4.35) provides the following alteroative approach to the eipenvalue problem:
We seek o dagonalize A by = similarity transformation. Fach columa of the ma-
wix vsed to carry oot the sindlarity wansformation congists of the components of
an wigenvoctu, The slemeals ol e dagoudiced form o & e G vastsponding
eigenvalies.

_ Euler's theorem can be proven directly by using the orthogonality property of
A. Consider the expressiog

(Awthzt A

H we take the determminant of the magices forming both sides (of. Eq. (4.417), we.
can write the equality

A AL =T - A 4563

T desctite he moton of a fgld dody, the mais Ad) must cotrespond to &

proper totation, therefore the determinant of A, and of it vanspose, must be +3.

Further, since in general the determinant of the tanspose of & matrix 13 the same
as that of the matrix, the transpose sigas in Bg. (4,56} can be removed:

A1 =1F ~ AL 457
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Exquation (4.57) says that the deterrninant of a particular maty is the same as the
determinant of the negative of the matzix. Supposs B is some i » # marox. Then
i is & well-known property of detertrinants that

| = By == {—1MBE

Since we are working i @ tree-dimensional space {n = 3), it is clear that
Eq. {4.57) can hold for any arbitrary proper motation only i

A H Dl {4.58)

Comparing By (4.58) with the secular equation (.52}, we can see that one of the
ebgenvalues satisfying Bq. (4.32) must always be 4 =+, which is the desired
result of Euter’s theorent.

Note how the proot of Bnler’s teorem smphasizes the importance of the mum-
ber of di fons in the space idered. In spaces with an even nwmber of
dimensions, Bq. (4.7} is an identiry for all matrdees and Euler”s theoresn doesn't
hotd. Thay, Tor two dimensions theve 18 1o vector in the space that s loft eaaltered
by a ratation—the axis of rosation is perpendicular to the plane and therefore out
of the space.

1 is now a simple matter to datermine the praperties of the other el
in three dimengions. Designate the -+ 1 cigenvalue gy A, The determinant of any
mady iy wneffected by & simtladty tansformation (¢f. Section 4.3). Hence, by
Egs. (4.34) and (4.55) and the properties of A as 2 proper rofation,

AL = Ayhzks = Aghg o= 1. (4.59)

Further, since A & a real matrix, then if A 18 a solution of the secular equa-
ton (4.37), the complex congaie A* mrast also be a solution.

If 3 given eigenvalue A, is complex, then the corresponding eigenvector, B;,
diat sasiafies By, (4.59) wili in general also be complox. We have Rot previously
dealt with the properties of complex vectors under {real) orthogopat transforma-
shiend, and thore aro some mod to previcns definigons. The sqoare of the
Tength or magninde of 1 complex vector R is R+ B, ov in matix mofation RRY,
where the transpose sign on the leR-hand vector indicales i is vepresented by 4
row matris, Under 3 real orthogonal trapsformation, the square of the magaitude
18 fnvariant

BB = (AR)AR® = RAAR® = RR".

Suppnse now that B is a complex sigenvector corresponding 1o a complex sigon-
walue L. Heace, by Bq. (4.49), we have

AR = A RR,
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which leads to the conclusion that afl ¢fgervalues Rave BRlE magnitude.
PEARTS S {=.60)

From these pripertics it may be concluded that there ane throe possible Gwsi-
butions of exgenvalues. If all of the eigsnvalued are real, then only 1Wo situations
are possibie:

1. Al ies are + 1 The ion matriX is then just 1, & case we
Ty jusily call tivial,

2. Unc ergenvalue 1s +} and the other two are both — 1, Such a tansformation
niay be characterized as an. inversion in two coprdinate axes with the third
anchanged. Equelty it Is a rotation through the sagle x about the direction
of the unchanged axis.

i not ail of the eigenvalues are resl, there is only one sdditional possibiity:

3. One stgenvalue 18 +1, and the other two are complex conjugates of sach
other of the form ¢ and ™%,

A more complete statement of Euler's theorem thus is that any nontrivial real
orthegonal mairix has one, and only one, eigenvalue +1.

The direction cosines of the axis of rotatien can then be obiained by seiting
L = |10 the eigenvalue equations {4.51) ard wolving for X, ¥, and Z.° The
angle of rotation can likewise be obtained withont difficalty. By meuns of some
similarity mansformation, it is always possible to trunsform the matrix Ao a
systern of coordinates where the # axis Hies along the axis of rotation, In such &
systera of coordinates, A represents s redation about the g axis through at angle
&, and therefore has the form

s sm@ 6
Al= | —yin® cosd B
o 1
The wace of A’ i3 shinply
t4Zeos .
Since the tace is always invariant under a similarity wansformation, the tracs of
A with respeet o any isitlal coordinate system must have the satte form,
TrA = a, w1 +2cosd, {4,613
I dhete are mukiple 7o 10 the secrlur pquation. fica The omvesponding cipeaveclons eanael be
Found as simply te) Secttons 5 4 and 823 Fueed, 1t 15 ot afways possible to complersly dagoaaize
4 general mamtx 1f the ergenvalisey are not ulf distmer. These excepuons e of 00 Maporaes. foy te

prestrl congidertions. a5 Boler's theoeem shows that tor al) noamivisl arthogotal mattices 41 s &
stoghe oot
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which gives the vaive of © in terms of the matrix elements, The rotation angle $
is %0 be sdentified alsa with the phase angle of the complex gigepvatues A, as the
sum of the cigenvalaes Is just the wace of A in ks dagonal form, Eq. (4.54). By
Haler's theoremn and the properties of the eigenvalues, this sum is

Tra=Yh = e e
n

4 2eos @,

We see that the situations in which the eigenvalues are all real are actually spectal
cusos of A hiving compkx cigenvalues. Alithe A, = -1 correspouds to a rotation
angle & = 0 (the identity vansformation), while the cave with s double eigenvaloe
—1 comesponds to @ == ir, a5 previonsly noted,

The prescriptions for the direction of the rotation axts and for the rotation angle
are not imambiguous. Clearly if R is an cigenvector, 3o s —R; ence the sense of
the direction of the rolation axis is not specified. Further, —& satishies By, (4.63)
if & does. Indeed, it is clear that the eigeavalue solutton does Dot uniquety fix
the orthogonal fransformation matnx A. From me deteraupantal secutar equa-
tion (4.52), it follows that the inverse matrix A”! = A has the same eigonvatues
and cgenvectnes as A However, the ambiguities can at least be amellorated by
assigeing @ to A and ~ to A™F, and fixing the sense of the axes of rotation by
the right-hand screw sule.

Firally, pote should be made of an immediate corollary of Huler's theorem,
sometimes called

Chasles” Theorem: The most general displacement of @ rigid body is
& transiaion pls o rottion.

Detaited proof is hardly necessary. Simply statod, removing the constraint of mo-
tian with one point fixed introduces three translatory deogrees of fresdom for the
origin of the body system of axes.®

FINITE ROTATEONS

The relative ortentation of two Cartesdnn coordinnts systoms with ooimnon nrs—
zin has been described by varions rep hons, fnchuding the tuee

Euler angles of rotation that transform one eoordinate system to the other. la the
previous section it was shown that the cocrdinate trnsformation can be carmed
through by « single rotation about a suitable direction. It s therefore natural to
seek & representation of the coordinate transformation in terms of the parame-

M. Chasles (£793-1381) also proved 2 swanger form of the theorers, namely. that 1 i possible o
chaose the neigin of e hody w2t of coordinaies <o tha the oanslation is i the same direction as the
wxis of rortion. Sach & combination of ranslation and rolation 1 eatted o tovw mokon

Thin [prmalissm hay sone we m crystabiographie stadies of erystals Wi 4 serew a3 GF SYmmETY,
Susti symMory produses strisge dptost prepertics. Aside from thak application, thers seems 12 be
litle: presone sae for this version of Chastes’ theorem, aor fo the clsborele matbematics of screw
wtions developed in the minetsenth cegtary,
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ters of the rotatton—the angle of rotation and the direciion cosings of the axis of
rotatien,

With the help of some sinple vector algebra, we can derve soch 2 represen-
tation For this purpose, it iz convenient o treut the tranwformation in its active
sense, Le.. as one that rotates the vector in & Gxed coorlingte system {of. Sec-
tiom 4.2 1. Recall that 2 eounterclockwige rotation of the coprdinate syster then
appeas as & clockwise wotation of te vector, In Fig. 4.8(s) e initial position of
the vector r is denoted by T and the final position r by 6@, while the unit
vector along the axis of rotation is denoted by 1. The distance between O and &
fiis the magnitude 5 - r, 30 hat the veclor PR enn be wntten aln - o} Fig-
ure 4.3(b} sketches the vectors in the plane stormal 4o the axis of rotation. The
vector NP can be described also as r— n(n - 1), hut its magnitude is the same ag
that of the vectors @ and 1 % B, To obtan the desired reladon between F and £,
we comstrict r' s the suin of Hiree vectors:

¢ O+ WY 4 VD
or
=0} 4 [F - 0o Dicos ® 4k x wsind.
A shight rearcangement of weems feads to the final result:
F=reos® +nin- (1 ~cos®) L (r x njsin @, {462}
Equation (4.62) will be refered 1o as the roation fornala. Note that Bg. {4.02)
hotds for any rotation, ao matter what it itude, wnd thus is s finite-rotation

version (in a clockwise sease) of the deseription given in Section 2.6, for the
change of & sentor snder finiiesimal sogarion (@f also Section 4 8 )

a2

€63 The plano notmel 10
18 Overal view the axis of rotation

FIGURE 48  Vewtor diagrams for denvation of the rutation formula.
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1t is seraigheforward to express the rolation angle, $, in terms of the Etler an-
shes. Equation (4.61) gives the race of the rotation matrix in the plane perpendic-
ular to the axis of rofation. Since the irace of & matrix ks Invarisnt, this expression
et equal the trace of A as given in Eq (4.46) TF we nse this equality, add one (1)
to both sides, and use trigonometric ideatities, we get an equation whose squars
1008 1y

S P4
ooszwces 3 00&2‘ (4,63}

whese the sige of the squars ruo is fxed by the physicel reyuiroment dust & — 0
as g, 3, and @ — 0,

ENFINITESIMAL ROTATIONS

In the previcus secrions various matrices have been assockated with the descrip-
tion of the rigid bedy ovientation. However, the asmber of matdx clemests bas
always been lavger than the number of independent variables, and various sub-
sidiary conditions have had fo be tagged on Now that we have established that
any given orientation can be oftained by 2 single rotation abowt some axis, it is
Rmpting to iry i0 assotizle a vector, characerized by three independent quant
ties, with the linile dispiacement of 2 rigid hody about a fixed point. Coertainly a
direction suggests il obviously--that of the axis of rotat d ary funetion
of the rotation argle would seem suitable as the magnitude. But it soon becomes
evident that such a correspondence cannot be made sacressfully. Suppose A and
B are two soch “vectors” associated with ansformations A and B. Then to qualify
as vectors they must be commutstive in additon:

A+B=B+A

But the additon of two rotations, 1.¢., one rotation performed after another, it T
been seen, corresponds 1o the product AB of the two matrices. However, mateix
muttiphicarion is not commutative, AB = BA, apd hence A, B &e 0ot comumia-
tive. in additfon and cannot be aceepted as vectors, This conclusion, that the swm
of finite retations depends upon the ovder of the rotations, is strikingly demon-
strated by 2 simple experiment. Thus, Fig. 4.9 fllustrates the sequence of events
in redating a biock first through 907 about the 2 aris fixed in the block, and then
B0™ about the ¥’ axis, while Fig. 4,10 presents the same rotations in reverse order,
The final position is markediy different in the two sequences,

While 2 finfie rotation thay cannot be cepresented by A sigle vector, the same
objections do not hold if oy fresi rotations are Cobside An infindtes
ol rotation is an orthogonal tansformation of coordinate axes in which the
comgioeaty of a vector are almost the same in both sets of aes—the change
is infinitesimal. ‘Thus, the x; P of some vector £ {on the passive interpre
tation of the wansfornation} would be practically the same 83 x, the ifference
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2 &

{2} Vettual positior  (4) Rotated 90° about #' (s} Rotated 90" about
lermediate ¥

FIGURE 49  The cffect of two rotations perfurme in 8 v arder

() Veencal popiogn (b} Rotned H° dboat 37 (e} Rotard 945° about

iiermedate 2

FIGURE 4.10  The two rotations shown o Fig, 4.9, but performed in reverss oider.

bring exremely small
X} #= Xy b 61X+ €130 4 €135 {4643

The matrix elements 1, £33, 81c., are to be considered as infinitesimaly, so that in
subsequent. cufenlations ondy the first sonvanishing mder in g, need he recained.
For any goneral p x/, the eguationy of transformation can
Be Written as

X=X €y
or
=& + 6,08 465

The quantity &, will be recognized as the clememt of the wnit mamix, wnd
Eq. {4.65} appears in masix notation as

= (F + e, {4.66)
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Eauation (4.66) staes that the typical form for te matdx of an infinitesimal trans-
formation 18 1 4 € L.e., il is almost the identity faasformation, differing a1 most
by at infinitesinal operatorn

It can now be seen tha the sequence of operations is unimportant for infinites-
imal transformations; in other words, they commure. 1 T + € and 1 4 £y are g
infinitesinal transformations, ther one of the possible prodacts is

dta)ired =P iel+iatan
=14€ +&. {467y

neglecting higher-order infinitesimals. The product in reverse order merely inter-
changes & and €7; this has no effect on the resalt, i ms‘emx addition is always

. The ive propeny of infimi lons over-
comes e ohjection to their representation by vectars. For example, (he rotation
matix (4.46) for infinitenimal Buler rotation angles I given by

H (g 4-dy) @
Az | o (dd - dir) 1 df
] —df 1

and
4Q =idf +kide + ),

where L and k are the unit vectors in the x- and z-directions, respectivedy,
The wverse toalrix for an infintiesimal tunstformation is seadily obtained. (f
A =t 4 eis the matrix of the fransformation, then the inverse is

At =

s (4.88)
As proof, note that the product AA~! reduces to the unit matrix,

M (14 - =t
in agreement with the definition, for the fverse mawii, Bg (432) Fertier, the

cithogonality of A inplies thar A= (1+8 musehe equal to A1 gs given by
Eq. {4.68). Yience, the infinitesinal matrix is anth % {of. By, (4.36))

E=—f
Since the dagona] slomonts of an antisymunetric natdy ae necessartly oo,
there can be oply thres distinet elenents i any 3 =3 antisyrametric mamwix, Hence,

*ln thus secuan we have aswmed implouty thas an abnussmel crhogons] wensformaton cars-
spond: fa2 ramcn. By & sense thes dsssmption 15 abvious: n “fofiesimal serion” b @ contradic-
om0 terms. Fasmally. the stalement foffows. lrom the elry of € Al the dmgenst clements
o1+ cre thes uniey, ond to frst crder in small quarrities., she determinmnt of the transformation is
abways + . which 55 the mark of a proper rotasian,
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there is no Joss of gencerality in writing & in the forn

0 dy —dy
B 1+ PO I+ 469
di; ~dfl &

The three quantities dSh, dSk, 48 are clearly t© be identified with the three
independent parameters specifying the rotation. We will now show that these three
yuantiies akso form the componenis of a particalar kind of vector. By Bq. (4.66)
the changa in the companents of a vector snder the infinitesimal tancformarion
of the cocrdinate system can be expressed by the matrix equation

¥ - rmdr = e, {4.70}
which in expanded form, with £ given by (4.69}, becomes

dxg = xy Sl = s diy
dx = xydly - v di 7D
dxy s xy d§y - 22 L2y,

The right-hand side of each of Bas. f4.71) is in fhe form of 4 component of the
crass product of two veotors, Ramely, the oross product of £ with a vector 452 bav-
Ing components® d2;, A0, di2;. We can therefore write Eq. (4.71) equivatenily
as

dr =1 x dik 472}

‘The vector T transforms under an orthogonal matris B according to the relations
{cf. Fig. (4200

& =byx;. 4173}

If 4} is 4o be a vecior in the same sense as T, it must ransform under B in the
same way. As we shail see, €3 passes most of this test for a vector, although in
one respact it fails to make the grade. One way of examining the wansformation
properiies of dLk s to find how the manix ¢ transforms under a coorditate trans-
formation. As was shown in Section 4.3, {he transformed matrix € is obsained by
a similarity transformation:

& = Bl

" canpot b i the diffrentsal of  vestet. The dia
seands for 2 diffzrentsal vector, that s, a vector of differenisl ugnitude. Unfortunately, notationsl
‘conveation resalts in Hvng the veetar charscrerisus spelied anly 10 £, but ot should b cleer 1o the
seades there is wo vector af which AR repesents 3 defferuarial, Ax we fave seem, & fnits Tatgon
cannoe be Teprercnied by  single vectar
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A the antisymuneny propesty of a tmabiix is preserved under an orthogonal sind-
tarity transformation {ses Derivation 31, €' car akso be put in the form of Bq. (4,69}
with nonvanishing elements di2]. A detsiled smdy of these ¢lements shows tat
& transforms under the similarity transformation such that

453 = Hib, 52, My

The transformation of 203 is thus almost the same as for r, but differs by the factor
{Bl, the determnant of the ransformation mawix,

There is however a simpler way to uncover the vector characteristics of d€3,
and mdeed to verify W fransformation properties as gven by by (4.74). In the
previous section a vector formula was dedved for the chaage in the components
of r under a finite rolstion D of the coordinate system. By letting ':b &0 o lhe
Hmit of an infinitesimal angle 4G, the cor ing formlz for an infind
rotation can be obiained. In this limit, cos @ in Hq. (4.62) approaches ynity, and
sin & goes to B the resakant expression for the infinitesimal change in ris den

¥ —radr=rxadd, {4.78)

Comparison with Bq. (4.72) indicates that 48} iz indeed a vector and is derersnined
by

€k o ndd, (476

Equation {4.75) can of cotwse be derived direcdy withont recouvse 1o the finke
rotation formula. Considered in its active sense, the infinitesimal coordinate trans-
formation corresponds 1o a rotation of a vector © cfockwise through an angle 4@
about the axis of rotation, & sitsation that is depicted in Fig. 4.11.* The magnitede
of dr, to first order in 44 is, from the figure,

dr = rsinbd®,

and the direction 4r is, in this mit, perpendicular to both r and 4§} = nd@.
Finally, the sense of Jr is in the direction 4 right-hand screw advances as ¢ &s
tumed into d§). Figure .11 thug shows that in magnitede. direction, and sensedr
is the rarme a5 that predicted by By, (4.75).

The tansformarion properties of d5), as defined by Eq. (4,763, are still tobe
discussed. As is well known from elementary vector elpebre, there are two kinds
of vectors in regand to trangformation properties under an isversion. Yectors thai
eransform according to By, (4.72) are known as polar vecrors, Under a three-

dimensfonal inversion,
-1 0 0
$§={ a -1 0
4 0 -

“Frguee 4.1 s the afockwien-totatsen verion of Frg 2.9,
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oty =

FIGURE &.13 Change in 2 vecior produced by v snfinitesimal clacksise rotating of the
veetor

Whose COmpOnEnts are
Sy iy,

all componcnts of a polar vector change sign.

On the other band, the components of axfal vectors ot preudovectors do not
change sign ander inversion. The simples: example of an axial vector i3 a cross
product of two polar vectors,

V' =PxF,

where the comporents of the cross product ar given, as cusiomary, by the defiai-
gons:

VDI FDe. 1 ok in cyclic onder. @

The components of B and F change stgr under inversion; hence those of € do not,
Many familiar physical quantities are axist vectors, such as the angular momen-
mm L = ¢ x g, and the magnetic field inteasity. The transformation law for an
axial veeror is of the form of Eq. {4.74). For proper orthogenal transformations,
axial ond polar vectors are indisiinguishable, but for improper transformations,
i.c., ivolving inversion, the determinamt [V*]is — 1, and the two fypes of vectors
hehave differently.

Another way 1o expiain this property is to defing a parity operator P. The oper.
ator P perforins the Inversiot x — —x, ¥ — =3, 7 ~+ ~g, Then if § is scalar. V
& polar vector, and V* an axial vector,
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PS=5
PV oV
LA
and, obvionsly,
PV ¥ = (V- ¥}

‘Thus, Vo V* is o preudoscalar $* with the property PS¥ = 8" and of cowrse
(D5} 2 — 555, PLEVE 2 — 5V, PSVF) = TV

On the passive interpretation of the transformation, it is 2asy 1o see why po-
far vesiors behave as they do under tmversion. The vector rermains unaffected by
the trensfornation, but the coordinate wxes, snd therefore the components, change
sign. What then is different for an axial vector? & appears that an axial vector af-
ways carries with # a “handedness” convestion, as implied, &.g., by the definition,
Bq. {4,773, of & cross product, Usder inversion 3 right-handed coordinate sysiem
chitnges to a lefl-handed systent, and the cyelic order ryguirement of Bq, (4.77)
impiies a similar change from the oght-hand screw copvention o a left-hand con-
vention. Hence, even on the passive interpretation, thers ts an actual changes inthe
direction of the cross product upon inversion.

itig clear now why Jfk transforms a8 an axial vewor according 1o Bq. (4.74).
Algebraically, we see that since both rand 4r in Hq. (4.75) ara potar vectars, ihen
5, and therefore d€}, mmst be axial vectors. Geometricaity, the inversion of the
coordinates corresponds to the switch from a right-hand screw law to & lefi-hard
sorew to defing the sense of &,

The discussion of the cross product provides an opportonity to introduce a
notation that will be mest useful on fature cccasions. The permuration symbel
ar Lavi-Civita density* e, is dofined to be zero if sny two of the indices ijk
are oqual, and otherwise either 41 or —I according as ijk s an even or odd
peranutaton of 1, 2, 3. Thus, iy termns of the permutation symbol, By, (4.77) for
the components of a cross product can be written

C = e u Dy Fr, @I

where the nsnal summution convention has been employed.

The descriptions of rotation presented so far in this chapter have been devel-
oped so that we can represent the otientaton of a rigid body, Note that the frans-
formations primarily iavolve rotation of the coordinate system (£ Fig. 4.12a}
The curmesponding “active” interprotation of rotation of 2 vector in a fixed co-
ordingte systerm therefore Implies a rotation in the opposite diection, i.e, v a
clockwise sense. But thete ate many areas of mechanics, or of physics in general
for thet matter, where we are concerned with the effects of rotating the physical
system and associated vectors {of. Fig, 4.12b), The connection between invariance
of the system under rotstion and conservation of angubar momentam has already

*akso known i bly 2 the af sensor o fsutrop of rank 3.
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FIGURE 4.12 (a) 'hnmfuﬂnauon rmm e covrdinats sysiem i, 3 2} 1 New ceor-
drate system (X', ¥'. 7'} By this is pokitive i the
clockwise sense, W refer 10 this as a passive eansformation. (b) The mtation of a tody
theaugh ar gngle ¢, By conveation, the rotuton is positive tn a cowrterclockw)se sense,
Before. ke rotatton, the coordinates of points of the body were given by tx, , 1) afier the
rotation, they are given by (X', ¥, 2'). This Is called ac 20tve transteretion heconse the
physical body rpoves.

been pointed out (ef, Section 2.6). In such applications it is necessary to consider

the consequences of rotation of vectoss in the usual counterclockwise sense. For

reference purposes. a fiumber of rotation formulne given above will e lsted hete,

but for eounterclockwise rotation of vectors. All eguazions and statements from

here to the end of this section apply orly Jor such counterclockwise rotations.
The roation formuln, Eg. (4.62), becomes

1 =reos @4l 2} —cos ®) 4 (n x Hisind, {442}
and the corresponding mtittesunal rotation, Eq. (4.75), appeary as

dr' =dE x 1o (B X DD = —(F x B} D, 47151

The anti: ic matrix of the infinitesimal rotation, Bq. (4.69), becomes

0 —dfyy  dib 8 emz o2
dfy 0 —dS ny 8 ~ny | dd, {4,697}
—dS 4l 1] -y By 9

wheren, are the components of the unit vector i along the axis of rotation, Letting
d gtaad for the infinitesimal changs T T, Hg. (4.66) can then take the form of
=2 matrix differendal equation with respeet o the sotation angle:

dy

e T 471

35 NF. {4.78)
where N is the transpose of the matrix on right in Bq. (4.697) with elements N, =
€1kMe
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Another sseful representation is w write € in Bq. (.69 as
€= M, P

where M, are the three matrices:

¢ o ol 561 ¢ -1 0
Mym {0 0 -1, Me=]| 0 0 0f, Ma=|1 O 0.
] -1 00 o 00

(479}

The marices M, are known as the jnfinitesimal roration generarors and have the
propesty that their products are

MM~ MM, =M, M= e 4.80}

‘The diffevence between the two matrix products, of contmuator, 33 also ealled the
Lie bracker or My, und Eg. {4.30) defines the Lie algebra of the votation group
pacametrized in terms of the rotatios angle. To 2o further #uto the group theory of
rotation would take us wo far afield, but we shall have occasion to refer to these
properties of the rotation operation. (cf. Section 9.5 and Appendix B3

RAYE OF CHANGE OF A VECTOR

‘The concept of an infinitesimal totation provides a pewerful toot for describing
the motion of 4 rigid body in time. Let us consider some arbitrary veclor or pseu-
dovector G involved i the mechanical problem, such as she position vector of a
point in the body., or the total angular momentum. Waualfy sieh a voutor will vary
in time as the body moves, but the change will often depend upon the consdinate
system ie which the observations are referred. For exarmple, if the vecior happens
1o be the eadius vetor from the origin of the body set of axes t A point in the rigid
body, then clearly such a vector appears consfant when measured by the body et
of axes, However, 1o an observer fixed in the space set of axes, the components
of the vector (s mecasared on the space mes) wilk vary in time if the body & in
otion.

“The change n a time dv of the components of a general vector G as seen by an
observer in the body system of axes will differ from the coresponding chenge as
seeft by an obaerver in the space systen. A refation between the two differemial
changes in G can be denved o the basis of physical argaments. We can write that
the orly Fifference between the two is the offccr of rotation of the hody axea:

@apree = (@ acy + (G}

Now consider 4 vector fixed in the rigid body. As the bady rofates, there is of
course no chunge in the cotponents of tis vecter ay seen by the body observer,
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i.e.. refative to body axes. The only contribution to (g Is then the effect of
the: rotation of the body. But since the vector s fixed in the hody sysiem, it rotates
with it connrerciochwise, and the change in the veetor as observed in space is that
given by Bq. (4.75'), and hence {dG Y is given by

(G = M x G,

For an arbiteary vector, the change relative 1o the space axes is the sum of the wo
effects:

1@ guze = (G ay + €3 % G, [Er T

The time rate of change of the vector § oy seed by the rwo cbservers is then
abtaired by dividing the terms in Eq. [4.81}) by the differential time element d7
ander consideration;

46 4G .
= ={5 + @ x G (¥}
't pace body

Here i is the instantaneous angidar velocity of the body defined by the relation”
il s iR, {4.83)

The vecter @ lies along the axis of the infinitesimal rotatan occoriing berween ¢
and 7 + df, adirection knows as the fnstanteneous axis of retation. In magnituds,
« measares the instantaneous rate of rofation of the body.

A more formal detivatiot of the basic Eq. (4.82) car be given in terms of the
urthogons! wmatrix of transformation between the space and body coordinates, The
component of (3 along the ith space axis is related to the componems along the
hody axes:

s o .
G, :z,jGjmnﬂGJA

As the body moves in time, the components &', will change as will the clements
a of the wansFormation matrix. Hence, the change in G, in a differential time
element 4t is

46, = 2nd| + 0 G). “34)

1t is no loss of generality (o take the space and body axes as insrantaneously
coincidens at the time 1. Components in the two systems will then be the seme
instantaneously, but differentials wilf pos b the same, since e Dwo Systems are
moving relative to each other. Thus, G = G bt uﬂde, = 4, the prime
emphesizing the differential is measured in the body axis system. The change in
the matrix A in the time df is thus n chungs from the it matrix and therefore

ot £ o 1 ot the dbrave al ity vecipr,
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corrgsponds lo the matrix & of the infinitesimal rotation. Henee,
day = (&), = —e,,

using the amisymmetry property of 4. In terms of the permutation symbel &z,
the elements of € ase such that {cf. By, {(4.68))

ey = e gy = g lS2y
Eguston (4.84) can aow be written
28, = G, 540G

The Irst sgrm on the right wil} he cecognozed 28 the expression for the ith com-
ponem of 4 cross product, so that the finel expression for the relation between
differentials in the two vystems is

3G, = dG + (8 % G),, (4.85)

which is the same as the ith component of Bg. (4.813.

Eepearion (4,31} is nod 5o much an squation shobt 8 particalar vector G asitisa
statemnent of te wansformation of the fme devivative between the two coordinate
systems, The srbitrary mstuse of e veuior G sale weo ol i the deilvation can be
emphasized by writing Eq. (4.82} as an operator equation alting On sofe given

veotor:
4 4
o b { e . 4 86!
(d")c (d!)r“” @5

Hete the subscripts 5 and » indicate the thne derivatives observed in the space
and body (rotating} systern of axes, respectively. The resultant veetor equaltion
cas then of course be resolved along any desired st of sxes, fixed or moving, But
againi note that the time rate of change is enly relative (o the specified coordinate
system. When a time derivative of o vector is with respect to one coordinate Sys-
TR, aiponents tray be taken along another set of coordinate axes anty after the
differsatiation has been caried out.

Tt is often converient 1o express the angular velociy vector in terms of the Su-
ler angley aud their time derivatives. The general infinitesimal rotation associated
with @ can be considered as consisting of three successive inBnitesimal rotations
with angular velocities wy = ¢, wg = 8. g = ‘4’ i consequence of the vertor
property of infinftesimal cotations, he vector o cun be obtained as the sum of the
three sepatats angular vaiocity vectors. Unfortanately, the directions ey, ey, dnd
oy are ot Rymmetnically placed: wy 3 along the space 7 axis, ey is along the
fime of nodes, while oy wlone is along e body 2' axis, However, the orthogonat
wranstormations B, €, & of Section 4.4 wmay be used to forgish the components of
these vectors along any desired sat of axes.
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Thet body set of axes proves most vsefis for discussing the equations of motion,
and we shall therefore obtain the camponents of « for such a coordinate system.
Since ay is paraliel to the space 2 axis, iis components along the body axes are
givepby applying the complete orihogonal Fansformation A = §CD, Bq. (4.46%

{oogh = dand sin g, (g)y misinfeosy,  (ogdy =dcosh,

Notr that ¢ has the prajection ¢ sin # in the &', y’ plane, and it is perpeadiculir
the line of nodes.

The Bne of nodes, which Is the direction of g, coincides with the £ axis, s
that the components of wyp With respect (o the body axes are formsshed by appling
onky the fnal orthogonal transformation B, By, (4,451

tade = floosty,  (wmgly = -Asing,  tely w0,

Na transfommation is necessary for te camponents of wyg, which Hes along the ¢/
axis. Adding these components of the separate angular volocitios, the componenis
of 0 with respect to the body azes are

g = pEnfsY 8 ems
wy = dsinfeosy —~ Dsingr
Wy eos@ 4y, 7813

Similer technigues may be wsed 10 express te compenents of « along the space
set of anss it terms of the Euler angles.

THE CORIOLES EFFECT

Equation (4.86} i3 the basic kinematical faw upon which the dynamical equations
of motion for 2 vigid body are founded. But iis validity is not restricted solely to
Tigid body motion. it rasy be used whenever we wish 1o discuss the motion of 2
particle, of system of particles. relative to n Fotating coordinate system,

A paeticularly imporant problams m this Jatter category is the description of
particle motion relative 10 coordinate axes rotating with Barth, Recalt that in Sec-
ton, 1.1 an mertal system was defined as one in which Newton's laws of moton
ute valid, For many purposes, a systern of cocrdinates fixed in the rotating Earth
is a sufficient approximation to un itertial systern. However, the system of coomdi-
nates in which the local stars are fixed comes gtill closer 1o the ideal nerdad sys-
tern. Detailed examination shows there are ohesrvable effects arising from Earth's
vatation relative o this noarty inertial systems. Bquation (4,86} provides the needed
modifications of the aquations of motion selative to the noninertial system fined
in the rotating Barth,

“The iniriaf step is o apply Bg. (4.88) to the radivs vecior, . from the otigin of
the termestrial systam ta the given particle:
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V=Vt Xk {£58)

where v, and v, are the velocities of the particle relative to the space and rotatmg
ser of axes, respoctively, and o is te (constant) angular velocity of Barth relaive
1 the inertial sysiem. in the second step, bg. {4.86) 15 used to obtarm the twne rate
of ehange of v,

a2 R .1 S
P M 0 M
== 8y o 2ed X Vo) b x {x ), {4.89)

where v, has heen substiuted fron: Bq. (4.88), and whert A, and a, are the aceet-
erations of the patticie in the bwo systems, Finally, the equalion of rietion, which
in the mertiul system is simply

Feemag,
expands, when expressed in the conating coordinares, into the equation,
¥ — 2mle x v} — pan X {63 X £} = ma,, 4.5

To an observer in the rotating system, i therefore appears as i the particle is
movang under the inttuence of an effective force Fy:

Ferr = F = Tmileo X ¥} — ey X (o % X0, {451}

Lt s axamine the nabime of the terms appearing in Hq. (4.91). The last term s
a vector potmmal 1o s and pointing outward, Further, its magnitude is mo®r sing.
Yt will therefore be recogrized that tis tomn provides the familiar centrifugel
force. When the particle is stationary in the moving sysiem, the centrifugal force
35 the oaly added term in the effective farce. However, when the particle s mov-
g, the middle tevm known as the Conlolis effers® comes into play. The auder
of magnitude of both of these quantities may easily be calowlated for 4 particle
on Barth's surface, Barth rotates counterelockwise about the norts pole with an
angukar velockiy velative 0 e fized stas.,

2 366.5
wf FT Y2522 g S,
“ (25 P 3600) (365.5) LA

Here the first set of parentheses gives the angotar velocity retadve to the radius
vector o the Sun, The quantiry in the second parentheses, the zatio of the ninmber
of sidereal diys in a year to the comesponding mumber of zolar days, is the cotrec-
tiont factor to give the angular velocity relative (o the fixed stars. With this value

“Fhe term Corabts effct w8 used mstead of fhe olge ferm, Comoks Kirce, o raamnd us that tus cfect
cxirs bevause we are using @ neinertal freme, In & proper weral fraons, the effecs daes ot et
Yo o always visualizs the Coriolis oot by sshng What s happestng in an meruel frams.
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far e, and with r equal to Harth's equatiial radius, the maximom centripetal
acoelaration is

whr = 3,38 sl

or about $.3% of the acceleration of gravity. While small, thiv acceleration is
by no means negligible. However, the measored effects of gravity represent the
combination of the gravitational figld of the mass distribution of Barth apd the
effects of centripetat acceleration, 1t hag become cistomury to speak of the sum
of ihe two as Harth's grevery Beld, as distinguished from 15 grovitational Held.

‘The sitnation is further complicated by the effect of the centripetal acceleration
in flanening the rotating Earth. I Earth were completely fud, the effect of ratas
tion would be te deform it ipto the shupe of an ellipsoid whose surface would be
an oquipotential surface of the combined gravity field. The mean level of Earth's
stus conforms very closly to this equilibrium ellipsoid (except for local vazas
tons of wind and kde) and detines what is calied the geofd.

Exeept for effects of Iocal perturbations, the foree of gravity will be perpen-
dicular to the equipotential surface of the geoid, Accordingly, te local vertical is
defined us the direction perpendicutar 10 the geoid at the given poiat on the sar-
face, For phenotnena that ocent i the vichity of 4 particular spot on Earth, the
centripetal acceleration terms in Bq. (4.91) can be considered a5 swallowed up in
e gravitational accelerntion g, which will be orented in the local vertical direr-
tion. The magnitude of g of course vanes with the latitude ou Earth. The effects
of centripetal acceleration and the favteniag of Earth combine to make g abent
{.53% less ol the equstor than a1 the poles.

Incidentally, the centifogal force on a particle arising from Earth's revolution
around the Syt i apprecisble compared o gravity, bul # is almost exsctly bal-
arced by the gravitations] attrattion to the Sun. i we analyze the motion of the
Sun-Earth system from a frame rotating with Harth, it is of course just the bal-
ance berween the ifngal effect and the gravitat attraction that keeps the
Barth (g al? that are on i) and Sun separated. An anatysis m s Newtonian iner-
dat frame gives a different picture. As was deacribed in Section 3.3, the angular
IeMentiE contribates to the effestive potential energy to keep the Barth in orbit,

The Coriolis effect on & moving particie is perpendicular 1o both o and 7%
to the posthern hemisphere. wher w poinis oot of the pround, the Coriobiz effoct
Zmiv x @} tends to deflect 2 projective shet along Barth's surface, to the right
of its divection of travel icf. Fig. 4.13). The Corinlis defieciion reverses direction
in the southern hemisphere and is zero st the equator, whers e is horizontsl, The
magnitude of e Tomolis acceleration ks ahvays less than

Zow o L5 x Hty,

“Fuam hieve o8, the subscaps » will be druppsd from ¢ 28 all welaotiss weh be ke with reegect o
the retating coondinate axos anly
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Honsontat traecony

FIGURE 4,83 Directing of Coriolis deflection w the nortiesn hemsphere.

whtich for a velacity of 10° ciws (roughly 2000 mif) is 13 em/s?, or shout 00132
Normatly, suck an sceeleration i extremely small, but there are instances whea
it hecomes important. To take an ariticial illuswation, suppose 4 projectile were
fired horizontally af the rocth pole. The Coriolis acceleration would then have the
magnitude 2w, ¢o that the bnear deflection after a time 7 is wer’, The angular
deflaction would be the Hrear deflection divided by the diztance of travel:

B s ——— = i, {497

which is the angle Barth rotates in the time 2. Physicalty, this result means that
& projectite shot off at the north pole has so initial rotational motion and hesice
fv frajectory in the inerual space is 2 straighi line, the apparent deflection be-
ing due to Eath rotadag beneath 1t Some idea of the magnitude of the effect
ean be ghtained by substineting & time of flight of 100 s—uot wnusoal for large
projectites—in Eq. (4.92). The angular deflaction is then of the order of 7 x 0
eadians, about $.4°. which 15 not inconsiderable. Cleatly the offect 3s even mors
important for long-range missiles, which have a ruuch longer thime of fight.
The Coriolis effect also plays 2 stpnificant role in mimy oceanographic ond
jogival phenomena involving displacements of masses of matter oves toug
distances, sach as the circulation pattern of the wade winds and the course of
the (Rulf stream. A fullt desceiption of these phenomens tequires the sobution af
cottplex hydiadynamic prablems i which the Cotlolis acceleration is only one
amang many ferms invalved. Tt is possible huwever 1o give some indication of the
contribution of Coriolis effects by consideting a highly simplified pictuse of one
particuiar Jogical problk th fe horizontal wind circudation.
Mitsses of air 1end fo move, other things being equal, from regiens of ligh pressure
to tegions of low pressure—the so-called pressure-gradient Aow, e the vertical
direction the pressure gradient is Toughly balanced by gravitabional forces so that
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FIGURE 4.14 Deflection of wind from e drecton of the pressune gradient by e
Corlolis effect (shawn for the norhern hemisphere).

it is only in the horizont} plane that there are persistent limg-range wotions of
Bir masses—witich we perceive as winds, The pressure gradient forces are quite
mcdest, end comparablz in magnitude (o the Coriokis effects acting on alr nasses
moving st useal speeds. Ta the absence of Corlolis effecss, the wind directions
would ideally be perpendicular to the isobars, as shown in Fig. 4, 14, However. the
Coriplis effects deflect the wind to the right of this direction in the sense indicated
in the frgure. The deflection to the right continues witil the wind vector is parsiiel
10 the tschars and the Coriolis effect is in the opposite direction to, and tdeally
Jjust balunces, the pressure-gradient force. The wind then continues puraile] to the
isobars, circalating in the northern hemisphere in 2 sounlerslockwise direction
about & center of kow pressore. In the southern hemisphere, the Coriolis effect
acis in the opposite dirsction, and the cyelonic direction (i.e., the Sow areund
a low-pressure center) 15 clockwise. (Such & wind flow, deflected paraflel 1o te
fsoburs, is known a5 @ geostrophic wind.} In this simplified picture, the effect of
friotion bas been neglected. At atmospheric altitudes below several kilometers,
the fnction eleats of eddy viscosity become important, and the equitibrivm wind
direction never becomes quits parafiel 1o the isebars, as indeated in Fig. 4.15.
Another classical instance where Coriplis effect produces 2 messurable effect
3 in the deflection fram the vertical of u freely falling particle. Sines the pait-
cle velocity is almost vertical and e lies in the northesouth verticat plane, the

{a) Healizet ¢y Aotual

FIGURE 455 Cyclone pattern it the norther hemisphere.
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deflecting foree Zmiv x w} is in the east-west divection. Thus, in the northem
nemmisphers, 2 hody fuling freely will he deflected to the Bast. Calculution of the
deflestion i3 grently simplified by choosing the 7 axis of the terrestrial coordinute
system to be along the direction of the upwand vertical as previcusly defined. If
the y axis s taken as pointing North, and the Frictionat effect o the atmosphere s
neglected, then the equation of motion in the x (Bast) direction is
H
mn %;; = I X V)

= =2ty S 8, (493}
where @ is the co-latitude The effect of the Coriolis effect on 3, wonld constitute
a small comrection to the deflection, which iweedf is very smatl, Hence, the verttcal
wvelocity sppearing in (4.93) may be compuled ss if Coriolis effects were absent.

vy m gt
The integral of this is
2t
.
With these valoes, Bg. (493} may be sasily io give the deflection® as

¢ o

= %‘Er3sinﬂ
or

w [ |

=5y 4 siug.

An erder of magnitude of the deflection can be obtained by assiuing & == /2
{cortesponding to the equater) and z = 100 m. The deflection is ther, roughly,

x> 22om

The actaal cxponment is difficult to perform, 25 she small deflection may often be
masked by the effects of wind currents, viscosity, or other disturhing influences.”
Mote gasily observable is the well-known experiment of the Foucanlt pendn-
lom. if 2 pendulom is set swinging 4t e sorth pole in & given plane in spacs,
then its near momentum perpendicolar to the plane is zero, and it witl contitile
to swing in this invartable plane white Earth rotates boneath it To an vbserver
om Barth, the plane of osciflation appears 1o rotete onve 3 day. At other latitudes
the result is more complicated, bus the phenomenon is qualitatively the same and
detailed caleniarion with be left as an exercise.
*Agan, we negtoct it fnchotid offiss of the atimspherns
It 15 eaey 10 shaw, using Bq. .93), 1hat & partwle projested upeaed will Bl ek o the ground
wesnwrd of the wiginal isnnching spet-
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Effects due to the Coriolis terms also appear in atomic physics. Thus, two types
of muotion may cccur simulianecusly In potyitarmic molecules: The molecule ro-
rafes 28 2 righd whale, and the atoms vibrare about their equifibrium positions As
a result of the vibrations, the ators are in motton relative o the rotating cotrdi-
mite syatern of the moleeale. The Cortolis terth will then be different from zero
and will cause the atoms to move in a direction perpendicular 1o the onginal es-
cillations. Perturbations in molecnlar spectra doe o Corclis effects thus appear
as interactions herween the rotational and vibrattonal motions of the molecule.

DERIVATIONS
1. Prove that matrx sbplication is asseciative. Show that the product of wwio orthogs:
nat matrices 18 also osthopamal,
2. Poows the following properties of the transposed and adroint matnoes:
Al BA.
AR = BTAT,
3. Show that the trace of 3 mateix 15 invarac: ander any simitarity transformetion. Show

i that the antiayiiielry property of 4 matex i preserved wnder on orthogomsd tim-
ifarity teanslornati

A {2} By ining the e fues of an axt; w3 x 3 real matrix A, show that
1 A iy nonsingular,
£B) Shew thers shat under the sare conditions e, @aix

B (34 AT AT

is orlhogonl,

£ Ootamy the mamx eiemem: of the gcnsml rotatdon matny i terms of the Exler aaphes,
By, (4£.865, by pati the ioms of the [iE
Firicns, Veridy directly this the mateix elernémts abey the orfaogonality conditions,

& The Ly set of axes cant ¢ related © the space sef bn terms of Buler's angles by the
Follewmg set of rotations:
{8} Routon ahovt the + axis by an sngla
b} Rotakion showt the 2" 2us by an angle .
{c} Rotation about the olf ¢ axss by an sngle &,
Show that this sequence feads to the strme slements of the matrx of wanfrmatc &5
e sequencs of solations given w the ook, {Hiat: 3L is net ecessagy 0 coery out the
eaplicis multipheation of the rotation reatmess. b

T TEA i e tatrix O s ootation trough 1907 abos? any axis, show that o

Py 1Ay,
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henPL = Py Obiain the of of &4 thany snitable systetty, and find 4 geomerric
intorpretanon of the opetsnon Py. and P.. op any yector §.

& {z) Show that the rtation matrix in the form of Bg. (447"} canvst be put wn the form
2 e matny, of the inversion wansformation S,
by Veafy by diect multiphcation that the mawrix in Be. (4,47} is orthogonzl.
8. Show that any rotation can be reprosented by successive teflection in two planes, both
passing through the axis of rowtton with the planar angle /2 between thera,
36 M B is a square matix god A iy the exponeatial of 8, defined by the infinite serjes
expension of the expnmential,

"
As@arpmiiste o D
] l
then prove the followmg propertisy’
() ol = HHC pronding B and € commnte
b AT gl
) B . gac-l
£} A s arthogonal if is antisymmemne.
£E. Verify the refation

i~ Bl = (118
for ihe doterminant of &n 7 % » matrix B,

#2. In aset of axes where the z axes s the aas of rowhon of a Bnite rotation, the roaticn
smanix i given by Ba. (4.43) with £ rplaced by the angle of finite rotation <. Darive
she wtanon fotprula, B4 (4.62), by wanstorning 7o ob kbittay coordimare syatem,

ihe max of ion En s of the diccction cosines
of the axis of the finite cotation,

3. (=) Suppose vwo successive coordinate rotanray theough angles @y and @y are car
#ed our. equivalent 1o 2 singe ratation theough anangle §. Show that B, By, and
% can be considered 2s the sides of 4 spheneal thangle suth the angle opposite
% grven by the angle hetween the swo aves of totaion,

{b} Show that 3 totetion sbout ahy ¥t KX ot 36 obtained 29 the product of twg
successive rokerions. each throngh 180°

£4. (a} Veniy that the pormutition symbot setssfies the foltowing identity in woms of
Keonecker delta symiols:

€ ptveng el By
(b} Shaow that

Exiptick = Wpp
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15. Show thal the components of the angular velacity slong the space set of axes are given

it tarms of the Buler angles by

= Hoosd + yosinBsing,

wy = Ouing — Wainfoasg,

w2y = cosf 4 b,

%6 Show rhat the Buler paramerer ap has the squation of motion
—28p = ey -+ dqary F eywp,

wittere the prime donates the bady set of axes. Find the corresponding equarions for the
sther thyss Ealey parametars and for the somplen Cayley-Klin pagametons o and £,

EY. Venfy directly that the mavix generaters of infiniteszmal rotation, M, . a8 give by
Bq. (4.79) obey the camutation relations

M. M = €My,
58, {a} Find the vector squation describing the reflection of F in 2 plane whose unit nor-
wmakisn
£b) Show that if 4, § = 1,23, are the direction copngs of 1, hes the mmox of
transfosmation has the elements
Ary = by = 2y,
and verify hat A is an improper orthogenal matrix.

19. Tigures 4.9 and 4.10 show that the order of finite rotatians leads to different resalts,
Hae e notatzon hat Afe, 1n) whers A 35 2 rotaizon is the drection of |, droagh an
anghe . Letng and Ay he two orthogonal directions,

(g} If x ju the position vector of 2 point on a rigid body, which is then rotated by an
ungic 6 wrownd e ergin, show 1bagde new value of X iy
& (L - XYy 4 [ Gelly - joes® .y x xsing.
From his, obtats the Foemuola for A/, 15} and derive the twe mimions in the
figares.
{b) Thscuss those two rotations, {Hine The answer will involve a rotation: by the sngle
7 o a divection (1 V3L 1, 11

20. Express the “rolfing” constraint of a sphere on 2 plage surface in tems of the Euler
ngles. Show ket e conditions are nosintegrable wid that the constraint is therfore
noniolonomic.

EXERCISES

21. A pasticle s thrown up vertically with mitial speed vy, reaches & maximam height
a0 falls Back t geound. Show shiet the Corialis defiection when it ugam rerches the
ground is apposits in ditection, and faur Gmes greater i magnitude, than the Corlodis
detlection when it s dropped at cost from the sams smaximwm height,
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b4

25

A projectils s firod boctzontally along Ennh's surfoce. Show that 1o 2 first approkime-
tion the angular deviation from the ditection of fire resudting fown the Cosiolis offect
varies finenely with time at a rate

weosd,

where & 15 the angular frequengy of Earth's rotation and ¢ is the co-fatlinde, te di-
rection of deviation bojag (o the rght in the northera bemisphere.

The Foucault peacubin experiment consists in setting # Jong peatilvm ia motion al
® point on the surface of the sotsting Eart with its momentum originglly in the ver-
tical plaor ooutaining she pradulun Lub as de poist of suxenio, Show due de
peadulun’s subsequant moton may be described by saying that the plane of ascilla:
e rotates uniformly 2r cos & radians per day, where £ is the co-latitnde. Whst is the
ditecrion of yotation? The approxirpation of stwll oscillwions mey be used, if dasired.

A wagon wheet with spoices is mowiad on a vertical axis so it 12 free i rotate in the
horizontal plane. The whes is rotating with an anglar speed of @ == 3.0 radbands. A
buz crawls our op ong of the spokes of the wheet with & velostty of 0.5 em/s holding
o 1o the spoke with a coefficient of friction ¢ = 0,30, How far can the by crawl
alagy the spoke before it stasts to ship?

A catonse] {sownter-clockwise merry~gorround) slarts from rest and accelerates et 2
constant angular accleeation of 0.02 tevoludonsis?, A gid siring on 2 berch on the
pletform 7.0 m from the center is holding 8 3.0 kg ball, Cafoulate the magnitade and
dimctiem of the force she must exert to hold the bal] 6.0 s after the sarpusel S o
meve. Give the direction with respect 1o the fine from the center of rotation to the gl



CHAPTER

The Rigid Body Equations
of Motion

Chupter 4 presents all the kinematical tooly seeded in the discnssion of sigid bedy
notion, In the Euler angles we have a sst of three coordinaces, Sefined rather
wnsymetrically it i true, yer suitadle for use as the generalized coordinates de-
Seyibing the orientation of the rigid body, In addition, the method of orthogonal
transtormations, and the sssociated malrix algebra, furnish a powerful apd ee-
gant i for inv ing the istics of rigid body motion. We huve
alfrcady had ono application of the technique in deriving Eq. (4.86), the selation
Detween the states of change of 4 vector as viewed in the space systam and in
the body system. These tools witl now be applisd to obfain the Ewler dyaamcat
equatinas of motion of the rigid body in their most convenient form, Witk the help
of the equatians of mation, some simple Sut ighly importam probiems of rigid
body motion can be discussed.

5.1 M ANGULAR MOMENTUM AND XKINETIC ENERGY

184

OF MOTION ABOUT A POINT

Chasles” theorem states that any general dsplacement of a ngid body can be rep-
rosented Dy o ganslation plus 2 ratation. The Georem suggests tat it ought
be paraible to split ghe aroblem of rigid body motion into two separate phases,
one concerned solely with the transiational metton of the hody, the other, withits
motational motion. OF comse, if one point of the body is fixed, the sepatation is
abvigks, for then there is only a rotational motion about the fixed point, without
any fanslation. But even for a general type of motion such a Separation is often
possible. The six coordraates nesded 1o describe the motiun have already been
formed into twe Set3 i accordance with suck & division: the three Cartesian coor-
dinates of a pofat fixed in the rigid body to deseribe the trandlational motion and.
say. the three Euler angles for the motion sbout the point. If, further, the otigin of
the: Dody system is chosen to be e tenter of mass, then by Bg. (1.28) the total
angular momentum divides naturally into contributions from e sranslacion of the
centes of mass and from the rotation about the cemter of mass. THe Lormer tem
will involve onty the Cartesien coordinates of the center of mass, the latter only
the angle coordinates. By Bq. (1.31), 2 sinlar division holds for the total kinetic
energy T, which can be weitien in the form

T {80 + 778, 8,9
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as the som of the kinetie energy of the entine body ag if comcontrated at the center
of mass, plus the kinetic energy of motion about the centet of mass.

Ofien the parential energy can be similaly divided, each term involving only
one of the coordinale seis, either the ransational oy rotational Thas, the poten-
tial energy in 4 uniforme gravitational Reld will depend only upon the Cartesian
vertical coordinate of the center of gravity.* Or if the force on 2 body is due to
a opiform magnetic field, B, scing ox it magnetic dipole moment, M, thea de
potentit is proportions] to M- B, which involves snly the onentation of the body.
Certainly, almost all probiems soluble in practice will allow for such a separation.
Tn such acase, the entire mechanical problem doos indeed split into two. The La
graugian, L = T~ ¥, divides into two parts, one invelving only the transtational
coordinates, the other only the angle coordinates. These twi groups of cosrdinates
wifl then be comp t, and the i ional and tomal problems
van be sobved independenily of each other.

Jt is of obvieus imponance therefore to obtain expressions for the angular mo-
mentum and kinetlo enetgy of the motion sbout some point fixed in the body. To
do ro, we Wil make stondant use of Eq. (4.86) linking dervatives relative o a
coordisats systen fixed at some point in the rigid body. It #s iitively obvious
that the rotation angle of 2 rigid body di as also the & an-
gular velocity vector, is independent of the choice of origin of the body system
of axes. The ossence of he rigid body constraint 1s that alt particles of the body
move cnd rotate 1ogether. However, & formal proof is casily constructed.

Let ) and 8 be the position vectors, rebative to a fxed set of coordinates, of
the arigins of two sets of body coordinates {(cf. Fig. 5.5), The difference vector is
denoted by R:

Ry =Ry + &

i3

FIGURE 5.3 Vectorial relanon betwesn sets of rigid body coordinates wath diffarent
origing.
FThe cesdr of ravily of conrsc comendes with the cearer of mass 17 3 UmiorT graviond Said,
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If the otigin of the second set of axes s considered as a pomt defined zelative 1©
the first, then the time derivative of Ry relative to the space axes is given by

ity iy ) 4Ry
(), (@), (&), - (@), veme

The last step follows from Eq. (4.86), cecalling that the derivatives of R relative
0 any rigid body axes must vanish, and with @ as being the angilar velocity
westor approptiate to tha first inate system. Alternatisely, the origin of the
first coordinate systerm can be considered as fixed i the second systom with the
position vector —R. Tn the same menaer, then, the derivative of the position vector
Ry w0 this origin relative ko the fised-space axes can be writen as

(dR,) (dllg) (dll) (dR:)

e b f e [ e ) m ) ey xR

dr J, dr J, dr j, dr j,

A conapsrison of these twa expressions shows (o — sz} x B = 0. Any &iffer-
ence in the angular velooity vectars at two arbitrary points must lie along the line
joining the two points. Assming the w vector field is contingous, e only possi

ble solution for sl pairs of points is that the two angular velocity vectors must be
egual:

oy = ot

The angdar velocity vector is the same for all coordinate systems fixed in the
rgid body,

Yhen a vigid body moves with one point stationary, the 1otal angular momen-
turm about that peint is

L=mdiy xv) (8.1}

{emploving the It ion) where £, and v, are the radius vector and
velocity, respectively, of the ith purticle pelalive to the given point, Slace r; 15 3
fixed vector relative to the hady, the velority ¥, with sespect to the space set of
axes arises solely from the rotational motion of the rgid body sbowt the fixed
point. From Bg. (4.86), v, is thens

Ve XNT;. 523
Hence, By, (5.1} can be written as
Toamrs, [5 % (nxn)],
of, expanding e tiple oross product,
L, for? - nin ], 33

“Seocalso N A. Lemas, Am. Jx Phys , 68(7) 2000, pa. 668669,
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Again expanding, the x-companent of the sagalar momentam becomes

L == iy (1 = 553 == sy 0y = w02, (54
with similer equations £ the other components of L. Thus, £ach component of
the apgular mommenium 18 & linear fenction of &l the compenents of the angalar
velocity, The angular nomentum vector i related to the angular velocity by a
linegr ponsformarion. To emphasize the similarity of (5.4} with the equations of
4 Binear ransformagon, {4.32), we may write L, as

Ly & Fextig + foytny + I,

Analogouly, for Ly and L. we have

Loy = Loy b Dyl + Tyt 35y
Ly 8 bty & Loy + gt
The nive cocfficients ;. Izy, erc., are the nine elements of the agformation

matrix, The diagonal elements sre known as mement! of inettia covfficients, and
bave the following form

Ip ey ] — P, (5.6)

while the off-diagonal clements ave designated as products of Inertia, a typical
one baing

Fog == I Y, 5.7

n Bgs. (5.6) and {5.7), the matmix elements appear i the form suitable if the
rigid body is composed of discrete panicles, For coptinuous bodies the summa-
tiom is replaced by a volume integration, with the particle mass becoming a mass
density. Thus, the diagonal element T; . appears as

[, mf M - 2Py V. (567
Vv

Wit a shgls Lhange 10 potation, an expression for alf mawix clements can be
shated for ¥ bodies. If the coordil axes re deaoted by &5, f = 1,2, 3,
then the matris elment 7; can be written

Iy = j; PS5y dY 5.8
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Thus fur, the coordivate system used in sesolving the components of L has not
heen specified. From now on, we witl sake it 1o be a system fixed I the body.*
The various distances x,, ¥, z, ase then constant in time, so that the matrix el
ements are likewise consiants, pecnfiar fo the hody invohed, and dependent on
the origin and orientation of the pardeular body set of axes n which they are
expressec,

Equations (5.5} reloding the components of L and @ can be summariced by a
single operator equation,

Li=tor, (3.9

where the symbol [ srands for the opersior whose matrix glements we the in-
ertia coeflicionts appearing in (5.5), and e and L are column matsices. OF the
owy interpretations that have been piven o the operator of & linear ransformation
{cf. Saction 4 2}, it {s clear that here § must be thoughs of as scting upen the vectoy
. and not upon the coordinate systems. The vectors L and o are two physically
different veetors, having different dimensions, and are not merely the same vacior
expmsscd it two different coordinate systerns. Unkike the opeswor of rotation, 3
wiil have & s thimes fength squared. i it is not d by amy
otthogonality condilions. Equamm {5.9)is to be read as the operator | acting vpon
the vector  resalts in the physically new vector £

Whule full use will be made of the matrix algebra techniques devetoped in
the ciscussion of the rotation operator, mare tteniion must be patd here 1o the
natwre and physicsi character of the operator per se. However, a certain amount
of preliminary mathematical formalisi needs first 1o be discussed. Those aleeady
{familiar with tensers can procesd immediaiely to Section 5 3,

TENSORS

The guantity 1 may be considered 25 defimng the guoticnt of L and @ for the prod-
uct of § and @ gives L. Now, the quetient of two quantities is ofien nol a member
of the same elass a the dividing factos, but may belong to a more complicated
class. Thus, the quoticn! of two iniegers is in general not an integer but rather a
rational aumber. Similaly, the quotient of bwo vectors, #8 i well known, cannot
be dulined consistently within the class of vectors. 13 is not surprising, therefore
tor fivud that Fis a new 1ype of QUamiTy, a fensor of the yecond ronk.
In & Cartesian three-dimensional space, & tensor T of the Nih rank may he de-

fined for our pueposes a3 8 qﬂﬁn:lry having 3" components Ty (with N mefice.s)

that transformn ander an g ion of coordi A o

*In Cluipter 4, such a sysiem wirs denated by primss, As camponents aHung SpRIaF axes are Twely
tised here, this conveatin wilt b tropped From taw on to spify the aciston, Unless otherwise
specified, ol coordinaies wsed for the Tost of the chugpter nefer to systemms fived in the rigid hoty,
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the foliowing scheme:¥
Tip ) = Gt@tymtin - T (0. (.10

By this definitivn, wtenap of the goio rank s ope Sompopes, witch is tivaris
under an orthogonal pansformation. Henes, a sealar v o fenser of zere vank A
ensor of the first camk has three cormponents transforming as

T

T el

Comparison with the wansformation equutions for a ventos, (4.527), shows that
a tensor of the first rank is completely equivalent to a vectorY Finalty, the nine
components of a tensor of the second rank transform as

T, = aa i, [EXTN

Rigorously speaking, we must distinpuish between a second-tank fensor T and
the square mamix formed from jts componeats. A tensot is defined only In 1erms of
it transfosmation properties under orthogooal coordinate transfermations. On the
other hand, & matrix is in po way reamicted in the rypes of mansformarions it may
whdergo and indeed may be considered entirely ind dentty of its i
under some particular class of N heless, the distinction must
not be steessed nnduly. Within the i domain of |
tions, there 5 8 practical wentity. The tensor components and the matrix elements
ave yamipafated in the same fashion; for ¢very tensor cquation there will be a
corresponding matrix equation, and vice versa, By g (4.41), the components of
& square matrix T wansforn: under a linew change of coordinates defined by the
matrix A seconding to a similarity ransformation:

T = ATATE
For an orthogonal mransformation, we therefore have

T ATA (512

I 2 Cagtesian space (et b, wath ooboganat risight-line azes) there 35 o distncrion boimeen “co-
vibart" amid “eomtrvariunt” indices, s the terminulugy well not be neaged Tndeed, striuy spesking
the tamsoes dofined hore shoukd o doaoted 48 “Ctesi wesors.” &3 this 1 Ue cndy b of wasor
chat willie wsed 1 thas beok {xcept tn Chapters 7 asd £33, the adjecuye Wil be omsered i sabsequent
drscussion,

| prewrlorensor in thice dimenstons. wanaforms 72 2 teasor except under Javersion, [n generl, the
sransformatien equation for a pseudotensar T of the Nt rank i (of, Bq, (4,740

T epaimin Ty
andh thes Tty opecation B giuts
BT e gy
As rugad body mtsore swvalves valy proper otations T §ustteer ke wilt e mads hers of e el
predotensdr
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or
T, = andyay. {5.13)

Cumpmmn with Eq. (5.11) lhus shows that the maoix components transform.
{ty, under an ok Z ion, with the comp of & tetsor
of the second rank. Al the jerminology and operations of matrix algebra, such
23 “transpose” and “antisymimetrical™ can be applied to tensors without change,
The equivatence between the tensor and the mateix i not restricied to tensors of
the seond pank, For example, we siready know that the components of a vec-
o, wihiich 75 & tensor of the first rank, form a1 cofirmn of fow smatrix aud vector
dation may be treated completely in terms of theds associated matrices.,
Two vectors £at be used 1o construct 2 second-rank tensor, T. Let & and B be
vectavs with componants 4, and B; and construct the teasar T, by

Ty— ARy Gad

For example, if A und B are two-gimensicnal vectors,®
™ Toe Ty . fAcBr AcBy
Tr Ty ArBy Ay J7
Since each individiat veor transforms as a vector under 8 Cartesian tramsforma-
Ao, each component of T will tansform as reguired by Eq, (5.109. For examyple,
T, = E:E Oty Ty == Qutty, 4 By = ag gy, By = ALBY,
oyt

0 T s 5 tenson

The types of operations performed with vectors can be combined with teasors
in an obviows way, Thers Is & unii tensor, 3, whose componenty are

[T 645

whete &;; i the delta fanction (atso cafled the Kronecker deltay, 8, = 13f i = /.

and zeto otherwize. The dot product on the right of 8 tensor T witl a veetor Cis
defined as the vector D by

3
D=T-C where B =} 1,6, = 5,0,
J=t
T drstagy which e ord 1gmsers which are physvicat quanties

we vse [} for mamces and { Hor enzors,
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aud she dot product on the left with a vector F is defined as the vector E by
3
E=F.T where £, = 3 F, Ty = F, T
7=l
A scalar § can be constracied by # doubte dot product
53
S=F.F-C where S=3" 3 RL,C = RI,C,.

[

These processes are cermed contraction. If the teusar T is constracied of two vec-
tors A aad B as in Eg. (5.14), then

T C=AB CreB.CA  ad F-T=(F OB=A-FB

5.3 B THE INERTIA TENSOR AND THE MOMENT OF INERTIA

Considered as a Hnear operator that transforms o3 info L, the mawix | has clerents
that hehave a5 the elements of a second-rank tensor. The guantity 1 is therefore
identfed as 4 second-rank tensor and is vseally called the mement of fnertia
wenver of briefly the ineriiz tensor.
The kinetic energy of morion abawt a point i
T= %m(u,z‘

where v, is the velotity of the ith particte refative to the fixed point 48 measured
in the space axes. By Eq. 15.23, T may also be written as

T o Jattyvy o (o0 X 1),
which, upon permating the vectors in the riple dot produce, becotnes

o
T= kR m(n % ¥,
The quantity summed over / will be recognized as the angular momentum of the
bady thaat the origin, and in consequence the kinetic energy can be written in the
form

{3.16)

Letmbe amult vector in the direction of w sothat ar = on. Thea an abernative
form for the kinetic energy is
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T S-';-z-n deme %.’m? [6Rys}

where £ 15 a scalay, defined by
I=n'!-nmm,[rizutr,-n}2}, (5.1

and known as the soment of ineriie aboui the axis of rotutios.

In the usual elementary discussions, the moment of inertia sbout an axis is
defined as the sum, over the particles of the body, of the product of the particle
mass and the squure of the perpendicular distance frors the axis. It nwst be shown
that this defimition is i accord with the expression given in Eq. (5.18), The pee-
pendicubur distance is equal 1o the magnitude of the vector 1, x n (cf Fig, 323
‘Therefore, the castomary definition of / may be written as

I = m s, xu}-{r, xm), (5.49)
Multiplyiog and dividing by @2, this definibon of { muy also be written as
F= T%(m AR E AN
w

But eath vector in the dot product is exactly the selative velocity v, as measwred
in the space systern of axes. Hence, / so defined is related to the kinetic energy
by

ar

I=—,

o
whish is the some a2 Bg (5 370 and thevefore Tt be identical wirh the scalar
defined by Eq. (5.19),

The valoe of the moment of inertia depends upon the direction of the axis of

sotatton. Ag o vsually changes s disection with respect to the body m the course

FIGURE 5.2 The definition of the moment of mertia.
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7
=

FIGURE 53 The wectos fvolved in the setaton between moments of inertin abont
parvitel axes.

of time, the momant of inerda must alse be considered a function of time. When
the body is constrained so as o rotate only about a fixed 2xis, {hen the moment
of inertiz i8 a conswant. {5 such a case, the kivetic energy (3.16) s alinost in the
form: recpured o fashion the Lagrangian and the equations of motion. The one
further step needed is (o express o as the time derivative of some angle, which
cat ysuatly be done without difficulty.

Along with the ineria tensor, the moment of inertia also depends upon the
eheice of erigin of the body set of anes. However, the moment of inertia sbout
same given axis is related simply to the moment sbow! a patalle] axis through the
cemer of mass, Let the vector from the giver origie O 10 the center of mass be
R. and Tor she radii vectoes from O and the center of mass to the jth particle be
£y and ), vespactively. The three vectors s defined are connected by the relation
(cf. Fig. 5.3}

=R {3.200
The moment of inertia about the axis @ i therefore

Loy (ry % 0 s g (6 + R x B

i = M@ xm? () % w7 b 2 (R X W 0 % ),

where M is the total mass of the hody, The last term in this expression can b
rearranged as

~2(R x @) - {m x AL}
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By the definition of center of mass, the summation m, r, vanishes. Hence, §, can
be expressed tn terms of the moment. about the parallel axis b as

o = Ty 4 MR x 03* (321}
= Ty 4 MR sinf 6.

“The magnimde of Rox m, which hus the valne & sinfl, whete 8 is the angle between
R and B, is the perpendreular distance of the center of mass from the xis passing
throagh (. Consequently, the moment of tnestia abowt a given azis is equal 5 the
wmoment of inerta about 2 parallel axis thronph the center of mass plas the moment
of inevtia of G body, as if concentrated & the center of mass, with respect to the
original axis,

‘The inertia tenson is defined in general from the kinetic energy of rotation about
an axs, And is writen ag

Troauc = §ige x 1) = Jugapm, (Baprl — narigh

where Greek lerters imdicate the components of 49 and 1, T a1 wertial frame, the
sum B over the particies ln the body, and r,. is the ath component of the pesition
of the ith particle. Becase Traen is a bilincar form in. the somponents of e, it
can be writien as

Trotason = $luptiaiip,
where
Lug = milbapr] = 5iarip} &3]

iz the moment of inerfia tensor. To get the moment of inertia ahout an axis through
the center of mass, chouse the rotation sbout this sxis For a bady with a contins
uous distribution of density p{r}, e sums in the companents of the moment of
inertia tensor in B, (5.22) reduce 1o

[ wﬁp{r)(éﬁgrzmrarﬁ)dv. (523

Ay on example, Ist us consider » bomogencous cube of density 5, mass M,
and side 4. Choose the erigin 2 be at one comer and the three edges adjacent
to dat cormer to lie on the +x, by, and 42 axes. If we define b = Md®, then
straightlforward intégration of Eq. (5.23) gives

e L
Tem] -4 & ~it
L 1)
Ths, both the moment of inertia and the inerta funsor possess a bype of revoly-

tion, selative (o the center of mass, very similar 1o that found for the linear and
angular mementum and the kinetic energy in Section (1.2).
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5.4 B THE IGENVALUES OF THE INERTIA TENSOR AND
THE PRINCIPAL AXIS TRANSFORMATION

The preceding di i hasizes the i rofe the inertia tonsor plays in
the: discussior of die motion of rigid bodies. An examination, at iy point, of the
properties of this tensor and its assockated matrin will thersfors prove of coasid-
erable interest. From the defining equation, (3.7), it is seen that the components
of the tensor are syrmetrical; that s

by =z 5.4

‘This means that, while the inertia tensor will in general have nine components,
only six of themn will be independent—rthe three along the diagonal plus theee of
the of-diagona! elements.

The mertia coefficients depend both upon the Iocation of he origie of the body
set of axes and upon the orientation of these axes with respect 1o the body, This
symmetry snggests that there exists a set of coordinates i which the tensor i
diagenal with the three principal values Fi, J;, and fa. Tn this systom, the compo-
nents of K would involve only the comesponding component of m, thus*®

Loy = Iy, Ly = hea, Ly o= fyany. (5.23)
A simular simplification would also occar in the form of the kinetic energy:

wel-aw b, 1 i
T e gl 5 Ted 4 ed 526}

W can show that it is abways possible w And such axes, and the proof is based
exsenuatly on the sysuieai ale of the joertia waser
There are several ways 10 uaderstand vestors aid ensors. For exanpls, a vecmor

is & quantity defined by its ransformation prop Ins any set of di S
vector is spacified by its three components, e.g.,
Vo Vil + Wi+ VK, (327

or by its magnitede and direction. In any frame. the magnitude is given by

[VE+ VR4V, and the direction is given by the polar angles § and ¢. An
alternative i3 to use the first two Buler angles 1o specify o new 7 axis chogsen such
that the vector’s direction is along that axis. Since the vestor lies slong thal z axis,
the thirg Euler angle is not needed,

An approach similar to this taner method can be used Tor the symmetric mo-
ment of inerta tensor. Consider the moment of inerta of & body abobt an axis
passing throegh the center of mass of e body, A similarity transformation pes

Wit 4 ey to funure applicarions, Compenents seltve 1o thess axss Wil bs denmed by subveripis
52,3
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formed by a rotation matzix R cen be chosen such dar
1z == RIR. $.28)

Fhis rotation can be expressed 1 tervns of the Buler angles ¢, #, and o ax shown,
in Eqs. {4.46) and (447, A proper chioice of these angles will transform § into its

diagonal form
o0t
p={l & 0 {3.29)

6 ¢ A

where 1y, Jo, and f1, which are the esgenvaloes of 1, are refesred to a3 the com-
ponents of the principal moment of inertia tenser. The directions of x', ¥, and
7' defined by the rotation matrx in Bg, {$.28) are called the principal axes, or
efgeavectors of the inerda tensor. These eige Tie along the directions x’,
¥and 2.

Onee the principal moments and their directions relative 10 the surfacs of a
body sre known, the inertin tensor relative to any other set of axis through the
center of mass can be found by a similarity transformation definad by the Enter
angles rebating the two coordinate systems, I 5 44 that transformation, then

= 5158, 3.30)

gives the moiment of inertia in that frame. Equation (5.21) can then be used
seansform the rotation center to any desired location, The principal valbies of Fean
b detenrined by the methods of matrix atgebea.

The three principal values of die moement of iertie tendor in B, (5.29) can be
found by solving the cubic squation for | that arses from the defermugant

Lo = by I

Ly lyel =0, 31

‘!U 1)‘3

where the symmetry of 1 has been displayod caplicitly, Tquation (5.31) is the sece
ular equation, whose three roots are the desired principal moments. For sach of
these roots, Bgs, (5,281 can be sobved to sbtain the direction of the corresponding
principal axis. In most of the easily solable problems in rigid dynamics, the prin-
cipal axes can be deterrmined by inspection. For example, we often have to deal
with rigid bodies that &e solids of revolution about some Axis, with the origin of
e body system on the sysupety axis. Al divections pergeadicalar o the asis of
symmetry are then alike, which is the mark of a double root to the seculsr squa-
ton. The principal axes are then the symmetry axis and any two perpendicular
axes in the plape potmal to the symumeiry axis.

The principal roments of inertia cannot be negative, because ax te diagonal
elements in the principal axes system they have the form of sums of squares, Thus,
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Ixy i given by {cf. By (5.60}
b myl 40

For one of the priscipal moments 19 varish, all poitiy of the budy ust b such
that two coordinates of ¢ach panticle are zero. Clearly this can happen ondy if ai
poinite of the body are collinear with the grincipal axis corresponding 1o the zerd
principal momeut. Axy two axes perpeadicolar 1o the line of the body will then
be the other principal axes. Indeed, this is clearly » limitiog case of a body with
an axis of synunetey passing through the origin,

We can also understand the concept of principal axes through some geometri-
ca} considerations that historically formed the first approach to the subject, The
moment of inertia about a given axis has been defined as I = 1 - 0. Let the
direction cosires of the sxis be o, £, and y 50 that

n ol 4 8i 4k
1 then cam be written as
1w Tt b Lg% 4 Lisy® o 2R 4 2 By + My, (5.32)

using the symmetry of 1 exphicitly. It is convenient lo define 3 vector p by the
equation

n
T e (333}
i
The magnitmde of p is thus related to the moment of inertia sbout the axis whose
direction is given by n. In tesms of the components of this aew vector, By, (3.32)
takes o the form

D= depob + Dph + fupd + 2epprm + Usmes ~ Haxtsor. (338

Congideted as a fuaction of the tree variables pp, o3, 03, Bg. {5.34} is the
equation of same surface in o space. In particular, Fg. (3.34) is the equation of an
eilipsoid designated as the inertial eflipsoid, We can always transform to a set of
Ceriestan axes in which the equution of an eltipseid takes on it normal form:

e dyp's + b+ e £5.35)

with the principal axes of the ¢Hpsoid along the new coordinate axes. But (5.35)
is simply the form Bg. {5.34) has in a system of coordinates dn which the mertie
wason B is diagonal, Hence, the coordinate transformation that puts the oquation
of ellipsold 2t its normal Form is exactly the principal as wansformation pre-
viously discussed. The principal momems of inemtia determine the lengths of the
axes of the inertia ellipsoid. I two of the roots ol the secufar squation are egaal,
he inertia eibpsoid thus has two equal axes and is o <llipseld of revolution. If alf
three principal momenis ste equal, the inertia ellipsoid is asphere.
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A quantity closely relzred t the moment of inertia is the radius of gyration,
Ry, defined by the equation

£ MR, 5.36)

Tu werts of the radius 0f gyration, the vector p can be weilte as

R
koM

‘The radius vestor o » point on the inertia elfipsoid is thus itversely proportional
tor thie radius of gyration about the direction of the vector,

It is woth reemphasizing that the ineri:a tensor { and sff e quantities ussoch-
ated with it—principal axes, principal moments, inertia ellipsold, ete.~ate only
relative o some particular potat fixed i the body. If the point is shifted elsewhere
in the biady, alt the quantities will in gencral be changed. Thus, Hq. (3.21) gives
the effect of woving the reference point from the conter of Mass 1o some ather
point, The principal axis feansformation that diagoaatizes I at the center of mass
will ot necessarily disgonalize | about another axis, and hence is not in general
the principal axis transformating for the shifted tensor | Oaly if the shiff vecror
R i3 slong one of the principal axes telative 10 the center of mass will the differ-
ence fensor be diagonal it that system. The new inestia tensor 1 will in that special
eiic have the same principal axes as at the center of mass. However, the priscipud
momenls of inertia are changed, except for thal comresponding to the shift azis,
whers the dizgonal slement of the difference tensor is clearly zerd. The “paral-
1et axis” theorem for the diagonatized form of the inertfa tensor thus has a rather
specialized and restyicted form,

SGLVING RIGID BOTY PROBLEMS AND
THEE EULER EQUATIONS OF MOTION

Practically all the tools necessary for sefling up and a,ulvmg pmh}em.s an ngid
body dynamics have by now heen rted. are.
present, then special means must be taken 10 mclude the effects of these con-
straints in the equadons of motion, For example, I thete are “rolling constzains,”
thess nust be introduced into the eguations of motion by the method of Lagrange
undetermined multipliers, a5 in Secrion 2.4, As discussed in Section 5.1, we us-
ally seek a perticular reference poite in the body such that the problem can be
split Into rwo separate paris, oae purely transtational and the ofher purely rote-
tional about the reference point. Gf course, 1f one pomnt of the nmd body 15 fixed
in an inertial system, then that is the obvioes referance point. Al that has 1o be
considered then is the rolational problesn shout the fixed point.

For baxiles without 2 fixed point, the most useful reference point is almost
always the ceater of mass. We have already seen that the total kinetic energy and
angulor momensim then spHt neady into one serm relating o the transtationa!
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motion of the center of mass and another involving rottion about the center of
mass, Thus, Bq, (1,31} cean now be written

T %Muzi-élmz.

Far many problems (certaindy a3 those that wilt be considered here), a similar
soet of division can be made for the potential energy. We can then sobve individa-
ally for the translational motion of the center of mass add for the rotational motion
aboyr the center of mass. For example, the Newronian equations of motien can be
used dmectly: Bq. (1.22) for te metion of the ceatet of mass and Hq. (1.26) for
he motion abiut that point,

With holopomic conservative systoms, the Lagrangian formulation is avalfable,
with the Lagrangian taking the form

Lig,d) = Lolge, 4e) + Lulan dn)

Here L. is that part of the Lagrangian mvolving the genesslized coordinates ¢-
{and velocities g} of the center of Teass, and Ly the part relating to the oriente-
tion of the body shout the center of maxs, as deseribed by gp. gy, In effect then,
there are rwo distinet problems, one with Lagrangian L. and the other with La-
grangian Ly.

T both the N and L for i it is iertt ke work
in terms of the principat axes system of the poiut of reference, so tiat the kinetic
enetgy of rotation takes the simple Torm given in Bg. (5.36). So far, the only
suitable generalized coordinates we have for the soational motion of the digid
bady are the Buler angies. OF course, the motion is often effectively confined to
twve dimensions, as in the motion of a rigid Tamina in a plane, The axis of rotation
is thea fixed in the dirertion perpeadicniar i the: plane: iy ome angle of ration
is necessary and we may dispease with the cumbersome mechinery of the Buler
angles.

For the rotational motion about 2 fxed pohut oF the center of mass, te direr
Newtonizn approach leads 1o a set of equations known s Eulet’s equations of
motion. We consider either an inertial frame whose arigin it 2t the fized point of
the vigd body, O 8 systein of spuce axes with origin at the genter of mass. In these
two simations, Ko, (1.26) bolds, which here appears simply as

4L
(&), -~

The subscript 5 is used because the thne derivative is with zespect 1o axes that da
net share. the rotation of the body. However, Eg. (4.86) can be used to obtain e
derivatives with respect 10 axes fixed in the body:

(d—L) *(d—E + o x i
ar). " dr)b )
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of, by dropping the “budy” subscript:
dl
-d—:'-{-mx[.::N. {531

Equation (5.37) is thus the appropriate form of the Newtondan equation of motos
relative to hody axes. The ith component of Bq. {5.37) can be woten
dlr,
e 3y, Ly = N (5.38)
dt
I awrer the budy saen e daken as the pincipal ave relitive 0 e ol
poin, thert the angular momentom componenss are L; = fw,. By Bg. (3.35),
Eq. (5 38) takes the form {no summation on i ¥}

o,
LS+ el w N, (535

spnce the principal momenes of inertia are of course time independent. o expanded
form, the three equations meking up Eq. (53%) lovk like

By~ enan(fy — B} = Ny
by — el — H) = My {336
dn —wqanlh) — ) = Ny,

Equations (5.39) or (539 are Buler’s squations of motion for & rigid bedy
with cne potnt fixed. They can also be derived from Lagrangs's equations in
the form of Bq. (1.53) where the generalized forces € are the torques. N,
carrespending to the Buler angles of rotation. However, aply one of the Buler
angles has s assoctazed orquo atong one of the body axes, and the remeimng
rwo Bler's equations must be obtained by cyddic permvsation (ef. Derivation 4,

Consider the case where [y = J; # T3 A torgue with components Ny or M
will cause both @y and an 0 change withont affecting ;. We shall retumn fo 2
discussion of this in Section 5.7 when we consider the heavy syimmetrie top with
one point fized. Let us fist consider the torque-free motion of 2 rigid body.

5.6 W TORQUE-FREE MOTION OF A RIGED BODY

One problem in rigid dynamics whers Buler's o are i is in the
woton of £ rigid body not suhjeet fo any net forces or torgues. The coater of mass
is then cither at rost of moving wabformly. and it docs net decreasc the genesality
of the solutios to discess the rotational motion in a reference frame in which the
cemer of mass 15 stationary. o such 2 cass, the angnlar momentom arises only
from intation about the center of mass, and Buler's equations are the equations of

~k sheuld be obvious that l5g (339}, os the 4th comporsm of a veotor equation, docs Bot fvalve 3
SHPIRBIOR Bver 2. RHEh SuFmmHion o Enphod over the repeted indices § and &,
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motion for the complete systern. I the sheence of any net iorgues, they redute
Trey == ementhy — f3)

Fady = wyan{iz =~ N} {5.403
Py = wyenlly ~ ).

The same eguations. of course, wifl slvo describe the motion of a rigid body
when one point i fixed and there are no ot applisd forques. We kagw twa -
medinle integrals of the motion, for both the kinetic energy and the total angular
Momenton vector st be constant in tme, With these two inlegrals 118 posable
t integrate (5.40) completely in terms of elliptic functions, but suck a weatment is
not very ilhuninating, However, it is also possible fo derive an elegant geometi-
cal deseription of the motion, knows as Poinsor's constraction, without requiring
a complete solntion (o the problem.

et us consider a coordinate system oriented along the principal axes of the
pody but whose axes measure the components of a vecror g along the instatita-
neous ixis of rotution a5 defved by By, {5.33). For our purposes, it is convenient
0 make use of By, (5.07) for the kinetic enesgy (here constant) and weite the
definition of g in the form:

Ak A
T e T 541
bE LTI B
L this p space, we define a mction
Fiay=p-Fops= gl (542

where the surfaces of constant F are ellipsoids, the particular surface F = | being
the inentia elpsoid, As the direction of the axss of mtation chabges 1 e, the
parallel vector g moves accordingly, s tp always defining & point on the inertia
elipsoid. The pradient of F, evaluated at thiy point, furnishes the direction of
the comesponding novmal to e inertia cllipsoid. From Eq. (5.42) for F{p). the
gradient of F with respect 2o o has the fonm

e

Vol = e =

2
U F = ‘/;L. (543

Thus. the o vector will always move such that the comesponding nermal (o the
inertia ellipsoid is in the direction of the angular meinentum, In the particuliar case
under discussion, the direction of L is fixed in space, aad itls the inenia eliipsoid
(fixed with respect 5o the body) thar must move in space in order to preserve this
connection between w and L {ef. Flg. 5.4)

or
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Facenn el
4

bivatzinie
plane

Herpoliiade

L

FIGLURE 5.4 The motion of the 1nertin ellipsoid refative o the invanchi plens.

itcan also be shown that te distanct between the origin of the ellipsoid and the
plane tahgent to it at he point p st dmitarty be constant in dme. This distance
ix eggual o the projection of p on L. md is given by

gL el
[
o
p-L V3T
P 544

where uge has been made of Eg. (5.16). Both T, the kinetic easrgy, and K, the
angular romentain, e constants of the motion, and the 1angant plane iy therefore
always o fized distance from the origin of the ellipsoid. Since the nermal to the
plane, being along L, also has a fixed direction, the tengent plane is known as
the invariuble plane. We can pictuare the force-free metion of the rigid body as
being such that the inertia ellipsoid rolls, without slipping, on the invariable plana,
with the center of the elipsoid o constent beight sbove the planc. The rolling
occurs without stipping becagse the point of contact is defined by the position of
£, which, being along the instantaneous axis of rotation, s the one directior in
e body momentarily ar rest, The curve traced out by the point of contact or the
inertia elipsoid is knows as the poffiods, while the similar curve on the irvariable
plant is called the berpolhode.*

Poinsot’s geomotrical discussion is quite adequate to descuibe vompleiely the
Force-free motion of the body, The direction of the invarisble plane and the height
of the inartia ellipsoid above it ar¢ determined by the valoes of T and E., which
are among the initial conditions of the problem. It is then 2 matter of geoimetry 1o

“Henee, the fabbessociau-sounding staterment: the polods mils without sippeng b6 the herpolhode
Ty wnthe wivanabie plane,
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wace out the pelhode and the herpothode. ¥ The direction of the angular velocity
in space is given by the direction of p, while the instantaneaus orientation of the
Body is provided by the orientation of the inertia ellipsold, whick Is fixed im the
body. Many slaborate descriptions of forge-free motion obtained in shis fashion
can be found in the literature.

Tn the special ease of & symmerrical body, the inertia ellipsoid is an ellipsoid
of revalution, so thet the polhode on the ellipsoid is clearly a circle about the
symmetry axis. The herpothode on the invariable plane is Hkewite o circle. An
observer fixed in the body sees the anguiar velocity verior & move or the surface
of % cone—called the hody cone—whose intersection with the inertia ellipsoid is
the polhode. Correspondingly, an observer fixed in the spuce 2xes sees w move
on the surface of a Space cowe whoss intersection with the invariable plane is the
herpolhode, Thus, the free motion of the icad sigid body is ]
described as the rolling of the body ¢one on the space come. If the soment of
inertia aboot the syramerry axis i less than that aboot the other two principal
axes, then From Bq. (3.35) the inertia elipsoid is prolate, i.2., foothall shaped-—
somewhat as is shown in Fig, 5.4, Ir thet case, the body cone s outside the space
cone. When the moment of inerfia about the symumetry axis is the greater, the
eHipsoid is obfate and the bedy cope rolls around the inside of the spags tons.
In either case, the physical description of the motion is that the direction of w
precesses in time ghowt the axis of symeerry of the body.

The Poingot constrecton shows how o maves, hut gives to information as to
how the L vector appears to move it the body system of axes. Another geomet-
rical description is available however fo describe the path of #he B vector as seen
by an ohsarver in the principal axes system. Equations (5.23) and (5.26) imply
that 1n this system the kinetic energy is related o the components of the angular
momenum by the equation

oo .
L "
T 2(E+2h+% (3.45)

Sigee T s constant, this refaton defnes an elipsoid, reforred to as e Binst
elipsnid, also fixed in the body axes but not the saine ag the mertia ellipsoid.
i we adnpt the convention
hzhsh
ataef write the equations for the sllipsotd in the standard form
54

SR I <45
55 TR T wh 43

then we see that the e]!ipg_rsid sketched on Fig. 3.5g has semimajor axes, in order
of decreasing size, of +/ZF 11, +/27 17, ttid /27 J5. The conzervation of the toral

SThe horpefhorc 15 shways concsve 10 he ecigin, belying it nmme, which means “snakelike™
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apgular momentam, L, gives us

L2y L34 LY
oot Wlio A (5.46)
L
the equating for a sphers in L4, L, space, The vertor b moves in such a way that
it describes & putls on both the ellipsold of Bq. {5.45) and the sphere of Eq- {5.46).
In other words, the path of L is the interseetion of the ellipsoid and the sphere.
The components L satisfy the equation.
2 1425l
N A S Sk Rk
ITh W 2T 2Fh L*
it is gasy w0 show thar these two surfaces will intersect for values of L larger
than the ellipsoid sevniminor axis and fess than the semimajor axis, that is,

VITE < L < J3TE.

The sphere is outside the eflipsoid on the L. axis ang inside the eflipsoid along
Ly Figure 5.5 depicts curves where the sphere intersocts the ellipsoid for various
vaiues of L. Fig. 5.52 shows & perspective view apd Fig. 5.5b shows the view
as seer from the £y axis. The corves that appear as straight lines on Fig 5.5b
correspond to the case woere £ = /3T 5.

With the help of this geometrical construction, somethng can be said about the
possible motions of a free asymmetric body. Tt is easy to see that a steady rotation

@) &

FIGURE S5 (&) The lanetic encrgy, or Binet, cllipsoid fxod in the body axes, ynd some
possible paths of the L. vector in its sorface, (hi Side view of Biret sllipsod
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of such a body is possible only about one of the pringipat axes, From the Eufer
equations (5.4, o} the compozents of @ can be constant only if

anoplie {2} = wpwaliz — Y = enantly ~ Iy — 0,

which requires that af jeast two of the componeats @, be zovo) Le. w Is slong
only one of the principal axes. Howesver, not sl of these possible motions are
stebie—that is, pot maving far from the principal axis under small pertarbation.
For example, steudy motion abot the L, axis will eccur wien L2 = 2T L. Whea
there are shight deviations from this eondition, the radius of the angualar momen-
m sphere Js just shghly smafler than this value, and the infersection with the
kimetic energy ellipsoid is a small cirele abow the L; axis. The motion i3 thug
stablz, e I, vector never being far from the axis.

Similasty, at the other extrene, whea the motion abeits the axis of smallest T is
perturbed, the radius of the anguflar mementurm sphere is just slightly larger than
the smallest semnimajor axis. The intersection s ugain 2 smali closed figure around
the prineipal sxis, and the motion it stable, However, the motion ebou? the inter-
mediate axis 15 wnsiable. This is clearty shown in Fig. 5.5, For the intermediate
(Ly ) axis, the kmetic onergy bas two ortnts that encircle e elipsoid and txoss
each other where the &£, pass through the ellipsotd, Hence, there are two differ-
ext orbats with vatues shabtly fess thas /27 J7 and two other disrinetly different
arbits with vatues slightly exceeding /27 1, &lf four of which have quie long
paths on the surface.

This hehavior can be best undetstood by recognizing that at the intermediate
axis the redins of curvatere of the ellipseid ' one direction i5 greater than that
of the contact sphete, and less in the perpendicular divection. At the odet two
extremes. the radif of curvature ave ejther greater or smaller than the sphere radivs
in all directions. These conclusions on the stabitiny of free-body motien have beent
known for 4 long time. but applications, e.g., o the stability of spinning space
craft, have brought them ot of the ebscurity of old menographs on rigld sody
dynamics.™

For 4 symwmenical rzgid body, the analysical solution for the force-free mo-
tion is not Aol 1o obiain, and we can directly confiem the precessing motion
predicted by the Painsot canstruction. Lot the symmetry axis be taken as the Ly
principal axis so that f; = F. Buler's equations £5.40) reduce then o

I tiere a1 dissipative mechantains present, thess swility arpaments have i be modtied: i casy
w0 s that for u bady with carssant L, but Sleely decraasing T, the only stable Torahion 15 sbout the
priscipas s vt he fargest e of ek The fieie-Encigy of st b L it iyt
“etis By given £15 7 = L2724, which is tesas for the is with the brgost J,. I a body Is st spaniog
about any ether prncipes o, the etteet of  showly deoreasing Kenotle sy 15 16 sause the aagahyr
vefsity oo Lo shilt ik tle spremsng v shobe the 2xis reqiTing she least vauz of T for the green
1. Such dissipative effects e presedt to spacecraft bucause af the fening of virions mombers i the
s of e Mot expeilly of the bong toorscamcd by mamy of them These facts wers inamed
the hard wiy by the easty dusigoens of spavenraftt
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hioy = (I~ By
hin = (h = Bjagen £547)
fady =

The Tast. of these equations states that wy bs & contstant, and it can therefore bo
treated as one of the known inltlal conditions of the problem. The remaining two
equations can now be wiitten

diny 2 —Lhey, G = S, {5.48)

where £ bs an angubar frequeney

PP - LU, (5.49)
H

Blitinating of wr betwoen Bqy. (5.48) Jeads 1o the standard differential equativn
for simple harmongc motion

By = -2y,
with the typical solution
oy m Acos

“The corresponding selution for w can he found by substirating this expression
for wy, back m the first of Bys. {5.48)

oz = A SRR

The solutions for wi and a; show that the vector and + wr] has & constant magmi-
tudde and rotates uniformdy about the 2 axis of the body with the angular froquency
£k (ef. Fig. 5.6), Hence, e 1ota) angular velocity o is also constant in magnitede
and precesses about the ¢ axis with the same frequency, exactly a3 predicied by
the Poinyor constmction. * Rexall that the. preceasion described here is relutive to
the body axes, which ane themssives rotating in space with the larger frequescy
. From B, (549, it is seen that the closer /1 is to £, the siower will be the
precession frequestey 2 compared 1o the rotation freguency w. The constants 4
(the il of the ion} and o can be evaluated in terms of the more
usual constants of the rotion, namety, thz kinetic energy and the magnitade of
e agular momentum Both 7 and 2.7 can be wrines ag fanctions of A and @)

*The processeon can be demorsteated  onother Fustuna by defirany 2 voctor € Jying along the 7 axs
it mgnlrude givon by ¢5 49) Bguations (5 47} ase then ensentially equivalent [ the vectar squacion

dyan x £,

which immediascly reveals \he precession of o with the frequency §3,
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PIGURE 8.6 Precession of the angalar velocity about the axis of symmerry in the force-
froe motion of A syfmmetncy] Hgid body,

T jhat 4 hel.
L = 124t 4 ol

and these relations ip ym may be solved for A and ox interms of T and L.

We would expect that Barth's axis of rotation should exhibil this precession, for
the external torques scing on Barth are so weak that he rofatienal motion may be
considered s that of & free body, Earth is approximately synunstical abont the
poler axis and stighty fattened at the poles so that Jy is ass than Ty, Numerically,
the satio of the moments is suck tat

Boh oo,
5

and the magnitude of the preceysion angular frequency should therefore be

2] w3

A SR~ e

Simce ey is practeally the same as e magnitade of o, this resnll predicts
4 period of precession of approximately 306 days or sbout 10 months. i some
wircumstance disiurbed the axis of rotation from the figure axis of Earth, we would
thetefore expect the axis of rotation 1o precess around the figure axis (ie., around
the orth pole) once every 10 months. Precticaily, such a motion should show up
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as & periodic change in the apparent latitade of poists on Eurth's surface. Carefil
messwrenienss of lariude at a network of locations around the world, camisd out
now for sbout 5 century, show that the rotation axis is indeed moving abont the.
pole with an amplitede of the order of a few tenths of 2 second of Iatitude {about
10 m). Buat the sitnation i far more cemplicated (and intevesting) than the above
simple anelysis would sagpest.

The deviations betwaen the Bgune and sotation axes ae very irregular so that
it's more 4 “wobble” than 2 precession. Carcful frequency anafysis shows the
existence of an aanual period in the motion, thought to arise from the wsnual
<cycle of seasons and the correspondiug mean displacement of atmospheric masses
about the globe. Additionally, & strong freg e i8 centered about 4
period of 420 days, known as the Chandlar wobblz, The present belief s that this
ation represents the fee-body precession derived above. It i thought that the
difference ju geriod arises from the fact that Earth bs oot 2 sigid body bui is to
same degree elastic. In effect, some part of Barth follows mlong with the shift e
the ratation axis, which has the effect of reducing the differesice in the principat
momenls of inertia and therefore increasing the period. (I, for example, Earth
were complerely fiuid, then the figure axs would instanzanecusly edjust to the
rotution axis and thers cowld be Ro precession.)

There are s1ill other obscure features t¢ the observed wabble. The frequency
analysis indicates strong damping effects are present, believed to arise from sither
Hdal (hction or dissipative o ffects in the coupling between the mantis and the core.
The damping period cught 10 be on the order of $0-20 years, But no such decay
of the amplitude of the Chandler wobble has been observed: some sort of mo-
dom excitation must be present 1o keep the wobble going, Various sources of the

3 have been d. Present sy ion points to deep earthguakes,
or the mantle phenomens enderdying them, as possibly producing discontinuoss
changes in the inerta tensor larwe enough w keep excing the free-hody pasces.
sion.*

THE BEAVY SYMMETRECAL TOP WITH ONE POINT FIXED

As & fanther and more complicated example of the application of the methods
of rigid dynamics, let us consider the metion of & symwmetical body in a uai-
form gravitational field when one point oa the syrametry axis is fixed i space, A
wide vanery of ;:hysxca] SYSiEms, remgmg fmm achild’s top ta complicated gyto-
Copie by such 3 heavy Yymmetrical
top. Both for its practical apphcam:m and a3 an Hlustration of many of the tech-

e fres precession of Ea's 4413 15 50t ta be confissed ik 1o sEow precassins abovt s hormal
s e ealgtue. Fhun wowonmal peecession of e equavess is dac o she graviauons s of
the. S and Mous. wrhich desed negh e 3w ssica. That the assamptian is
Justhierh a5 shown By the Jong pestedt of the procassicn ef she cquinaxes (26,008 yeass compored
& period of zughly ane. year fos the fotoe-free procession The ystronomicad precession ia discussed
Turcher brlow
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Verricat
v

[y ¥
P07 Line ot nudes

FIGURE ST Euler"s ungle ifying the ofa icat top.

nigues previousty developed, the motion of the heavy symmetrical top deserves @
detailed exposttion.

The symmetry axis is of course one of e principal axes and will be chosen 25
the ¢ axis of the eoordinate system fixed in the body.* Since one point is stationary,
the configaration of the top is completely specified by the tres Euler angles: 6
gives the inclination of the 7 axis from the vertica?, ¢ measutes the azimwth of the
tarft aberat the vertical. while 4 is the rotation angle of the top sbout its own £ axis
{cf. Fig. 5.7}, The distance of the center of gravity (located on the Symmetry sxis}
from the fixed point witl be dencted by 7

The rate of change of these thee ungles give the characreristic motions of the
top a5

# = Yotation of the top about s ows Hgure uxis, 7
4 = precession of rotation of the figwre axis 7 sbout the vertical axis &
) == nutation or bobbing up and dowy of the 2 fgure axis relative to the verti-
cal space axiy 1

For many Zanes of imterest such as die wop amd Gie RY10560PS, we have \lr PN
. Since f; = f3 3 1. Euler's syuations (3.397) become

ity the body mmes Roed spocific :dannileaton bese, it will thetefore ba convenient to Gexignae
thesn 37 his.seotion 4 the 7z axes, witheue fear of confusing them wnf the space aves, which wilk
e designnted by the «°'2" ixes
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Aol 4 enwally - B} = Wy,
a4 ayeg(h ~ )= M,

and
Fzdrs = My,

Let us consider the case whese inittally Ny = 0 = Ny, Nt # D, and oy =
wy @ ey 4 0, then wa will be constant. The morque V) will cause w; to change
since wp # 0. Since y I5 po longer zero, the second equation requires fhat we
hegin o changs alss. What this means in tenms of ap chservation is 1ot ohvicws,
We ohserve the changes in the Euler angles 4. &, § and their associated angles
mthe &', ¥, 27 kabotatory frame rather than the &y, dn, a1 and their rssocialed
angfes in the principsl axis systern, This suggests that the Buler squations inay
nist provide the most tsefl description of the motion.

The Lagzangian procedure, rather than Exler’s equations, will be wsed to obtain
a solutiont for §e motion of the top. Since the body is symmetical, the idnetc
entergy can be written a5

T il b oB) + dhed,
o, i terms of Buler's angles, and using Bas, (287), 2s
il . I .
T=»2~‘(92+¢zsm29;+§(vp wroshd, (5.50)
where the ef>‘ # cross terms in cuf and a,% canvel.

Itis 8 well-known elerientary theorer that in & constant gravitationatl field the
potential energy is the same as if the bady were concentrated ot the center of mass.
We will however give & brief format proot here. The potential energy of the body
35 the sy over all the particles:

Voo it + g

where g is the constant vector Far the acceleration of gravity, By Eg. (121}, defin-
ing the center of mass, this 15 equivatent fo

PR {354
which proves the theorem, In terms of the Enker sngles,
Ve Malcosh, (551

30 that the Lagrangian is

L= %{9? +¢Fain® 9y 4 %’«(\& + doos 09 - Mgloos . (5.52)
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Mote thet ¢ and o donot appear expBcitly it the Lagrangian, they are therefore
cyelic coodinates, indicating that the corresponding generalized momenta are
CORSTATE 0 time. Now, we have seen thar the momestum conjegae to @ rotation
angle is the component of the wial ampular momentum along the axis of rotaton,
which for ¢ is the vertical axis, and for v, the ¢ axis in the body. We can in fact
show from efementary principles that these components of the angular momenfm
ust be constast in me, Since the torgue of gravity is along the Jine of nodes,
there 15 nio componess of the torgue along either the vertical or the body £ axis,
for by definition both of these axes are perpendicular to the Jine of nodes. Heace,
the aong OF the anguber dlong thede two axes must be consmnt
i e,

We therefore have two immediate firse intograls of the mation:

aL

= fa(if 4 poost) = hay = ha (553

P\fr‘"”'éh{(

L S
Py = %@ = (f8in2 8 4 Jy cos® 83 4 Ty cosd = 11, 554}

Heze the bwo consiants of the motion ae expressed in terms of new constants a
and b, There is one further first imegrat svailable; since the system is conservagve,
the toial epergy £ s coustant in fme;

o . i
E=T+V= nzisez + st 4 .i%mg + Mgleasd.  {555)
Only three additional quadratires aze needed Lo solve the problem, and they are
eastly obtained from these three first integrals without directly using the Lagrange
equations. From £q, (553}, 1f is given in terms of ¢ by
i = ha ~ B cosd, {5.56)
and this result can be substitated in {5.54) 10 elvinate ¥

Ligsin’ 0 + Nacosd == [,

. h—acosd

PN, 557,
sint @ &30
Thus, if 6 were known as 2 function of fime, Eq. (5.57) could be integrated w0
fusnisk the dependence of ¢ on time, Substivwting Ba. (5,57} back in Bq. {5.56)
Tesults in a corresponding expression for ¢
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{558}

which furnishes ¥ if 8 i3 known. Finally, Egs. (3.57) and (5.58) ¢an be used 1o
iiminae ¢ and i from the ensrgy equalion, resulimg @ 2 ditferemial equation
invoiviag & alone,

Fisut potice that Eq. £5.53) suys w3 Is constant in dme and equal to (f;/f)a.
‘Therefore, £ Iy} /2 38 a consumt of the motion, which we shall designate as £/,
Making use of By, (5.57), the energy equction can thus be writtet as

e {,_gf +ﬂ(b*ucm9)2

2 2 i &

Egustion (5.59) hes the form of an equivalent one-dimensional problem in the
vizinble &, with the effective gotential V/(#) gives by

4 Mgl ces., {3.5%

(5.60)

b acosty®
sinf@

!
V') = Mgicost -+ (

Thus, we have four copstants assosiated with the motion, the two angwlar mo-
menta py And py, the snergy term £ - ilgc% arid the porential ensrgy
Mgl ¥ is common to define four rormalized Constants of the molion as

2tk
@
3
- e (5.5
h
- P
a = f!
Pté
B 2B
'
ine terms of these constants, the spergy equation (5.53) can be written as
. - 8
am g ETII e en, (3.62)

sin*4

We will use this one-dimensional problem to discuss the motion in 6, very
simtlardy 1 what was done in Secdon 3.3 ki desceibing the radial motion for the
contraf force problent. B is ivune cunveniont o change variabies as we did for te
cenivaf foree problem, Usiug the vardable o = cos ¢, rewaite BEq. (5.62) as

[ ¢ R . P R P o .62

which can be reduced inwnediately (o & quadramce:
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wir) Ay
m] b AR 8.63}
iy /(1= Yo~ By = Lh— qud?

With this resab, and Bgs. (5.37) and £3,58), ¢ and ¢ can afso be reduced
guadratures. Bowever, the polynomial in the radical is a cubic o that we have to
deal with ellipric integrals. These solutions can be generated on current desk-top
compuiters. In the case of the force~free motion, the physics ends to be obscured
in the profusion of mathematics. Fortunately, the genieral nature of the motion can
e discovered without actially performing the integrations.

Before procecding with the study of e possible solenons of Bg, (5.63), & fow
<unmtients on the constants defined in Bgs. (3.61) wiil be sseful. Figure 5.7 shows
ihe case where te fixed point is not at the center of mass. If the top is spinning on
4 horizontal surface, both @ and B are greater than zevo, If the fop is supporied hy
4 standd that aliows it todip below horzental, 2 is sl larger thax 2cro, bk o could
be pesitive oF negative. Another common application 35 the gyroscope where the
center Of mass 15 the fued paint. bn terms of Fig, 5.7, o is the encrgy in the system
excluding the x3 angular kinetic energy. For the gyroscape, f = Oand o > 0,
We shall restriot our agention to sitaations i which the rotational kinetic energy
about the x3 il s much brger than the kinetic energy sbout the orher twe axes.

tis convenient to designate the right-hand side of Eq, (3.62°) as a function
Fiey and discuss the behavior of the cubic equation

FO0 = e e fa b aPe b (0 - Bl + i - BT

For she gyroscape, F{u} is only a quadsatic equation stnce £ = 0, while for the rap
the full cubic equation must be considered. Since many of the applications of the
gyroscope wse torgueviree Mountisgs, precession amd nutatlons it suppressed so
the gyroscope motions are trivial. Tb pnderstand the general motions of a spinning
body. we witl consider only cases whete § = 0,

The roots of the cubiic polynomial furnish the angies ot which § changes sign,
that is, the “turning angles™ in 6. Knowing these angles wili give gualitative in-
fornation abowt the motion, There are three roots o a cubic equation and diree
pomitde combittions of solutions. There can be one rest roof and a complex
eofifugtate pait of wois; there can be three real roots, tw of which ave equal; and
there can be three roal and unequal roots. These powsibilities depend upon the rel-
ative signs 2nd maghitudes of the four constants in Eqs. (5.61). There s also the
physicul consiraint that the sofution « must sarisfy ! < & £ 1, We will draw all
figuresasifu > 0, which would be the case 1 he tp Is supported by & horizental
surfuce, Recall thar & point support could alfow e smaltest rool 10 be fess than
e,

Far u large, the dominant femm In /) 18 find. Since § (cf. Bgs. (5.61)) is
always a positive constant f{u) is positive for large positive » and negative for
farge negative 1. At points v = 41, F{u) becomes equa. to —(b ¥ a)? and is
therefore always negutive, except for the unusual case wheve w = 1 I5 & foot



214

Chapter 5 The Rigid Hody Equations of Mation

w=- =t /

ek

FIGLRE 58  Hlustrating the focation of the taming angles of § in the motion of a heavy
symemetric 1op supporad an & hodzomal plane. A pomt support couM allow one of the
roots io be negative,

{eomesponding to & vertical top), Hence, ot least one ront must fie in the region
u > 1,aregion that does not comespond to real angles. Indeed, physical motion
of the top can occur only when &7 &5 positive sumewhere in the interval between
1 5w T pmd u = 41, that 19, 8 between © and -+, We must conclude theretore
thet for any actual top. f(u} will have two To0tS, 4y and ug, betwesn —1 and +1
{cf. Fag. 5.8, and that the top moves such that cos 8 aiways rematss between These
two ronts. The location of these 1outs, and the behavior of g and v for vatuss of &
between them, pravide much qualitative information about e motion of fhe top,

it is oustomary to depict the motion of the top by tacing the curve of the in-
Tersection of the figare axis on & sphere of un radiug about the fixed point. This
curve 15 known as the locss of the figure sxis. The polar coondinates of a point o
e loous ate identical with the Euler angles 6, ¢ for the body system. From the
discussion in the preceding paragraph, we can see that the Joces lies between the
two hounding circles of coltitade #; == ameos 1y and B = arocos vy, with § van-
shing at both circles. The shape of the Jocus curve Is in largs mieasure defenntined
by the vafye of the Toot of & — au, which we depote by »":

1= l_’ (5643
a

Suppase, for example, the inttial condidons are such that o s larger than u;,
“Then, by By (5 57), & will always have the same sign for the alowed inclination
anghes between £ and f. Hence, the loces of the figure axis must be tangent o
the huanding circles in such a manner that ¢ is in the same direction at both &;
and &, as is shown ip Fig. $.9¢2}. Since ¢ therefore increases seculacly i ene
diraction of the other, the axis of the tp may be said (0 precess about the vertical
axis. But it is not the regular precession encountored in force-free motion, for as
the figure axis goes around, it nods up and down betwsen the bounding ungles &
and fp-the top nutares during the precession.

Sheuld &7z be such that o’ Hes between u; and wy, the direction of the freces-
sion will be different at the two bounding circles, and the locus of the figure azis
exhibits loops, @ shows in Fig. 5.9(%). The average of & will pot vanish how-
ever 5o that there i3 always & net precession in one direction of the other, I con
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Gy (1] e}
FEGURE 59 The possible shapes for the locus of the figure axis op the upit aphere.

alse happen that 1’ colncides with one of the ronts of f{r}. At the corresponding
hremding circles, hoth § and 4 must than vanish, which requiras that #e Jotes
have cusps touching che circle, as shown it Fig. 5.9(c).

This fast case is not as exceptional as it sounds; it corresponds in fact to the
initial conditions wsyally stipulated in discvasions of tops: We asspme
that initially the symmetrical top is spinning about its fgure axis, which is fixed
in some direction 8y, Attime ¢ == 0, the figure axiy is released and the problem is
¢ describe the subsequent motlon. Explicitly, these initial conditions are that at
1224, 8 = Gy and &= ¢ == (0, The guantity g == cos By mvst thersfors be one of
the roots of f{u¥; in fact, it corresponds to the upper circle:

Y (5.65)
z

For proof, note that with these indtial conditions £ is 2qual to Mgl cos 8y, and
that the terins i £ detived from the tnp™s Kitetic engrgy can niever be negative.
Hence. as 6 and ¢ begin to differ from their initial zero values, cnergy can be
conserved only by a decrsase in Mgl cos 8, ie., by an increase in 6. The indtial &y
s therefore the sume as &y, the minirmm value 6 can have. When released in this
manner, the top zlways starts to falf, and copinees 1o fall uati} the other bounding
angle By is reached, precessing the meanwhils. The figure axis then begins to rise
again to &, the compiete motion being & shown in Fig, 5.9

Some guandative predictions can be made about the motion of the top wn-
der these initial conditions of vanishing 6 and ¢, provided thar the initial kinetic
energy of rottion about the 2-axis Is assumed large compared to the maximem
change in potential energy:

$hiead 3 1M gl (5.66)

The effects of the gravitational torques, namely, the precession and aceompanying
nustation, will then be only small perturbarions on the dominant rotation of the op
about its fgere exis. In this sitantion, we speak of the top as being & “fast wop.”
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With this fon we can obtain expressions for the extent of the putation, the
nutation frequency, and the average fragquency of precession.

The extent of the tntation vnder tese ghven nitial conditions is given by
uy -~ ug, where w; is the other physical ront of fiu}. The initial conditions
£ = Mgl cos 8y is equivalent to the equality

@ = Bup.

With this relation, atd e conditiens of Bg. (5.68), f{w) can be rewritten moe
siraply as

i) = (oo - ) [0 iy — 3] 67
The raots of £{r) other than 1 are given by the Toots of the quadratic expression
in the brackets, and the desired rout wy therefore sathsfies the eguation
), _at
(1 —u3— ?(uu— )= B {3.68)
Denoting ag - w by x and ug - w1 by x;3, Eg, (3.68) can be rowritten ag
X} 4 pry - g =B {5.69)

where
&
p= ‘E wReosdy g= st .

The condition for & “fast” wp, Bq. (3.66), implies that p is much urger than .
This can be seen by writing the ratio o2/ as

()4

Exoept in the case that /3 < £y {which would correspond 16 a top in the unusal
shape of a cigar), the ratio is much greater than wnity, end p 35> g. To first order
in the small quantity g/, the only physically reatizable root of Eq. (5.68) is then

xm b

2

MNeptecting 2 cos &y compared to a"‘,t‘,ﬁ. this sesult gan be written

sinf @y fy 2Mpl
T el S

2 5
Xy 8 e in” S, 5.7
] % A ba{% . (5.7

Thus, the extent of the autation. as measuted by 51 = w ~ #y, goos Jowa &S
1,‘&:%‘ The faster the top s spun, the Jess is the nutation.
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The freguency of nutation likewise can casily be Found for the “fast” top. Since
the amount of nuiation is small, the texm (1 — w?) in Bq. {3.67) con be replaced by
s initial value, sin® . Equation (3.67) then reads, with the help of Eq. (3.70),

Fley s 22w afx(m — 7).
1 we shift the orgin of £ to the midpeiat of its targe, by changing varivble ©
X

..
) 2.

then the differential equation becomes

3
a2
¥ 9(4 y),

which on differentintion again reduces to he famdliae equation For simple bar-
TRONC Tation

F o —ay
fn view of the initial condition x = 0 at ¢ = (), the complete solation i
'™ %*(1 - cosat), (571

where xy is given by (5.70). The angular frequency of nutation of the Bgure axis
berwean 8y and & is therefore

. Iy (572
Iy

which frcreuses the faster the top is spun migally.
Figally, the angular velocity of precession, from (5.57), is given by

;. abup = ax

sint 8 sinf @y

or, substituting Bqs. (5.72) and (5.70),
= «"iu - cosar). [k
2a
The rate of precession is therefore not uniform but varies harordeally with tme,
with the same frequency as the muation. The aversge precession frequency bow-
ever ig

b= £ _ Mgl (5.4
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which indicates that the rate of precession decreases as the initiad roturional ve-
Focity of the top is increased.

We are now in a position 1O presem & complate pictors of the motion of the fast
top when e fipare axis initislly has zero velocity. Immediately after the figure
axis s released, the indtial motion of the top is abways to fall under the influence of
gravity. But as it fislls, the resubtant torque around the axis of fall causes the wp to
pick up & precession velocity, dlrectly propostional 1o the extent of its fall, which
searts the figive axis moving sideways shout the vertical. The {nitial fall resulis
i & periodic nutation of the figure axis in addition o the precession. As the
is spun faster and faster, the extem of the nutation decresses rapitly, aithough
the freguency of nutation inereases, while at the same time the precession obout
the veriical becomes siower. In practice, for a sufficiently fast top the muation is
damped ot by the friction at the pivot and becomes ynobservable. The top then
appears to precess uniformly about the vertical axis. Becavse the precession is
regular only in appearance, Kiein and Sommerfeld have dubbed it 4 pseudoregular
precession, In most of the clementary disamsions of ;:mc&%srm the phenomennan
of antation is neglected As s such ions seem 10 lead 1o the
paradoxical conclusion that upon release the top immediarely beging to process
uniformiy, 2 motion that is rormal 1o the forces of gravity that ars the uitipate
canse of the p tor. Our db fon of sl far precession serves o
resolve the paradox; the precession beilds up continucasly from rest without any
afinite accelerations, and the initial tendency of the top is to move in the direction
of the forees of gravity.

Tt is of interest to deteroine exactly what imitial conditions will result in 4 troe
regula: precession. In such a case, the angle 6 remains constant af its initial value
g, which means that 6; = &; = & I other words, f{#} must have a double raot
atug (of. Fig. 5103, o

Furmi =0, = e
“The first of these conditions, from Eq. {5.62') with & = 8, imphies

(b - auo)?
fug

for = fug) = €575}

£

— o+l /

5 o

/1

FIGURE 510 Appeseancs of 7 ) foz & reglar procesilon,
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the setond corresponds o

g albeow) |G fuo)

2 -l YW

(3.76)

Substitution of Hq. (5.75) in Eq. ¢5.76) leads, in view of Eq. (S.57) for ¢, 10 a
Guadratic equation for §:

g = g - cos oy (5.76)
With the definitions of f and @, g, (5.61), this can be writtes in two aliernative
forms, depending on whether a it d in terms of wx or The (constant) ¢
and ¢
Mgl = gthen ~ hpcostp), (e
or
Mt = Gl ~ (h ~ I oosdp). (5.7

The inital conditien: for the problem of the heavy top requize the specificadon
of B, b, Y, 4, é.and, say, etther ¥ or iy atthe Hime = 0. Because they ams oyche,
the Inittal values of ¢ und o are largely ivelevant, and in general we can choose
any Gesired velue for each of the four others, But if in addition we roquire that the
motion of the figure ais be ong of uniform precession without autation, thee our
choice of these four initial walues is no Tnger complerely snrestricted. losiead,
they must satisfy either of Eqs. (5.77). For § = 0, we may still chaose initial
valties of & and wy, abmost arburanty, but the vatue of ¢b 15 thes defermuned. The
phrase “almost arhitranily” is used because Eqs. {S.77) are quadratia, and for ¢ 0
be real, the discriminen of B, (5.77) mest be positive:

Had = AMglh cos . (5.78)

For 6 > 7/2 14 wop moukted so its center of rasy 15 below the fixed pomt), then
any value of wy can lead to uniform precession. But for 6y < 772, ep must be
chosen to be above & misimem vahie o,

wy = %\/Mgii'; Ton (579

to achieve the same situation. Simifar conditions can be obtained from Bg- {3.77)
for the aflowatde values of ¥ As & result of the quadvatic nature of By, (577},
ihere will in general be two solutions for B, knows as the “fast”™ and “slow” pre-
cession. Also note that {3.77) can never be salisfied by ¢ = 0 for finfte i or e
to obtsin uniform precession, we nrust always give the top ashove to start i on ifs
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way. Without this cormet initlal precessional velocity, we can obtain at best only
a pseudoregulsr precession.
3 the procession is slow, so that écos dg may be neglected compared to 4, then

an approximate sokion for b is

. B Mgl

B Tewn {stow},
which agrees with the average sate of psendoregular precession for & fast top, This
testlt s to be expected of course; if the rwe of precession is show, there is little
difference between starting the 2y0800p8 off with a ume aheve or with no shove
at aft Note that with this value of $, the neglect of $eosfy compared w a is
aguivalent o requiring that ws be much greater than the minimun allowed value.
For such targe valees of w, the “fast”™ precession 1 ebtained when o 15 30 Jarge
that Mgl is small compared to the other wrme in Bq. (5,775

T3y
Foosty

(fast).

The fast precession is independent of the gravieational torques and can i fact be
selnted 1o the precession of a fres body (see Der{vation fa in the Bxercises),

ne further case deserves some atention, namely, when & = 1 comesponds
e oag of the roots of f{a).* Suppose, for instance, a fop & et spinndng with s
figure axis sitally veeical. Clearly thea b = a, for 1B and Ao are the constant
componeats of the angular momentur sbout the vertical axis and the figure axis
respectively, and these axes are initially coincident. Since the iniral angolar ver
tocity is only about the Bgure axis, the energy equation {5.59) evaluated at time
¢ == () stares that

B £ o dhied = Mgl

By the definitions of o and & (Eq. (5.61), it follows that o = 2,
“The energy equation at any angle may therefore be writien as

@ e (1 — 1P — i) — a1 — )

it (-t [,9(1 ) aij .
The fonn of the eyuation indicates that & == 1 is always 3 dosble root, with the
third root given by
2

o
ry = — — 1.
2

Nt that this sust be seased ux 8 speciad wn, wace 1 the proviows discussions factom of sat g
went regeatedly dovided out of the expressiany.
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EGH ey

(e, = o [P

FIGURE 5,11 Ploz of £{x} when the figurt axis is muially vertical,

IFa/¥ > 2 (which corresponds 1 the condition for a “fast™ top), n3 is larger
than | and the only possible modon is for 1 = ; the top merely continues to spin
about the verical, For tiis state of affairs, the plot of f{x) appears as shown in
Fig. 5. 1a). On the other nand, f @%/8 < 2. the thrd root &, is then leds than
1, {53 takes on the formn shown n Fig, 5.1 b}, and the top will nutute between
& =0 and 8 = 8. Thers is thus a ceitical angular velocity, ', above whick oniy
vertical motion is possible, whase value is given by

a 13>i3w’2m2
g \njmg

W= 4ML2”‘, 5805

3

or

which is Kentical with Eq. (5.79) for the minimuem frequency for untform preces-
sion with = 0.

In practice, if a 1op s started spinaing with its axis vertical and with w; preuter
than the critical angatar velocity, it wilk continue 10 spin quistly for a while shout
e vertical thence the designation as a “sleeping™ ki However, Fiction prad
ually reduces the frequency of rotation below the critical value, and the top then
hegins to wohble in ever lager amounts as it stows down.

The effects of fricdon {which of coutse cannot be directly included in the La-
grangian frameworl) can give rise 1o ynexpected phenotnena i the bekavior of
tops. & notable example is the “tppic-top,” which consists basically of somawhat
more dag Bl 4 sphers with 4 siein sdded on the fac surface. When set rotating
with the sphetiest surface downwards on a herd surface, it prooseds 10 skid and
nutate untit 1t eveniually tarns upside down, pivoting on the Mzm, whers it thep
behaves as & normal “sleeping” 1op. The complete reversal of the mgulur mo-
mentum vector is the resub of fictional torque oconming &s the top skids on iy
spherical suiface.
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A Targe and influential techuology is hased on the applications of rapidly spin-
ning figid bodies, particularly through the use of what are called “gyroscopes.”
Basically, 4 theee-frame gyroscopes is @ symumetrical top rotated very zapidly by
external means about the Sgure axis and mounted in girnbals so that the motion of

the figurs axis is d abrout theee perpendicular spatial axes while the cen-
ter of gravity remains smionary. The ﬂguxe axis matntains the same direction m
space oo matier how the ing i ¥ alled g

inertia, Such an instmment ean indicate the m}i pitch, and attitode dzracucmx of
an airplane flying “biind” by using the xyz Buler angle conventon described in
Section 4 4 and Appendix 4.

If eaternal rorques ame suiably exarred on the gyroscope, it will andergo the
precession and nutation motions described ewrlier for the heavy top. Howevar,
the condition for the “fast” top is abnndanBy satisfied, so thar the exient of the
natation is always very small, and moreover is deliberately damped out by the
method of ing. The only gyroscopic ph then obrerved is preces-
aion, and the mathematical treatment required to desorbe this precession can be
greatly simplified. We can ses how to do this by generalizaton from the case of
the hesvy symuneseical top.

IR is the radius vector along the figure axis from the fived point to the center
of gravity, then the gravitational torgue exered o the wp is

Now Row Mg, {5481}

where g is the dowmward veetor of the acceleration of gravity. if X3 is the vec-
tor along the figure axis, describing the angular momentum of rowtion about the
figure axis, and ap, known as the precession ventor, is aligned a a}eng the verteal
with magnitude eqnal 1 the mean precession ungular velocity @ Eq. (5.74). then
the sense and magaitude of the (pseudoregular) precession is given by

wp xEam N, (582}

Since any torque abost the fixed point or center of mass can be put in the form
R x F, simitar to Bq. (5,81}, the resaiting average precession mte for a “fast” lop
can, ahways be derived fiom By, (5.82), with the direetion of the force F defining
the precession awis. Almost all engineering applications of gyroscopes invelve
the equilihrinm bebavior (6., neglecting transisnts) which can be derived from
£, (532,

Fiee from any torques, & gyroscope spin axis will ahways preseve its original
direetion relntive to an inertiad system. Gyroa cen thorefors De wsed 1o indicak:
Of maintain specific direcrions, &.2., provide siabilized platforms, As indicated by
Fq. (5.82), twough the precession phenomena they can sefise and meastve angdjar
motation rates and applied torgues. Note from Eq. {5.82) that the precession 1ate
is proportionsl to the torque. whereas in a nonspinning body it is the angular
acceleration that is given by the wrgue. Once the torque is yemoved, a nonspinning
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body will conrinue to move, under simitur conditions 2 gyro sinply continues
spinaing withoot precessing.

The gyrocompass imolves more complicated considerations because here we
are deafing with the bohavior of a gyruscope fxed in 3 hornertal system, while
Barth rotates wnds k it. In & gyrocompass, an additionzl precession is auto-
waatically appHed by an external torque & & rate just eacugh 1o balance Harth's
rotation rate, Once set iy the direction of Basth's votation, i.e., the notth direction,
the gyracompass then preserves. this direction, at lesst in slowly moving vehicles.
What bus been p here is ittedly an inplified, highly d
view of the fascinating wabnological wses of tast spinging bodies. To continne
farther in this divection would regrettably kad us teo far afield.

‘There arg however twe exampies of precession phenomena in natwre for which
& somewhat fuller discussion wonld be valagble, both for the grewm interest in the
phenomena themselves and a5 examples of the wehniques derived in this chapter.
The: first conceens the types of precession that adse from the torques induced by
Enrth's equaroiial “bulge.” and the socond s the presession of moving cherges in
a magnetic fletd, The next two sections are concemned with these examples.

PRECESSION OF THE fQUINOXES AND OF SATELLITE ORBEES

Tt hos heen mentionsd previpusty that Earth i 4 top whose figure axis & precess-
ng about the nerma) to the ecliptic, the plane of Harth's orbit, a motion kaown
astropomically os the ion of the Vere Barth fetely spher
feal, nane of the other members of the solir system could exert a gravitationad
worgue on it But, as bas been pointed out, Barth deviates sightly from a sphere,
bring closely approximated by an oblare sphervid of revatution. 1t iy yust the nei
torgue op the resaliant equatorial “bulpe” wrising from pravitations] sttractios,
cldefy of the Sun and Moon, that sets Earth's axis precessing in space,

To calcatate the eate of this precession, a slight excursion inte polential theory
is peeded 1o fnd the mutaal gravitational potential of 2 mass poiat {representing
the sun or the moon) and 2 nonspherical distriution of matter. We will find the
properties of the inertia tensur as Obtained sbove very useful n the derivation of
this poteatial

Consider & distrfbation of mass poln forning one body, and a single mass
paitit, mass M, representing the other {cf. Fig. 5.12%. ¥f r; is the distance between
the ith point iz the distribution and the mass poimt M, then the mumat gravitational
potential between e two bodies js*

Vo O GMm, (533

! rJii»{g)z“l;CDﬁv'ﬁ

It sy e worth @ renunder Gl summation ¢ fplted over repested sabsorige
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FIGURE 5.12 Geomety bnvolved m gravitational potentidl between an extended body
and & pass pains.

In this last expression the terminology of Fig, 5.12 15 used: v) is the radins ventor
to the ith particle from a particular point, whick will Later be taken to be the center
of mass of the firse booy, ¥ is the comresponding radius vector to the mass point
M. and 1, is the angle between the two vectors. Tt is well known that a simple
expansion in terms of Legendre polynomials can be given for Eq. (5.83); in fact,
the reciprocat of the square root in Eqg. (5.83) is knowa as the generuring fanction
tor Legendie polynomials, so that

e
Ve ME;“!;E;,,,‘ (') Faten il (s34

7
providing r. the distance from the origin to M, is much greater thay aay 7 We
shail make use of only the first three Legendre polynorsials that, for reference. o
Wixrwl,  Blo=x Pilxe fid - (5.85)
For a continaoas spherical bady, with only & zadisl veriation of density, all

teras except the first in B, (5.84) can easily be shown to vanish. Thus, the nth
term mside the summation, for 2 body with sgherical symmetry and mass density

4", cam be wrinen
jjfdv’p(r’) (g)k Zrlcos ).

Using spherical polar coordinates, with the ok axis long r, this becomes

g
Ay T Aoy Feleon ¥l
-1

From the orthonormal properties of Fy with rospect to £, the integeal over cos 3
vanishes except for a == 0, which proves the satement,

Ifthe body devistes ondy shightly from spherical symmetey, & is the case with
Farth, we would expect tie tesns in Ba. {5.54) beyond » = 0 to decrease rapidiy
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with creasing . It will therefore be sufficient to etain onfy the finst nanvanish-
ing comection term in Bq. {5.48) to the potential for 2 spher. Now, the choics of
the center 0f uss #s origip cattses the n = 1 term to vanish identicatly, since it
can be writien

GM GHM ,
— I, SR, 3 X T E,
I ¥

which is zero, by defipition of the center of mass. The next tenm, for n = 2, can
he written

G
~2-r7m4r:2(1 — Zgos? ),

Simple i fon gives the ypk id-ord Tmtation 10 the
nonspherical polential 25

PO ?fi’;(ar - TE,
¥

where it ks the mass of the first body (Barth}, 1, is the moment of inertia sbout the
direetion of 1, and T is the moment of inertia tensor in the poncipal axis system.
From the diagonal represertation of the jnertis wepsprin the principal axis system,
s wraeo 48 just the sum of e privcipel moments of ineriy, so hat ¥ ocan be
WHTes 35

M
v S Sy s n e (558

Equation (5.86} is sometitnes Known &5 MacCwrllagh's formeda. So fur, oo as-
sumpion of rofationsl symumetry has beer made. Let ws now take the axis of
syramelry 1o be along the thind principal axis, so that [y = Jp W o, £, p are the
direction cosines of ¢ welptive (o the principal axes, then the moment of inertiz £
can be expressed as

Lo hio® 4 R4 Iy e B4 s - BpR .57
With, is form foc ., the powential, Eq, (5.56), becomes
GMm oMgf; ~Hp,

Vo~ -1
.
of
GM GM{f1 - I}
v SN B gy, (588

The generat form of Eq. {5.88) could have been foretold fram the stast, for the
potential from & mass distribarion obeys Poisson's equation. The solution appro-
printe to the symmeiry of e body, as Is well Rnown, is an expangion of terms
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of the form P,;(y)/’r"”. of which Eq. (5.88) shows the fist two nonvanishing
terms. However, this approach does not give the coefficients of the ferms any
more simply than the derivation employed here, It should also be remarked that
the expansion of ¥ i the gravitntions! andlog of the multipole expansion of, say,
the electrostatic potential of an arbitrary charged body. The 1 == | term is absent
here hecayse there is only one sign of gravitational “charge” and there can be no
gravitational dipole moment. Fouber, the inertia tensor is defined analogously o
the guadrupole moment teasor. Therefore, the mechanical effects we are seek-
ing can be said to ariss from the graviational quadrupole moment of the oblate
Earthr,*

OF e terms in Eq. (5.88) for the potential, the only one hat depends on e
erientation of the ody, and s could give rise to torques, js

Va {3 {3893

o GHB -1 Iy

I
For the example of Earth's procession, it should be remembared that » is the di-
rection cosine betwaer the figure wxis of Harth and the radius vector from Barth's
center Lo the Sun or Moon. As these bodies go around their apparent orbits, p will
change. The relation of ¥ 10 the more custienary astropomical angles can be seen
from Fig 5.13 where the orbit of the Sun or Moor it taken as being in the xy
pline, and the figure axis of the body in the 3z plane The angle ¢ berween the
figate wxis and the 7 direction is the obliquity of the Hgure anis. The dot prodacr
of 3 unit vector along the figure axis with the radius vector to the celestial body
vl ves only the products of thelr x-components, so that

y = sinfeosy.
Henre, V3 can be wiittzn

@sin® @ oo’ 5 - 1),

GMh - 1o
¥y Tl

TIGURE 5.83  Figure anks of Eart relosive to orbit of mass point.

#ote. that w0 far sacking i e argumont xesioty the potsatel o By (S8H) to roprd bodies, The
contraint of ngidity eaters on.y when we moquire Gxm heee gn that the princepit axes bo fived in the
body and e sssociated morts of mertiz be consient in Hme.
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As we shall see, the arbital motion is very rupid compared to the precessional
motion, and for the purpoese of shtaining the smean precession rate, it will be ad-
equate 1o average Vi over & complete orbital period of the celestial body conud-
ergd. Since the spparent orbits of the Sun and Moun have low vevenuicitics, ¥ can
e assumed constant and the only variationis in cos . The average of cos® 5 over
2 comphem period i 4, wad the averaged poteatial 4 thea

™ M(Zsmzﬁ I)ﬂ%é%:"{g(%v%ng)'

of, finally.

Vo GMU‘ L0 b ooy, (5.90)

The torque derived fram Eq. (5.90) i« perpendicolar ro both the fgure axis and
the normal to the orbir (which plays the same role as e vertical axis for the heavy
top). Hence, the precession & sboot the direction of the osbit aormat vector. The
magnitude of the precession rate can be obained from Be. {5.82), but hegause the
petential differs in form from that for the heavy 1op, it way be more sadstying (o
cbiain a more fonmal derivation. For any syramenic body ia which the poterial
is.a functing of coed only, the L be written, following Eq. (5.52), a5

Lo %(gz & P win? 03+ i'l'iw} +deos)® ~ Vicoss). (5.91)

i we: are to assume only uniform precession and e not concerned sbout the
necessary initial conditions, we can simply take £ and & 10 be zeroin the equations
of motion. The Lagrange spuation comesponding o 6 is then

4L o L av
== = 14" sind eosf — o SO + feosf) ~ —— =0
# a8
or
3y

s~ Nt e
Lo Igp® cosf Pyt £5.97}

whick is the anatog of £q. (5.76') for & more general patential. For siow pre-
cession, which means bastcslly that ¢ < an, the ¢2 terms in g, (5,92} can be
neglected, and the rate of uniform precession is given by

i 8v

= T iy oo

From B, {5.51) we see that for the heavy wop Bg. (5.93) agrees with the sverage
result el Eq. (5.74). With the patential of Eq. (5.90), the precession tate is
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For the case of the precession due (o the Sui, this formula can be put in a8
simpler form, by taking r as the semimajor axks of Earth's orbiz and waing Kepler's
taw, Big, {3.71), i the form

Gu

The precession rate, relative to the orbital asgular velocity, sy, is then

2. dmhnh o (395
wp 2an h

With the value of {7 — £1}/ I us given in Section 5.6, and § = 23°27", iq. (5.99)
suys that the solw-induced precession would be such as te cavse a complets rofa-
tion of the figare axis about the normal to the ecliptic {plane of Earth's orbil} in
about 81,000 years.

The Moon is far less massive thin e Sog, but it is aso much Closer: the netre-
sult is that the lunar-indiced precession réte I8 over twice that caused by the Sun.
Simes the unar orbit is close to the ecliptic and has the same sense as the apparent
solar orolt, the Two presessions nearly add together arthmericaily, and the com-
bined humisolar precession rate is 50.25"/year, or one complese totation in sbout
26,000 years. Now that ehis rate of precession is so slow that the approximation

of neglectng ¢ & Loy Bs satisfied. Bacanse the Sun. Moan,
arud Earth are in constant mianvc motion, and the Meon's orbit is Inclined sbout
5" o fhe eeliptic, the p hibrits irregulat ties d as ustronomicul

nutarivn. The extent afdmse petiodic irregularities is not Jarge—abont 97 of arc
in 8 and about 18" in . Even so, they are Far larger than the tnc nutation that, as
Kiein and Sommierfeld have shown, is manifested by the Chandler wobble whose
amplitude is never more than a few enths of an arc second,

One further application can be made of the potentia, By, (5.88), and assoct-
ated ndform precession rate, Eq. (5.93). It has been swessed that the potemial
represents & mutual gravitational mnteraction; tf it results in torques acting on the
spirning Earth, it also gives rise to (noncentral) forces acting on the mass paint M.
The effect of these small forces appears #s a precession of the plane of the orbic
of the mass point, refative to an inertial fiame. It is possible o obtain an spprox-
imate forrmmla for his precession by an argument again based na the behavior of
spinnmg ngid bodes,

Since the precession rates ave smakl compared 1o the orbital angar velocity,
We can again average over the orbit. The avesaging in effect replaces the par-
ticle by a rigid ring of mass M with the same radius ay the (msumed ciroular}
arbit, spinning shout the figure asis of the rinp with the orbital frequency. Bqua-
tion {5.90) gives the posential feld in which this ring is Tocuted, with 2 the angle
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between the figure axes of the ring and Buth. The average precession rate is sull
ghven by Bq. (5.93), but row I3 and an rofer to the spirning ring and not Earth.
It would therefore be bener to rewrize Eq. (5.93) for this application as

_ I ¥
T Iwarrigicos sy’

é (5,97}

and By, £5.94) sppems i

. T 3G~k \
$= il oo, (5.94)

Bguation {5.94') could be used, for example, to find the precession of the orbit of
the Moon due to Earih’s oblateness, A mers current application would be (o the
precession of nearly circulay orbits of avtificial satelliies rovolving sbout Barth.
‘The iraction of & complets precesston totation in one period of the suellite is

dt Ty 30~ )
o mm o [ b et COS B,
2 (2:'(} TS

A application of Kepled's law, this thne for the perlod of the sateilite. reduces
this resultto

ér LN

s g el sl o5 §, 580

L T A G0
where m is Barth's mass. If Eargh were a uniform spheve, then the principal mo-
ments of mertia would be

fy~ fy = ImRE,

with B Eartit's radius, Because the core is such snore dense than the outer layers,
the moment of tRertia is smaller, such that in fact®

B = 0.331mR? 5 m A2

The approximate precession Is thus given by

dt  1h—h (R\?
W= A (_;) cosd. (397)
For & “elose” sateflite where r is very close to R, and the nclination of the satellite
orbit o the eguator is, say, 30°, Bq. (5,97} says that the plane of the oshit precesses
completely srownd 27 iy about Y00 otbirs of the sutellite, Since the period of 4
wlose suteliite 1+ abount !3'2 hours, complete rotation of the orbital plane oocurs
in 4 Hitle over six wesks me. Clearly the effect is quite significant. We shall
rederive the precession of the sateflite arbit Inter on, When we discuss the subject
of perurbarion theory {cf. Section §2.3).

*The best valwes of [ 4 now obidned from obscrvation of just sech e on atelle orbis,
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PRECESSION OF SYSTEMS OF CHARGES IN A MAGNETIC FIELD

The snotion of systems of charged particles in magnetic fields does nol normatly
involve iigid body motion. In & number of particular instances, the mation i5 how-
ever most elegantly discussed using the technigues developed here For xigld body
motion. For this mason, and because of their smportance in atomic and suclear
physics, & few examples will be given here,

The magnetic moment of a sysiem of moving charges {rlative to a paricular
origin} is defined s

H 1
= ity X v} o fd'f oe{EIF X ¥} (5.58)
Hens the first expression is a sum over discrete partcles with charge g, while the
second is the comesponding generalization 1o 8 continsoss distribution of charge
density p.{r}. The angulor momentum of te system under corresponding con-
venitions is
Lo (1, X %)~ de Pm(EHT X %)

Buth the maguetic moment and the angular momentum have 2 simiar form.
We shall resirict the dscusslon wo slaations in which M s directly proportiuaal
twls

Myl £5.29;

most paterally by having a nniform g /m ratio for all particles or at alf points in
it courimuous system. In such cascs, the pymnugnetic rarie 3 1s given by

£5.1600)

but, with ax eye 1o models of particle and atormis spin, y will often be left nnspec-
iied. The forces and torques on a magaete dipole may be considered as derived
from & potential

Vo= —{M. B {5101}

It is impled along with Eq. {5.101) that the magnetic field Is substantally
consiant over the systom. Indeed, the picture applies best o 2 pointlike magrectic
moment whose magnitede is not affected by the motion it undergoes——a picture
Spproptiale 1o permBNent MAgNSs Of SYSISMmS 0n an atomic of smatf scale. With
uniform B, the potential depends only on the orlentation of M relative to B; no
forces ere exeried on the mapnetic moment, bot there &8 & Hugue

N=MxBR {51023
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{Compare with Bg, (3.8} The time rate of change of the total angular momen-
tupn is equad to this torque, so that in view of By, (5.99) we can write

aL

e rLxB. {3,103}

But this is exacdy the equation of motign for g vector of constant magnitude

rotating i space about the direction of B with an angular velociny & = —p 8.

The effect of & uniform magnetic field on a permanent magnetic dipele 13 1o cause

the. angular momentam vector {and the magnetic moment} o precess uniformty.
Farr the classical gyromagnetic ratio, Eg. (5. 100), the precession angular velog-

ity is

B

m

Ymowa as the Larmoer freguency. For electons 4 i negative, and the Larmor pre-
cogsion s cpunterclockwise around the direcrion of B,

As & second example, consider a collection of moving eharged particles, with-
out restrictions on the nature of their motion, but agsumed 10 alf have the same
gim ratio, and to be i 4 region of viform constant magnetic field. Tt will also
e assumed that any fteraction potential berween particles depends omly on the
sealar distance bevween the particles. The Lagrangian for the syster can be writ-
ten (cf. . (1.631)

£5.164)

oy ==

i
Lo g+ Em - Ayt + VA -, (5.105)
"
where the copstans magnetic field B is genermiad by a vector potential A
A= fBxr {5.106)

In terms of B, the Lagrangiun has the form (permuting dot snd cross produces)
i 1]
Lm-i-m.u}-t-g-mm-(r, i)+ VO, - 1y (5.0

The mteraction term with the magnetic field can be varionsly written (ef.
Eqgs. (5.101) and (5.1047)
L
iﬂrﬁm.sm-m! L e % v, (5.108)
Suppose now we express the Lagrangian in terms of coordinates relative to
“peimed” axes baving & conumon origin with the original ser. bat rowting uni-
Forrdy about the dwrection of B with angulor velocity ey, Distance vectors from
the origin are unchanged as of conrse are scalar distances such as v, — r,i. How-
ever, velocities relative to the new axes differ from the origina? velocities by the
relation

¥V b aH X T
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The two terms in the Lagrangian affected by the pansformaation are

v . ,
= +m,v,~(m¢xr,)-#-?[wxn)-émrxl‘r).
@ - T X MYy w5 =+ (0 X VY =y - (0 00 (e X T

By permuting dot and cross product, we can see dat the tenms linear in e and
v, are just equal and opposite and therefore cancef in the Lagrangian, A simplar
permutation i the terms quadratic in wr show that they are of the same form and
are reluted to the moment of inertia of the system shout the axis defined by sy {of
Section 5.3). The quadstic o is the Lagrangian can in fact be written ag

i

T T S D S g 3 {5,108}
2 2 2

where f; denotes the moment of inertia about the axis of wr. In terms of coontdi-

sates in the rotating syster, the Lagredgian thus bas the shaple form

Lo gt o Ve gy - Ll S110)

fror: which al! linesr terms in the mapnetic feld have disappeared.

We can get an idea of the relative magnitude of the quadratic term by con-
sidersry 4 sitnation in which the motion of the system consists of & rotation with
some frequency i, ¢.g., an electron revolving around the atomic aveleus. Then for
S¥stems not (0o far from sphericat symmetry, the kinetic energy is approximately
%-huz {without subseriprs on the moment of inentia) and the Hoewr term o o) &
on the order of e « L = Feye. Hence, e quadratic teem in Eg. {5.110) s on
the order of {e/e) compared 1o the kinetic energy, and or the order of (un e}
relative {0 the linear torm,

In most systems on the gtomic or smaller scale, the natusal frequencies are
ach arger than the Larmor freguency. Compare, For example, the frequency of
a specteal tine {which is » difference of natural frequencies) 1o the freqnency shift
in the siraple Zeeman effecy, which ts proportionat to the Larmer fregoency. Thus,
for suck systems the motion in the rotating system is the same as in the laboratory
system when these is no mognetic field What we have is Larmor s theorem, which
states that fo first order in B, the effect of a constant magnetic feld on 3 classicel
system is to superimpose on ts normal motion & uaiform precession with angelar
frequensy .

DERIVATIONS

£ If Ry s an annsysnmeds patiix associuted with ®e coordinaios of the fth mwss point
of 2. sysem, with elerments Ry = 6prsr show that the mats of the inerna tensar
can be witken o5

¥ (R
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2. show directly by vector manipalation (it the definition of die moment of inerta 83

T X R) - €0 X W)
~eefuces to g (5 18)

Prowyes that for 3 generat vigid body motion about a fixed paun, the time varation of
“he kaneie energy T is given by

ol

d4r "
?MN'N'

s

Derive Buler's equations of motion, Bg (5.39), Brom the Lagienge equation of mo-
don, i the fom of Bq. £1.53), for the jpuessiized coordinate

Exsuation (5,38} holds for the motgns of systams that ars pot Hghd, relasive 12 chesen
Tatatmg set of coowhpates, For general noncigid motion, if the rotuting axes are chasen
Io coincide with the (istanmneaws) prinzipal axes of te comtinwons systesn, show thit
Exn, (5.39) awe to be replaced by

d(ﬁm')

n

oyl o L = N 1=12.3,

d:

where
I= fzilfp(r}s,,-*x,-u;

with p¢r) the mass density a: point £, and ¥ the velocity of the system point al ¢
relatve to the roteting axes. These equations wet sometimes knows a9 the Liowville
eruations &d hive applications or decussing atmost-righd motion, such as that of
Eanth incloding the stacsphare and ocedns.

6. (&) Show fhak tbe angular momentun of the torgue-free syrmmettical op fotakes in
the Body coordinates sbout i symsiry sxds with an aagulas frequency £2. Show
alsc that ¥ 3xds totates direction of the anguler
ettt it e angular freguency

sy
Hoosd'

whete ¢ 15 the Buler angle of the tine of nodes with respect 1o the angular mo-
menwm as the space g zxis,

() Using the tesuls of Exertwe 15, Chapter 4, shiow that & rotates in space sbont
the angular momentsm with the same frequency &, but thut the angle 6 between
w and L is grven by

po i
§ip8" = = sind”,
¢
where ¢" is the inclinaton of e to the sywmeley ais, Using the data given 1o

Sention 5.6, show therefare that Bah’s rottion #xis and Be axis of anguler mo-
mEntem e never more thans 1.5 oo epart on Earth's surfece.
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@

»

i

11

1%

te) Show from partt {a} end (B) thes the motion of the force-free symmamivsl wp
can be described i terms of the rotanoy of & cone fised in the body whose asis
15 the symmerry axis, polling on & fited cone i spave whose axis &5 along the
anguler momenmm, The angelar velocity vector is along the Yine of cantact of the:
1ued coles. Show that tha sme descrption ollows mediately from e Peiosat
congivuceor is s of the mertia etlipsoid.

Fov the genezal asymuetncw] ngad hody, verify apalytically the seability Dworem
shown geometsically ahove on p. 204 by exammniag e sohution of Eujer's equatiens
for smali devistions from rowtior sbow eact: of the principel #xes. The direction of
@ i assumed o differ s sl from a pringipal axis thar ty p of e siong
the axis con be taked as constant, while the product of compeneats peependwntar 10
e w15 can be neglected, Discurss the boundedaess of the resuftant motlon for sach of
the thres principal ates,

Whers the regtd body 18 A0t syEunetrial, o analtybe soltion (o Euler's equation for
the torque-free motion cannot be given in teoms of elementary fanctions. Show, bow-
ever. that the conservation of energy ard angular momeniem can be used b bl
expressions for the Body components of o in terms of elliptis wregrals

Apply Evler's equations to the problem of tie heavy symmetrical top, expressing iy
m teems of the Buler angles, Show that the two integrals of moban, Eas, (5.53) and
35.543, can be obtaird direcdy from Euler’s equations in this form,

DObuin from Enler’s equations of motion e condition (5.77) for the wiform preces-
won of @ symmotsical topin a gravitatnnal field, by imposing the requirement iat the
motion be 2 safor: presession without nafation

Shew that the of the angelnr far & heavy $ ewd top qan
be exgressed as a fonchion of 8 and he constants of the movor: oy, Provs that us &
restelt the angilar momeantum vector precesscs ureformly only when Uere s unéorm
precession of the symawtry ans

) Consider & prmed set of axes coincident is orign with an ineruat set of axes
e roating wilb vespect 10 the inertie] fiame with fixed angular velocity ex. i »
system of mass points i3 subjest to fortes derved from a conservative potnual
¥ depensding okly on fhe distance i the origin, shaw that the Lagrangian for the
<ystem in terms of coardmates eelatve to the primed ser ean he writteh 4y

L= T by -L o+ fuag - ¥ oy V,

where primes indicate the quantities ovaluated reltive 1 the privied set of axes.
Whet 1z the physica! sigmicante of sach of the pwo addidenal terms?

1B} suppose that ax is in the xjx; phane, and that & syouwenic wp is constrained to
move with its figuse sxiy m the xJx| plane. so that only w0 Buler angfes me
needed tn descnbe s oneetscion. If the body 1 mounted so that the cener of
rrask b fivad ® the orgm snd V = U, show that the figure snis of the bady
oscillates about the x§ axis sucording 10 he plane-pendulem equation of mabon
and find the fregaency of small ascillauons. This ilfustrates the principlo of te
BYTO COMpasS,
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EXERCISES

13, Two thin rods sach of masd m and Jenglh f are connected to an ideal (ns fricton) hinge

wnet 2 horizontat thread. The system rests on & smeoth surises as showa in the figure,
At Gmc 2 o 0, the thread Is cut. Megloonng the imess of the hinge and the iead, aed
considering only motion 10 the xy plane

{8} Find the spead ai which the hings his e foor

{b) Find the de 1t takes fur the hange to bit e foor

14, What is the height-lo-chameter ratio of a fght cylinder suea tat the merta olbpsoid

at the center of the cybinder 153 sphere?

Y 106 priogal momeHs of ierts whout the cevar of mass of & fias ngid body |n
ihe shape of a 45° nght tiangle with cniform. mass density. What are the principal
anes’

. Thoes ecual mass poiets ave bocated at {a, 0, 0), (0. &, 2a), ©, 2z, a). Fmnd the princi-
7] noments of inerua about the origin and a set of prnoipal axes.

A uniform rght chroalar come of helght £, half-angls e, wnd dessity p molls on s
side withows slipping on 2 uniform honzontal plane m such a manner that it returns
to its onginal posinon in o (e 1. Find expressions for the kinetie snenry and the
compenents of the angalar momentum of the cane,

58, (@) A bar of peglipihie weight and lenpth | has egual nass points m at the 1w ends.

The bar is made to rotats uniformly about an axis passing through the cender
of the har and making an angle § wifh the bar. From Snfor’s squations find the
compdnonts Aok tht prineipal axes of the har of the 1rque driving the bar,

{8 Peom the fundaments? torgue aquaiion (L 26) find che components of the torpue
aleng axes fixed in spece. Shotw that these Components ate cotsistent with those.
found it part 5).

, A unbforin bav of mass 6 and length X is suspended fram one end by a spang of
force constant k. The bar can swing freely onfy i 0ne vertical plane, and the spring is
cotstralned 10 move onty i the vertical dicectian, Set up the cquations of motion in
the Lagrangian Formalation.,
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2.

2

L

23,

suspansion
paint

augohment -
pulnt

A plane pendelum conststs of 8 uniform fud of lenghh ! and neplipible Grickness with
mass wr, swspended in s vertieal prane by one end, At the other eng u urform disk of
radius a and mass M s amacked o it can rotwe fresly in its ows pling, which is the
vericad plane. 8ot up the equanons of moton o ke Lagrangan fomulstan,

A compoand pendatum tonsisg of & agid Body i te shipe of a loowna suspended
1 the vertical plane at a powt other than the ceeter of gravily. Comynute the period
for smial] oscillations m teriny of the wwbivs of gyratwm sbout the conter of gravigy
and the separation of the ppint of suspension from: e center of gravity. Show that if
the penctolum bas the same period for two points of suspension at unequel dstances
from the venter of gradty, thien e sum of these distances 1s egbal to the Teagsh of (e
squivalent simple pendulum,

A umborm sod shdes with is ends inside a smooth vertiond sucle IF the rod subonds
an angle of {20° ac the center of te circle. show that the equivalent simple pendulum
s & length cquat 10 the mdis of e incls,

An guomobile by sturted from tout with ane of #e doors inigally at right anples, H
thre hinges OF the dooe are towdrd the front of the car, the door will slam shut gs e
awnmobike picks up speed, Obeain a formla for the tme nesded for the door w clase
1 the accalerston f 1 constant, e tadius of gyratkon of the dogr showt the axis of
rotution 1% #y, and the canter of masy i ot a distance o from the hinges. Shotw that
if F is 0.3 mfs? end the door is @ oniform reetungle 1.2 m wite, the time wil] be
appoknmtely 3085,

A wheel rofls dowy a Hat inchued surace that makes an angle « with whe herizontel.
The wheel is constained 5o thar #s plane b5 always poependioniss o the mclined
plane, but 1 may romte aboat the axis nonnal to e surface. Obtain the solution for
the twa-dimansionat manon of the wheel, sung Lagtange's squations aad the mathnd
of undetesmined mudtiphers.

{8) Express in terms of Euler's angles the consitaint conditeons for a upiform sphere
rolling without slipping on = ftat horisonta surface, Show that they are noshelo-
R,

{k) Set up the Lagrangian equations for this problem by the method of Lagrange
roulnphers, Show fra the ranslatoa:! and roefonal part of the kinetic energy
are sepaately conserved. Are there any other constants of motion?

For the manlly symmetnc body precessimg uniformly m e shsence of torques. find
amalytical solutions for the Buler angles as b fanction of e,
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.

I Secticn 5.5, the preceason of Earth’s axis of ratation about the pale was calculated
en the basis that there weve no wnques 2cing on Barth. Section 5.8, on the other hand,
showed that Banh o andergoing & foreed procossion dog & te wwgues of the Sun
and Meon, Actusily both reswlts are vafid: The motien of the axs of rofason ahout
the SYIRmMCNTy w08 appears s e miation of the Barth m e course of 18 fered
precession. To prove tus statement, calculate £ and ¢ s a functing of tme for a
fieavy symetical (op that is given an inétiat velvcity ¢y, which B large compamd
with e net prevession velocity ff2e, bit which 15 small compared with wg. Under
ihese conditions, dhebounding circles for she figure axis sl e close together, but the
orbit of the figure axis appears as 18 Fig, 5.9(b}, that 15, shows lrge Joups it move
anty showly atonnid the vareioal Show for thus case that {5 F1) remaing valid bt now

Xy ;( i )s«inlﬂo.

From thesa valucs o7 # nd ¢, obtain ) and ar, and show that for B/2a small com-
pared with . the vector w precesses amund the figure axis with sn anguber velotity

i agreemant with S (5.49). Vertfy from the nunbers given m Section 5.6 that dy
curesponds 10 2 perind of abous 100 years, so that dy 18 certainty small compazed
with the daily rotation and 15 sufficiently farge comparsd with /30, which e
sponds to the precossion penod of 26,800 yean.

Suppoce Het it a sysonctical sop cack: slemsnt of mins bas 3 proportionate chargs
agrociated with it, so that the #/m ratio ks he: so-catied chargad

top. i such o body rotates s & uniform magsetic fintd the Lagrangian, from (3.108),
5

La?—w-L

Show that T v & comptemt (which iy a masifeptation of the property of the Lorentz
force that a mupnatic feld doos no work on 8 moving charge) and find e othor
conatants of mation Under the assumption that 1 nuch smaler then the witial
otmtional velacity about the higure axis, obtali oxpressions for the fregoescies aud
anplitudes of potaten and precession. From where d the kineuc energies of nutation
and presossion come?

A homogerenus cube of sides J 1 nitially at est i unstabla equilibom with one edge
1 contact with 2 honzontal plane. The cube is given a small angular displacertent and
lowed to falt. Whae 15 the angutar valocity of the qubs whep ope face contacts the
plane i

{a} 1he edee in contact wish e plana cannot slide?

(b} the plane 15 frnchonlass so the edge can shde?

A door 35 consracied of a thin homogeneous material. 1 has a hetght of 2 moand a
width of 0.9 v, Tf the don iy opened by 50° and ealaased from vest, it is observed that
she door eloses itself 1 3 5. Assuming it 1Be Alnges we fretionless, what angle do
these hinges make with the vertical?



CHAPTER

Oscillations

A clage of mechanical motions thar can es be treated in the Lagrangian for-
mation 18 tat of the oscifiations of a system about positions of eguitibrinm,
The theory of small oscillstions finds widespread physical applications in acous-
s, molecular specira, vibrations of h and coupled electrical cir-
cuits, If the deviations of the system fom stable equilibrivm cowditions are
small enough, the motion can generally be deseribed as that of a system of
<coupled linear harmonic escillators, B wil] be assumed the roades 18 familim with
the properties of & simple harmonic oscillator of one degree of freadom, both in
free and forced oscillation, with end withouws damping. Here the emphasis willbe
on methads appropriate (o discrete sysiems with more than one degree of froe-
dom. As will be seen, the mathematicnl rechniques required twrn out 10 be very
similar to those emnployed in stadying rigid body meuon, sithough e mechanizal
systems considerad need not fuvolve dgid budies st afl. Analogons eatments of
esciliaions about stable motions can Alse de developed, but these are most easily
done i the Hamilionian formulation presented in Chapter §.

6.7 W FORMULATION OF THE PROBLEM

238

We consider conservative systems in which the potential energy is a function of
position only. It will be astumed tha! the wansformation squations defining the
generalized coordinates of the sysier, g1, .., gw. G0 not involve the thne explic-
iy, Thus, time-dependent constraints are 10 be excladed. The system is said tobe
in equilibrinm when the genesafized forces acting om the sysiem vanish:

Q,;w(i‘{.) =1} {61y
2. /o

The potentiat energy therefore has sn extremun &t the equikbrium configoration
of the system, gu. g0z, - IF the configuration 18 initially at the equilib-
EHED poRition, with zero al vitooities gn. then the sy will continue in
aqutlﬁamzm indefinitely. Examples of the eqmmmum of mechanical systems are

dulum at rest, a atirg rego position, an egg

sixndmg on end.
An souilibrium position s classified a8 stable f 5 small distarbance of the
systetn fror equilibiium results only ia sinall bounded motion about the rest pos
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sition, The equilibriom is urstable I an infinltesimal disrubance eventually pro-
duces enbounded motion. A pendulum af rest i3 in stable eqoilibrhen, but the
egg standing on end is am obvious Mustration of unstable equilibrium. 3t can be
rerdily seen that when the extremum of V is a minimom the equilfbrium must
be stable. Supposs the syster is disturbed from the equilibrium by an increase In
energy 48 ebove the equilibrum energy. I ¥ is a minipwm at equilibriur, any
deviation front this position will produce an inceease in ¥, By the conservation of
enargy, the velocities must then decrease and eventially come to 2ero, indicating
beund motion. On the other hand, if V' decreases as the result of some departure
from equilibrivm, the ldaetic enerty and the velocities tncrease indefinstefy, corre-
spumding to unstable motien. The seme conclusion may be arrived at graphicatly
by examining the shaps of the potential snergy curve, as shown symbolically in
Fig. 6.1, A miore rigorous mathematical proof that stable equilibrium requires 2
minimam in ¥ will he given in the course of the discassian.

We shall be interested in the motion of the sysicm within e bumediate neigh-
borhood of 4 configamiion of sable equilibriom, Since the departuras from equi-
Tibsiwm are o smaf, alf functions may be expanded in a Taylor series about the
eqrilibrium, Tetaining only the Jowest-order terms. The deviations of the generals
ized coordinites from equilibrium will be denoted by oy

1= g6 -+ N 6.2}
and these may be taken as the new gensmbized coordinates of the motion. Ex-

panding the potential energy about gy, we obtan

g

v 1 #v
s e s ey
Yigr. oo ged = Vigos 40»3+( )anj+2(3q.941)oqinl+
18.3)

Fy v dE,
‘{:0

#
{8) Siable b} Unstable

FIGURE 6.1 Shape of the puteatiad energy curve at eqirlibiun,
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where the summation convention has been invoked, a¢ usual. The terims linear in
#; venish autesnatically in consequence of the equilibrinm conditons (6.1), The
first term in the series t5 the potential encrgy of e equilibrium posigon, and by
shifiing the arbitrary zeso of potential to coincide with the equitibrium poteatial,
this termn may also be made o vanish. We are therefore left with the quedratic
teyins as the first approximation to V:

Loty i
V=g (W)a iy = g Vi 6y

where the second derivatives of ¥ have been designated by the constants ¥y de-
pending only epon the equilibrivm vabues of the .. Ii is obvices from their
definition that the ¥;'s are symmetrical, that is, that V;, = ¥,,. The ¥, coeffi.
cients can vanish under a varioty of circurnstances. Thus, Se potential can simply
be independent of 3 particular coondinate, $o that equilibrinm ocours st any ar-
bitrary value of that coordinate. We speak of such cases a8 neurrz! oF indifferent
equilibrivn. ¥t may also bappen, for example, Bal the potonial behaves like 2
quadratic al that point, again causing one of more of the ¥, s to vanish, Either
sitwation cails for spetial in the matk icat di jon that foliows,
A similar series expansion cun be obtained for the kinetic energy. Since the
gennrailmd coondinates do not involve the time explicitly, the kivetic coergy 15 &
ous quadratic feaction of the ities (cf. Bg. {1.74):

= smuqaﬂ mqﬁﬂ?; {6.3)
The coafficients m,; are it goneral fanctions of the coordinates gy, but they may
be expanded in o Tuylor series about the equitibrivm, confignration:
[
LI T ] ﬁmi,{qm-‘--,qnn)i'(a “) PR RN
ax

As g (6.5) is abveady quadnatic in the # s, the lowest nomvanisking approxima-
ton 1o T i obtained by dropping all but the first term in the expansions of my,.
Denoting the constant valaes of the my, fanctions at equiibrivm by T, we can
therefore wiite the kinetic enedgy as
T = 4Ty (66}
1t is again obvicus that the consiants 7, must be symunetric, since the individ-
ual terms in Eq. {6.6) axe unaffected by an mierchange of indices. Prom Egs. (6.4}
and {fi 6), the Lagrangian is given by
L= JTyhfy, - ¥om,). ®7
Taking the 1's as the general coordinates, the Lagrangian of B, (6.7} leads to the
Fullowing n equations of motion:

Ty + ¥y, =0, 6.8
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where expiicit use hes been made of the symmetry propenty of the Vi, and T,
ceefficients. Each of Egs. (6.8) wil] imvolve, i general, alt of the coordipates 5,
and it "5 his set of simultaneous differential equations that must be solved to
obtain the metion near the equilibrivm.

T almosk all eases ef mierest, the kinetic energy term can be casily writien so
8 10 have no cross terms * This corresponds 1o the Lagrangian

Lo (54— Vinagh (69

which generates the following equations of motion

Ly + ¥y =0 {po aum over ) {6.10)

6.2 M YHF EIGENVALUE $QUATION AND THE
PRINCIFAEL AXIS TRANSFORMATEON

The sguations of meton {6.8) ave linear differsntial equations with consiant co-
<fficients, of a forn familiar from electrical circuit theory. We are therefore fadto
try Bn oscilfutory sofution of the form

7 = Cae "™, {6.11)

Here Ca, pives the complex ampl of the oscillaon for cach i .
the factor £ being intreduced for convenience av a soale factor, the same for ail
coordinates, It is understood of course that # is the real part of Eg. (6.9 that is
o comespond 0 the actual motion. Substrution of the tial sofution (6.9) into
the equations of moton feads to the following equations for the amplitode fue-
{ors:

(Vyaty = @ Ty} m 0. (6.12)

Equations (6,32} constitute » Hnear howmogeneous equations for the a;'s, and
conserrently can have a Aonmivial solution: only if the determinant of the coeffi-
clents vanishes:

“Msthernicatty, %% Gould 20 evet furter wiien the cterdsoiies are Cteshn and maksng e 7i; =
&, By reseuling the covrenes. Stich ars oedied hied coomimenes sinoe ey
ane generured by dividing the ctardinates by he sgatce oot of tho mass, This twmsforms the kmche
anovgy o e Fana

o B

' 5
“Thas teduces e problesn 1o of Chaptars % acd §, owly 1 7 dimamsions instad
of thnee, however, the iz gl ior8h oty i ploysics. sinee gach i

have = different chaticteristic soals
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Yy~ i Vi - oTr
L N
I - Ty, =8 (6.13)

This deterttinantal condition is in effect an sigebraic equation of the nth de-
gret for w”, and the rots of the determinant provide the frequencies for which
Eg. {6.11) represents a cosrect sofution to the equations of metion. For each of
these valves of w?, Eqs. {6.12) may be solved for the amplimdes of &, ot iore
preciszly, for n — 1 of the amplitades in terms of the femaining a;.

Equations (6.12) cepresent a type of tigenvalue cguation, for weiting T, # an
element of the matrix T, the eguations may be written

Va = iTa. ©H14)

Here the effect of ¥V on the eigenvector a is not merely to reproduce the vector
tirnes the faeion 4, s b e ordingry elgenvalue problem. Instead, the elgenvectar
is such that V acting on & produces a multiple of the resaltof ¥ acting on a, Wa
shiall show that the sigeavalues 1 for which Ba. ¢6.14) can be satisfied are all real
in consequence of the symmetric and eality properties of T 2ad V, and, i fact,
mast be positive. 1t will afso be shown that the eigenvector a are orshogonal—in
a sense. In addition, the matrix of the eigenvectors, A, diagonalizes bath T and V,
e former to the unit matrix E and the Jatier to 2 matrx whose diagonal elements
are the sigenvalues &. Most importantly il is necessary to stow that a and & are
real,

Proceeding as in Section 5.4, let ay be a column malrix representing the th
eigenvector, satisfying the cigenvalue equation®

Vag = kT (6.15)

Asgume pow that the only solution 1o Eq. {6.15) involves complex 4 and ne. The
adfoltit equation, Le., the transposed complex conjugate equation, for A; has the
form

&V = T (& 16

Hers a{ stunds for the adjoint vector—the complea conjiigate row mabrix—and
explicit use has been made of the fact Gat the V und T matrices are reaf wnd
symanetric. Multiply Eq (6.18) from the right by s, and subtract the result of
the similer product of Kq. (6.15) from the left with 8. The left-hand side of the
difference equatinn vamshes, leaving only

1 oo (g — A58 Fag. A}
Tt tasdly need ba added it dhore 1 2o Sumendiion over k i Eq {6 151, Indeed, in thue chapter the
T ermtion with spply ondy 6t of matriees or tereors (of any runk) snd e

L the marrices and ensars thensebves,
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When ! = k, Eq. (6.17) becomes

g - A Tay = 6. {618y

That the matrix, product in Eg. {6.18) i real can be shown immedintely by taking
its complex conjugate aad using the symumetry property of T, However, we want
to prove that the matrix product is not only real but is positive definite. Bor this
purpese, separate a inte its real and imagmary components.

A o 1
The matriz prodect can then be weitlen as
aTay = deton + B Tp -+ HE I - BiToe). (639

The imaginary term vanishes by virtue of the symmetry of ¥ and therefors, as
nated sacfier, Me matrix product 15 real. Further, the kinenc energy @t bq. (ti.a)
can be roweitten i ierms of & columa mateix i ad

7= LT, (6.20)

Hence, the first bwo ferms in Bg. (6.18) ars twice the kineue enengies whet the
veduity samTin # has the velues oy and B, respectively. Now, a Kinetic energy
by its physical natupe must be positive definite for reat velocitics, and therefore
ihe mateix product in Fq. (6.18) cannot be zero. Tt foliews that the eigeuvalues by
‘must be real.

Since the eigenvalues are real, the ratios of the cigenvetior COMPORENS 4,4
determined by Eqs. (8.15) must all be real. Thers is still some indeterminateness
of course since the value of a partieular ane of the o, 's can still be chosen at wilh
without violating Bigs, (6.15). We can requite hoswever that this component shall
be real, and the reality of Ay then ensures the reality of all the other components,
{Any complex phase factor in the amplitade of the oscillation will be threws into
the factor C, Eg. (6.11)) Multiply now Eq. {6.15} by 8 from the left andt solve
for Ay

AeVag

R o 6.29)
The denominator of this expression is equal to twice the kinetic energy for veloc-
Hiss ay and since the eigenvettors ate &3] real, the sum mast be positive defimte.
Bitndlarly, the numerator is the potential ¢nérgy for coordinutes i, and the con-
dition that V' be a minimum at cquilibrism requires that the sum must be positive
or zero, Neither sumeraior nor denominator can be negative, and the dengminator
cannot be zero, hence A is always finite and positive. (it may however be zere.)
Recall that & sunds for 0%, 5o tat positive A coresponds 1o veal frequencies of
ascitiaton, Were the potential not a local minimvem, the numerstor in Bq. (6.21)
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might be negative, giving rise to imaginary frequencies that would produce an un-
bounded exponential increase of the #; with time. Such motion would obviously
be unstable, and we have here the promised mathematical proof that a minimum
of the potential is required for stable motion.

et us return for the moment to Eq. {6.17) which, in view of the reality of the
eigenvalues and eigenvectors, can be written

(A — A& Ta, =0, (6.17)

H all the roots of the secular equation are distinet, then Eq. (6.17") can hold only
if the matrix product vanishes for / not equal to :

yTa, =0, [1#k (6.222a)

1t has been remarked several times that the values of the a;,"s are not completely
fixed by the eigenvalue equations (6.12). We can remove this indeterminacy by
requiring further that

HTa, = 1. {6.22b)

There are n such equations (6.22), and they uniquely fix the one arbitrary compo-
nent of each of the n eigenvectors a;.* If we form all the eigenvectors ay into
a square matrix A with components aj; (cf. Section 4.6), then the two equa-
tions (6.22a and b) can be combined into one matrix eguation;

ATA = 1. 6.23)

When two or more of the roots are repeated, the argument leading to Eq. (6.22a)
falls through for A; = Ar. We shall reserve a discussion of this exceptional case
of degeneracy for a later time. For the present, suffice it to state that a set of
ajy coefficients can always be found that satisfies both the eigenvalue conditions
Egs. (6.10), and Eq. (6.22a), so that Eq. {(6.23) always holds.

In Chapter 4, the similarity transformation of a2 matrix C by a matrix B was
defined by the equation {cf. Eq. (4.41):

¢ =BCB"!.

*Equation (6.22b} may be put in a form that explicitly shows that it suffices to remove the indetermi-
nacy in the ajg’s. Suppose it is the magnitude of ajy that is to be evaluated; the ratio of all the other
a;i’s to ayj, is obtained from Egs. (6.12). Then Eq. (6.22b) can be written as

Mk Gk 1
7 -2
ij ik a1k aik

The left-hand side is completely determined from the eigenvalue equations and may be evaluated
directly to provide a3,
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We now introduce the related concept of the congruence transformation of C by
A according to the relation

C' = ACA. (6.24)

If A is orthogonal, so that A = A"l there is no essential difference between
the two types of transformation (as may be seen by denoting A~! by the matrix
B). Equation (6.23) can therefore be read as the statement that A transforms T
by a congruence transformation into a diagonal matrix, in particular into the unit
matrix.

If a diagonal matrix A with elements A;; = A48 is introduced, the eigenvalue
equations (6.15) may be written

Vijaju = Tiyajihg,
which becomes in matrix notation
VA = TAA. {6.25)
Multiplying by A from the left, Eq. (6.25) takes the form
AVA = ATAA,
which by Eq. (6.23) reduces to
AVA = A. (6.26)

Our final equation (6.26) states that a congruence transformation of V by
A changes it into a diagonal matrix whose elements are the eigenvalues Aj.
Eq. (6.26) has solutions

V- Al =0 (6.26")

In summary we can use normalized Cartesian coordinates so that Tj; = &;; which
reduces the physics to solving

AA=1 (436) and  AVA = Vggeonu (6.26),

or we may choose more general goordinates where T;; # 4§;;, even allowing
Tij =Ty #Ofori # j,anduse

ATA=1 (6.23) and  AVA = Vgpgona (6.26),

to solve the general problem.
As an example, we consider a particle of mass m with two degrees of freedom
{x1, x7) that obeys the Lagrangian (cf. Eq. (6.9))

1 <2 «2 1
L= gm(x{ +x7) — 3 Vijxix;
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where the V;, are constants. The congrusace tansformation (6.26) has solations
only when Eq. (6.26) is satished, so

HHZTRSPY Viz

[ Vn-xiza

‘This equation has two solutions:

Ay = 'Q(Vn + Vi (W - V22)2+491:V2=)
a0 = § (W Voo Vs~ Vs 4 &Vl ).
Associated with the eigenvalues A, are the cigenvectors a;, that satisfy
aj(Vy ~ hby=0 and af +al =1 {oosumeni}
We consider two limiting cases. The first case agsumes ¥y > ¥y > Dand
B35 Wy u= Vi & (Vi Vo), We write the small quantity & »= [Vio/ (¥ — V)]
then, o fizst onder in 4, the slgenvalues are

Ay Vi 4 Vizd

627
Ay ¥z - Vi (627

whose elgenvectons are, 1o Jowest order in &,
I~ 3+
as= [‘a‘“ fi] = { I Il (6.:28)
(2 fa -4 T %,
These correspond to the relations
ayf =ap and  ayy = .
‘The other imiting case assumes Yiz > Vay = Dand (Vi - Vi) & Wiz = ¥y,
We now wiite & s« (¥)) — Vap)/BVsg, which is a smalt quantity. To first order in

£ We gigonvalues are

Ay == ${Vis £ Vazd o+ Vig o+ (Vi - Vids

MV + Vo) — Yz - (W — V3 @
hp e g (Vi + Viz) — Yo — (Wit — Ve

whose cigenveriors are, to lowest order in s,

L 5
we ]:mz 521] - 71‘1‘“ T2 ol -28) . (6303
a4 ﬁ(: -2} %{1 +1283
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The relations amony the components of the cigenvectors are different thas in the
previous exaple. Here ay = —ayy i stightly loss than 17+ while 2yy = ag is
stightly greater than 172

The preceding approximations looked ar the behavior of the eipenvaltues and
gigenverions in limiting cases. The quabitative changes in these guantitics 55 a
funetion of ¥iz/(¥1y = Yoz} from zeto to tres are shown in Fig. 6.3. We shall
retum o this cxample afier considening the general probiltem of multipte voos of
the sigenvalue equation (6.267).

3
4
3t s
Yu 2
Vit
24
-1
- 1 ? 3
Vi
[Shat ]
tw
FIGURE 6.2 Behavior of the {a} ¢i and 0} elg as the

enesgy ratio piy-. changes from 040 3.

1t cemsaing only 10 congider the caze of multiple roots to the secutar equation,
a situation that is more annoying in the mathemmatical feory than # is in practiee.
H ene or more of the roots 13 repested, it :s found that the number of independent

among the & fues is insufficient o detenmine even the rtio of the
5. Thus, if the ei Tue A J5 a dowble roct, any two of the.
campunems a, may be chosen arbitravily, the rest heing fixed by the sigenvalue

cquations.

Tn general, any pair of eigenvectors randomty chosen out of the infinite set of
attowed vectors witl not be orthogonal. Mevertheless, it is always possible to con-
struct 2 pair of allowed vectors that ate onthogonal, and these can be used o form
the erthogonal mairix A, Consider for simplicity the pracedurs 1o be followed
for & double root. Let af and af be any two allowable eignenvectors for & given
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doule root &, which have been normalized 30 as to satisfy Bq. (6.225), Any lisear
combnation of @, and a7 Wil alsa be an eigenvector for the ront A, We therefore
seek {0 canstiet a veclor &,

Ay s ey + ool (631)
where €3 and £z are constants such that ay s orthogonal 1o ;. The ofthogonelity
conditon, Eq. (6.22a), then requires that

ATa, = oq + 28] Ta) = 0,
where o3¢ has been made of the nonnatization of &) It thersfore follows tat the
ratio of ¢) t0 27 wurst be given by
€1 Srror
e By TRy 8 ey, 532
- A Tay gy {632

We cen ilustrate these ideas By again considering our fwo-dimensional
example given by Eqs (6.27) through [6.30). The two limiting cases of the
off-disgonal potentia} term Vyp, being moch less than and mwch greatr than
the differcnce factor (Vi) ~ Vi), provide an excelient example of the problems
introduced by degeneracy. When

Vip o Vg sV, Wig s 0,

the two gigenvalues become the same, &y == kg = Vo,
i the ot Is wken by lefing Vi2 -+ 0 first and then twking the limit
¥y — Vi), the cigenveoiors in Eqe. {6.28) become

a (“)) wmd m= (?) (633)

If the Hmit is mken in the reverse ordes, Eigs. (6.30} give

t o
by == (UF) wd = ( F) . (634}
Vi 7

where b ds used for the eigenveciors in Egs. (6.34) to avoid confusion with fhe
eigenvectors in Egs. (£.33). Each of the sigenvectors in {6.33) and {6.34) are linear
combinations of the ciber set of sigenvectors. For example,

1 1
= --5(1; ), and by e ﬁiﬂz ~ &}

W

50 sither sel of cigenvectors is a linear combination of the other, as was diseussed
i this section. These results obviousty generalize 1o the infinite set

well) e ()
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whete a and b are any pairs of numbers that satsfy

A b=l

This shows that there s ag mfinue set of possible egtenvectars i the Case of
degentracy.

There is another way 10 consider the significance of these results. The spprox-
imate sigenvectors in Bgs. (6.28) are for the case whete the maln potential energy
terms are Vyy und Vop, which are at diagonal positions, and the ¥z are in the off-
diagenaf positions. If we take the sigenvectors of Bg. (6.30) in the mit & > 0
and et the eigenvegtars of Fgs. (6,30) waasform ¥ as ¥ = AVA, we obuain the
wansfortned pointial energy tensor

Ve Vi b Vo b Vi (Mg - V)
W Vi) FVae + Vig) — Vg

i which the diffecence fermtt { ¥y — Viz) 5 ofl-dhagenal. Thes, the set of N
tors given by s, (6.50) are for the physical situation is which the small energy
term (Viy —~ Vo) is off- diagonal.

Retuming io the mam discussion, the requirement that 2 of Eg. (6.323) be nor-
‘malized provides another condition on the two coefficients. which in werms of 1y
defined by En. (6.32) taktes the form

B = 1 =+ o Zaacars

Together the two equations % the coefficients o3 and ¢z, sed therefore the vector
. Both a; and g = aL are suicmatically artiogonal o tes elgenvectors of the
other distinct eigenvalues, for then the argumient based oo Bg. {(6.17°) remains
valid Hence, we have a set of » sigemecton &, whose components form the
atrix A satisfying Bg, (6.23),

A similar procedure is followad for a root of higher multiphicity. I A s an
m-fold roat, then orthogonal normahized eigenvectors are formed out of linear
combinations of any of the m comesponding sigenvecrors ay. ..., #,. The first of
the “erthonormal™ eigevwectors a) is thee chosen as a multiple ofa‘i; p is taken
#% 4 Roear combination of &) and a%; and so on. In this manner, the rumber of
COnsLItLs 1o by delem:h!ed is equal to the sum of the first r integers, or §m{m-—1},

"The pormalization reg provide m conditi hile there are §aegn - 1)
orthogouality conditions, and togethes these are just enough 1o Gx the constants
uniquely,

This p of ing crths dized o] inthe cass of mul-

tiphe roots s completzly analogous o the Gram-Schraidt method of construching
& sequence of orthogonal functions out of any arbitrary set of functions. Phrased
in geametrical language, it is alsa seen to be identical with the procedure followed
in Chapta:i for ruttiple sigenvatues of the inertia tensor. For example, the added

inacy in the eig for 2 dotble oot means dat all of
the veciors ia a plane are sigenvectors. We merely choose any two perpendicular
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directions in the plane as being the tew principal axcs, with the eigenvectars in A
as umit vectors along theve axes.

FREQUENCHS OF FREE VIBRATEON, AND NORMAL COORDINATES

The someshat lengthy arguments of the preceding seqtion demonstrte that the
equations of motion will be satisfied by an osciiatory sodution of the form (6,11},
wot merety for one frequency bt in general for a set of » fregquencies ay. A com-
plete sohtion of the equations of motton therefore Jnvolves a suparpesition of
asciliations with afl e allowad frequencies. Thus, if the system is displaced
slightly from equilibsium and then released, the system performs smalt osciila-
tioas about the squilibrsm with the frequencies ey, ., ., iy The solutions of the
secubar equation are theyefors ofien designated as the frequencies of free vibration
or a8 the resopant frequencies of e system.

The gensval solution of the equations of motion may now be wiitten 48 § sum-
mation over an index &:

7 = Cpagpe 4, {6.35)

there being a complex scale factor Oy for tach resonant frequency. It might be
objectad that for each salution Ay of the secular equatinn rhere are fwg wesonan
frequencies ey ad -2y, The cigenvector 85 would be the same for the two
frequencies, but the scale factors C; and Cy could conceivably be different. On
this Dasis, e generad solation should appear as

7y = gl CFe o 4 Cremeonty, 835

Recafthowever that 1he acwial motien s the z2al part of the complex solution, and
e real part of either (6.35) or (6,35 can be wrirten in fhe form

= fhdk Costans b &), {6.36)

where the amplitude £ and the phase B ate determined form the inftia) condi-
dons. Either of the scletions ((6.35) and (6.36)) wilt therefors represent the actuaf
motion, and the former of course is the more conventent.

The arthogonaltty properties of A greatly facilitate the detenuinaton of the
scale factors C i terms of the initial conditions. At 7 = 0, the real part of
Hq. {5.35) reduces to

#:(0 = Re Cears., 637

where Re stands for “real part of " Similaly, the initial value of the velocitiss is
obtained as

#:(0) = Im Cagan, %38
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wheee I ) denotes the imaginary part of £y From fhese 2t equations, the real
and imaginary parts of the n constants Oy way e evaluated. To solve Bg, (637,
for exampte, fet s first write it $n terms of column matrices (05 and C:

W = AReC. 637

1f we mattiply by AT from the left and sze By (6.23), we inmediaely obian a
solution for Re C:

Re€ = ATwi0),
oF, tking the Irh componeat,
ReCi = iy (8 (6.39)

A similar procedure leads to the imaginary pan of the scale factors as*
H
W0 = — e Fel ), ©30)
“E

Equations {6.39) sud (6.40) thus permit the direct computation of the complex
factors Cr (and therefore the amplitudes and phases) in wrms of the initiaf copdi~
tions and the matrices ¥ and A,

The selution for eact coordinste, Eq. (6.35), is in goneral o sum of simple
fharmonic oscillations in 2l of the frequencies au satisfying the secular equation,
Unless it happens that 10l of the frequencles are commensurable, that 18, rational
fractions of ¢ach ather, s uever repeats its initial value and is thevefors not itself &
periadic function of time. However, it is possible to vansforin from the n; to a new
ot of generalized cootdinates that are all smple penodic fancooms of bme—a set
of variables known as the normal coordinates.

We define 2 new sot of coordinates

=l @41
o, k1t teros of single coliran matrices 1y and £,
7=Af. {641}
The petential encrgy, Eq (6.4), is written in matrix nofation as
V= Live. (6.42)
Naw, the single-row transpose malrix 4 is related 10 £ by the squation
i AE = EAL

*The summanion over ; wad & 1> show explicitly because there 15 90 SUSIAtGH ovor the Tepostod
subrcript !
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so that the potential energy can be written whe as

v LEAVAL
But A diagomaiizes ¥ by a congruence transformation (ef. Eq. (6.26)), and the
potentiat energy therefore reduces sinply to

Vo= LIAT = fai 643

The kinetic energy has an sven simpler fort in the new coordinates. Since the

velocities transform a3 the coordinates, T as given {n Bq. (6.20) transformss o
7 = LIATAL
which by virtue of Bqg, (6.23) reduces w0
ERI RN {644}

Equations (6.43) and (6.44) state that in the new cocrdinates both the potential
and kinstic energies are sums of squares only, withowt any crass lerms. Of course,
this result is simply another way of saying that A produces a principal axis trans-
formaton, Recull that the principal ais transformation of the inertia tepsor was
specificatly designed to reduee the moment of inertia ta a sum of squares; the new
uxes belng the prncipal akes of the inertie etlipsoid, Here the kinetic and potential
¢nergics are also quadratic forms {as was the momewt of inerta) and both ave di-
agonalized by A, For this vesson, the principal axis transformation employed hers
15 a particular exemple of the well-known aigebraic process of the sdmul
diagonaliration of twe guadratic forms.

The equations of meticn share in the simplification resulting from (heir vse.
The new Lagrangian is

Lo (Eads ~ i) (6.43)
30 that the Lagrange squations for ¢ are
T b ey = 0. (6.46)
Fquations (6.47) have the imanedlate solationa
G = e, 647

which could have been seen of course directly from Eqs. (6.35) and {6.41). Bach
of the new coordinates 5 thus & stmply periodic function invelving only one of
the resonant frequencids. As mentioned earkier, i is therefore customary 1o calf
the s the ronmal coordingies of the system,

Each nommat coordinate corresponds to a vibration of the system with only one
freq: v #nd these i iitations are spoken of as the nomal modes
of vibwration, AN of the particles in cach mode vibrate with the same fregusmey
and with the same phase;* the relativa amplinsdes being deterrnined by the matrix

*Paticies miy b exacthy out of phase sf the «'s have appostee sign
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cloments d;. The complete motion is then built up ont of the swn of the sommal
modes weighted with appropriate amplifade and phase factors contained in the
Ci's

Harmonics of the fundamental frequencies re absent i the complate motion
essentially because of the stipulation that the amphitade of oscillation be small,
e are then affowed to represent the potential as & quadratic form, which is char-
acteristic of simple harmonic motion. The normal coordinate transformation er-
phasizes this point. for the Lagrangian ks the normal coordinates (6.453 is seen
10 b the sum of the | jan for b H ittators of freq fes wy. We
can thits consider the complere motion for small escillations as being obtained by
exciting the various havmonic oscillators with differcnt intensities and phases.”

6.4 B FREE VIBRATIONS OF A LENEAR TREATOMIC MOLECULE

To ilhosdrate the techmique for ebtaining the resonant frequencies and normal
mades, we shall consider in detatl o modet bused on a linear symmetrics} tri-
atomig molecute. Tn the equilibrium configuration of the molecute, twa atoims
of mass m are symmetrically located on each side of an atom of mass M (cf.
Fig. 6.3). Al three atotas are ou ope straight line, the egnitibvinm distances spart
being dencted by b, For simplicity, we shall first cansider only vibrationy along
the line of the wolecyde, and the acmial comphicated interstomic potential witl be
approxamated by two springs of force constant k joining the thres atoms, There
are tiree obvious coondinates marking the position of the three atoms on the Hoe.
iy these coordinates, the potential energy is

Vo= ’ém_n -—b)2+-§{x3— - BP. {6.48)
We now introduce coordinates relative 10 the equilibrium positions:
= - s
where

Agg = Xy = P o3~ S

b b

FIGURE 63 Model of 3 hnenr syrmelisical triatomic molecole.
e for fissare referciiee that the sanre sovt of piotarn appairs an the aization of the slecnnnag-
setc fiekd, The fromsoncisn of the harmone oscltators ics idsutiied with the photon Bequencies, and

the smplifudes of excitation beonme the disteote Quentized “occupation number™—the micbes of
photons of each frequency.
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The potential 4nergy then reduces to

& 2 K 2

Vo= 2 - PR

EA Rk Il 2(':3 m)

ar
k
¥ o im0+ 0d ~ 2y~ 2mama). 649

Hence, the ¥V tengor has the form

E o~k 0
V= |-k 2k k1. {6.30)
9~k kK

The kinetic energy bas an even simpler form:

mos . M,
=6t i+ 5 (6.51)
so that the T tensor is diagonal:
m 0 D
T=310 M 0}. (6.52)
9 0 om
Combining these two tensors, the secular equation appears as
e — w?m ~k [
Vo wtTm) kKoM k(=0 6.53)
] —it k- atm

Direct evalvation of the determinant feads to the cubic equation in &
at — e V(M + Dm) — wm) = 3, (6.54)

with the obviaus solutions

w0, g \/;Z- = ,Fi (1 + -};ﬁ) 6,553

The first cigenvalue, en = 0, may appesr somewhat serprising and even alam-
ing at first sight. Such a solutdon does not comespond fo an oscilatory motion at
all, for the equation of motion for the corresponding normal coordinats is

fran,

which produces a uniform transtational motion. But this is precisely the key 1
the difficulty. The vanishing frequency anses from the fact that the molecule
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may be translated sigidly along s axds without apy chauge in the potential en-
ergy, an example of nevtral equilibrive mentioned previousty. Since the restoring
force against such motion is 2ero, the effective “frequency” must also vanish.
We have made the assumption thai the molecule has three degrees of freedom
for vibrational modon, wheress in reality one of them is & rigid body degres of
freedom.

A number of i ing potnts can be di d in inn with 3 vanish
resonant frequency. b is seen from g (6.21) that 2 zevo value of @ can ccour
only when the potential energy 1 positive bl i aot positive defiuite; that is, it
can vanish even when not all the 5,’s are zere. An examination of ¥, Eg, (6.49),
shows that it is net positive definite and that ¥V does in fact vanish when all the
#'s are equal (uniform franslation),

Since the zero frequency found hers is of no conseguence for the vibration
Erequencies of knterest, it is often Jesirable to phrase the problem so that the reot
is eliminated from the ontset. We can do this here most simply by imposing the
condition or constraint that the center of mass remain stationasy ai the ongin:

tlxy b x3) + Mxg = 0. {6.56)

Equation (6.56) can then be used to eliminate one of the coordinates from ¥ and
T, reducing the proldem to one of two degrees of freedom (cf. Derivation 1, this
chapter),

The restrickion of the motion to be along the molecwlar azis allows only one
possible type of unifors rigid body motion. However, if the more general problem
of vibrations it 2j} three directions is considered, the number of rigid body degrees
of freedom will be increased to six. The molecwle may then wanstate mmiformiy
elong the three axes o perform miforms rotations aboat the axes. Hence, in any
general systern of n degrees of freedom, there will be six vanishing frequencies
and onlfy 1t - 6 true vibration frequencies. Again, the reduction in the numbes of
degrees of freedom can be performed befarchand by imposing Ge conservation
of lingar andt angulsr momentum epon the coordinates.

Tt addidion 10 tigid body motion. it has been polnted out that zero resonant
freguencies may also arise when the potential is such that beth the frst and second
derivatives of V vanish at equifibrivm, Smms¥ oscifiations may stil] be possible in
this care if te fourth desivatives do not also vamish {the third derivatives must
vanish for a stable equilibdunt), but the vibrations wifl sot be simple harmonde.
Such a spuation therefore constitutes 4 breakdown of the customary method of
smal} oyeillations, but formnately it is sot of frequent cocnrrence.

Returning nosw o the examination of the regonant frequencies, wy will be rec-
ognized as the well-koown fraquency of oscillasion for a mass m suspended by a
spring of force constunt k. We are therefore led to expect that only the ead atotes
partake in this vibration; the center molecule remains statiosary, It is only in the
third mode of vibration, wa, that the mass A can participate in the osciflatory mo-
tion. These precictions are verified by examining the eigenvectors Tor the three
normal modes.
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The components ay are dewermined for each fequency by the equations
(h — wlma, —kag, =0
ks + (2 ~ o Mag, —kayy = 0 16.5%)
hatzy 4 G~ wlmay, = 0,
along with the normulization condition:
mial, +ai,) + Mad, = 1, 6576}

Forw; = 0, it follows immediately from the first and third of Egs. (6.57a) that all
three coefficionts are equal: 211 = azp = 3. This of course is exactly what was
expected form the wansiationsl nature of the mation (cf. Fig. 6.4a), The nornal-
ization condition then fixes the value of &, 50 that

; ) 1
- " e = )
WEFRTH U ETR T Aeaw

‘The Factors (& ~ m%m) vanish for the second mode, and Egs. (6.572) show immie-
diately that ry = O (as predicted) and a2 = ~-z32. The rumerical value of these
quantities is then determined by Eq. (6.57b):

6.58a)

1
agyg = . w0 Ay & =,
0= an 32 =

in this mode the centez atom is at rest, while the two outer ones vibrate exacily
ont of phase (as they must in arder to conserve linenr momenunm) {cf. Fig, 6.40%.
Finally, when & = ws, it can be seen from the first and third of Egs. (6.57a) that
13 and a33 st be equal. The rest of te calcelstion for this mode is not quite as
stmple ay for the cthers, and it will be sufficient (o stute the final resuit;

{6.58%)

a3 = ! s g = i . od33 ! .
‘/m(u%’;;) Jimzedy ‘/Zm(i-}—%’})
{658
{a}
i
{e}

FIGURE 6.4 Longsdinal normal modes of the lisear symmelric tistome molecule
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Here the two outer atorits vibrase with the same amphitude, while the inner one
oscillates out of phase with them and has o different amplitude, fof, Fig 6.4c)
The rormital coordinates may be found by inverting Bg. (6.4%) 25

1
&= m(ﬁm &~ Mgz + )
i
g g lm - {6.59)

1 M
é = Nireuri 1:\/;{”’ i e w’rﬁnz]

‘These normal modes describe each of the behaviors shown on Fig. 6.4, Any gen-
erad longitudinal vibration of the molecule that does not involve a rigid trensfation
wil} be some linear combination of the normal modes ay and w=. The amplitudes
of the normal modes, and their phases relative w each other, will of course be
determined by the initial conditions {cf. Exercise 5),

We have spoken so far oply of vibrations along the axis: in the actial molecule
there wilt also be normal modes of vibration perpendicular 1o the axis. The com-
plete set of pormat modes is naturally more difficalt to determine than merely the
longitudinal modes, for the generat motion i all directions cormsponds (o nise
degrees of freedom. While the procedure is saightforward, the algebra rapidly
becomes guite cosuplicated, 4nd Rt is not fessible 10 present the detailed calcula-
tion here, However, it s possible to give a qualitative discossion on the basis of
general princi and most of the fusions of the ete sclution can be
predicted befonehand,

The general probless will have a number of zero resonant frequencies cor-
responding o the possibility of rigid body motion. For a molecule with » atoms
there are 3n degrees of {medom. Subiracting the three transiational and three rigid
rotational degrees of freedom, there will be in genteal 3n ~ 6 vibratonal modes.
For the tinear motecule, there will be three degrees of frecdom for rigid trans-
{ation, but vigid rotatton can account for only fwo degrees of freedom, Rotation
about the axis of the maolecule is obviously meaningless and witl not appear o &
mode of rigid body motion. We are therefore left with four trae modes of vibra-
tion. Two of these are the longituding modes, which have already heen examined
5o that there can omdy be two medes of vibration perpendicular o the axis. How-
ever, tha symmetey of the molecale about its axis shows that these two modes
of perpendientar vibration must be degenerate. There is nothing o distingeish a
vibretion in the y direction from & vibration ix the z direction, and the o fre-
quencies must be cguad,

The additional indetsrminucy of the sigenvectors of a degenerate mode appears
here, in that all directions perpendicolar to the molecular axis are alike. Any rwo
orthogonal axes i the plane normal to the molecule may be chosen as the dirde-
dons of the degenerate mades of vibraion. The complete motion of the atoms
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eornat 1o the moleculsr axis will depend upen the amplitades and relative phases
of the two degenerate modes. [f both are excited, and ghey are exactly in phase,
then the aroms will move on 2 straight line passing through the equilibtum con-
fignration, But if they are omt of phase, the composite motion is an efliptics} Lis-
sajoas fgure, exactly as in a two-dimenstonal isotropic oscillator, The two modes
then fepresem a rotation, rather than a vibmation.

It is obvious from the symmetry of the molecules that the amplitudes of the end
atoms mumst be fdentical in magniude. The complete cateulation shows thar the
2nd atoms also wavel in the same direction along the Lissajous figure. Bence, the
cenler atom mnst revolve in the appasite direction, in order fo conserve angular
mormentum. Figare 6.5 ilvstrates the motion for the two degenerate modes when
they are 99° out of phase.

As the complexity of the molecule increases, the size of the seculsr deter:
mirant begomes very large, and finding the nonmal frequencies and amplitudes
becormes 4 probdein of considerable magnitnde. We have seen howdver that even
in a situation as simple gs the linear triatomic molecnie, a smdy of the symmetries
0 be xpected in the vibrations greatly simplifies the Consideratile
mathematical ingenuity has been devoted 10 exploiting the symmelriey inherent
in complex molecuies to reduce the labor invoived in finding their vitration fre.
quencies. The theory of symmetty groups has been applied with great saccess i
factoring the luege secular deteeminant into smaller blocks that may be dingonal-
jzed separatedy, i has been pounsed out however that such elaborate mathematical
mandpolaton was mote eppropriate i a Ume when namerical computations were
difficult and tedicus. Considering the spesd und memory capacity of present-day
computers, # straiphtforward approach may be easier and more accurste in te
fong run. Fast and accorate routines far solving the eigenvalue problems of lsge
watricey are te stock-in-rade today of scientific computers of even moderte
size. There has therefors Desn « trend toward a more bruse-force approach in
which mass-weighted Cavtesian coondinales (see p. 241) are wsed 10 formulate
the problem. The kinetic energy ellipsoid for the molecular vibrations is then
alrzady a sphere, and finding the normal modes reduces w diaponalizing the po-
tentisl energy. These approaches are extensively spphied in infrared and Raman
SPOCITOSCOPY.

70—

FIGURE 6.5 Degenerate modes of the symanetrsal mimomic molecule.
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FORCED VIBRATHONS AND THE EFFECT OF DISSIPATIVE FORCES

Free vibeations occvr when the system is displaced initially from its equilibrinm
configuration and is then aliowed to oscillate by itself. Very often, however, the
system is set into oscillation by an external driving foroe that continues to act on
the system after ¢ = 0. The frequency of such & forced oscifiution is then deter-
mined by the frequency of B¢ driving force and not by the resonant freguencies,
Nevertheless, the normal medes are of great importance in obtaining the wmpli-
tudes of the forced vibration, and the problem is greatly simplified by use of the
normal coordinates oltained from the free modes.

1F F; i the generalized torce cormesponding to the coordinate ;. then by
Eq. {1.49; the generalized force (2, for the normal coondinate {; is

QG oma k. {6.60)
The equations of mation when expressed in nommal coordinates now become
Lotafn= 0 6.61)

Honations (6.61) are 4 sot of » inkomogeneens differential equations that can be
solved only when we know the dependence of §; on time. While the solution
will not be as simple as in the fice case, note that the roemal coordinates presérve
their advantage of separating the vamiables, and cach equation invalves only a
shgle coordinate.

Frequently, the deiving foree varies sinusoidally with time. In an acoustic prob-
lem, for example, die driving force might arise fram the pressere of a sound wave
impinging on the system, and ¢, then bos the same frequency &5 the seund wave,
Or, if the system s 2 polyatomic maolecule, a sinusoidat driving force is present
if the molecule is uminatad by 5 monochromatic light beam, Bach atom. in the
snofecule is then subrject 16 an ecleetromagaetic force whose frequency s that of
the incident light. Even where the driving force is not sinusoidat with a single fre-
quency, it can ofien be considerad as buili up as & superposition of such simasoidal
terms. Thus, if the driving force is periodic, it can be represented by a Fourter se-
ges; other times, a Pourer integtal representation is smishle, Since Egs. (6.61)
aze Jinear equations, s solutions for particalur frequencies can be soperposed Lo
find the complete solution fof given Q.

Tt is therefore of generat interest to study the nature of the oscillations when
the foree O, can be written as

£ = O coslet + 8,), 6.62)

whete w is the apguliar frequency of an external foree, The equations of motion
oW appear as

T -+ 2t = Qo costar + 51, 6.63)
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A complete solution of Eq. (6.63) consists of the general sofution to the bomo-
genecus cqualion (that is, the free modes of vibration} phus 2 particwlar solution
te the inbomogenscus equstion. By a proper choice of initial conditions, the su-
perimposed free vibrations gan be made to vanish,® centering our interest on the
panicolar solation of Bgs. (6.63) that will obvioasly have the form

& = B, cosfwr + 5.} (6.64)
Here the litades £, are ined by trsting the sokution in Egs. (6.63):
Qo
B = .65
t pr e 6.63)
The complete motion is then
v cos{er 4 5,)
Wy s = e Qo €08t 4 ) (6.66)

w} - w?

Thus, the vibration of each particle is again composed of liaear combinations of
the normal modes, but now each normal escillation accurs at the frecuency of the
driving force.

“Two factors detetming the extent to which ¢ach aormal made is excited. One
is the amplitude of the generalized driving foroe, Qg;. If the force om each particle
has no component ip the ditection of vibration of some particelar wormal mode,
then obvigusly sthe generalized force comresponding to fhe. mode will vanish and
0. will be zero, An external force con excite a normal mode onfy if it tends 1o
mgve the particles in the same divection as in the given mode. The second factor is
the ¢loseness of the driving frequency to the free frequency of the mode. As a con-
sequence of the denominators in Eq. (6.66), the closer w approaches roany w,. the
stronger will that mode be excited relative (o the other modes. [ndeed, Bg. (6.65)
apparently predicts infinite amplitude when the driving frequency agrees exactly
with one of the e, "s— the familiar phenomenon of resonance. Actasily, of course,
the f.hr.ory behind Eq. (6.66) pmsumes cnty smafl oscillations sbout equilibriunt
positi when the hi dicted by the formala becomes large, this as-
sumption breaks down a.nd Eq. (6.66) is then no longer valid. Note that the os-
cillations are ia phase with the driving foroe when the freqoency is Tess than the
resonant frequency. but that there is a phase change of % in going throngh the
resonance,

Our discussion has been vorealistic in that the absence of dissipative or frie-
tional forces has been assumed. In many physical systems, these forces, when
present, are proportionat 1o the particle velocities and can therefore be derived

#The froe vibritions are osseatially Gho tatkabirs gentraied by the applibitnm of the davsng Facoes
1 we consider ihe syseens © be witially in an squitibiun configuruor, sad then slowly budd up
e drveng forves Erom 260, thte Tansiits wilt Dot wppear. ARcraatvely, dssipetive forces ok be
sssut1od presert (e pages ollowing) that wail damp out the froe wbratiots
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from s dissipation function F (cf. Section 1.5}, Let us first consider the effects of
frictionul forces on the fres mades of vibration.

From s definition. F mvstbe & homojeneous quadratic function of ihe velae-
ieg:

F o 4 Fiihiy 6.67)

The coefficients F,, are cleatly symmetic, 7, = 7, and in gencral will be
funcions of the cootdinates, Since we are concemed with only smafl vibrations
about equitibrium, it s sufficient 10 expand the coefficients about equilibrium and
retain only the firsst, comstant term, exactly as wae done for the kinetic energy.
1n fusure appheations of Eq. (6.67), we shall take f“,i a5 denoticg these constant
factors. Recal] thut 2F is the rate of energy dissipation due (o the frictional forees
tef. Eq. (260} The digsipation fonction F therefore can never be negative. The
completz set of Lagrange equations of motion now become (of. Section 1.5}

Tty + Fyfy + Vyny = 0. (6.68)

Clearly in order o find nortsl coondinates for which the eqiations of motion
wm:ld he decoupled, it is necmsary 1o find & principal axis transformation that
1 1y diagonal hy Iratic forms 7. ¥, and 7. Ag was shown
above, this i3 not in general possible; tsermal mades cannot wsually be found for
any arbitrary dissipation funchon.
Thers are however some excephional cases when simultzneous diagoralization
15 possible. For example, 3f the frictional force 18 proporional both to the particle’s
velocity ard its mass, then 7 will be diagonal whenever T is. When such simul-
ranesits diagonatizution ts feasible, then the equations of motion age decoupiad in
the wormal conrdinates with the form

L+FL+ w,zc. = 0 (o semination) {669}

Here the F, 's are the T ici ini the di hized form of F when
exprosged in terms of §. Being a set of Bacar differential equations with constant
voefficients, Egs., (6.69) may be solved by functions of the form.

G G,
where o) satisfies the quadyatic zquation
et tl B ol =B (o sammation) 16,76}

Equation (6.70} has the two solutions

. g
m,:j:\/wf'w——!—— ®71;
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The motion is therefore not a pure oscillation, for o' is complex. Tt is seen from
Eqg. {6.71) that the tmoaginary part of a},’ results in a facior expé-~F,1/2), and by
reazon of the nonaegative parsre of of the F,'s, this is always an exponentially
decreasing Fupction of time. ¥ Fhe presence of a damping factor due to the friction
is bardly nnexpectad, As the particles vibrate, they do work against the frictional
fosees, and the epergy of the system (and hence the vibration amplitedes) must
decrease with time. The reat part of $g. (6.71) comresponds to the osgillstory factor
in the motion, note thet the presence of friction also affects the frequency of the
vitration, Hewever, if the dissipation is small, the squared teon in 7, may be
neglected, and the frequency of oscillation reduces to the friction-free value. The
complete motion i3 then simply aa exponential damping of the free modes of
vibration:

5= G P 67
If the dissipation function canaot be disgonalized along with 7 and ¥, the
sofution is yuch more difficalt to obtain, The general nature of the solution re-
mains pretty much the same, however: an exponential damping factor tmes o
oscillatory exponential function. Suppose we seek a solution to Egs. (6.68) of the
form
= Oyt g
7y = Caye™ ™ m Caya™ g™ H0, (6.73)
With this solntion. Figs, (5.68) become a set of simuitaneons lincar equations
Yiyay = {aF;pag - @t Tya, = 0. 6.74}
1t is convenient 10 write 4 as 13, o that

¥ = i = =k - 2du, 675

and thus —& 15 the real part of ¥. In terms of the square tensors of ¥, T, and F,
the set of squations (6.74) become a coliman matzix equation involving !

Va+ yFa+yiTa=0. 6763

The set of homogeneons equations (6.74) or {6.76) can be solved for the o, only
for centain vaives of w or y.

Without actaally evaluating the corresponding secular equation, we can show
that « must always be nonnegative. Convert the matrix equation (6.76) into 2
scalar eguation for 3 by multiplying from the left with a®:

a'va+yatfas ylala =0 677

*Some fbut ot all) 7, 's they S 26:0, which sinply taeans there are e Frictronal effeots it the crse-
spondisg toral modss, TH importent poit i that B 7, 's cannat Be tepudive
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Eguation (6.77) i+ a quadratic equation for 3 with coofficients that are mateiy
praduets of the same general type as those encontlered in Bg. (6.19). By virme
of the symumetry of V. F, and T, the maizix products are all real, as can be seen by
expanding a as @ + i {cf. £iq. (5.19)). Hence, i y is a solution of the quadratic
equation, iis compler conjigars ™ must also be a solation. Now, the sum of the
two reots of & quadratic equation is the segative of the eoefficient of the Jinear
term divided by the coefficient of the square term

a'fa

e, 6,78
a'fa 678

y+y'm otk =~

Hence, x can be expressed in terms of the real and jmaginary party of a; as

1Ryl +A8)
2 Tuleawr + By

The dissipation function F mus{ abways be positive, and 7° % positive dofinite;
hence & cannot be negative. The oscillations of the systern may decrease exponen-
tially with time, but they can never incresse with time. Note that if F 13 positive
definite, & prst he different from zeto {and posltive), and all modes will have an
exponential damping factor. The frequencies of oscillation. given by the real pant
of o, will of course be affected by the dissipative forces, hut the change will be
small if the damping is not very large during & period of osciilation.

Finally, we may consider forced simsoidal oscllations in the presence of dis-
sipative forces. Represeating the variation of the driving foron with time by

879

F, = Fyye™',
where Fy, way be complex, the equations of motion are
Viglj b Fogily 4 Bty = Fope ™0, 630
If we seek a particalar solution (o these equations of the form
7y m Ay,

it setafi finew ions for the

we chain the
Ag

(Y = iy = 0?34, = Fy, w0, (G.81)
The solution to these equations™ may easily be obsined from Cramer’s rade:

_ B

= e 682

“They sre of eourse mercly the unhomogencous version of By, (6 743
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where D{w) is the determinant of e coefficiems of A; in Eq. (6.81) and
D4} is the modification in D} resulting when the jth column is replaced
BY Fay ... Fe. Tt is the denominator (e} that is of principal interest te us here,
for the arise fally oat of e algebraic form of the denominates,
Now, D is the determinant appearing in the secular equation cotresponding 1o the
hongeneous equations {6.74), is roots are the complex frequencies of the free
modes of vibwation, The requirement that both 3 and ¥ are roots of Eg. (6.77)
means, on the basis of B, (6.75), that if «, 1s 2 root of D{e), then —¢f 15 3 o0k
For a sysiem of » degrees of freedom, it s therefore possible [ represent Diw)
£

D} = Gl — on)lew — am) .. (o = wg oo + wido + o) ... (w + @),

where & is some constant. Using product notation, and denoting & by 2y, this
representation can he writien ag

D) = G| o — o) 4 i) Or(w + 1) + ). 635

=t

When we rarionatize Eq. (6.83) to separate A, iite ity real and imaginery pans,
she denominator will be

Do) Dt = 66 [ [t = u? + D0 w40+t (684

b=t

The amplitudes of the forced pscifiation thus exhibu typieal resonance behev.
tor in the meighborhend of the frequencies of free oscillations v, As 2 result of
the presence of the damping constants &, the resorance denominators no fopger
vatdsh at the free mode frequencies, and the amplitudes remain Snite. The driving
frequency at which the amplitude peaks is no longer exactly at the free frequencies
Decause of frequency dependence of terms in A7 other than the particular reso-
nance denominator. However, so long a5 the damping is small cnough 1o preserve
& recognizatie resonant paok. the shift in the wesonance frequencies is nsally
senadl,

We have discussed the properties of small ascillations solely in terms of me-
chanical systems. The reader however has endoubedly noticed the similarity
with the theory of the oseillatens of clectrical networks. The equations of mo-
tion {6.68) become the circuit equations for # coupled circuits if we vead the ¥,
coofficients as reciprocal Hances, the Fi;'s a5 resi and the T,)'s as
induetanees. Driviag forces are replaced by generators of frequency o applisd 1o
one or more of the circuits, and the equations of forced vibration (6,80} reduce
the electrical circuit equations (2.42) mentioned in Chupter 2.

We huive presegted here ony & fraction of the techniques that bave been devised
for handing small ascillations, and of the penerat thearsms shous the motion, For
example, space dots not permit 2 discassion of the powerful Laplace wansform
techniques to study the response of a linearly oscillating system to driving forces
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with arbitrary time dependencies. Ner is it appropriate here 1o fully consider the
extensive subject of nonlingar oscillations, where the potential energy contains
werms beyond e quadratic, ad the motion is o fonger simple harmendc. {Some
relevant portions of this field wilt be introdnced later when we treat chaos and
perwrbation theary). As mentioned earlier, a formal developmest of the theory
of small oscillations about steady motiont will be givest later in connection with
the Hamiliontan version of mechanics. Another gencralization that will descrve
our attention selates o the oscitlation of systems with contineonsly infinite num-
bers of degrees of freedom. The question is how we cart constract & way of han
dling continuous systems that is anak to the classical mechanics of discrete
systems. We shall postpone such considerations of eontimaous systems to Chap-
ter 13—after we have developed the canonical formulation of discrate mechanics,
and after we have seen how the stucture of Newtonian mechanics must be modi-
fred it the special theory of relativity,

6.5 W BEYOND Smali OSCHAATIONS: THE DAMPED DRIVEN PENDULUM
AND THE JOSEPHSON JUNCTLON

As an example of forced vibrations with dissipative forces, we consider the mo-
ton of the pendulum sketched in Fig, 5.6, which is subjected o an applied torque
N and is permitted to rotste through s foll range of motion ~7 £ ¢ < 7. In
addition, the pendulum 8 subject to damping by the viscosity 1 of the medium in
which it rotates. For simplicity, we will assume that the rod is massless, and that
all of the pendulum mass is concentrated a1 the end of the rod.

Let us begin by recaliing the dynamics of & simple pendulutn of length R and

mass m. The angular Jeration of the pendulum is produced by the yestoring

Pt
N
]
8
¢
Nemf Nk mgh N mgR = N,
$=8 ¢ =3 o B
{43 [ [

FIGU'RE &6 Pendulum (8 With so applied Torgue, N = 0, (b} with the forque & =
4mg R, and (o) withhe cntecal torque applied, Ny = mg R, Figures 6.6, 6.3, 6.15, and 6,31
are adapted from €. B Poole, hi. H. A, Farach and R, J. Ceeswick, “Supercenduciivity”
Wiley, NY. 1995,
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previtational torque mg R sin ¢ correspoading v the equaiion of motion

,d?
mRE f + mgRsing = 0, {6.85)
where I = mR? is the moment of inertia Yor small angufar displacements, the
fon sing = ¢ linearizes the problem by making the torque propor-

app
tional ta the displacement, and the moton is siimple harmonic, ¢ = o sinar with
the charucieristic frequency &

5t
ap = ( %} 16.85)
i 2 torque N s applied 10 a stationary peadulurs, 1 will swing oul throagh an
angle ¢. The force of gravity acting on the mass m provides the regtoring torgas
mg 8 sind, as we noted above, and the pendutun assutes @ equilibrion positon
al. the angle ¢ given by
o
N =mgRszing (m? ::D), (6.87
dr
as indicated in Fig. 6.6b The greater the torque, the lurger the angle ¢. There is
a oritiead worgue &, indicated on Fig. 6.5(c) for which he angle ¢ assumes the
vatues w2

N = mgR. (6.88)

16 N excesds this critical value, ther the applied 1orque beoomes larger than the
testorintg torgue, & > mg & sin g, for all angles . As a reslt, the pendulum will
hegin to rolate beyond ¢ 2 /2, und i will continie to rotate 2 long ay the torg
N = N js appliad, The motion wit} take place at a variable angular speed o
¢
W= o (0.393
and it can persist if the torque is Jater removed.

With these facts in mind, et us proceed 1o examine the case of the damped
penduburn assuming that the damping force Faapp = 7 18 proporional io the
angwlar velocity . o write the differential equation of Its motion, we add the
sestocing and damping tomjees mg R sin ¢ and n g /dt, respectively, to Bg. (6.85%

o
= &L a‘:? + nd—f +mgRsing. (6.90)

If we deline & crivicad frequency e, comesponding to the angwlar speed al which
the damping tongee fo equals the critioad torgue mg R,
RN
PO LA 631
" "
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then we can wrie the pendtiurn equation (6.90) in the normalized form

N Ld% tde
ﬁ: LS w_ﬁ p7s +:EE + sing. (692}

The solntions of this equation exhibit complex time vaziations of the angular po-
sition ¢i2).

When a constat torgque is applied to the pendulum at test, thare will be a initial
transicat behavior that eventually seltles down to a dynamic steady stare after the
iransients die out. We shall examine several cases of this dynamic steady state,

1. For low applled torques, N =< N, , there is a static sready state
N o= Nosing, {6.93)

in which all time derivetives vanish after the imnitial oscillations have died
out. This 4 Hluswared in Fig. 6.6b with the pendulum siationary at the
angle ¢r.

%, Torundamped motion (7 = 0) with a constant applied torque, WV, Bg. (6.90}
assumes the form
. 20%¢
wigne = N ~ mgRsing =mR Py (694}

s0 we see that the scting wrque is angularly dependent, This forque has
special values ai four particuler angles:

torgue = § B0 (6.95a)
kirgue = N -~ N @ = iR {6.95b)
torgue = N G=w {6959y
rompe = N + N @ = A2 {6.95d)

if the appled torgue ¥ exceeds the critical torque I, the motion will he

i d rotation, and the IncTeAsES N5 CRBrgy as
time goes on. The angular speed also increasss with time, but with fucte-
ations that repeat every cycle, as indicated in Fig. 6.7, Note that Fig. 6.7
is drawn foy the ease where damping is present. The average over these
oscillations provides the average angaiar speed

{w) o (d'ﬁ)‘ {6.96%

o
which continually increases fineasly with the time.

When damping s present with o, < wp and N > N, the angular speed
@ coniinues to increase natil the dampisg term ndg/di approgches the

L
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FUGURE 6.7 Dependence of the angufar velocity o = d¢/d¢ da the time for an apphed
torque & = M. The average value {w) incrowes lineardy with time i the abaence of
dapnpang (Leiear regiua), and the overali curve applies o the erse wy < wp With dempog,

vakue of the applied torque. When this ocoays. the average angnlar speed {a)
approaches a limiting vaiue {e) ¢, a5 shown in Fig, 6.7, and the acceleration
fuctnales around ap average that is zeror {dg?fdr®) = (. The pendulum
undergoes what is ealled quasi-sraric motion, rotating with an angular speed
1 that undergoes periodie varistions but always remains close i the average
{whi.

To obtain more insight info this quasi-siatic behavior, we neglect the se-
celeration term fn fie equabion of motion (6.92), and write

oo T e e e SO, 1697y

which i an equation that can be solved analytically with the solations

@) =9 for N < M. 6988}
) = oWV -1 fr N (6.988)
) = (M N e for ¥ 5 N, (6.98c)

which are plotted it Fig. 6.8, The actual cyclic vartations in w for paints
A and B on this plot are presented o Fig. 6.9, A1 point 4, the applied
torque has the value ¥ = £.2N.. so from Eags, {6.95) the net tosgue varkes
between D.2N and 224, arouad the cycle, and the angular speed is fast at
the bottown and stow at the top. with the variations shown at the lower part of
Fig. 6.9 For point B, we have M == 20, so the pet torque varies between N,
and 3/, producing the more regular vartations {n angular speed presented
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e d
[

FIGURE 68 Relationship berwesn the apphied torque ¥ and the aversge angalar veloc-
1ty feoh Sor e 2 wg. We see that {w) == 0 for N < M and {w) moreases with increasing
Now N,

b
wifl 2u/0
(wh+e=5- A
[ R
fob e A
2l
A
s
I T

AN § e
FIGURE §%  OQuiliasions ot points A (¥ = 1280 and B (ZN,) for oy 4 wp indicated

on Fag, 6 8 for the demped harmonie oscillator, Adapied from A Barane sad (3. Paterno,
“Physics and Applications of the Josephson BRect,” Wiley, NY, 1582,
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N

w

at the top of Fig. 6.9, 1n the Bt ¥ 3 N, meaning (e} 5 o, the angular
speed begins to approximale 4 sinusoidal variation with time

wi) & (w) 4 o sin 4, (6.9

which approximares point B in Fig. 6.8.

. For the negligible damping case (7 — 0 and @y 23 ey} the steady-siate

solution {6.58a) can stll oconr for N < N, with the pendulurn held fied
at the angle ¢ defined by Eq. [6.93), which means that & = (e} = 0
Tn addition, the solution, (6.93c), in which the torque balances the time
averaged damping foree, sow applies for all values of N, botk Jess than and
greater than NG, and so we have

o =4 for N s N, {6.100a)
) = (NN o fal=N {6.1608)

These solutions are ploked in Fig. 6.10. Note from the figne that the system
exhibits bysteresis, meaning that the bebavior differs for increasing and de-
creasing torgues. Whes the torgue is for N < M., the penduiumis
stabiiized at the angle ¢ satiafying the relation ¥ = N, sin¢g of By, (8.87)
$0 o o= 0 via Eg (6.1003). When N reaches the critical torgue M., the
angular speed jumps to the value e, and then vises linearly with Rurther
mereases in N, 38 shown in the figure. For decreasing torques, Eq, (6.100b
applies, and {w) remalns propertional o N all the way to the aripin, a5
showr,

. Figure 6.8 shows the response for @ < wy. Fig. 610 presens it for

a3 g, and the question arises as 10 what iy the behavior for an inrer-
mediate conditdon such as e, & ap? This requires sobving the general

FIGURE 610 Relationship borwean the applicd torque ¥ and the average angular ve-
fooiry {a} For a3 ey There is hystecesis for the behavior when () < we.
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T T

FIGURE 6,13 Relatonship between the average angithir volocity of the peirhdim (e}
and the appbed torque V. For low applied tworgues, the pendulum esciiaies and the av-
erage velacity 4 zern, wheress af high csgues, ¥ = Mg, moLoR is continzous with (o}
proportional 1o N, Note the hysteresis for increasing and decreasing torgues.

equation {6.92) since no approximations cog be made, The ¥ versus (o}
characteristic for the particelar case w, = Zig is plotted in Fig. 6.11. We
se from the figure that for increasing toigues there is the usual initial fise In
N at zero freguency until the critical value N, is reached, at which point the
average anguler speed Jumps t w;, a8 i the . 3 g case of Fig, 6.10. For
decreming torques, there Is bysteresis with rero average frequency reached
at a borque N7, which is less than M,

The damped-driven pend: quation (6.92) hes a purdd ty important ap-
phication in solid-state physics. When twn supercoaductars aee in close proximity
with a thin layer of mswiating matedial between shem, the amangement Consti-
s a Josephson junction, witich has the property that electric carent I can flow
across the junction with zere applied voliage, ap 1o 8 certain eritical vajue 7. Car-
rent ding this value is panied by the presence of a voltage, and ploty
of current ! versus voltage V for the juncion exhibit Aysterests, The Josephson
junction satisfies the same differential squation (£.93) as the damped oscillator
with the current playing the rele of the wrque, the voltage playing the role of the
avesage angular speed, the capscitance acting like a moment of inestla, and the
electrical conduciance serving as the viscosity. The veriable, which is the anple
@ for the gscillator, becomes the phase difference Y across the Josephson junc-
tion. Many physicists find it helpful 10 obtaln rn intaitive undersianding of the
operation of the Josephson junctien by stadying jroperties of the datmped driven
perduluzn that mimics s behavior,
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DERIVATIONS

i

Ead

‘The prablem of the heay triatemic molesuls can be reducad to one of oo depreas of
Fresdom by introduring coondinates ¥| = Xz —33, ¥ = &3 — 7z, and climinatiog 13 by
requring that the center of mass rermatn at rest. Obtain the frequencies of the normal
mades in these eoordinates and show that they agrea with the resalts of Seation 6.4.
The éutaaces between the atoms, 1y and yo, ase knowee as infernal coordinates.

Obtain the frequencies of longitadinid vibration of the meleosle dscessed 1 Sec-
bon 6.4, eXcept that now e center atom is to be considered bound w the erign by a
spring of force ponstant & Show that the frasiationst mode disappears

EXERCISES

3. A bead of mass m 15 constrained to Move ok & hoop of radms R. The hoop rotates

-

with constant angular velocity o around = dameter of the hoop, which s a vertlesd

15 {Jme nlobg which gravity acts).

(a) set up the Lagrangian and obtain the equations of monon of the bead.

(b Fand the critical angufar veTocity §3 below which the botront of he hovop provides
& steble cquibibrivm for the bead.

e} Fiad the stable equilibrium position for = = Q.

Qbstgin (b romnal medes of vibraiion for the double pendulum shown in Fig. 14,
assuping equat langihs, but ot equal masses. Show that when the lower mass is
smdl compared o the upper one, the two resonant frequencies are sfmaost squal. f tha
pendida are set in motion by puliing the upper mass slightly away from the vertical
and then relessing o, show that sabsequent motion s such that ot reguiar ftervals oue
pendulu is af rest while the other has s maximem amplitede This is the famliar
pleenornencn of “heats.”

5 (a) In the linear trietomic melecale, suppose the inital conditon is that the center

Hom is o rest bt displaced by an amount ap From eguilibriam, the other fwo
heing 31 their furn poines. Find the ampHtedes of the inal small
cszillations sbout the center of mass. Give the ampiitudes of the noamal modes

(b} Repeat part (a) but with the center mom inmally at its oquilibrivm pasition hur
with an initial speed vp.

G (w) A five-atom dmear molecule 1 simulated by a configuration of moyses and 1deal

springs that looks e the following dingran-

All force canstéats e equal. Fand the cigenfrequencies and Aormat modes for
Jongitadinat vibrations. [Hins: Transéorm the coondinazes 7,  f; defined by

Dt s ois
V2 V2

na L e
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weath symmetrical expressions for gz and ng The secular dererminant will then
fagtor into delermmants of lower rank.]
(%) Solve thiy probler using computer kehnigues.

7. In the near tristomue moleculs, suppose that motion in the » and ¢ divections is
2overaed by the potentisls

3 I ,
Y=ot Py 508 - i

3 I3
e S
e gl 20T ok 3 (g —z)
Find the cigenfrequencies for small vibraoons in tree dunensions and descrfbe the

normal medes, What syrmetries du the zero frequencies mmcsm‘? You may wast [©
e the kind of ¥ suggested in ¥

e

‘The equilibrivm of a motecula is d 5y thees atoms of siual
sy at the vertices of 2 45° nght tangle connected by springs of equal force can-
stang. Obtasn the secibar determuninl for the modes of vibraton m the planeand show
By roarmangement of the colimng that the seantyr cquaion has a mple oot = O
Reduce the determinant o one of thind rank and obtam the ronvanishing frequsneies
of free vibration,

e

Show diecty that the sguations of motion of the preceding problem are sunstied by
(2} a unsform eransfatien of alf atams along the x axis, () a watfoen tanstaoos along
the p axis, and () a uniform sotation sbout the 7 #xis

1k, {2) Three equat tnss posnts have equilibrium posinons &t the vertices of a1 eque-
Fatera] wiwngle. They are connected by equal sprimgs that lie slong the arcs of
the civcle crcumgcabing the triangle. Miss points and sprangs are constrained to
move onty on e circli, so that, for example, the potennal enerfy of & spring 1
determined by the are leagth covered Determiige the esgenfreguencies and normaat
modes of small oscillations in the plane. fdamify physically any zero freguenies.
{b} Suppose.one of the spriags b & chinge in Force tonstart 5%, the othen renimmng
unchanged. To first order i 3k, what are the changes in the eigenfreguencies and
normat modes?
(e} Suppeee what 15 changed is the mass of ane of the pamcles by an ayowa S.
Mow hew do the normat eigenfrequencies aad normat modes change?

i Aupiform bie of Jeazth £ and s m ss suspended by two equal springs of equilibrivm
fengih b and farte constant k. as shown o the diagrare.

Fird the normat modes of small oseifation 1 the plane.
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12,

Forw pasticles move in one dimension 3t he gunction of three sppngs, as shows 13 the.
figute. The springs all have unsteetched lengtis equat © . and the force constants asd
masses e shown

Find the eigenfrequencies and norniel modss of the system.

Two mass poteus of equal masy m are connectad o sach other and & Axed poing by
three equal spungs of foree constant &, as shovwn in the dlagrasn.

F

The equitibrium length of euch spring s 2. Bach mass pomnt has 2 positive charge +4.
and they repei each niher according 1o the Cordotab law. Setup the secalar equativn
o the cigeafroguencied,

Find expressions for the oigonfmguenies of te fitowing electicnl coupied cuuit,

¥ the generalized dnving forces (2, 4te ot sinusoidal, show that the forced vibrations
i the pormal coondinates in the absence of damping are given by

where Gy {w) s the Fourier transferm of G, defined by

0y) = e e (@™ do
T A L :

£f the di fstrion i Bred atong with T and ¥, show
1B the Forcad vivretions are given by

L= a1 e,

f+=oc; (wter! = o? + )
N [ 7ul)l+w—:~‘2
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5

2.

22

23

which has the typical resbnonce denominalor Tom. These resulis are sirnple Hus-
trationg of the povrerful teehnique of the eperational ealenias for handling transient
vibragions,

A muss particie moves 10 & copatant verteal gravitational feld along the curve defined
by ¥ = ax®, where v is the vertical diroctien. Find the equation of metion for smalt
3 about th ition of oxpudli

A plene tidomie molecwls cotsists of equsl masses m at vertices of an equileteral

triangle of sides a. Asswine the molecule 3§ held together by forces chat are hermonic

for semal} ascillatiens and that the force constants ace wentical and equal wa k. Allow

maton only in te plaae of the mokecle,

{a) Without writing the eguations of moton, sy your reasening on the number of
normal modes of the syatom and how many of ese modes have zero frequency.

b} Ome of the normal modes corresponds 10 & symmesrical sieetchimg of a3t three
wvegtices of the molecule. Find the frequency of this made.

A particls in ap isotiopic three-dirnenslonal harmenic oscillarr poteniiat has 2 nawural
frequency of ey, Assume the partele is charged and that crdssed static eleciric and
miagnetic Gelds are apphed. Find the vibrarion frequencies wsth these electromagiietic
fiekds gresent, Dhstuss the results for the msts of strong and weak felds.,

Show for the cage Vip = Vag > Dand V3 = Vyp = 8 in Eq. {6.27) that there are nwo
rormal mndes with frequencies wy = (V137 and ay = (Y22)!72, Reintroduce the
mass Faetor 7 3nd describe 2 physical syszem tha: would show this behavier for small
weciflations,

Write the Lagrangian tor fhe case V13 = Va1 = (tand Vi3 = ¥y > 0 for the exumple
Siscussed in Eqgs. {627} 10 (6.30). Show there is ope notmal mode of éinsple hanmonic
thotion with the frequency wy = (Vi2)/2, and a second mode in which the particle
15 unbound, receding exponsttially 1o infinity for long tme £ > © in acoordance with
the exprssion /7 where the parmetsr T is given by v = (¥} 12. For this
unbounded mode, how dous the distance depend upon tune when ¢ < ©7 Wit is the
ature of the pomt xy = x7 = 07 Regtare your tesults with the tass farameter m
taeluded explicitly.

Wiite the Lagrangian discussed in Eqs. (6.27) 1o £6.30) in polar coordinates for the
case Vi) a oy D Vi == ¥y = 0. Show thet there is a radisl novmal mode r =
rpcosiat) with fegquency @ = (V532 when the augular momentum is zero. Show
thit it the ¢a5¢ OF nozere angolar mamentum, the anguiar momeotrn is conserved
and the panticle can no lonper vesch r = 0, Wiite the fctitious potential energy V'ir)
{Chapter 3} for nonzero angular momentum, When finished, Teiniroduce the thass
paareter, of, e Ak ecuations.

Repeat Exercise 21 with the conditons ¥yy = ¥y < Qand V3o = ¥y =~ Gand
discuiss your rsudis n terma of the effective potetstiad enetiry of Chapter 3

Make = fuf analysss of the example discussed in Bas. (6.27) o (6,30,
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The Classical Mechanics of the
Special Theory of Relativity

At the end of the nineteenth cengury, the physics comerunity had two meom-
patible deseriptions of phensmena, Newtonian mechanics and Maxwetltan elec.
gnetic theory, N toy assurned that all inertial frames were
equivalent, while Maxwells wave eguations gave a universat speed of light thar
was the same in all inertial frames. Albert Einstein developed the special dheory
of relativity to repiace Newtonian mechanies with a theary that was consistent
with elechomagnetic theary. After a brief historical survey, we shall review the
assumgptions of the spectul theory and fh e of these i We
shall then examine (e formafiam of the gromeric piiute of spacetime thag re-
salts. Lastly, we develop a Lagrangien formalistm and study stempts 1o express
the results in 4 propar selativistic form,
inN harics, 4 set of well-verified jaws applies in an inestial frame
of reference defined by the first law. Any frame moving at constant velocity with
respect fo an inertial frame is also an inertiat frame. Consider two frames denoted
by Sand 5 with (1, 3. ¥, 2 and £, &, ¥". 2"} the coondinates in 5 and &', respec-
tively, Without loss of generality, we assame the coordinate axes are aligned, «
along &', and 8o on. Let §' he moving refative to § ia the +-x-direction at a spesd
v, ag shover in Figure 7.0,

assdmes the e ¢ i in § are velated to
those in & by the simple expressions

=1
X =y
Y=y ey
=z
Transformations of this type we called Galilean trngfirmations. Under this as-
sumption, it follows that Newlon's second Jaw,
4
= }';‘P,
relating the applied force, ¥, and the momentusn, p, remalns invariant, and

F=F, =i, and  pmp. (22
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FIGURY 7.1 Gablean ransformation from & o 57 by a velocity v an the +x-threction.

The time in hoth the § and § frames iy assumned to be {r = ). The Newio-
nan world view i that the universe consists of thiee spatial directions and one
time disection. All observers agres on the time ditection up to a possible chotce
of units. Under these assumptions, tere are 5o universal velogities. If w and v'
ate the velocities of a particle us measured in two frames moving with relative
velacity v as defined by Figare 7.1, then

0o -, (1.3)

Maxwell’s efectromagnete eguations, on te other hand, have a universal cos-
stant {dfenated by ¢}, which ts interpreted as the speed of light. Since this is incon-
sistent with Newtontan mechanics, either Newtomian or Maxwellion mechanics
would have to be modified. After carefully thinking about how the universe would
appear to an observer tuveling at the speed of light, Alhert Binstein decided that
Maxwell's equations are correct to a3l mertial observers and the assumed wmns-

jons for Newtond hanicy ate lcorrect. The comeet trunsfortitions
make the speed of light the sume to aff inertial pbservers.

BASIC POSTULATES OF THE SPECIAL THEORY
Binstein psed two postulates 1o develop what became known as the special theory:

1. The laws of physics are the came (9 21} inertial observers.
2. The speed of light i the satme lo all inertial cbservers,

A formantation of physics that explicity incorpotates these two postulates is
said fo be coveriany. Since the speed of Bght, ¢, is the same in all coordinate
systems, H iy reasonable to consider the numerical value of ¢ s a conversion
factor between the units used m measnring space #nd the bniis nsed in measuring
dme. So, ¢dr is the time interval measured in the same units sied 10 measure
space units. In the S1 system of units, ¢ df has dimensions of metess. Many books
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and articles on relativity set ¢ = | and messure time and space i meters. In the
mareriat that follows, we shall show the explicit dependence upon .

To satisfy the two postulates, the space and time of the special theory consist
of a single entity that we refer to as spacerime. This spacetime is the geometmic
framework within whick we perform physics. We canmot assume that alf observery
nieke the same division into dme and space in the same way. The separation is
unigue Lo each inerial frame. The square of the dstance in that spacetime, Asd,
Detween two points A4 and B ks given by

tAs) = ol (sime Etervall® ~ tspace interval)?, (143

where the interval i5 between the two points 4 and B. If the separation of the
interval is assumed to be infinitesimaf, the A is replaced by the differential symbot
o Since 2 pointin ime consists of & specification of three spurinl el
values and one time value, the usual convention is to refer to a point in spacetime
s an event. The term event is vsed because such a pont has a definite location
and # dehnite fime in ony Tame.

The choice of opposite signs for the time aad space intervals is inwinsic ®
the theory; however, the choice of 2 positive sign for (¢d7)? is arbitrary. Some
authors define a (ds)z, which is the negarive of the choice given in Eq. (7.4). All
sign chaices makes (ds)® = 0 according to the definition in Eq. {78 for light,
since the space interva) i (¢ = tme interval). The choice made here for the
relative Signs used for space and thine is such that real hodies moving at a velocity
Jess than light have (ds)? > 0. This makes ds real for bodies moving slower than
fighr speed. I {d5)? > 0, the interval is called rimelike. If (dx)? < C, the interva)
is catled spacelike. Tntervals for which (ds)” = 0 are called Hghslike or aull.

Since, to all inertial observers, objects that trave] on timelike paths move Jess
than the speed of Hght, they are called rardyons. Hypathetical bodies that akways
move faster than light are called sachyoms, but such hodies will not concers us
here. Objects moving at the speed of light are ealled nul or lightiike.

Tn the limit of small displacements (Bifferentiat displacements), By, (7.4) be-
wotaes, in a Cattesian coordinate system,

@) = fedt — (dx 4 dyt 4 arty. 4)

The four-dimessiomal space with an intorval defned by Bas. (74) or (141, 1
often called Minkowski space to distinguish it from a four-di
space for wiich there would be no minus sign in Bgs. (7.4) or (,‘d’). The idea
of using ict for the time coordinate 0 muke the space Euchdean is no longer
usefal since it obscores the non-Buclidean natore of spacetime and makes the
generafization to honinertie] frames saore difficslt.

Since the interval between two events of spacetime is a geometric quantity.
ail inertial observers measure coordinates thas preserve the value of the interval
sguared, {ds)%, If § and § are two different inertial frames, then

ds'® = ds?, 1.5)
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Thus, {ds)” is called the square of the invarland spacetime intesval. For this to
be possible, the transformations between the coordinates in & and thoss in §,
st imvelve the refative velocity between the frames i hoth the space and the
time party; that is, the time coordinate can no fonger stand independent of the
transformation. This means the relative splitting of spacetime into space and tme
will e differen: for different inential observers. Since the Hine measured in 4 lab-
aratory frame is ditferent from that messured by an obsarver af rest with respect
to the body snder stody, we nyust distinguish these times. We distinguish them by
calling the time measered by clocks at rest with respect to 2 body the priper fime,
while the other inertial ohserver uses a time thet is often called Jaboratory time.

As a special case of By, (7.4), consider the relation betwess the proper tme, t,
measured by an observer af rest with respact to an object in frame §* with coordi-
mates {z. 3, ¥, '}, wiich is moving at a velocity, v, with respeci to a lshoratory
frames 5 with coordinates {1, x, v, z). In the rest frame of the object, trere is no
motion, so Eqs. (7.4'} and (7.5} give

.
il = oM - o) = o) (} = )

(1.6)

Since Eq. (7.6} mukes dt = dr, this effeccon d7 is calied "tme dilation™ moviag
elocks appear to ran slower.

The invariance of the interval expressed in Ha. (7.5}, namcally divides space-
tirne into four tegions, sketched b Fig, 7.2 relative to any event A at time 14 (A4
is Jocated at x == y = ¢ == 0 in Figore 7.2). 1f an event B ut time £ is such that
(ds5.45) > 1, then ail inertial observers will agree on the Sme order of the events
A and B, s even possible to choose en inential fravae where B has the same
space coardinates 23 4, If 1 is fess than £ 4 i one inertial frame, then &g is less
than 24 in afl fnertial frames. We call this region the past. Likewise, there is a
region cafled the fiure where for event C {shown in Figure 7.2}, ip §5 greater than
€4 for aff inertial observers. Both the past and the futore could be cuusally related
1o the event 4. For any event inside the Hght cone, there exists 2 frame in which
that event and the origin have the same x, y, Z coordinates.

I (s 4p)? < O, then thers exist a set of inertiel frames in which the refative
onder of .4 and tp can be reversed or even made equal. This region has sometimes
been referred to as the efsewhere, or as the elvewhen. In the region in which event
T is located, there exists an inertial frame 5" with its origin at evers the 4 in
which T2 jx at the same time as A (but somewhere 2lse). There also exist frames
in which the time of I occurs before A4 and frames in which the time of T s after
event A ing the past-future and the slsewhere is the aulf or light cone,
wheze di? = 0, The nufl cone is the set of spacesime poitts from which emifted
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&
o

FIGURE T.7 The theee dimensions (<7, x, and y} of the fight come, The think spariat

has been 4. The cvent A at e boxt s ocated atx =
e7 = 0, The hght cone is the set of ter, x, ¥) maced out by Tight ennred trom o
¥ == 0 or by light that reachies = = y = 0 at e of = §. The past and future lie wnside the.
tight cone. Thus figure s of socessity misleadimg becaute ulf poinis oa the light cone have
ZEr0 SEPATZUON B SyPRCElmE.

x =

fight could reach evem 4, and those points from which light emitted from event
A could reach, Any interval between the arigin and a poins inside the ght cone
is imefike, and sny mtervat between the origin 1o a point gutside the Hight cone is
spacelike. Understanding the implicarion of the division of spacetime hy the Hght
cone is usuaily all that is needed o resofve the apparent paradoxes of the gpeciab
theaty.

LORENTY TRANSFORMATIONS

The simplest set of wransformations thas preserve the iavarkuice of the interval,
a5, are culled the Lorentz tansformations. These transformations are simplest o
the sense that they are Yinear in the coordinates and a5 the relative velocity goes o
zero, the transformations becoms identity transformations. 1f we consider parailel
Cartesian coordinae sysiems, 5 and 8, whose origins coincide ot 1 = ¢ = 0, and
whose relstive velocity is v along the x axis as meagured fy 5. and define

i
B= ? iy o
then the following four equations relate the two sety of coordinates
. el fr
et \/""‘"‘I yiet ~ fa) (T.8a)
;o Fomfot

=y~ for) 7.8




7.2 Lorentz Yranstormations 281

. (1.5
=2 {784

Here we are oply interested in trensformations for which ©* — rand & - x a8
B =+ 0. As matrices, these wansformuations appear as

s’ y  ~rf 8 Ol e
EA T N I R -
vIFle o voelly 78
z @ 6 9 i]je}
Tn the dimit of 8 < 1, Eqgs. {7.8) reduce to the Galilean transforinations as ex-
pected,
‘The generalization o arbitrary onenlauon of the vclocsry relative m the axes
is sttmighiforward, Shce we are consid ime & four-di t en-

lity, we woald expect 1o deal with four-dimensional vectors. Using the notation
{ef,x, 3, ¢} = {or, r) allows the weiting of the generatization of Bgs. (7.8) o the
case whese v is not paraliel to an axis, a3

o m oyl —fen
- -1
+ Lﬁ;ﬂ%”——} - By, o

provided the two sets of axes are aligned. Ancther way o express this arbitogy
velocity is 0 consider the Lorentz iransformution between two inertiat coordi-
nate systems with aligned axes, as a matrix transformation relating the two 4
quantities, x = (¢7, 7} and %' = {¢1', 7'}, where

X = lx (7.35

We treat x' 2nd X ag columm mairices and b as the symmeiric mawix

¥ “¥fe , —¥By ~vE:
—¥B G- DB - nfﬂ»?f - 1)?;;%
L 731
i, (rwn“‘ Lty - D& - i 0

~¥he (Vwi}%,% w-vh  1ro-D

This seduces to the tesults given in Eqs. (T8 when By = 8, By = f; = 0.
These transformations map the origin of § and the origin of 8 0 (0,0,0. 03,

Hence the coordimates of both origine correspond to the same location in space-

e 5 tiis s 1ot desized, there is a more genersl transformation of the form

X =lx£a {732}
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where 1 is a spacetime rotation (boast; and 2 is a spacetime wansiation. This is the
Poincard t fon Or the ink Feranez tramsformerion. We shalf
consider only homogeneous transfornmtions for which a of Eq, {7.12) is zero,

7.3 B VELOCITY ADBITHON AND THOMAS PRECESSION

‘Thre most general homogeneous Lorentz transfonation will involve both a veloc-
ity change and a totation of the coordil The velncity ton is teemed
4 boost und has the form of Hig (7.11). Any b oy 1 5o,
L, cun be written as

E=REy = LR (e %))

where R is a rotarion matriX as discussed in Chapter 4, and 1, which i called
2 testricrd or proper Lorentz ransformation, comesponds 1 a pure hoost. The
restricied {.orentz, form a seg ton of the Loreal group®
Since R is nol syinsette and Ly is symmelric, L will, in genesal, Rave no sym-
metry. Also, since Ly and R are mamices, REg # EoR. There will exist two other
iramstormations L, and &' such that Rly = LR

For aay Lotensz umsformation, L, there is an inverse transformation, 174, such
that

Hl e =1, (7.14)

whese ¥ is the diagonal unit 4 » 4 manix with clements 345. The existence of
an inverse places fous constraints on the dingonal element and six on the off-
diugons] elements for a total of ten constraints on the Lorentz transformation,
There are then only six independent components. Three of these corsespond to
the components of the relative velocity vector and three correspond ko the Buler
angles of the rotation (see Section 4.4),

Consider three inertial systems, S¢, Sz, #nd 53, with x axes aligned. Let S; be
moving at 2 velociy » along the cormmon x-irection with respect 10 5 and let
S3 he moving 2t velocity v' slong the commmon x-direction with respect to 82. The
Laorents tragsformarion from S 1o 8x is given by

¥y 8 By yp 80
La=|"TF v 8 olle y 0 @
- [i o 5 oof|l e ot p
[ a e ifle 9 o0 1

YO+ 887 g 0 ¢
~rB Yyl 88y 0 0
[ o t o
¥ o (LR

*Gronp comcegts s dsseussed in Apgeadis B.
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where By (7.7) detines 8 2nd y for v and §7 and y" for v, Let #° be the speed of
Sy relative to 5y and p" the agsociated facior, then since L) can be written 25 2
single Lorentz wapsformution with & velooity £ with ity assaciated p* as

v eytEt g G
_Lagy 5
Liaa= vh A N g .
i

& 9 H
i) o a

orid, since these fwo forms of L. must be the dame, we have

v EEE
Y
This is the relativistic addition of veloity formuta for paralle] velocities.

The product of any two tansformations, Ly and by is kiself 5 Loventz trang-
fonmation, Ls. Such a Lorentz transformation will, in general, involve not only a
boest, but may also nclude & rotation of coordinate axes. If boih 1y and Lz are
pure bonsts but their tweo velocities are not paratiel, Ly will invelve a rotation in
addition 1 a bopst. This rotation ig cafled the Thomar precescion mtation, The
usual form for the Thomas precession assumes the second boost, Iz has 3 ve-
Toeiry small compured to the first boost, L) and also that it is small compared w
the speed of hpht. For example, the Thomas precession can be observed for 2
gyrorcepe orbiting she Barth of for electrons in atoms.

Censider thres inertial frames 5, Sz, and §5, with $» muving at & velocity
with respact to 5y and Sy moving at a velocity of [ with respsct o §;. Without
loss of genezality, we can srvange the ages of §7 so that B8 is along the x axis of
8 wnd B Ties in the 5"y plane of 5y that is, £, §' define the x"y" plane of 57, Let
L represent the trapsformation from $ to 53 and L' the transformation from $; o
53 with p and ' ssseciuted with 8 and B, Then from Eg. (7.11),

£ (1.15)

y —yB 0 @
R o /- R
=le & o1 oo .16
[ T T
and
¥ ¥ B ] “r’ﬁé’fﬁ’ [y
po| TR ey e S e .
= e Bl #h '
B - U—F:r T (o gk o
o o 9 1

We asguine that the components of @7 are stoall and oniy need be retained 1o Brst
order giving via matrix multphications of Bq. {7.16) and Bq, (7.17)
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LSO O S O

- 00
Vetl=] ¥ Y, 7.18
vV, vEYE, 0 @18

i [ [

Since L i8 not symmeric, K must Sorzespond o a motation and 2 boost. We shalt
write the velocity of §7 as observed by 5t as £,

Since the off-disgonal elements ding to the 7 axis are Zoto. this ro-
tation 1§ abowt an axis perpendiculnr o the xy plane. The boost fom 5y 1o §i is
denoted by 87, asd we assume that B & small compared to  ang akso small
compared to the speed of fight (3’ = 1). Then, to fest order, the forvanishing
components of B are (Since the velocity perpendicetiar o x is small we can 8-
nort to frst order the distinction among ¥, 3, and ¥}

. v B
£ =8 M o

=g amd =y e 31

and Bq. (7.18) becomes

YU ey ey By 0
e b W T ’
[ T had p " 718
- A (7.18)

o ] o i

in this approximation, a pure Lotentz transformation from 53 10 5 (the inverse
trensformation} would cortespond 10 @ Jarge booest in the x” axis of ~A7 and a
synl} boost in the §" axis of —f]. The Lorentz hoost for that trensformation

N v o
5
ver v om0l o
e D : 720
YE 0T -bE L e
L] 14 [ i

Finadly, the vottion matrix induced by the rotation from $) to $5, sfter some
algebraic simplification and the dropping of higher-order temms in 87, is found
tobe

1 4] a U

1 r-bl 0
0

R=L"13.¢ = a
Oy = D 1
a a a

.21
L

Comparison with P, (4.44) shows thar R Impiies 3 3¢ rotated with respect o §;
about the z axis through en Infiuitesimal angle:
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A {y — Iy = B ('—‘""'rﬁg ) 72

The spatial mtation resaliing from the successive application of two notipuraliel
Lorsarz wansformations hes heen declared every bit as pamadoxical as the more
frequently discussed apparent violatlons of common sense, such as the so-calied
“twin paradox.” But the present apparent parndox has fmportant applications, es-
pecially in somic physics, and therefore has been abumdantly verified experimen-
adly.

Congider & particle moving in the laboratory system with a velocity v that is
not constant. Since the system in which the particie is & rest is accelerated with
respecs to the laboratory, the twa systens should not be conaected by a Loventz
transformation. We can ciroaymvent this difficuliy by a frequently used stratagem
(elevated by some 1o the states of a0 addional postilate of reliivity). We imagine
an infinite number of inectiaf sysiens moving sniformdy relative to the laboratry
system, one of which instantapsousy matches the velocity of the particle. The
pasticle is thus | atrestin an nertal that can be ¢ d 10
the laboratory sysiem by a Lorentz transformation. Tt is assumed that this Lorentz
transformation wil! alse describe the properties of the particle and its frue west
systern gs seen from the laboratory system,

Suppose now that 5y is the laboratory system, while 53 and Sy ave two of the
InstAIAnEGRS Test SyStems 3 Hme A7 apart in the particle’s motion. By Eq. (7.22),
the lberstory ohserver will see & chonge in the partele’s velocity in his dime,
Av, which has only 2 y-component Sc = Av. Since the initial x axis hias been
choser afong the direction of ¥ = fic, the vector of the infinitesimal rotaton in
this time can be wrilten ay

¥ X A¥

Al =y — Dy

{7250

Hence, if the particle has sotue pecific direction atteched to it (such 45 a spin
vactor), i will be observed from the [aboratory system thst this direction precesses
with an angular velocity

a9 vxa
wm ey = U

{7.24)

whete a3 e particle’s acceleration as seeq from 5. Equation (7.24} is frequency
encountered in the form it takey when » is swall enough that ¥ ean be approxi-
mated fusing y 55 1 + 4% as

1
I E-‘-‘-i(a x v} (7.25)

In either form, ev is known a3 the Thomeas precession frequency,
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VECTORS AND THE METRIC TENSOR

‘We will use the natation that the coordinates, which nced not be Carresian, are
writton g8 x* whete x° = of Is the time coordinate, snd £, 5% x* are the space
coordinatey. This change in notation is needed o be consistent with the develop-
sments in the following sections.

Consider an arbitrary di lonal corve in d-di Soned ime, P,
described by & parameter L, where tur a given ) the coordinates of & point of
the curve can be written as 200}, x I, 240, i), In itvToductory (exts & 4
vectar, v, iy Jefined by this curve as am arcow whose 1 is Tocated at an event A
ft the curve and whese head is at an event B on the curve where v gp = Pr—T 4,
However, instead of defining the vector sf two poiats, we can use the parameter
A, which Is a measue of the length along the curve from .4 1o B, by wriling

a7
(2.

Such g 4-veclor is a rangent vecror to the curve. We adopt the notation that the
components of vectors ae wiitten with supesscripts such ae o2, of 12 17 In epite
of the way we draw tangent vectors, they do not have any extension in spacetime.
The arrows we draw simply help as vissalize the vector. At each point alosg the
curve, the tangent vector has u direction and & magnitade. For curves that ure
timelike, the proper time, . is usually chosen as tie parameter 4. The iaboratory
coordinales are then ¥7 = cefed, &F = x(2), 2 = y(r), 27 = zfr), and the
tangent o the curve is the foar-velaciry, &, of & particle taveling along the curve
7. Byuation (7.26) becomes

der
u"’:?; wye, #owm i_{ oyt (727
where of s dx’ fdi is the nopmat fires-velocity with v2 = (@)% + (w3 4 (v L.
We shalt assume that Greek letlery can take o the values ©-3 and Latin letters
the vitues 1-3. Repeated indices are surmed. Since the 4velocity of 2 panticle is
defined over a range of the parameter 2, there Is an Jofindte set of 4-velocities for
the particle, ste for each value of L. Such a set of vectors is termed 8 veeror field.
Some common examples of vector Gebds are given in Table .1,

We assame that the components of any d-vector can be expressed by the val-
ties of the vector's projections along a set of bisls vectors, ey, €1, €2, £3, and thas
the conrdinates ase measured along the direetion given by the asis vectors. Such
a sysiem is caffed a coordinates busis.* Cartesian, spherical, and cylindrical co-
ordingte systems, among many possible systems, can have such a hasis set. The
posttion of & point on the curve F{t) can be writlen as

Plr) = x"i1)e,, (1.28)

Tt chowe of & conrhpate basis is arburary ot avoids some comphications, For this mioduerory
chapter we valt wsnme it cack basis vector lies in the durection of #s incressing coordinate.
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TABLE 7.1  Examples of Vector Figlds

T e Space E
MNarme Porteon Parion Magnisdsyt “Prpe
Coordinare § ot v Al pt E spacelike, nnd, or troelie
Veioonty i e ¥ A ek
Momantsm £ p mic? tiraetike
! P A — spachis
Current densiy 3 yoo ¥I pled timehke

where repeated Greek indices, one ratsed and one Jowered, are summed from 0
0 3. In particuior, the d-velocity given in . (7.27) becomes
dy
- ‘% = e ey o)
The magniteds of the d-velocity 75 o scalwr whose vadues can vary &5 we
change L. This set of magnitedes is an exasmple of 2 scalar field. Ta convert o
4-vector field to a scalar field, we need what is cafled 2 functional ¥ which can
convert a pair of vectors o a sealar function at eack point in spacetime. In other
words, we wish to define the scalar product of twe vectors or vector figlds. This
conversion of 3 4-vector fiekd {or twe different vector fedds) to a scalar field is
an exunple of 2 mapping. If both the vectors ane the same, then this scake would
be the sguare of the length of the vector, and when the vectors are different, it
is caifed the scalar product of the vecwors. Such 2 functionsl 13 called the met-
e rensor, g The metric tensor fanctional can be considered as a machine with
two slots into which you can insert twe vectors to produce a scalar {resl-valued
fapation). That is,

2l v = glv, w) =% - v, {730
15 the scalar product. T particutar if the basis vectors are lisented into the metric,
Bap = Blew eg) = be - ep. {1.31)

The g4 are the conponents of the melric tonsor assuciated with the basly vee-
tors &y For example, consider 3 two-dimsnsional Minkowski space with coordi-
nates of and x and 2 vector ¢ = (g, b)Y, Then g{v. v} = ad - bt and gw = 1.
s -k

“The form of the gey is defined by the form for the interval. This suggests that
we consider smal di 1f the refative di vector befwegs two

* A tonetionsl 18 « funclion whose srauments ure themselves fsnctzons,
$We use the sammm notation for twasars it -space s wo do for d-vesors.
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pirints 1§ stall, it can be writien as
di o Axtey, (7.32)

Recasting Bg. (7.32) in the language of Bq. (7.4'), we ses for Minkewsk: evordi-
nales

(AsY = d o dl = Ax®AxPeq - ey = gop s AP
= (ear) = (AP - (A = (A2,

In the limit of mfinitesima! displacements this can be written as

d5% x gupd e dxf, {7.32%
which holds for any metric tensor. The metric tensor for a Minkowski coordinate
system, wsing the 4~ sign convention, kas the following tensor reprosenta-
tion®

e 0 0
[N S 1]

£=1g ¢ -1 o .33
e o 0 -t

The sealar product of two vectors in this coordinate system is

Hrwm u"uﬁgﬂﬂ s %90 - atod e 20?  B3 {7.34)

Tt is straightforward 1o show that in any coordinste system, the square of the
magnitude of the fourvelocity is

(735
The d-momentum can be defined from Bq. (7.279)
e, (7.36}
where the mass, m, # a scatar. o the length squared of the four-momenmm is
pep=mid, ekl

of from Bqs. {7.27) and (7.34},

E?
£ pm i = oty iyt = oy — gt (738)

+F5e aovasion used for the dsplsy of & matox is | |, whec for tonsars {3 wall be used as i was
= Chapesr 5. Mawioss sz psed tor relsting difforent coordinate frames while 2rrors aro physical
geamenc ohjects,
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where @ 75 the length of the Xenomentum. This Jast form of Eq. (7.38) is often
writteit as

E? = mle® 4 Pt €138}
The wlativistic kinetic energy, T, is defined as

T = B o me® mmcty = 1) 7.39)

e fmety? + ple? m mel, {1399
For § < |, & power sefies expansion gives
7 dmy® + 0(8%) {7.40%

Since p += my v, Bq. (7.39) shows that the kinetic energy of 2 body with finite rest
wass teads to infinily as the speed approaches that of Hght{as £ — 1, ¥ — ool
In other words, it takes an infinite amount of energy o inciease the spesd of o
wass particle {or 2 space ship) {rom any velocity less than ¢ to ¢ fiself. This
another proot Hat it is impassibie to sttain or excesd the speed of Hght stating
from any finite speed less than ¢,

E-FORMS ANE TENSORS*

Suppose we inseri oply one d-vector into the metrie ensor in Bg. (7.30) We
would produce tn objert that could be wiitlen as uy = gagn?, For sxampie, in
the two-dimensional Minkowski space, if u® has components (a. &), then u, has
components (2, —b), This geometric oBJect, fiy, is called a frm or, in an older
notation, a covariant vector. In the older notation the vector itself was called 4
contruvariant vectar. If the vector is thonght of 25 2 directed line, the 1-form is 4
set of numbered surfaces throngh which the veetor passes as 18 shown in Fig. 7.3,
1t ks anether fanctionel {machine) similar to g, except it converls & vector 10 2
linear real-valued scalar function. That Is, if % is 2 L-form {eld) and » is some
vector {field), e quantiy denoted by (4, ¥} is & mumber that telis us how many
surfaces of 7 are plerced by v. For each vector field ¥, there is un associated }-
fort, Vy such that {V,, V) = ¥ . V iy the scalar contraction or the square of the
magnitude of ¥,

The gradient is an example of & I-form since, if we consider 3 eupve P, param-
eterized by L, where A = 0 2t P and take a scaler function, #, defined along the
curve,

’ FiPay= . v"-?-fm (1.43}

B f = N
i Bhae dicp, 3t

*the materst s Secnams 7.5 and 7.6 15 5ot needind For Section 7.7 The Section ordet has bt chisen,
for cantinuity of ideas.
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7

surtacet
positive
semse
afy

FIGURE 7.3 A voetor v between two nerghbonng points and a 1-form 7. The poming
of 5 by » moduces a paber given by (7, 1}, the aumber (inchiding fractiops) of surfaces
erced

So

By = By, = {742y

Bad
We often write either 3, or d 1o indicate the gradient of & scalar. Several ex-
amples of vectors, 1-forms, sealar products. and metrics from relativity and other
aress of physics are given in Table 7.2,
The gradient of the coardinates, w®, defined as

w® = dx”, {7.43)
provides & set of basis Tforms stuce

(e, ep} = 53, {7.44}

TABLE 7.2 Exampies of Vectors and 1-forms

SYSTEM Vacors: Ifors. Seaar Matree
{Conts atant (Covatant Coneraetion
Cottguments) Cotagonants)
Enchdaan XL dy, A7 Gleafy day [ dxt pan® wu? 18 @
Cartesian {x. ¥, 2f [ )
20t
Euchidean 1dr. o8, 49 i, R e, drf i tdet |10 [
Spherical r2sint 6 dey wrisin?adpt | ¢ 2 g
1 0 Pans
Sohdstate | r(luthe veutord & {recmprocal wvine) ek vartes
Chsanirs theory 113 (et} iy (b} fakh il
Specisi theory of | (e, dr} i, —dry Qad—gt |} o3 o8 o
Telativity 8 -1 0 &
ebipkowsir} o 8 -t 0
8 & 8 -t
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and any 1-form g can be watlen a8

155 Rt (7.45%
it follows that
(R 8a) = e {7.46}
and for any vector, ¥
(1, v} = ™. {7.47)

This gives vs Two ways 1 calculate the scalar product of two verstors v and w.
i we define the inverse metde by

gy, =8 (48
oF iR index-fres notation by
glemge i =1 (148}
wit can comvest vestory (%) to 1-forms (1) and conversely as
[ e R T (7.49)
We can therefore write for two d-vectors w and  (or they condd be two 1-forms),
e g, vl e g,x,u%" sy e uavﬂg"" (734
Since each 1-form has # unique sssocisted vector, we could use the same symbel
for both, The difference is important only when considening components,
In terras of the two-dimensional example that we previensly considered
Minkowski spacetime} with ¢z and » a5 the coordinates), if the vector » has
components {2, b} and the vector v has components (¢, &), the last three tams of

the preceditiy equation can be written as

Zag®v = (Da)ic} + (~ 1B = ac - bd,
1y = ()} + (P~} = a0 — bd,

Ravpg™ == (2} (eH1) + (BHAN—1) = ac — bd.

I may help to consider the relationship between a vector and 2 1-form from a
more general point of view using the Minkowski two-dimensional space as an
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example. A vector ¥ in two-dimensions] space with basis vectors e; and ez can
e writter; as

Vo= Ve 4 Ve

1 generai, it 3 not necessary thal any of the basis vectors be normalized (e; -e) #
1,2 - €2 ¥ 1) of that they be orthogonad {e) » ez # 01 This means that the
magnitade of the scalr product 18 not conveniently obtained from a simple sum
of squares

2
Vove 3V e (e a1V Ve b e+ (Vg
P

#i!ﬂva

=1

and i does not have the vatue o/ (V14 4 (3%, One way o obtais the magni-
fude of the vecor is 1o defing the dualt sprce with basis vecters @l and @® (of,
Eq. {7.43}). which have the properties

g mwloemer-e mwt eyl

and

2 3

oot m et meat =l e =0
We say that the vector basiy, £, is orthopormal to the 1-form basis ' The I-fomm,

v, corresponding to e vector ¥ may be wiitien a5
v = e+ mad.
'This vector has z {magnitude)? of
tragnitude)’ m e Vom Viepa Vg + Vg

When we want to require ans object to be expressed in terme of its coordinate basis
vectors we will write with 4 Roman Tetter {e.g., i) and ase Greek letters when it
is to be expressed in ferms of the basts [-fonms {e.g., %) This seme approach
provides the scalar prodect of two vectors ¥ and U terms of their sssocisted
1-forms v and 1 4s

sealar product e= Vow = o0 = -V = Uow = Vay Vg = ' ity

Thess results are eashly generalized o more dimensions, to spaces that have
an indefinite metrie, and event (0 Mote general spaces, sach as tose dsenssed in
Section 7.11. For example, in 3 four-dimensionat Minkowski space, the I-form,
v, associated with the vector ¥, isap = V8, o = ~ V8 oy s ~ V2 0y = V3,
o the squared Jenpgth of the veciar V is

Vo + Vo + ¥ 4 Wipy = pOUT iyt L oyiyd iy
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“The Laremz wansfosmations can be expressed in terms of the basis vecters, B
we letx®, 2!, x%, x? be the coordingres in a frame 8 and x = 2 (%, 4%, 22, 1)
be the wansformed coordinates in the frame 5, then the Lotents, transformation
can be weillen as

FAS PP R e L (7.50)
where Ky i the iverss transformation of 1. The basis vectors sansform as
b =8ey  md e = e, {7.54)

Any veetor wansforms as v = v%e, = v"eﬁn 50 (5, 0) = 0" = nﬂzuﬂ".“f‘ms
meuns that I-forms tmnsform as 1 = e = nue’ and it follows that

o =L pef i 0" = e’ (7.52}

[l LT R P AP TLS (7.53)
and

ad  ne o g, (7.54)

To convert vectors, sum ox the second (fowered) tadex of the mansformation ma-
trix. To-convert L-forms, surm on the first (raised) Index. I tensor aoation, vectors
are cotumas, while 1-forms are rows.

Senlars, vecrors and 1-forms are simple examples of geometric objects called
lensors. A tensor is a functional into which we insert p vectors and n 1-forms
1o produce 2 Mapping o a scatat. We describe a tensor by seying that it has &
gk given by the unmbers 1 and p, where 7 is the namber of I-forms insertions
possible and p is the number of possible vector inserticns. A fensor, {2, with #

t-form, stots and p vector slots is wiitten as @ of rank {”) A tensor § of rank
(3} 15 a functional iato which we can ivsert r 1-forw o, A, § and p vec-
Wi w. v, ..., w to produce a scalar. For example, the sRergy momenmian veotor
(E/c, p) is a tensor of rank {}. stce contracting & with o I-fomm produces &
sealar, An example of an ovdinary d-rank tensor is the quadrapole weasor of
sonk ()

Althooph the components of 1-forms are written with their indices down, the
number of E-form slots 18 weitien as the upper of the twg pumbers used to give the
ik of 2 tensor. This is because s compenent Rotation the object generated will
have thet number of indices to be contracted with I-forme. For example, if $is 2
tensor of mank {3),

Sy e hpa®, ¥ ey} = oudgv? So”, o 6,) =S¥ opagn?.  (7.35)
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where the 5, are called the components of the tensor § in the chosen coordinate
frame. The output of § it a scalor (see Eq. {7.55, 3o if we repeat this caleula-
tion in another Lorentz frame, we obtain the transformation faw for the tensor
COMPOnEnTs undel a coordinate transtormation,

LRSS LR L L (7.56)

The metric tensor can be used to copvert indises from vectar 1o J-form or 3-form
0 vector; for example,

Sy = 85y 757

Hence, any tensor of rank {7 can be converted by the metric tensor, without
loss of information, 1o any wrrangement of teusor and f-form indices desired a5
loug a3 the tetal number of indices {n 4 p) is conserved. Al of fhese objects are
different coordinate forms of the yame geometric obreet (enser),

Consider our two-dimensionat example with 2 vector, «, whose components
are {a, ) and & L-form, o, with components {¢, 4). If we examine a texsor W of
sunle (1), thes, From Bqg. (7.55),

Wier, u} o W gogui = Wihoea + Which + Woada + Widb.

Phiysically, by esing sets of vecters, w’s, and I-forms, o's, and measmnng the
value of the scalar field W{z, «), the values of the components of W can be
deterrtined tn one frame. And from Eg. (7.36), specialized to the number and
type of components, the values in 2l inenial frames are known. lo & Minkowski
space with psetdo-Cartestan conmdinates, the components of the tensor W of rimk
{1} ean be converted ta a comesponding tensor of rank (7} using the metric tensor
in Eq. {7.33) {goo = L g1 = g2y = gas == —3} and the expression in B, {7.57)
1o give the following relations:

Wy = gosW = WP, Won = goo WPy 2= WP
Wi = gy Wip= «Wly, and W =g Whyow= ~ Wiy,

Chven any twe vectors, We can copstruct a second-rank tensor by the operation
called tensor produce, T 2= 1 @ v The tensor product fs 2 machine whose owipnt
is & pumber when the two vectors and Lhe two 1-forms are inseried

@Y, Ay = (o (A, v). {7.58}
The components of the temsor product are
P 0B, 1.5%

In our twa-dimenstonal axample of vecior u with components {7, b} and vector
v with cotmporeats {¢, &, Bg. (7.59) becomes wiitten in tensor form
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gy foc ad
@ ’“(fm bd)‘

This process can he continued and coald mehede 1-forms as well as vectors: for
example, two vectors {u, v} and a 1-ferm (o) would be writteras W & ¥ B o

Other vseful operations imclude the gradient, contraction, the divergence, and
the wedge prodicr. First, ket us consider the gradient operation. We used d for
the gradient operation on scalars. For a higher-rank lensor, the gradient is often
denied by V. Tn three-dimensions) Cartestan space, ¥ is the operator

E]
¥mi [
H u +a

witich may abso be written as

a
2+6x

R
? fr

a
& mﬂﬁ@’;r ax

Retwming 10 4-dimensions, o ¢Xample of a more gencral cose, let § be a {J) runk
tensor, fhen by definition, V8(u, v, w, £} = 5g8(n, v, w) with the vectors 4, v, w
beld Bued, and

8
Sﬂﬂ}‘ﬁduwuﬂwy - aﬂy 555 wy
axd

(71.60)

“That is, the gradient operates only on tho cosfficients in the definition of the tensor,
not o the included vector fields. Since the vectors and 1-forms in Hq. (7.60) are
arbitzary and constant, we can rewrite the preceding as

VS(u, v, w, £) G (Suapu® Pt} =

B (Sapy) = 8" = Supy b, 7.60)

8.:5
where the % defise the dirscion of the gradient, and the last squality shows
clearly that the dmvanve does fot npem(e on the vector given by £,

In Minkowski sp the energy veetor (E/e, p)
with the charge-current 1-form (pe, ~J3 produces the scalar {£a ~ p - ). This
iden can be exiended 1o reduce the rank of a remsor by 2 process called contraction.
The contraction operation can be performed on any tensor whose total rank {som
of vector and {-form indices) is equal to or greater than 2. To do this, enter a basis
veotor in one slot and the corresponding 3-form. basis in ancther slot and sum
over the basis, thereby producing a lower-rank tensor. For example, consider the
4-index tonsor whose componsnls are Rqy, . We can form a twe-index tensor
by the insersing a basis 1-form imo the first slor of the ensor definition, and the
eelated basis veetor i the thind slot, and sumning over the basis set, Formally,

Rieqy. 4, w2 u) = Min, v}, {1.61)
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or in component form
Mupuhv® = Ray®yuie”, (1.62)
which can be written as
My == Ry ™. 762}

Tn three-dimensional Cartesian space, the divergence of 8 vector V is the scalar
3 a¥p BV Y I &
quanity V.V = S5k 4 T while in 4 pace the 4
is %!:—;5 In Minkowski spacetime the 4-divergence aperator is often denoted by the
samie symbol, ¥, in italics, of by [J whose components are

with @ the 1-form basic components. For exampie, the continuity cquarion i
eleciromagnenc theory is

HIEd

A D t=Vii=

Blac}
axh ]

;e
Voje=— 4+ Vif=l
et A e =
“The operator P2 (sometimes wrinten as £1%) is called the &' Alembertion and is

4 3 1 a L
FaWel. Fapr- Lo L 2 2 T
g axs dxr T oAk axl+ay1+az:

where the last equalify is the expression in Minkowski space with Cartesiun co-
ordinates. The 4-divergence operator on tensos reduces the rank of the tensor by

1. For spacetime tensors, the divergence 13 writien as ¥ - § and, considering as an
example a tensor § with 2 slot for 2 1-form and three vector slots,

D S v) = ¥ S, 87 02 Vo St i 0,840 = S gpan®e®. (763)
That is, the gradient of Fa. (7.50) is taken atony a busis direction, and then 2
coutraction is formed betwean this disection and one of the f-for slots iu the
tensor, In component form, this reduces o

V% = S (163

The final tansor operator we nead is the wedge product, also called the bivecior
ot bfforr, which is

HAvEuBU-~vEY, (7.64)

where the tensor producl, ®, was defined in By (7.58) The wedge product is an
amisymimelic vector product, [o component form, Eq. (7.64) becomes



6 ®

78 Forces in the Special Theory; Hlectromagnetism 27
tu A 0 =t pf gy {7641

Suecessive A operations can be sirung together just Jike the @ operator. The
wedge product is useful whenever we deal with antisymmerric expressions. In
paricular, when we look at the eleciromagnetic feld in the nest section, we will
discover that the fundamental feld tensor, called Faraday, can be expressed in
termns of the wedge product

Consider the rvo-dimensional example used previously, where u = u'ey 4+
ue; aud v = v'ey + vles. The wedge product in Eq. {7.64) has components
W o ou A givenby

W wiut —afel nte? -yt -1 ul? — ply®
Y T LN wvl - vt} & :
Ajthough the examples given above assumed 2 certain combination of I-form

sles and vector skots, we miust stress that the mewric tenser can be used 10 produce
& tensor with indices in any desired position.

FORCES IN THE SPECIAL THEORY; ELECTROMAGNETISM

The preceding material hag been concemned with the kinematics of the special
theory, The dynamics of the theory follows from the assumption that Newton's
faws are correct for ebjects at rest in the rest frame of the chssrver, nearly corsect
for objects moving stowly relative to the speed of light, and require generatiza-
tons to covariant ions, The correct ton of the thi locizy to the
fove-velocity was given in By, (7.27). So we mast generalize te force faw,

dimy'y

Ll dr

(2.65)
to & covariant form.

Since Maxwell's equations are assumed to be a cotrect deseription, we shall
briefly consider a covasiant reformelotion of electromagnetic theory as a guide
for the correct form of the force laws of mechanics. The vector and scalar sles

fals form a fonr Tor A% = (g /c. A}, If the potentials salisfy
the Loreutz comimnn (in 8% units), which 3 the vanishing of the fonr-divergence
of the electromagnetic potential 4-vector,

e 8
i VA Faoso

Orde Vod=

9, 17,66

they separately satisfy the wave equations of the form (where ugen = 3/e?)

#a

T YA = b {1672)

[Pa=Va=
<
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for the space components and for the Hme componest

Ty g LS g, B
Dipm gm0l - vip= £, 67b

T torms of ¢ and A, the Lorenté force is B = of -V + & 2 L+ Hvx (Vx A)).
Fhis suggests that we should generalize the Lorsntz forcc iaw to

dp, Ay} dAy
el G e dr )’ 168
For the three-momentem, p;, and thiee-velocity, v, Bq. {7.68) becomes
s
Z B x By (7.68)

with £ the electric ficld, B the magnetic field, and « the eleciric charge. The geo-
metric approact: is to define & tensor #. named Faraday, whose components will
e the elecromaguedic feld tensor and write, with u the 4-velocity,

4 = e F i) [1.69)
dt
In component notation, this becomes
)
‘” = e Fhguf, @)

This produces Maxwell's squations, provided {according to Eq. (7.68)) FY4 is
ghven By

8 E By E,
Ex il cBy  —cly
Ey -eBy o By
E;, By, By 3

Foy = ekl

In Minkowski space, the indices are raised and towered by the metric tensar
(Eq. {7.333% 50

0 -BE -E B
E, G By cBy
wd o | Ex s 'y .
Faae £ b, ¢ —ch (174
E, —cBy cB [
and
k] Ex Ey By
—E; 0 —cB B,
~Ey  eB; i} By
~Er -eBy oy [t]

(7.7



7.6 Forces in the Special Theory; Electromagnetism 299

The Faraday tensor can be wiities in al least two different ways using either the
tensar produet, Hg. {7.58}, or the wedge product, By, (7.64), as.

F oo Fagdn® @dxP = LFgda™ ndxf,
s 3Fap

The Jatier expression exphicitly shows the antisymmetry.
We can write Maxwell's equation in their normal component form using geo-
mEtTic notation:

VF =0 and V-F=1 {778

whert J is the 4-curreni density with componeats {pe, i}, where g is the charge
density and j is the threc-current density, The first of these eguations produces
(using three-dimensional nowtion) ¥ - B = Gand 38/t + ¥ x £ = 0, while the
second gives ¥ - E = p/sg and {1/c%) DB/ ~ ¥ x B = — e

Following the gaids provided by the covariam formulation of electromagnedc

theory, the proper generatization of Newton's second law, Bg. (7.65), is

dpt

dr
where K% is a &-vector force, knows as the Minkowski force. The spatial compo-
nents of K¥ are nev the components of the force in Eq. {7.63), but rather they are
quantities that reduce to the F* oy 8 - 0. The exact forn ¢leady results from
the Lorentz transformation properifes of the forces present. Some aspects of the
4-force are Jisted in Table 7.7,

The general question (which cannot be uniguely resotved) is, How do we And
the proper relativistic expression for force? Elecwomagnesism is used to justify the
special dieory, so we should expect no problera with it. As we saw in the previoas
paragraphs, this is triviat for electromagnetic forces becanse the special theory and
the Lereniz transformations are congtructed to make Maxwell's slecromagaetic
theory covariant. For esampie, the elecrramagnetc force is given by B, (7.68) as

.
Ky =g (i“"ﬁ_ ‘iﬁ‘,)‘ @34

= K, (1.13)

Sk dr

with g the charge ot the particles and 4, the components of the four-potential
given by {(@/c, Ay Note that ¢ is the scalar potential and A is the three-
dimensional electromagnetic vector potcrmal So e ordinary force, 7, and
the spatfal § of the Min ki fo force, K., are related by

F o Koyt - g2, (7.75)

‘What gbout uther forcesT Two methods are used 1o deduce
teansformation properties of forces and hence the conece refativistic form of Lhe
forees,

The first method is o argee that there are oaly four fundamental forces in
nature—pravitational, weak nuclear, slectromagnetic, and strong nuclear. A cot-
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rect refativistic theory must provide velid expressions for these four forces. These
expressions, if stated in covariant form, will antomatically provide the transfor-
mation properties of the forces. In this approoch, since we understand elecuo-
magnetic forces, it remains te fad espressicns for the other three fundamental
forees in 2 covarient form in some Frame and assame this Is correct i &l inertial
frames. I is assumed the transformations involve uo terms that vanish in the cho-
ser frame; for example, there is o need 1o arbitrarily add terms proportionsl to
(efcy. This program has been carried out for two of the reraining three Toreas
(weak nuclear and stong nuclear) and for weak gravitetional forces. It fails com-
pletely for strong gravirationn] effects, Tt is beyond the scope of the present text
10 probe more deeply in to this question.

The second approach of determiming the cotrect relativistic force is w shmply
define force as being the time rate of change of the momentum. Then we write

o,
dr

= K £7.26)

where the p, In Eq. {7.76) is some relativist: tization of the D
moementin that reduces 10 i, I the Jimit of sma!l B The simplest generalization
is the one given in Eg. (7.36). This second approach bas thes far failed to produce
any results ather thun those predicted by the first approach.

7.7 M RELAFIVISTIC KINEMATICS OF COLLISFONS

ANE MANY-PARTICEE SYSTEMS

The forrmations of the previous sections enable s to generalize relativisticaily
the discussion of Scetion 3.11 on the & ion of coltision ph be-
twveen various systeros, The subject is of i interest in i 1]

high-energy physics. While the forces between slementary particles are only im-
perfectly known, and are certainly far from classicsl, 3o long ss the particles in-
volved in a reaction are outside the region of mutual & fon thely mean motion
can be described by classical mechanics. Farther, the main priaciple ftvolved in
the transformations—conservalion of the four-vector of momentum-—in valid in
both classical and quanmm mechanies. The acmal collision or veaction is wken a5
occurring 4t a poinl——aor inside a very smaft black box—amd we ook only al the
behavior of the partictes before and after,

Becouse of the ioportance o high-encrgy physics, this mspeet of welativistic
kinematics has become au elaborately developed field. 3t is impossible 1o give a
comprehensive discussion here, All that we can do Is provide some of the im-
porant wols, and clte a few simple examples that spay Hlostrate the favor of
the techniques smptoved. Although many coliisian experiments involve eollidiag
heams, we shall, for simplicity, confine our o prohl where one of
the particles is at rest in the laboratory frame. The gencralization to both particles
wnving in the laboratory frame 8 salgheforward,
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The notion of a point Zesignated as the center of mass obviously presenty dif-
ficulties in a Lorentz-invariant theory. Bat the f: systen: can be guit-
ably generalized as the Lotentz frasme of reference in which the total spatial linear
aiomestan of all particles is zer. That such: 2 Lorentz frame con always be found
fotlows from the theorem that the woml momentm §-vecter is imelike for 2 sys-
tem of mass pofnts.

One such frame is the center-of-momenturm frame. This is 4 frame in which
th of the sparial of the inirial particies add 10 zero, Such
a frame obvicusly exists. Let ug define E and pin Eq. (7.36} o be

" “
E=3E wd p=3 B 73T
=) i=l

where the sum is over the padticles involved. The lefiband side of By, (7.38)
becomes

S = ¥ ey - v, 17
£, o

This clearly is positive (himt: sepamate the negative tevms in which r = ). 50
it it possible w0 find a frama in which the three-momentum, p. equals zero. The
Larentz system, in which the spatiel components of the total thomenium arg zero,
is termed the cemter-af-momentum system, of more loosely, and somewhat incor-
rectly, as the center-of-regss sysiem, and wii be desigoated by the abbreviation
“C-0-M system”

As an exzmple, fet us consider 2 particle of mass /m; and momentm pf in the
x-direction, which suffers 2 head-on coltiston with & particle of mass myp at rest in
am experimenter’s frame (called the Maboratory frane ). The initial 4-momenium is

¥ = Gy + mglemye’, 0.0), (1.79)
The Jeagth sguared of momennin has the magnitade
P e (] 4 mE o 2myymaiet. (1.79%
‘When camponents are given, we shall follow the practice of denoting the primed
frame by primes on the indices. The two particles ae denoted by subseriprs 1
and 2 respectively.
In the C-O-M system, the total momentum is
{1y + mayile, 8,0, 0}, (7.80}

since by definition the space part of the momentum vanishes,

M1y Be + mayiBae =10, {7.81)
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where ) md 8 are the velocities of my and my, respectively, in the C-O-M
frame.

The boust, @, neaded o go fom the labototory o the C-O-M frame, bas Ge
vaiue

(7.8

Since alf velocities are parailel, the velocity addition formula Eq. (1.15) gives
the velocity # of mass my in the C-O-M system in terms of B and s velocity
B = ¥/¢ in the laboratory frame,

B g

e
The total squared mormentwn in the C-C-M frame given in Eq. (7.80) can be
rewritten using the results of By, {7.81) and (7.852) a5
o, o TR =2

0 P .
Equsting Bas. (7.79°) and (7.83) gives a single squation that can be solved for
the boost velocity . Theve are two real toots, one of which corresponds o the
physically mesningful case of 8" < 1.

Since the spatial momonbim i the C-O-M frame i zero, there is clearly more
ETCTEY, p‘), in this Frame than in the laboratory frame.® The excess energy in the
C-0-M frame, AE, is obtained by subtrcting the time component of Eg. (7.79)
from the time companent of Bg. {7.80}

The total momentun four vector Is Conserved, which automatically imphies
hoth conservation of spatist linear momentum and eonservation of total energy
(including vest mass energy). Qm major ols for making wsz of the conserva-
ton principle are Lorentz, wansformations to and from the C-O-M system, and
the fonmation of Lorentz invariants {world scalars) having the same valve in ol
Loremtz frames, 8t gy and are combined im0 one copservation
Lo, the retativistic results are more easily obtained than the nontelativistic resuis
of previons chapters. The wansformations between {shoratory system snd C-0-M
system ave merely special cases of the Loretz transformation,

As an example of the sse of Loretlz invariants, let us consider 2 reaction id-
tiated by two particles that produces another sst of patticles with masses m;,
r =345, ... Jothe C-O-M systen. the wansformed total momentum is

P = (E'1¢,0,0,0). (7.84)

& (7.42)

{7.83}

It is often convenient to look o the C-0-M system as the proper (eor rest} system
of & cotnposite mass particle of wass M = E'/c.” Thesquare of the magtitnde of

“For g segle pazucle, the onergy bt & munmor vokiue, el u the rest Feare The C-0-M foame s
a0t b fest foume af evhes partichs.

T Atrhongh 1t s eustamasy in high-cnesgy physics 10 e wens m whnch £ = 1, it scemis more helpfub
m an introduetory exposition seh a5 this 1 risin twe powers of ¢ throughaut,
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P must be invariant in alf Lorentz systems and consérved in the reaction. Hence,
we have

2
¢ 2.7
Pubt o By P s s M 185
But for the inittal partivles, Py P# can be evaluated as

By PF s (el 4 Bt — Bl (7.86)

The energy in the C-O-M system, or eqmivalent mass M, is therefore given n
terms of the incident particles s

Mt = {m? +m2}c & 27 E — o7ps + pa). (187

Suppose now that, one particle, say 2, was initially statiopary in the laboratory
system. Since then pz = 8 and E3 @ mach, the C-O-M enetgy becomes

= M = i F met 4 2mac B (1.88)

IF the excess of E; aver the rest mass epergy be deaoted by Ty, [of. Eq. (7.39))
that 38, the kinetic energy, this can be writlen

E e M2ty + madic? o 2macTy. (7.89)

& is clear that the available enargy in the C-O-M system increases only slowly
with incident kinetic energy. Even in the “ultrarelanvistic” region, where the k-
aetic energy of motion is very lage compared to the rest mass enetgy, £ ncreases
only as the sguare root of Ti.

The effect of the proportionally small amount of incident enetgy available in
the C-O-M system is shown dramatically in temns of the threshold energies. Itis
whyious that the Towest energy at which # reaction (other than sleetic scatiering) is
possible is when the ieaction products are at rest in the C-O-M system. Any finite
kinetic energy cequntes u higher £ or equivalently higher incident enetgy. 'l"he
wial four-momentum in the C-0-M system afier the reaction, denoted by e
has the magnitude at thrashold given by

2
PP et (Zrm—) . 750)

which, by conservation of momennun. must be the same as ¥q. (7.85). For a
statbopary targal, the incident energy of moton as thresheld is then given as 8
consequence of Fg. (789 by
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2
(Z m,) - {mi +may
] T

micd 2emyma

 the O value of the veaction is defined as*

o= {Zm, - m +m;>} e, (791

this threshold energy becomes
7 ) 2
_13 " m 792
myet Ty mac
A comnon ifustration of e spplication of Bq. {7.92) isthe hi P

of an antiproron, §i, by the reaction, involving a protem p,
phn—ptatpti

where ais a nucleon, either neutron or proton. The masses of all particles involved
are nearly equal at 93§ MeV equivalent rest mass energy and weselect Q0 = Zmel,
Equation {7.92) then says that the incident particle kinetic energy at threshold
st be

Ty = fmc? = 5.63 GeV,

which is 3 times the energy represenied by 0F If, however, the waction was i~
tiated by two nucleons incident on each other with equal and opposite velogity,
then the {aboratory system is the same as the £-0-M syster. ATl of the kiretic
anergy is avaitable in this case to go lto production of the proton—antiproton patt,
and each of the incident particles at threshold need have 2 kinetic energy of mo-
tion equivalent to only the mass of ooe protom 938 MeV. I is no wonder so much
effort has been put imo constwicting colliding beam machines?

Another ingtructive example of & threshald calculation is photomeson produc-
tion, say, by the reaction

y+p=25"4 KT 11.93}

where ¥ stk for an incoming photon. For the purposes of classiest mechanics,
@ photon is & zero-mass particle with spatial momentom %p and energy "pe.’ T
caleulating {8, the mass my of the photon is zero:

O = (Mo + Mg+ — mp)ct = 149 MoV,

(2 heee hus e appestic siga to the convenuon atopted i Bg, (3.112)
The cquare ol dhe magnauds of it RO MOMENTLIN FORE-VoLIor 15 2670, 50 I VALIOT e be
daseribed as “hghtike ™ The C-0-M theommn 1 rmperiled aply 1F all of the paricles are photons. pd
‘oven then ony iF the photons are gomg in 158 ssne direction.
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Equation {7.92) is sewritten for a reaction iovelving an incident photon 23

22 4 20mac?

Tp=Tpe= 2mact

From the value of (} and the rest mass energy my of the proton, the threshold
energy for the reaction Bg. (7.93) is then

T = 1.05 GeV,

which is only stightly higher than 0.

We car also easily find the energy of the reaction products i the laberatory
system at threshold, The C-0-M system is the res| sysiem for the maes M, with
P = MeTn any other system, the zeroth component of the $-vector is Pt
Mcy, Butin the laboratory system

1 1
P =By + B = —(Es + ),

where e last form holds onty for a stationery target pmticle, Meace, the CO-M

syslem moves relative {o the laboratory system sach thar
B mad?
ToMA

Bt a1 threshold alt the reaction products are at rest in the C-0-M system so that
M = 37 ., and therefore
¥

£7.94)

71+ {my + myde?

¥o= E P {threshold) {7.95)

“The kinetic energy of the sth reaction product in the laboratery system is then
Ty = mect{y = 1) £7.96

Thus, the antiprotop at threshold has 4 Kinetic ensrgy Ty = mc? = 938 MeV. In
contrast, the K+ meson emerges at theeshold with 494 MeV.

In Section 3.1, the kinematic wansformations of & two-body nourelativistic
collision were investigated. g, (3.117') gives the reduction in energy of an incl-
dent particie after elastic scatering from a stationary terger, as # function of the
scanering angle in the C-0-M system. The derivation of the relativistic analog
provides another interesting example of the methods of relativistic kinempatics.
Use of Lorentz invariants here i not pariicularly helpful; instead direct Lorentz
transformasions are mads betwsen the laboratory and C-O-M systems, Figure 74
Hiustrates the relations of the iacident and scattered spoial momentm veotors in
Both systems. The incident and scattered romentum vectors define a plane, in-
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i .
p
x 7 Py
]
&
. .

: P [ #

13

(2} Center-ofamimentam syster ) Laboratory systetn

FIGURI 7.4 Momentum vectors for relasivistic elastic scamering i C-0-M and labra-
tory Loreniz frames.

variznt in oriestation under Lorentz transformation, hete taken 1o be the xz plane.
with the incident direction along the z axis. Because the collision is elastic, the
masses of the incident particle, my, and of the siationary target, ma, cemain un-
changed: that Js, i3 = my. me = ma. Primes on the vectors denote C-0-M vafoes,
unprimed vectors are in the laboratory system. To distinguish clearly between be-
fore and after the scattering, the indexes 3 and 4 will be retained for the vectons
after scattering. We have only to remember that 3 denotes the scattered meident
perticle, and § the recoiling target particle. Components of the soparate particle
duvectors will always Ruve two indices. the first for the pasticle, the second for the
COMpOnET.

The Lorentz transformation from the laboratory to the C-O-M system is de-
fined by e y of Bg. (7.94) with M given by By {7.89)

e Ep A-mpct _ Ty + gy o+ mg)e?
JomiBs + o] it VIR

{187}

The quanticy 8 cun be found from y, or more drectly by wguments stdlar to
these weed to obtgin y . In the -O-M system, the spatial part of the total momen-
fum four-vector 15 zero; in any other system, the spatial part &y #fcfiy, However,
in the laboratory system the spatial part is pr. Hence, by Eq. (7.94) 8 must be
given s

Pie mic
P ) 7.98]
& Ey+mact T Ty (my 4 meaded 9

Because B is along the 7 axis, the Lorentz wansformation takes (with 8, = 8, =

) the form gives by Bq. (7.11), and the components of p’," in the C-G-M system
are giver by
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BE
PE*F‘?'*Y(F;—T
& £
L =y(~é~wﬂp;). (199

After the coltision,  is a0 longer along the 2 axis, bur since the collision is
elastic, its magnitude is the same as that of p). 1 & ks the imgle between pf and
the incidgnt direction, 34 i Section 3.11, then the compenerits of pf in the C-0-M
systen are

. . . . £
o= pising, = plem®, o = p?’mv;—l. (7.100)

The transformation back to the laboratory systemt is the same Lorentz iransfor
mation but with relative velocity —B. Hence, the components of $13 are

phe py g i@
. E,
Pl =y (p] ﬁﬁ?') =) (p’i o8 8 -+ m;-l)
. E
4 = yief +ﬁp§’>ay(uj+ﬁp; cc»s@). (1.501)

1f B and p} are substitited in the last of Egs. (7.201), from Bxgs. (7.99) we obtain,
after a litfle simplification, an expression for the energy of the scattered particle
In terims of s inctdent properties:

Eym By — p?f(1 ~ cos @) 1o~ SE1). {7.162)

In Eq. {7,102}, ¥ and £ must be expressed terms of the tocident guantities through
Eqs. (7.97) and (7.98}, resulting in the relation

myplct

s e - T.163)
Zmg By +(m%+m§)cg ¢

yiBime —BE) =

With the: help of the relation between, py and Eq, Eq. (7.38"), thic can be written

ma Tyl + Bmycty

. - 104
2y Ty + {my + mayict 104

¥ hlpic~ BED =
Scme further algebraic manipudation then enables us to rewshe Eg. (7. 102} as

T _ . 2pi1 - &/2)

P - 7,
7 TToF 1208, {1 — cos @3, {7.1083
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where o = my/my, 85 in Section 3,11 for elastic scattering, and £ is the Kinetic
energy of the incident pariicie in oniis of the rest mass energy,

£y =g, (7.166)
Bquation (7.105) is the relativistic counterpant of Eq. (3117}, It is casy 1o see

that Eq. (7103} reduces to the noprelativistic cage as & — O, endthat if p = |
{equal masses), the relativistic corrections cance] comipletely. Equation (7.165)

irplies thas the minimum energy afler scattering, i units of myc”, s given by
- o)
& 2= £ e, TH0F
{E3hn YT o 4 E, { 3
Inthe istic; Hmil, the mink cnergy affer scattering is
Extmn e gy
i T e B £ 1, 7.108
) i 1 & [ J]

which fs a web-knowr revnly, easily obtained from Ex. (3.317'). Bouation (7.108)
says that in the nonrelativistic region 4 particle of mass m) cannot lose miuch ki~
netic epergy through scattering from a much heavier particle, that is, when g < 1,
which clearly agrees with comunon sense, Bowever, in the sltrarelativissic region,

when o0&y % 1, the mini energy after ing is independent of £}:
(-~ my c®
(b = el 80, (.108)
Htg

Since the condition on &) is equivalent to requiting T) > mac”, it follows from
Eqg. (7.16%) that such a particle can Toye a large fraction of its enegy even when
scattersd by a much heavier particle. This behavior is unexpected, but it should be
remnesbered tat for particles at these energies, waveling very close to the speed
of Tight. even a shight change in velocity coresponds 1o & Tge chauge in enerpy.

Finalty, we may sasily obtain the refation between the scattering angles in the
C-O-M and laboratory sysiem by noting shat (first index partice, second compe-
neng}

¥W§m%mmm§%. 0
. 3
¥ (cos [EY ;;—E'-}
By g (7.36),
L L.
Fr=t=g, @

so that tan? can also be written
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sin &
10 78
pleos @+ 8/47)
I terms of initial quantities, Eqs. £7.99) show that
£
pe; B(5 o)
XL - . {1118
Pie L ‘!;*

This can be further reduced by employing the relations (cf. Eq. (7.98%
Lge e (1114
pr - BEL T mpc

mitmy +madet 4 procT
Ey— R et e Bl
 —~ Apy e 4 T (7315
The Einal expression for 1 @ can then be written as
sin @
TR T 22 e {L1g]
yicos & + og(o, £} )
where gp, £1) is the function
L4 g1 48
L E1) 3 il 7157,
BB = T G
and y. by By. (7.97), takes the form
it b €118

{g. &1} = .
R e

Again, in e nonrelativistic reglon, y and g tend to unity, and Eg, (7,116} re-
duees w0 By, (3.307). The correction fanction g{p, ;) never really amounts to
inach, approaching the constant Hmit p as £ becomes very lange. The important
factor affecting the wansformed angle is 3, which of vourse incresses indefipitely
ug £y tncreases, It does not affect the bonnds of fhe appular dswibution, when
& = {} or %, but i presence means that at other angles @ is always siaffer than
it would be nonrelativistically. The Lorente transformation from C-O-M to the
jaboratory systers, which does not affect the trangverse companent of the mo-
mentum, thus always tends 1o distort the scantered angular distribution into the
forward direction.

RELAFIVISTIC ANGLE AR MOMENTUM

Tn Chapter I, it wag proven that the nonrelativistic angular momentum obeys an
equation of motion much {ike that for the linear momentum, but with tonques
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replacing forces. I was shown that for an isolated system obeying the law of
action and veaction the total angular momenmim is conserved, and that in the
C-O-M system # Is independent of the poist of reference. Al of these slatements
have their velativistic connterparts, at times involving some addjronal restrictions.

For & single particle, let us define an antisyrunettic tensor of rank {5} in
Minkowski space using the formalism of Eq. (7.64}

mE=XAP {1119
whote slements would be
m* = gt - RV pl, {T.120)

The 3 x 3 subtemsor m* clearly corresponds, as was seon in Secton 5.1, with
the spatial angular momentum of the particle. An equation of motion for m#” cen
be found by wking its derivative with respect to the particle’s proper time and
making e of Eq. (7.73) giving

‘Z_’:mwﬁmxg“m am

where the first term vanishes by the antisymmetry of the wadge product and K is
the Minkowski force. In compoment notation, Eg. (7.121) becomes

dmp
LSS ST 7.422)
dr
This suggests we define the relativistc generatization of the torque by
N=xnk, (7123}
WHOSE COMPORENts ang
L) R (71248

Thus, # obeys the equations of motion

‘;—’: {7125
whose component form i
dme
Z‘t = NHF, 7126

with Fg. {1.11} as the nonrelativisic limiting form.
For a system involving & colection of particles, & total angelar momentian
4-tensor can be defined {anafogoumsly to the total Hnear momentam L-vedtor) as

M=Y m (7427
T
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or i cormponent form

M }”_":mf"‘ (7.128)
T

where the index 5 denotes the s1b particle. Tt is more difficult 1o form an equation
of motion for M because each patticle has its own proper time. (For the sane rea-
son, we did not attempt i even for 7.} Neverthefess, plrusible arguments can be
Eiven for the conservation of M under cenain clrcumstancas, If the system is come
pletely isolated and the particles donot interact with each other or with the outside
world {including fields), then m for sach particle 18 conserved by . (7.126), and
therefore 8 is also conserved. Even if e particles interact, but the interaction
takes phice only through binary collisions a¢ a point, there still could be conser-
vation 28 can be seen from the followt by when the twa
particles colfide they are traveling together and have the same proper time. Tn
other wards, theie world lines crost and they share the same event, Otie cin there-
fare write an equation of motion of the form of Bq. (7.126) for fhe sum of their
angoler momenta. If the impalsive forces of contact are equal and vpposite—as
we would expect from conservation of linear momentum in the collision—ther
the sum of the Impulsive forques cancel. Hence refativistic angufar momenum, is
also conserved throagh such coliisions. Note that enlike the nonrelativistic cuse
covariance requires that the interactions are assumed o be instantaneous point
collisions.

The rejativistic angolar momentim obeys the same kind of theorem regasding
trenslation of the seference point as does its nonrelativistic counterpart. In the def-
inition, Eq. (7.020) or Eq. (7.128), the reference point (really reference Yevent”™)
is the arbitrary origin of the Lorentz system. With respect to some other yeference
avent &y, the toted anpriar momestem &

Migy =3 tx @A p 7.129)
;

= M) —an P (71.130)

Ag in the nonrelativistic case, the change in the angalar momentim, COMPONENES
is equal 1o the angular momentats, relative to the origin, that the whole system
weontld e i it were located atay.
n Chaper 1, one p far ref point played an § ethy

ter of mass. We can find something simitar here. at deast in one Loventz frame, by
examining the nature of the mixed time and space componexts of M#7, namely,
MY = g, By definition, in some particular Lorentz frame, these componers
are given by

}__,(x pl i ply 1131

= c}: (rp, - —) . CLI3D)
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Tn the C-O-M frame. the total linear momentum g = ¥ p; vanishes, and MY in
ihis frame has the foom

M e ¥ ffc_‘:fi EREE]

3

1f the systen is such that the total angular momentam is conserved, v described
above, then afong with other components M 14 conserved and hence

3 £y = constam.
T

Conservation of total linear momentar means thal E = 7 E; is 6lso conserved.
Tt is therefore possibls to defing a sparial point R,

CrE

T
R = T (7.134)
T

sssoctated with the system, which is stationary in the C-O-M coordinae frame.
In the nonrelativistic Timit, where to first approximation £; = me?, By, {7.134)
redces to the usual defintion, Ba {1.21), Thus, 2 meaningful cemer of mass
{sometimes called cemter of energy} can be defined in special relativity only in
wrms of the angular-momentum tensor, and ooly for & particaiar frame of refer-
ence. Figally, it should be noted that by By. (7.130) the spatiad part of the angular
monentirs tensor, M, is indepeadent of relerance peoint in the C-G-M sysiem.
exactly as in the nonmlativistic case.

Except for the special case of point collisions. we buve so far carefully skiried
the problem of fnding the munien of a relurvistic particle given the Minkowski
forces, To this more general problem we address oupselves it the next section,
veithits the nominal framework of the Lagrangian formmtason.

THE LAGRANGEAN FORMULATION OF RELATIVISTIC MECHANICS

Having of Newtm's eqeation of metion
for special relarivity, we can naw sesk 1o establish 2 Lagrangian formulation of the
resulting reletivistic mechanies. Generally speaking, there are two ways in which
this has heen attempted, One method makes no prefense at a fanifestly covariant

ion s instead on reproducing, for some particular Lorentz.
Frame, the spalial part of the equation of motion, By, £7.79). The forces F, may or
oy nol be suitably related to 7 covariant Minkowski force. The other method sets
out 1o obtan 4 coviniant Hamikion's principle and ensuing Lagrange's equations
in which space and time are treated in common fashion as coordinates in a four-
dimensional configuration space. The basis for the first rocthod i at times quite
shaky, especially whern the forces are not relativisticalty well formulated. Most of
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the Himne. hawever, the equations of motion 5o obiained, while not manifestly co-
variant, are relativistically corrert for some parricular Lorentz. frame. The second
wmethod, on the other hand, séems clearly 1o be the proper approach, but f quickly
rups into difficultios that require skitifi} handling if they are to be solvable, even
for & single particle. For a sysiem of more than ane paticle, it breaks dowa ahwost
{rom the start. No sati y ion for an t ing muktiparticle system
exists in classical relativistic mechanics except for sore few special cases.

This section follows the first method, seeking to find 2 Lagrangian thet leads to
the relativistic equations of motion in terms of the coordinates of some particular
imertial system. Wathin these Hmitations there is no great diffienity in consmuct-
ing & saitable Lagrangian. It is true that the method of Section (1.4}, dedving the
Lagrangiaa from [¥ Alembert’s principle, will not werk here. While the principle
wpelf remains valid in any given Lorentz frame, the derivaiion there is based on
P == m¥y, which i no Jonger valid relasivistieally. But we may alse approach the
Lageangian formulation from the alternative route of Hamilton's principle (Sec-
ten 2.1} and actemapt simply to find 2 fanction L for which the Euler-Lagrange
equations, as oblained from the vanational principle

&3
51%5/ Ldt=1{. {1.135)
g
agree with the know relativistic equations of metios, Eq. {7.78).

A suitable relativistic Lagrangian for a single particle acted on by conservative
forces independent of velocity would be*

L —me? J1— g2V, (11363

where V is the potenifal, depending only upen position, and A2 = v?/c?, with v
the speed of the partels in the Lorentz frame under consideration, That this is the
comrect Lagrangian can be shown by demonstrating that the resultant Lagrange

equations,

iy _a

i it !
agres with Bq. (7.76). Since the paential s velocity independent v; oceurs only
in the frat tenn of (7.136) and therefore

oL . 137

P - Al
The equations of snotion derived from the Lagranglan (7.136) we then

*We do #0t chogse L miclyl |- /1~ B2 ~ 1 becouse we want Jt i Hq, {7.139) 10 be the sl
suergy
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d mf v

_ i

dii—p

which agree with (7.76). Note that the Lagrangian is no longer L = T — V but that
the partial derivative of L with velocity is still the momentum. Indeed, it is this
last fact that ensures the correctness of the Lagrange equations, and we could have
worked backward from Eq. (7.137) to supply at least the velocity dependence of
the Lagrangian.

We can readily extend the Lagrangian (7.136) to systems of many particles
and change from Cartesian to any desired set of generalized coordinates g. The
canonical momenta, P, will still be defined by

dL

= g{;‘« {7.138)

P

so that the connection between cyclic coordinates and conservation of the corre-
sponding momenta remains just as in the nonrelativistic theory. Further, justasin
Section (2.7}, if L does not contain the time explicitly, there exists a constant of
the motion

how=g' P - L. (7.139)

However, the identification of # with the energy for, say, a Lagrangian of the form
of Eq. (7.136) cannot proceed along the same route as in Section (2.7). Note that
L in Eq. (7.136) is not at all a homogeneous function of the velocity components,
Nonetheless, direct evaluation of Eq. (7.139) from Eg. (7.136) shows that in this
case f is indeed the total energy:

ok
he T8 o1 B4V,

V11— 82
which, on collecting terms, reduces to

2
B e V=T +V+me?=E. (7.140)

Nieys

The quantity i is thus again seen to be the total energy E, which is therefore a
constant of the motion under these conditions.

The introduction of velocity-dependent potentials produces no particular diffi-
culty here and can be performed in exactly the same manner as in Section 1.5 for
noenrelativistic mechanics. Thus, the Lagrangian for a single particle of charge, g,
in an electromagnetic field is

L —mc® 1 —p2—gqp+qA- v (7.141)
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Note that the canonical momentum is no longer mu; there are now additional
terms arising from the velocity dependent part of the potential:

P =mu' +gAL. (7.142)

This phenomenon is not a relativistic one of course; exactly the same additional
term was found in the earlier treatment (cf. Eq. (2.47)). The formulation of
Eq. (7.141} is not manifestly covariant. But we can confidently expect that the
results will hold in all Lorentz frames as a consequence of the relativistic co-
variance of the Lorentz force derivable from the velocity dependent potential in
Eq.{7.141)

Almost all of the procedures devised previously for the solution of specific
mechanical problems thus can be carried over into relativistic mechanics. A few
simple examples will be considered here by way of illustration.

1. Motion under a constant force; hyperbolic motion. It will be no loss of gener-
ality to take the x axis as the direction of the constant force. The Lagrangian is

therefore
L= -mc*J1~ B2 — max, (7.143)

where f is £ /c and g is the constant magnitude of the force per unit mass. Either
from Eq. (7.143) or directly on the basis of Eq. (7.76), the equation of motion is
easily found to be

d B _a
a\/i-pg] ¢

The first integration leads to

B _at+a
m_i ¢
or
at+ o

VT (ar o)

where « is a constant of integration. A second integration over ¢ from 0 to 7 and
x from xp to x,

t gt +addt

X —xg=rc :
2+ (at’ + a)?

leads to the complete solution
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x—xoz—{ Tt oy -/ £a?]. 7148

1f the particle starts at rest from the onigin so that xp = D asd vy = § = o, then
Eq. {7.344) con be writter as

2
2 4
© c
e mzz‘fzm-?,
@ &

which is the equation of a hyperbola inthe x r plane. {Under the same conditions
the nonrelativistic rmotion is of course a parebols in e z, ¢ plane). The nonrela-
tivistic limit is obtained from g, (7.144) by considering {af -+ &) small compared
10 ¢; the wsual freshman-physies formula for x as 2 fonction of ¢ is then easily
obtained, recognizing that in this fmit o — ng.

The motion described in this example arives in reasonably realistic situations,
Tt corresponds, for example, (o the aceeleration of electrons o relativistic speeds
in the fuboratery system by means of a constant and wniform elestic field. The
iustration considered next is more academic, but i of lerest as p example of
(1] mchmques em_piuyﬂd
2. Fhe ional harmanic oseilk The L wian i this
case &s of the form of Eq. (7.336) with

Vixy = ha?, 7.145)

Since L is them not explicifly a fanction of Wme and V is not velocity depen.
dent. the total energy £ Is constant. Equation {7, 140) may now be solved for the
velocity x &3

| AN miet -

i T EoE 8
For the moment, we shall postpote substitaling fa the particular form of ¥ (x)
and generalize the problem slightly to mclude any porential sharing the qualiza-
tive characteristics of Hq. {7.145). Thus, Iet us seppose that V() is any poten-
tial funoction syrmetric about the otigie and pessessing & mitimum 4t that point.
Then providing £ les between V{0) and the maximum of ¥, the motion witl he
csciftatory belwgen limits » = ~b and x = b, determined by

ViEh) =

The period of the oscillatory motior 18, by By, {7.146), to be obtained from

{r14n

T

o
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Eguvation (7.147}, when specialized 1o the partioufar Hooke's law foma {7.145)
for V{x}, can be expressed in terrns of efliptic integrals. We shall instead examine
the first-order refattvistic correetions when the potential energy & abways seall
campared to Lhe zost rmass energy me?. A change of noration is ilpful. The energy
£ can be written as

£ met( 4 £}
5o that here
BE-Vix) o 32
Frgt i L £ a® w1 -5, {7.148)
where
g (7.349)
“Fa the order (kb%), the peried, £q. (7.147) then reduces to
4 f* dx [ o, s }
R Q.S TR 150
¥ CIn VBT = k) 4 &y 150

“Fhe intergral in Bg. (7,150} can be evaluated by elementary means, most simply
by changing variable through x = f siu ¢; the final resalt i

o1 3 7 3 kit
e [ E e Dbt w2y [ E ] i |
R (E & ) ‘/';(1 16mc2)

Note ttat the expression in front of the bracket is %, the ponrelativistic period of
the harmonic osciflator. In special relutivity, the period of the harmonic oscillator
is thus not independent of the amplitude; instend. there i an amphiude dependent
corection given approximately by

Av ar 3R 3

o i 3 ahe e B L1531

uy 1 7 16me? 8 155
3. Morin of a charged particle in a consrant magnetic field. In principle, we
showid start from a Lagrangian of the form of By, (7,141} with the scalar porential
@ = 0 and A sppropriate to 2 constent magnetic feld (Bq. 5.106). Bul we know
such a Lagrangian corresponds to the Loentz fores op the charged partele of
chacge g, given by

¥ =g{vxB) (7.153)
(cf, Bg. 1.600. Hence, the squation of ouean foust be.

dg g
gV X B = e (% B 7.
ar a{ ) my( ) (3.133)
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The nature of the foree, Eq. £7.152), 1s clearly such that the magnetic field does
no work on the partice: F . v = 0. Hence, £ must be a constant, as also p
and ¥ by Eq. (7.38'). Farther, by Ea. (7.152), there 12 no component of the fotoe
paraliel to B, and the momentam companent along that direclion must remain
constant. It is therefore no loss of generality to consider the motion ouly B the
plane perpendicular to B and 1o ler p represent the projection of the total linear
momentum on to that plane. Bquation £7.153) then says that the vector p (whose
magnitede Is constant) is precessing arovnd the direction of the magnetic fleld
with a frequeney

a8
my

§raem {T.154)

referred 1o as the cyclotron frequency. In the nonrelativistic Hmit ¥ — 1. This
agrees with the cyclotron resomance expression found i solid seate physics fexts,
Because y iy eonsiant, the velocity vector in the plane ix also of constant mag-
aitude and romiing with the same frequency. The particle must therefore move
uzifarmby in a circular orbit in the plane with angular speed £ Since the centrifu-
gl force, F, egnals ma’,ﬂ‘r, it follows that the magnitede of the linssy momentam
i the plane must be given by

b=yl

Comblning this expression with Bg. (7.154) leads 1o the relation between the cir-
cl¢ radivs and the momentumy:

F
48

{7.135)

The radiss of curvature lnto which the particle rotion is bent depends only upon
the particle propertics through the ravie p/g (= Hr}. which is sometimes called
the mogreric rigidity of te pamicle, Note that while & {Ea. {7.134); shows rela-
tivistic corrections through the presence of y, the relrtion belween 7 #nd p is the
seme hoth relarivistically and noncelativistically. Recall that in both Bgs. (7.154)
and (7.155) p is the itude of the perpendicalar o 8. buz i calea-
Inting y we must use both the perpendicular and paraflel cc 0 fied 8.

COVARIANT LAGRANGIAN FORMULATIONS

The Lagrangian procedure as givew above certaialy predicts the cowect relativistic
equations of motion. Yet it is a relativistic formulation only *in 4 cettain sense”

#The Larit peabession trequency s of B, 3 104} hes s extra fieroe of 2, and somesponds to e
precession of & i 3 constant i This Is a physically defferent case feotn
that of thi eycibiran satiancs of & chitped particle moving 8l & consiant speed bt 4 magnatic RelE
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No effort has been made ta keep to the ideal of & sovariant fowr-dimensional ferm
for all the Taws of mechanics. Thus, the time ¢ has been treated as a paranmeter
enirely distinot from the spatial coordinates, while a covariant formulation woald
require that space and time be considered a3 entirely rimnitar coprdinates in world
space. Clearly some mvariast parameter should be used, lnstead of ¢, 70 trace the
progress of the system point in conflguration space. Further, the examplas of La-
grangian functions discussed in the previous section do not have any particular
Larentz transformation properties. Hamilton's prineiple must itself be manifestly
covariant, whick can only mean ia this case that e actien integral must be a world
scalar. ¥ the parameter of inlegration is & Loreniz mvariane, then the Lagrangian
funcrion itself must be & world scalar in any coveriant fonnulatien. Finally, in-
stead of being a funcden of x, and %, the Lagrangian should be a function of
the coordinates in Minkowski space and of their derivatives with respect to the
Bvariant paramerst.

We shalt consider primarily & system of arly one particte, The natura] choice
of the {nvarian! parameter in sech a system would ssem o be the peaticle’s proper
time v. But the various components of the generalized velocily, #¥, must then
ohey the relation

ot g’ = ot (1.35}
which shows they are not independent Therefore, we shall instead assume the
<hoiee of some Lorentz-invariant quantity 8 with no farther specifieation than hat
it be 8 monotonic function of the progress of the world point along the particle’s
world line. For the purpose of this Hecussion, # superseript prime will be vsed 1o
denote differentation with fegpect Lo 6:

e dx”
T
while & dot over the letter indicates differentiation with respect to 1. A suitably
covariant Hamilton's principle must therefores appear as

L3
8 = 5[ Afx#, 2} a8, {7.156}
4

where the Lagrangian function A must be a world scalar and the (x#, x**} means
a fanction of &l or any of these. Note that this fermulation includes what would
have ordinarily been called “time-dependent Lagrangians,” becavse A is consid-
ered 4 unction of 9. The Euker-Lagrange equations comesponding to Ba. (7.156)

ate
d [ an aa

e e R X 715

(Bx’“) £ @ .57

The problem is to fnd the form of A such that Bgs. (7.157) are equivatent to the
equations of motion, Eg. {7.75).

One way of seeking A is to transfarm the sction integrai from the usual integral
over ¢ to one over &, and to weat the tme ¢ appearing explicidy in the Lagrangian
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not as & parameser but 85 an additional generalived coordinate. Since 8 must be g
monolonic function of » as measured in some Lorentz frame, we have

dx' gxtde 2"

TR (7.15%)

Hence, the action integral is transformed as

- Pl [ i
1:] Liv 4 £yt "f L(xf.ciﬁ)x’“dﬁ.
i < sy x

Tt would seem therefore that 4 recipe for a suitable A is given by the refation

" )
Aty = L (xf‘,cf;a) . 159
e x
The Lagrangian obtained this way i3 however a strange cresture, unike any
Lagrangian we have so far met Note that no matter what the fanctional form of
L. thenewl ian A isah funcrion of the tized velocities
in the first degree:

Afef ar®y s g fdx®, 2, {7,150

‘This is not 4 phenomenon of relutivistic physics per se; itis a mathemmaticat conge.
quenice of enlarging configuration space te include 7 as & dynamical variable and
using some other parameter to mark (e sysiem-point's travel throngh the space.
A Lagranglen obeying Eq. {7.160} is often calted {somewhnt misleadingly} 4 ho-
mogeneowns Lagrangian and the corresponding “hamogeneous” problem of the
calcutes of variations requires special ireatment, The most serious of the resulting
difficuldes will arise in the Hamiltonian formulation, but we can ghimpse soras of
them by noting thal it consequence the energy funcrion k, according o Eq. (2.53),
is identically zero. It foliows from Fasler's theorem on homogeneots functions that
I A is homogeneots t first degres v x™ then

ah

By N
We can thea show {¢f. Derivation 0 at the end of this chapter) thet as a result the
fanction A identically satishes the relation

d/any AT L,
- = = B, 7.161
[d&‘ (ax"‘) Bxﬂ‘]x (.65

Thws, if any three of the Lagrangian Eqs. (7. 137 are satisfied, ie will follow. salely
&4 & contsequence of the homogenents property of A, that the foarth is satisfied
identicatly.

Being thus forewarned to tread carefially, 8o fo speak, ler us catry out this wans-
formaticn for a free particle. From Bg. (7.136), the “relatvistic™ but “noneovar-

A ™
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ant” Lagrangiaa for the free particls is

B yoy-
By the transformation of Bq. {7.159), & possible covarjant Lagrangian is then

B s —mefr AL

With this izn, the Ewler-Lagran, rations are equivalent 1o

d mex’ 1 o
dg¢ ijr“; )

The parameter § st be a monotonic fanction of the proper time © so thar derve-
tives with respect [ 6 are related to those in lerms of T according to

Hence, the Lagrangian eguations comespond o

1{( e )wd(mu)
dr \ JHga® T dr

which ave Bys. (7.73) for a free particle. As we have scen above, fhe fourth of
these equations says that the kinetic engrgy T is conserved, which is indeed not
new but can be derived from the ather three equations.

We have thiss been fed 10 2 covartant. Lagrangian procedure that works, at loast
for 2 single free particle, buz ondy in & torteous fashion. The elabovate superstite-
ture can be greatly simplified however by a few bold pragmatic steps. First of all,
we can avoid using # and work i terms of the proper time 7 directly by 3 proce-
dure introduced i & Sightly different context by Dirac. The constraint on the gen-
exabized velocities in terrms of 7, Ba. (7.3%), is not a troe dynamical constraint on
the motion; sather il is a geanteric conseyiencs of the way in which 1 is defined.
Equation {7.35) says in effect that we cannel roam over the full fonr-dimensional
u space; we are confined to a particalar three-dimeasional surface in the space.
Dirac calis relations such as Bq. {7.33) weak equativns. We can with impundty
treat & as unconstrained quantitiss, and ondy gfter afl differestiation opetativss
have been carrled out, need the conditton of Bq. (7.35) be imposed. Certainly the
praceduse would kave worked abave for the free particle Lagrangian, There wosid
have been no difference if 8 were set equal to T from the start and Eq. (7.35) ap-
plied only fn the Jast step. The covadiant Lagrange equations can with this proviso
therefore be written directly in terms of .

4
dt \ Bu®

=0,

{7163}
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Secondly, it i not a sacrosanct physical law il the action imegral in Hamil-
Ton"s principle must have the same value whether expressed in terms of £ or in
terms of 8 {or T}, 1t needn’t be given by the prescription of Bq. (7.159). All that
i5 required is that A be a world scatar {or function of 2 world scalar) that liads to
the correct equations of motion. It doesa’t keve to be homogeneoss to frst degree
in the generalized velocities. For example, a seitable A for a free particle would
clearly be the quadsatic expression

= Ly, (7.164)

Many other possibilities are gvailable.® We shall use Eq. (7.162) for the “kinetic
enesgy” part of the Lagrangian in all sebseq i mapy present and
future headaches will thereby be avalded,

1f the particle is not free, but is acled on by exjernat forces, then inferaction
teriis bave to be added 1o the Lagrangian of g, (7.164) that would Jead to the
corresponding Minkowskd forces. Very little can be sald at this tme about the
additional terms, other than they must be Lorentz-invariant. For example, i G#
were some {externul} four-vector, then G, x* would be suitabls fnteraction term.
1 in some pazticolar Lorentx frame G = me and all other componeats vanish,
then we would have an exampte of 3 constant foree such as discussed in the pre-
vious section. In general, fhese terms will represent she interacrion of the particle
with some externat field. The specific form will depend upon the covariant forme-
Igtion of aae field theory. We have: anly one example of a field already expressed
in a covariant way—h je eld-aod it is instructve therefore to
examine the Legrangian for a particle in an elecizomagnetic fietd.

A suirable Lagrangian can easily be seen 1o be

At w2 Tmagu® +gut A, 000, £7.163)
The corresponding Lagrange’s equations are then

d gdA’
E;(mu)mm-dr """3';17{'?“ Aul.

which are exactly the generatized aguations of metion Eq. (7.73), with the
Minkowski force K, on & chasged particle, Bo. (7.74). Note that again the “me-
chanical momentum” four-vector p* differs from the canonical momenwam P#.
*Ir genersi, / can huve the Farnf [nen®), wherc £Ey) is any fanovon of  such shat
AT
XS T
t B £7 1643, we have wsed f Grun®s = Juue®. The shenos

Flstpttp) 22 cocnfga®

comesponds to B¢ (7 1462}
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L TR S (7.166)
Aun

by & term lineas in the cleciromagnetic potential. The canonical momentsm, P,

conjugate ko X% is pow

where E is the mechanical energy and £ is e tatal energy of the particle, E +
g Thus, the momentum conjugaie &6 the fme coordinate is proportona 1o the
total enevgy. A similar conjugate connection hetween these two guantitics will
tecur fater in noarclatvistic theory. The comection between the magaitnde of the
spatial “mechasical” momentem and the energy £ 15 sl givea by Eq. (7.38)
From, Bg, (7.166), it is seen that the canenical momenta conjugale to x fonn e
components of & spatial Canesias vecter P refaied to p by

Papgh, (7.167)
Tn terms of P, Bg. (7,100 can be rewsitiea as
= (P~ gAY+ mic* (7.168)

which is a usefol reladon between the energy £ and the canonical mementum
vestor 2.

The interact:on tern b the Lageangtan of Bg. (7.165} is an ¢xamtple of a vector
fleld {nteraetion (2v is also a torm of the form G,x#} We could also have a sim-
ple scalar field interaction where fhe term added 1o the Lagrangian wonld be some
world scatar o (r#). Or more complicated fvariant interaction lerms can be ere-
ated involving st external tensor field The nature of such Lagrangians progerty
stems from the physicat field theory invobved and cannot concern us further here,

So far we have spoken only of systems comjrising a single mass particle. Mul-
dparticle systems introduce new complications. One ebvious problam is finding
an invariant paramoter to describe the evolution of the system—each particls in
the system bias ity owa proper Hime. With a fitile theught, bewever. we could imag-
ine ways of solving this difficuity. For example, the proper time associated with
the C-0-M system involves 2 gyrmetric mreatment of ali the particles and might
prove sultable. We could alvo include in the picture interactions of the particles
with external fields very mach as was done for a single particle. The grear stam-
bitng black hewever s the weatment of the type of interaction that i so nateral
and common i nomelathvistic mechanies—divect interaction between: particles.

Al first sight, it would seem indeed that such interactiony are impessible in
relativistic mechanics. T say that fie force on a panicle depends upon the po-
witiony or velocities of ather particies at the same time implies propagation of
effects with infinite velocury from one particle to another—""action at a distance.”
In special relativity, where signals cannot travel faster than the speed of light,
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action-at-a-distance seems outlawed. And in a certain sense this seems 16 be dhe
correct pictire. i has been proven that if we require cortain properties of the sys-
tetn 10 behave in the normal way {such as conservation of rotal linear momentem),
thep there can be no covariant direct interaction between particles except through
contact forces.

There have been many atlempts in recent years to get arcond this “no-
interaction” theorsm. After all, we hiave seen that electromagnetic forces can
be expressed covariantly, and & sfatic clectric field gives zise to the Coulomb
law of ativaction, which has the sams form as the supposedly banned Mewionisn
gravitationel attraction. Soume of these atterapts have Ted t0 approxitnately covar-
unt Lagrangians, correcs through orders of v4 /2. Qthers involve formulations of
mechanics at vardance with our aommal srsctires: mest for example cazmnot be
statad in terms of a sirple Hamilton's principle.

ENTRODUCTION TO THE GENERAL THEORY OF RELATIVITY

Thus far we have been careful w0 use the term “speciat theory of relativity” and
net to introduce the term “special relativity” by which we endeavored to make
clear fhal it is the theory that is special, not the relativity. The special theory
uses Heal inertlal frames that s assumned to exist over ali of spacetime. The
general theory not only sermoves that i bt also has 2 apacetime whose
nature is part of the solution w e question of motdon. To paraphrase Joha A
Wheeler: “Matter tells space how to bend, and space returns the compliment by
tefling mater how to move.” The peneral theory is ofien interpreted i terms of
non-Buoclidean geometry, so terms like geodesic (paths of shorest distance} and
carvatore of spacefime are often used. In this hrief section we can only outline the
formatism of the general theory to show Eow the full tensor sotation is used.
Five principles guided Binstein in the development of the general theory;

1. Mach's principle—the special theory nsed inertinl fmmes. E. Mach ob-
served that Newtonian inerfial frames were 1ot rotating with respect (o the
tixed stars. This suggests Mach's principle, whereby snertial properties arc
determined by the presence of other bodies in the universe.

Principle of equis hershy the gravitatdonal mass for each body in
the wtiverse can be consistently and universally chosen 1o equal its inenial
mass. To the hest accupacy of all experiments pesformed to date, the ratio
of the gravitational mass (the mass that appears in Newton's foree law for
gravity) o the inertiel mass {the mass that appears in the second law) of
any ohject is independent of both the towl mass ang of the composition of
the object. This means that no local experiments can distinguish noarotat-
g free fall In o gravitational field froms eniform metion in the absence of
any gravitational fields. Likewise, locat experiments cannot distinguish be-
tween being at rest in a uniform gravitational field and undergoing vaiform
scceleration in the sbsence of any gravitational feld (hat is, in a rocket).

I
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3. Princlple of covariance—in the special theory, all inertial observers are
equivalen:, The genieral theory extonds this idea by posiulatiag the principle
of covarjance, This principle is that all observers, inertinl or not, observe the
same laws of physics. That means the laws of physics can be expressed in
torms of 1onsrs, since tensors are geomettic objects defined independesnt of
any courdinate system.

Correspondgnce principle—in weak gravilationet Selds with velocities
small compared to light, the general theory should make predictions that
approximate the predictions of gravitational behavior in Newtonian me-
chanics, As gravitational fields g0 16 2erw, the comespondence principle
sties e predictions of the general theory should approach hose of the
special theory.

Principle of minimal itattonal coupling—ihis priaciple fafes that
B0 terms explicitly containing the cur\-'awre shouid be added in making the
fransition from the special theory to the genetal theory.

-~

b

Newton's first Jaw tells us that in the absunce of extemal fosce bodies move
along straight jines withoul 4 . The preceding guiding principles sug-
gest that in the general theory, ohjects witt move ajong the geodesics of spacetine.
For exampie, fet us consider a family of geodesics that start out parafiel. If grav-
itational effects in the reglon under consideration are uniform, the peodesies will
remnain parattel. If there is 2 ponumiform gravititonal feld, the geodesics should
start o approach of recede. The change in separation, or geodesic deviaiion, is the
proper measure of the gravitational field. Near Rarth's sarface, we often assume
the pravitationa Held is uniform aver small regions. Thus, we assume two falling
bodies released side by side falf paraflel. An experiznent for larger separations or
longe: full tines meastres (he nonumiformity of Barth's gravitational field,

To ilustrate this, let us consider an example of two baBs separated horizontally
by a distance, 4. which are dropped at the saime e from the same height high
above Earth, Very elose to cither bal, and neglecting the gravitational mass of the
hafls, loca} experiments will give resulis that allow us 16 treat the local region as
an inertial frame. Locally, gravity can be mede to vanish by a cholee of coordinate
feame. Let us choose this local free-falf frame for our gbservations, Locally thia
satisfes the condiions for un inerial frame, However, as the balls fall wward
Barth, their separation, ¢, decreases. This change fn separation, rather than the
fall towerd Earth, is the local measuze of the gravitational effeet of Barth since it
can net be oliminated by a choice of frame. This is reflected by the genetal theosy
stacement that only the tides (differential effects) are reat gravitational effects.
Any other gravitational effects can be Jecally eliminated by freely falling.

Now eonsider two gendesics as shown in Figure 7.5, We can define two vector
fields at any point. One field, denoted by i, gives the 4-velocity of motion along
the geodesic, while the other field, denoted by &, gives the separation (o the next
geodesic, We assume at some Hme. T, there were (88t particles at the bead and tail
of the F vector.
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¢

FEGURE TS  Tongent vector, i, and deviation veclor. &.

We shall wse the proper Hme at the il of the deviation vector and have the
head point 10 where the other test parsicle is at that tine. In general, as the motion
progresses, the proper time of the first test pavicle will not be the same proper
time For the other lest particle. A steai ward ion, in the N
fimir, for the example of two falling balls, gives for the space components of §
perpendicular ta the direction toward Earth’s center,

25

4 § = RE' (7163}
.

whete R depends upen fhe distance o Barth's conter and ather physical constaats.
Equatdon {7.169) says the sceeleration in the separation of two geodesics s pro-
portiosal to their separation. & two-dimensicoal example is the grodesics oa the
surface of a sphere. Consider two tnitially parailel geodesics on a sphere. These
geadesics will mect after they have traveled one-quarter of the circumference of
the sphere. For this case, Bq. {7169} has B = 1/4%, where @ is the radius of the
sphere.,

H we analyze this probiem ia three or more dimensions, the relative accelera-
tion I weitten as 54£ /ds? whese ds is the Jength of the traved sloag the gondesic
and we use a £ for the derivative since our conrdinate system {8 completely arbi-
trary. The twists and torns in the coordinate system can cause changes in the com-
ponents of £ even i its magnitude is not chamgmg As he developed more of the
theory, Ejnstein di d that the in pariicular, R
had aleeady developed the mathematical tools needed. The metric serves the role
of potentials and derivatives of the metric give the geometric forces. Since the
derivatives of the metrle are nof whsots, & combination of the derivatives and e
meiric must be used. There are also probiems infroduced by the Feedom of using
any conrdinaie system. Some of the changes are due to physieal forces and others
are due to the choiee of the ..mrdma:e sysiem in analogy to the Coriolis effect i
amlstmg o ¥ pression for the deviation of gendesic
motion is provided by 2 tensor named Riemann. & is construcied of Hnear com-
binanions of second derivatives of the metric contracted with the metrie. Riethann
Tuss slots for three vectors and one stot for a single one-form. If we put the tangem
vector into the second and fourth siots and the deviation vector inte the ihind sloL.
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Rizmann produces

Vo ¥od & Riemonnl. .. w. By} =0, (7.17%
where ¥, Fy ff, In component Aotation, Bq. {7.170} is

4 dxf | dx®

—_— 2 e £V
e (2.4713

If we contract Riemann on siots | and 3, we pradace a tensor called Ricei,
defined as

Riccilu. v) = Riemann(w® w, £q, v}, {7172y
whose compogents are
By = B {7173}
Another critical contraction produces the curvature scafar, called R
R Rieci{w”™, ey = R%,, (2.174)

OF ali these possible contractions of Riemais, only one tensor of rank {3) TECRAINS
all the differentn] symmetnes of Riemann, That teasor is called Eingzemn (denoted
by G} and is defined as

G = Ricei §gR, {F.175)
with componcnts
Gow= Ry = FemeR. (24763

Using T to denote the stress-energy tensor, Finstein's field eguations make Eén-
srein propottionalte T

G=4iT {147

These equations for weak gravitational fiefds and for speeds moch less than
Heht spproach Newtonian gravitational theory, and for no gravitationa? fields pro-
duee the results of the special theory. They alse correctly predict all the measured
first- and seoond-order comvections 10 the special Sieory of relativity in experi-
ments s far performed. In addion, the theory predicts the existence of gravisa-
tonal waves ftom moving masses. Alfhough these waves have not, af #his writing,
been divectly observed, meastwed changes in the perieds of several Mnary star
systems are conuistent with the existence of such radiation existing,

Sooh after Einsiein proposed Bus. (7.177), aswonomers pointed out that the
solutions of these equations were Aol consistent with thelr observation of & static
universe that was neither expanding 2or contracting. Einstein modified the equa-
tioms by adding a term that was propertional (o the mermic tensor. The constant of
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, called the icaf canstant, wes dencted by A giving
G by =kT. {178

Soon after that, astrohomers decided that the observational data showed that
e universe was expanding and the cosmofogical constant was not needed, and
muost physicists dropped the term. Binstein said that the cosmological constant was
his greatest mistake, However, the early 21st century observational data on distant
galaxics sugpests that the universe is accelerating as it expands. This would re-
introduce the cosmalogical constant into the Sefd equatons. The cutteat terzainol-
ogy, since this woukd be a A < B, is 1 refer w the cosmological consiant es “dark
cnergy,” sincs it is a posstive contribution o the right-hand side of Fg. (7,178).

DERIVAFIONS

1, Conmder & mechanical system of r particles, with 2 conservative potential consistng
of terms dependent ouly upon the scalar distance botween pairs of particles. Show
expheitly that the Lageangian for the system when expréssed @ coardemates derived
by = Galilean mansformation diffars in form from the original Lugrangian only by a4
term that is a totab ime derwative of 3 funchion of the position vectors, This is & special
case of invarianes under & poiat transfoematon (of. Dervation 10, Chapter 3.

Z Obugn the Lorertz wansforemiion it which the veloeity s ot an infinitesimat angle 8
counierclockwise from the ¥ axss, by means of 4 similanty wansformution appied o
By (.06}, Show directly that the tesalting mateix ic arthagonal and that she inverse
matox v obtamed by substiutiag v for v,

w

The Emstewr addstion knw can clso be obtained by remembesng thet the second ve-
locity is related directly to the ypace companents o 4 fourvelocity, which may then
be transformed back to the infdal system by a Lorente transtormation. If the second
s¥stem I moving Witk 2 spesd o relative 10 the first in the direction of e 2 axes,
whls a third systam: is moving ratative 1o the second with an arbierarily omentsd ve-
tocity ¥, show by this provadure that the mugritude of i velotity v besween the
first and thitd systeen is given by

and i die components of ¥ ae

JEfi-s?

BT

Here B = o' fe, und vo focth.

Ead

Show thet the megnitude of the velocity of the preceding erercise belween tbe Brs
and the thind systems caik be given m general by
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5

bl

kd

s

1k

s
p= [

Show that the matris R defined by Bg (7.21) has the fortn of o spatial rotause by doing
the matrix rultiplication, tad by examning the properties of the 3 = 3 subrossrix with
eleeenis K, . Prove tha chere cannot be fwo rotation alsices such that Bq. (7.21} s
sutisfied: that is, R v umiqae. Finally, show that § can similayly be uniquely factored
into 4 roration and # pore Erentz traesformatios in the fomm

1=PR.

Show that to each plane wave there is assaciied & covarisns fonr-vector mvolving the
frequency and the wave rumber. From the conseguent treasformation equations of fhe
components of the four-vector, derive the Doppler-offzct equatiops.

From the trarsformation propesties of the world accelaration, shos that the compo-
nents of the aceeferation A are given in {erms of the tansfarmed decelertion &' in 1
systemn momantarily af nest with respect o the pacticle by the formulas

P P

{ m o L. e
LTATERRD BETIE %

£

the x axis bemng chesen in the derection of the relatve velogity,

By expanding the squanon of moton, B (7.73), with Bg. {7.36) fac the momerum
show that the force is pavallel to the acceleration suly whexn e velodily 15 e
pacalist of perpeidi 1o the teration, Gblam for the i

of the acceleration: Iy these twe cases, fo the oldes liersture, these coefficents were
known s the longiudmal and transverse masses, rspectively.

A gencralized potential suiabls for uge i o covarient Lagrangion for » single particle
= = AppiF b’

where Ay stands for a sysmastric world tensor of S gscond rank and o are the
conponents of the workd velocity. I the Lagrangien is made ep of Eq. {7.164) minug
4, chin the Lagrange squations of motion. What is the Minkowska force? Give the
components of the force a5 observed in some Lorentz fraroe,

. Show that of A sausfies the Lagrange equations, it identically sutishies Eq. (7 161)

o the bisis of the bomogeneity of A, by explicily forming the 1o derfvative with
Fespect to § Hiat ooouss 1 he equation.

in spevial relatvity, # 15 nol necessarily obvious that the velocity of system B as
obscrved i systam A bs the nisgative of Sie velocity vector of wystem A observed in
system B. From the orthogonulity properties of L, prove that the two vectors ave
the same wagaiwide and dee in fact the negative of each other, For simplicity, ¢ pure
Lorentz transformatson may be assumed, although das cordinon ks not necessary for
158 progf,

A set of wansformations are suid to have the group propemty if thoy possess the fol-
towing four characteristics:
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» The fots e totwo i sams ¢“product” of
ensfornations) is a merabset of the set.

= The product operation obeys the associatve baw,
» The identily ansformation is 2 merber of the et
+ The uwerse of epch transformotion tn Qe set is also i member of the st

Prove thet the sets of full Lorems, mensformatons. md of restrcted Torentz wansfor-
mation have (separaiely} the group property,

EXERCISES

13, Show by dwect multplwaton of the vector form of the Lorentn Tansformadon,

Eqgs. (1.9}, that
AR

14, A recket of Jength Iy 1 s rest sysiem is moving with congtant speed alosg the 2
e of an snerttad systeen. Aw obierves at the origin of Bus system observas the ap-
perent engih of the rocket st any tone by noting the 2 coordinates thet can be seen
for the head and Gl of the rocket How dees this apparen? length vary g the tooket
movey from the axtrem Teft of the observer to the extreme right” Hew do these re-
sufts compare with measureInonts in the rest frsme of the obasrver? {Note: abserve,
LISE

B8, A betm of particles moving with uniform velacity colliges with 2 cnliechon of targes
patticles that are At rest it 4 particalar system. Let oy be the collision cross seonon
observed in fhs systom. In ancther systam, the fnoxdent pacacles have a normalized
velookty iy and the target particles a normalized velecity By, % o 35 the obsprved
Crass sestion i this sysiem, show that

ECIEY: g

Rempmbar that cotlizion rate muyst be ivatit under 2 Lasentz transformation,

16. For = “close™ satellite of Sanh (semimujor asis spproximately the radios f Eash)
cafedate ramencally the value of the Themas pracession rate. Corapare de result
with the yrecession rate duced it the arbit because of the oblate figurs of Earth.
Assume the sacHiee orbital plane & incimed at 30° 10 the equator.

37, Two parucles with rest musses ity 20 my ars alberved to move aloag fhe observer's
z gus toward each other with speads vy and vy, respectively. Ppon colision, they ase
observed 10 comlasee IRt one parucle of rest mass 3 moving with speed vy relative
to the obwerver. Find r13 and va in torms of my, iy, w1, and vy, Would it be possitle
for the jesultant particle fobe u photon, that is, 3+ 0, 1f neither iy nor my e zera?

8. tn the 5 dusintegration considered in Exercuse 17, Chaptar 1, the elactron has 4 s
equivalent 102 rest anergy of 0.571 MeV, while the neurrino has essentially ro mass



Exercises 3351

2.

w
&

What are thy 1 energ; away by the el and neutzinn? What fraction of
1he nuclear mass is converted into kinetie energy (nrindig the eleciron rest energy)?

A wagson of mass oy 2 rest disintagrates into & mason of mass sy, and 4 reatmno of
effectively zero mass Show that the kmene snergy of motion of the z meson &

(o M'A)J"l‘)-

i

A ¥ meson of rest mass 1396 MeV collides with & neutron (rest miss 930.6 MeV)
stationary inthe isboratory system to produce a £+ meson {rest mass 494 MeV} and
& A& hyperon (zest mass 1110 MeV). What s the threshold entrgy for tis reaction m
the iaboratory system?

A photon may be desonbed classically 25 3 particle of zero mess passessing Revar-
theless 2 momentumh A/ = Avfe, and therefore + kinotic energy fv. F the phoion
colitdes with an elecron of mass e af rest, it will be scatiered at some angle & with 2
npw eneegy An’, Show that the change {n energy s relared to the scattenng avghe by
the formula

§
— 5 2R, ST 3

whets i = A/me, 18 known as the Compton wavelength. Show also that the kunetic
energy of the recoil motien of the electron 15

2l )t d .
342{% Jom?§

A photan of onctgy £ collides at angle # with another ghoton of onegy £. Prove that
ths wankmam vabae of £ permitting formatian of 2 pair of partictes of mass mis

Fafy

Imict
LR Ty
EQt—eosd)

The: theory of soecket motion developed in Exercite 13, Chupter . nolonger applies in
the relaivistic region, in part because fhete 15 ho longer conservation of mass. Instead,
all the conservation tuws ure combnned o the conserwation of te worl momentum;
the change 16 each companent of the Tocket's werld mementum n an infinitesimal
wirme dr must be matched by the value of the seme componem of py foF the guses
ejocted by e roclet in that time interval. Show tat if there are ro sxiemal foross
wtting o e rockst, the diffcrentiat eguancn for i1s velosity as a function of the muss
K]

where a 38 the constnt velocity of the exhaust goses relutive to the rocket. Verify thet
the solzuca can be put i the forme
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26,

P8

=

30,

. (‘@E)l«#

B ——
ufe
L+(f"&°

ity being the inttial mass of the recket. Siave 1mass s oot conserved, what happens
the mass that is fos1?

A purticle in hyperbohc wotion starts from the emgln at 1 = 4. Find the dme g such
that if & photen is emitted from fhe origin #fter ty, it will never catch up with the
particte.

A pussicle of rest mass m, charge g, and initial velocity v eaters a uniform elecine
field E perpendiculer to vy, Find the subsaquent trajectory of the particle and show
shaat it veduces 16 & paratroda as the fireit ¢ fecomes mfnne,

Show that the relwivistic mobon of & particls in 20 antactive wvesse-sguace Law of
foree is & precesemg elbpse. Compute the precession of the perthelion of Mercury
resulting from this effect. (The answer, sbout 7 per century, s much seatler fhan
the actual precession of 437 per century that can be accounted for corvently endy by
general relguvity. The other planets produce 4 precession gremer than 5.4 per
cemtury}

Starting from the cguation of motion (7,73, detive the sefatvistio analog of the vidal
theorem, winch states thal for motons bounded in space and such that the velocities
imvalved do not approsch mdefinitely close 10 ¢, then

Tp+F=-F-r,

where Ly is the form the Lagrangian takes in e tbsence of external forces. Note that
although netther Lo nor T coresponds exzctly 1o the kenotic ensrgy in sonrelariviatic
nechanics, thelr som, L <+ ¥, glays the sume role as twice the kinetic energy in the
nonretativiste vieral teorem, B, (3.26).

Lat ey and ¢y be the basis vestors for a Cartesian coordinate sysiem m o twoe
dimensiconal Exchidean space that containe # crystal whose luttice vecters srba = g|
and b = e) + 3. Use the underbying Enclidean prometry to detarmine that the rocip-
rocal fattics YeCtors wh A == &) — &7 and B = ¢5. Using the a, b pair a3 basis vectors,
dotermine the mewric tensor g necessnry for A and B to be the 1-forms as defined by
Egs. (7.34') and (.99

Using Maple or fea calctiiite the Lorenty ton nratrix in£q. (1.17),
then without assueming, thet the velocidcs in the frame & ave smalt, find e evact
Lovente boost from § so 57, {generahization of Eq. £7.203) and the rotetion (gencral-
izatton of Bq, {7.213). Show that your renults redues 1o Bgs, (7.20) aad (7211

Using Maple or Mehemanea or 8 similar program caloutate the Etnstein feld squa-
dons for sphencal coondinates sssuming Ty = 0 everywhere except possibly for
r = 0, where the coordinste system is undefined The most geners! spherical Hatse
mesic oosresponds 10 an interval given by

drd o o2 02 MO LR st g g,

where r, &, and ¢ P @ the usual 1hy i spherical
Solve these equations Using sn itegration corstant 22 to obtain the Schwarschild wo-
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3

3.

latian for 4 point souree of mass m. As you wilt discover, these coordinules have a
Mingrdlarity of 7 o= 2m. Show that this is 2 copodinate singalarity (2 smgularity detec-
mined by the choce of coordinatesy rater thar a physical slagalaity by sxonining
the componerts of Riemann as r arasses 2m.

"t show that the word “refatdvity”™ in the special theory of nelativity doey sot have iz
ardipary meanidg, consider o disk rowating s wertiaf frame AHONE an wxis fxed at
1ts centar and perpendicnlar 1o the dik. Mountzd oa the cdge of the disk aze mirrors
arranged so that ight enured tangentalty from a point an the disk is refiected tan-
geanally arovnd the disk btk (o the starting Tocation, Compare the betunaos of Tt
emitied 1p the direction of rotstion (assumed clockwise) to the behavior of light amir.
ted in the apposite direchion, Now consider x pulse of hight eetited by o source on tha
#xis and nsed 1o synchromze the clocks on the penmeter. Since clacks are commonly
synchropized by Tghe and distance i tha special theory (alapsed tie = distance/e),
what does this say about the absolute sense of rotation e the spocial theary?

Show that the space components of Eq, {¥.68) are wdentical 10 the companents m the
equation on the precediag line,
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The Hamilton Equations
of Motion

“The 1 ; lation of mechanics was developed Targely in the first two
chapters, and most of the subsequent discussion has been in the nature of apphi-
cation, bot still within the framework of the Lagrangian procedure. In this chap-
ter we resume the format development of mechanics, tarning our attention o an
altemative statement of the structire of the theory known as the Hamiltoniae for-
mulation. Nothing new is added to the physics involved; we simply gain aaother
fand more powerful} method of working with the physical principles already es-
tablished. The Hamilonian methods are nol particutarly superdor to Lagrangian
techaiques for the direct solution of mech i probl Rather, the ki

of the Hamilwonian viewpoint lies in providing 2 framework for theorstical exten-
sfons i many areas of physics. Within classical mechanics 3t forms the basis for
further developiients, sueh as Hamﬁtmw—':‘acob; thury. pesturbation approgches
and chaos, Ouside classical fon provides
much of the language with which pmscﬂtday statistical mechanics and quantg
mechamics is constracied. We shall zsseme in the following chapters that the me-
chanical systems are bofononde and that the forces are monogenie, that is, derfved
cither from a potential dependent upon position only, or from velocity-dependent
peneralized porentials of the type discussed in Section 1.5

LEGENDRE TRANSFORMATIONS AND THE
HAMBTON EQUATIONS OF MOTION

In the Lapgrangian formulation (nonrelativistic), a system with » degrees of free-
dom possesses n equations of motion of he form

d 31. &L

As e eguations are of second onder, the motion of the systesn is determined for
ali tie only whet 2n fuitial vaiues ave specified, for example, the » ¢,'s and nt
&'s a1 a particular time ¢, or then 1 ¢;'s at two times, 4 and 3. We represent
the state of the system by & pemt in an a-dimensional configuration space whose

i are the g i g: and foliow the motion of the
system point in dme as i traverses b path kn configuration space. Physically, in
the Lagrangian viewpoinl a system with n independent degreos of friedom is 2
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problem in # independent variables 4;{r), and 4, appears only as a shorchand for
the time derivative of g,. At # coordt must be independent, In the Hamit-
ronian formulbation there can be no constraint equations among the coordinates.
If the n coordinates are not independent, a reduced set of m coordinates, with
mt < 7, must be esed for the formulation of the problem before procesding with
the following steps.

The Hamiltonian formulation is hased on 2 fondameotally different picture.
We seek to describe the moton in terms of first-order equations of motion. $ince
he Rumber c{mma} ccndm(ms den:rxrumng Lh:: motion must of courss still be 2n,
there must be 2n § fi d in terms of 2x inde-
pendent variables, Henee, the 2n equauum of the motion describe the behavior
of the system point in & phase space whose coordinates are the 2n independent
variables. [n thus doubiing our set of independent quantities, it is nataral {though
not imevitable) 1o choose half of them to be the n generatized cocrdinates gi As
we shall see, the formulation is nexsty symmertic if we choose the other half of
the set to be the generalized or conjugate momenta py Siready infroduced by the
definition {ef. Eq, (2443

= m_l__i{;_ﬁ {ho sum og. ) (8.2}
B

where the j index shows the set of ¢'s and §'5. The quantitics {g, p} are known

as the canonical variables*

From the mathematical viewpoint, it ean however be cltimed that the 4's and
4's have been weated as distinet variables, In Lagrange’s equations, By, (8.1), the
pasttal derivative of L with respect to g means a derivative taken with all oﬁqu (]
and 81l §'s constant. Similarly, In the partial detivatives with respecs to q, msq s
are kept constznu ’T‘raated suetly as 8 math ieal problem, the i
L ok ion corresponds 1o changing e Vanables in
out ma‘&mmca] functions fom {7, 4. £ 1o £g, p. ¢}, where p is telated 1o ¢ and
¢ by Bas. (8.2). The procedute for switching variables in this mammer is provided
by the Legendre transformation, which is tattored for just this type of change of
variable,

Consider a function of only two variables f(x, p}, so thar a differential of f
has the form

df =udx + vdy, 8.3
where
M, pm ok 8.4

"Ushess orberwise specified, n the aud subsequers chagtess the symbol p wit be usnd oty for e
eRRfugae re vaiooy dependent, icad momenanim
will difTer feom tha comesponding mechanical Moisnpin (cf. Bq. (2471,
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We wish aow 1o change te basis of description from o, ¥ 1o & tew distinct se of
variables u, ¥, w0 that differential quantities are expressed  terms of the differ-
entlals du and dy, Let g be a fonction of « and y defined by the equation

& f —ux. {R.5)
A differential of g is then given as

dg = df —udx ~xdu,
or, by {8.3), a5
Adg = vdy - xdu,

which ks exacdy in the form desired. The guantities x and v are now functions of
the variables » and y given by the relations

x = wé\i, v S (8.6}

which are the anslogues of Egs. {8.4).

The {.egendre iransformation so d d 5 used by in b
The first aw of thermodynamics relates the differential change in energy. 47, to
the corvesponding change B heat content, 40, and the work done, @

Al s dQ—dW. [£:5)
For 2 gas undergoing a revarsible provess, Bg. (8.7} can be written ax
&t/ = Tds ~ Pd¥, (5.8

where U(S, V) is written 8s a function of the enfropy, §, and de volume, ¥,
where the temperature, T, and the gas pressure, F. are given by

ay al
T 3 and B — (8.9

The enthalpy, K5, P} is generaled by the Legendrs transformation

H=U+ £V, (8,310}
which gives
dH =TdS4Vdr. (811
where
T= Ll and V= o

Fr i
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Additions! Legendse -
Fmll~T§

(8.12)
G=H~TS,

generis the Helmholiz fres energy, (T, V1, and the Gibbs free energy, G(T', P,

The wansformation from {g, ¢, 1) 10 {g, p t) differs from the type considered
in Egs. (8.3) to {8.12) only in that more then one variable is to be ansformed.
We begin by writing the differental of the Lagrangian, L{g, 4,1}, a5

aL 8L 8L
GL @ il 4 sl dgy  wdl, 8.13
B %469.' e et 313

The cancnical momentumm was defined In Fq, (2.44) as p; = #1./34,; substinating
this into the Lagrange equation (8.1}, we obtain

&L

o= 8.14)
Mo 8.1%

30 Eq. (8.13} can be writlen as
. . L .
di = p, dg; + p, dgy + ~(;’wl-a'£. (8.13%

The Hamilteniza H{g, p, 1) i d by the Legendre transformation
Higopoth=dopr = Lig 4.1, 3.5
whick has the differential
. . el

AH = Godp ~ prdg - o 8.16)

where the term g, di; is removed by the Legendre transformation, Since d H can
also he wiitten as

an aH aR
dH = eeeed, ecen g ceeeeereft 8.17
Py q'+BPi ok gt 8.17

we obtain the 2 + 1 refations

(#.18)

(8.19)
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Eguations (8.18) are known as the caranical equations of Hamifton; they copsti-
tute the desired sot of 2n first-orler equations of motion repiacing the # second-
order Lagzange eguations. ®

The first hal of Hamilton’s equations give the §,'s as functions of (g, p.r).
They form therefore the inverse of the constitive equations (8.2), which defme
the momenta gy 25 fuctions of (g, ¢, ¢). [Lmay therefore be said that they provide
na new information. In terms of solving mechanical problems by means of the
canonicel equations, the stament 7 correct. But within the framewosk of the
Hautiltoniin picture, where H (g, p. 1) Is some given fanction obgined no matier
how, the rwo halves of the set of Hamiltonian equations are equally indepesdent
and meaningful. The first half says how & depends on ¢, p, and 1, the scoond says
the sawme thing for f,

Of cawse, the Hamitionian H is constructed in the same manner, and has iden-
teally the same value, as k, the energy function defined in Eq. (2.55). Bul they

are ions of different variables: Like the L ian, s a function of g, ¢
(and possibly 7), while H must atways be expressed as 2 function of g, p (and
possibly ). 1L is to emphasize this difference it functional behavior that differ-

ent symbols have been given to the guantities aven Gough they have (e same
numedcal valtes.

Nominally, the Hamiltanian for each problem must be consirueted via the La-
grangizn formalation. The formal procedure calls for 2 lengthy sequence of steps:

1. With a chosen setof generatized coondinates, gy, the Lagrangian Lig;. g, £}
= T o Vs constrcted.
2. The conjagate momenta are defined as functions of ¢, &, and 7 by
Egs. (8.2).
. Bguatien {8.13} is used to form the Hamillonian. At this stage we have some
mixed function of ¢, 4. pr.and £
. Equations (8.2} are then inverted to obtain § s functions of {7, p, 1). Pos-
sible difficulties in the fnversion wilt be discussed below.
5. ‘The results of the provious step are then applied to eliminate § from H so
& to axpress i solely as a faaction of (g, p, 1)

e

S

MNenw we pes ready 10 use the 5 in the of meiton.
For many physical systems it is possible (o shorten this drawn out SEgUSnCe

quite appreciably. As has been deseribed in Section 2.7, in many problems the

Lagrangien is the sum of functions each homogensons in the generalized veloc-

#Cenemeal s vsed bere presumably m the seme of destgnuting a smple, general st of sndund
equstiens, Tt appeary thut the 1enm wis Arst méroduced by C. G, J. Jacabr i 1837 {Comples renduy dz.
F'Avadémic dey Seences de Paris, 5.p G1ybut 5n o shiphtly differcat contoxt veferving t an spolisation
of Remilton's equations of mation fo periabation theary. A]lhongb the term rapidly gamed vamman
usage, the reason for ks i o spjanty Bgire @0 1 e, By 1428,
iy 45 yours atier Fmsieon otphoaly oot Ius squsnos, Thomssor. fLard Kehin) sad Tat
et moved by e ailjecrive “canomcal” 10 sackiim “Why of i best oo called would e et to
say®
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ities of degree O, |, and 2, respectively. Jo that cuse, H by the prescription of
. (8.15)} s given by {of. Eqgs. (2.5%) and (2553}

Hadqp - Lagip — ol 1)+ Lt 1hge + La(ge, Dol (820}

{no sum on i in the square brackets) where Lg it the part of the Lagrangiap that is
independent of the generalized velociies, L1 represents the coafficients of the part
of the Lagrangian that is homageneous in §; in the first degree, and Ly 15 the past
that is homogeneous in §, in the second degree. Purther, if the equations defining
the generalized coordinates doa’t depend on thme explicily, then Ladedm = T
{the kinetic energy), and if the forces are devivable from a comservative potential
V (that is, work is independent of the path), then Ly = —V, When both, these
conditons are satsfied, the Harailiontan is adomatically the 1otat ohergy:

H=T4+V=E (R21)

¥ sither L. (8.20) or (8.21) holds, then much of the algebra in steps 3 and 4 sbove
is ehiminated.

We can at times go further. in large classes of problems, ithappens that Ly isa
quadratic fenction of te generalized velociies and Ly ks a hnear funetion of the

surne variables with the foll specific ienal dep

Ligrs Gu Y = Latg, O+ gralg, ) + 1 g, 1, 8.12)

where the @ 's and the ;s are functions of de ¢'s and 1,

The algebraic manipuiadons required in steps 2-5 can then be carried out, at
Teast formalky, once and for all. To show this, let us form the 4's into a single
colurnn watdx § Under the given assumptions the Lagranglan can be written as

LAg. 6.8 = Lolg. 1) + G + FFd. 38.23)

whete the single row mansi § has beer written explicidy as the tanspose of 2
single column matix, §. Here a is a column matrix, 20d ¥ is a sgoare n x n malrix
{mach tike the corresponding matcix iatreduced in Section 6.2). The elements of
both are in general ions of g and ¢, To il i st et s consider
the special case where 4, == {x, y. 2} and T is diagonal. We would then write

i, L mo0 oY
FAqe= 0D 10 m 01y m«i(ﬂ-py%éz) {8.242)
9 0 miiz
and

ay
= G [a,} wagh b ayd o =ac b (8.241)
@
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Tn thes rotation the Husiltonian, & = &p — L, becomes
H = §(p - 2+ J&FG - Lo (324

Fhe conjegate moments, considered as a colimn matrix p, is ten, by Bq. (8.2,
Biven as

p=Fi+a, {8.25)
which can be hwverted {step 4) 1o the column veetor §
i =T p—a. (8.26a}
This step presupposes that T~ exists, which it normally does by vitte of the
positive definite property of kinetic energy.

The corresponding equanon for q is

G i BFL £8.26b)

To obtain the correct functional form for the Hamiltoniap, Eqs. (8.26) mast be
used to replace ) and g, yielding 1he finat form for the Hamiironian:

Hig, p.#h = 3~ DT Hp - ) = Lnlg. 1) @am

If the Lagrangian can be written in the form of Ba. (8.23), then we can imme-
diately skip the Intervening steps and write the Hamilionlan as Bg. (8.27). The
isrverse mateix T~! can nsually most easily be obtained straightforwardly as
¥,
Tl ud, (8.2%)
It
where T, i5 the cofactor matrix whoss elements (T.) 5 are {— 1)/ times the
detesininant of the matrix cbiuined by striking out the 7tk row and the kth columa
of T
In the example Baq. {B.242), thess three matrices are given explicitly by

m 00 L
F=i06 m Of, Tl . and
¢ 0 0m a

R mt 0 0
T.=10 m 0f.
o 0 m?

and the determinant {¥] = m®. 1 is vy 10 yoc that for the vsual case when ¥ is
diagonal, thes T is also diagonal with elements that are just the resiprocaly of
the corresponding elements of T,

S-S
> S
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A mumber of exercises in applying this formalism to various mechanical sys-
tems will be found in the problems at the end of the chapter. Two very simpie
examples are considered here because they Hustraie some Important sspects of
the technigue. First consider the spatial motion of a particle in a central force
field, nsing sphericel polar coordinates (7, 8, ¢ for the generalized coordinates.
The potential energy is some Tunction V{r) and the Kinetic enemy is

1
7= T = w(r +rlsmt 8t + £ 2h. 828"

Clealy the Hamiltonian hay the form of Bg. {8.21) and corresponds to the lotal
energy T+ V. Since T is diagonal the form of H is, by inspection,

1 4,8 ﬁg
Hing prope p) = pp + g T + Vi {829}

Note that the Hamiltonisn would have 2 different fanctional form i te genar-
alizad coordinutes were chosen {0 be the Cantestan coondinates x, of the particle.
{f we make that choice, then the kinetic energy has the form

P ,
my R X,
T o e T
B 7
s0 that the Haraiitonian is now
Bz p) = B2 4 ven, (830}

It is somatimes conveniest o form the canonical Momenta p, conjugate to ¥, into
& vector p such tat the Hamiltonidn can be wiitten as

Hig, py= LALERTN e #.31)

We can of course take the componrents of p relative 1o any coordinate systern
we desire, curvilinear spherical coordinatas, for example. But it is important not to
confuse, say, pp with the @ component of p, designated as (plg. The Former i the
canerical momentum eorjugale 1o the coordinate 2: the Jatier is the 8 component
of the momentnm vector conjugats to the Cartesian coordinates, Dimensionaliy.
it s clear they are guirs separite quantities; pp is an angular momentam, (s 82
linear momenturn. Whenever a vector is used from here oft o represent cahofticol
momenia it will refer lo the momenta conjugate to Cartasian position coordinates.

For # second example, et us consider 2 single (ronrelativistic) particle of mass
m and charge ¢ moving in an eleciromagnetic field. By Eq. {1.63), the Lagrangian
for this system i

Loe=F eV bmod —gdrgh v

where the sealar potential tormt. —g ¢, is the Ly term of the Lagrangion s ex-
pressed In F. (8.22) and the vector polential 10mm, gA ¥, Is the L; o
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Using Cattestan position i ug i i the La-
Erangian can also be written as
i g
Lo =t gty - 94, #.32)

where the potentials ¢ and A are in general fonctions of ¥, and the Hme,

There ie now 2 Hinear term k the genoratized velocitiss snch thar the matrix
i has the elements g A,. Because of this lnear ferm in V, the Hamiltonian is nor
T+ V. However, it is it} in this case the total energy since the “potential” snergy
in an electromagneiic field is determined by ¢ alone. The canonical momenta,
either by Fig. (8.2) or Bq. (8.25), are

pi = mb + A, (8.33)
and the Hamdkontan {of. BEq (8270 Is

B~ gAIP ~gA)
2

which bs the totad energy of the particle. Again, the momenta p, can be formed
inko & veclor p and M wiitten as

H= +a¢. 8.34)

g — gAY
Hoamgmi(p— gAY + 2 {8.3%)

and remembering that p refers only to momenta conjugate to %,

It is elear that Hamilton's equations of motion do not treat the coordinates and
moments in o compleely syrmmesric fashion. The equation for 2 has 2 winus ‘ﬂgn
that is shsent in the equation for . Considersble mgenuity has been
in devising nomenciature schemes thal sesult in entirely symmettic equations,
or coinbine the two sets into one. Most of these schemes have only curiosity
vafue, but one has proved to be an clegant and powerful tool for manipulating the
canonical equations and aliied axpressions.

For g systemn of i degrees of freedom, we constract 2 coluunn matrix v with 2n
elemants such that

= G Bidn = Py iZa {8.36)

Simdlarly. the column. matrix 84 /8% has the slements

a5 ad (BH) B ;
o=, —— 5 -t i<a, B3
(Un); g M O ¢

Finally, lat ] be the 2n x Ir square matrix composed of four n X % 260 and wne
matroes aceording 1o the scheme

‘] (3388}
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with the following anspose matrix, which is its inverse

= [‘1’ “J}, (8.385)
wihich means
eSS N [:, ﬂ (8.38c)
a0
{8.38d)
and
P -1, (3386}
and the detenminant is
Al =1, (5.386)

Here § iy the 7« n matrix &l of whose elements is 2ero, and 1 is the standard
A % unit matix. Hamilon's equations of motion can then be writen in compact
form as

. BH
o 8.3
R ]5"1 (8.39)
Fior two coordinate varables, this has the expanded form
at ¢ 0 1 6f-p
g1 {0 9 0 1ij-m
A=l 0 oel|ap @40
P bo—1 o oel| &

where use was made of Ege. (8.37} and (8.1%). This method of displaying the
canonical equations of motion will be referred (o as Hamilton's equations in ma-
trix ar symplectic® notation. In subsequent chapters we shall frequantly smploy
this matrix form of the equations.

CYCLEC COORIHNATES AND) COMNSERVATION THEOREMS

According to the definition given it Section 2.6, a cyelic coordinate g, is one that
does not appeay explicily in the Lagrangian; by virtue of Lagrange’s pquations
“The termm sympnlecsic cotes o the Greek for “intertanned” partiewtacly spproptiace o Habiltoa's
equanions whess 4 is Bxstched with a detivarive wit reect i  tind p stilarly with ths teparive of
B g dervative H. Weyk fisst anmoduced the tesm o (959 i bis book The Classived Croyps.



344

Chapter 8 The Hamilton Equations of Motian

its conjugaie momentum v, is then a constant, But comparizon of Hg, (8 14) with
Hq. (3.16) has already told vs that

oL 8
PR, L
‘T ag By

A coordinate that 18 cyclic will thus alo be absent from the Hamilionian > Con.
versely if 2 generahized coordinate dogs not occur in M, the coRjugate momenttn
i conserved, The MomEntut conservation thearems of Section 2.6 can thus be

d 10 {he Hamil tation with no more than a substitstion of H
for L. In particular, the cornection between the tnvarionce or symsnetry proper-
ties of the physical system and the constants of the motion cap also be derved in
terms of the Hamiltonfan. For example, if a system is completely selfcontained,
with only interni] forces between the particles, then the systes can be moved ag
& righd ensemble without affecting the forces or subseguent motion. The system

is said to be invariant upder a rigid disph . Hence, a lized conrdinate
describing sach a ng;d motion will not appear explicifly in the Bamiltonian, and
e corresp will be comserved. I the rigid motion is

4 wrapsktion along some pa.mculal direction, then the conserved momentem is the
cerresponding Cartesiar compenent of the total linear {canenical) momentum of
the system. Since the direction is arbiirary, fhe iofal vector inear momentum is
conserved, The rigid disptacement may be a rotation, from whence it follows that
the total engular momentum veclos is conserved. Even if the system interacts with
external forces, there may be 2 syrometry in the siteation that feads o a cotserved
canonical momentamn. Suppose the systen s syrometrical about a given axis so
tiat A is invariant under rotation about that axis, Then £ obviously cannot in-
votve the rotation angle about the asis and the particular angle variable mustbe a
cyclia coordinate. it follows, as in Section 2.6, thai the component of the angular
momentirn about fhit axis is conserved.

‘The considerations concerming i fn Section 2.7 have already shown thatif L
{and in consequence of Bq. {8.15}, also ) is not au explicit fanction of 7, then
H is & constant of motion. This can also be seen directly from the equations of
motion (818} by writing (e total time derivative of tie Hamiltordan as

N PR
P v e A
In consequence of the equations of motion (8.18), the first two sums on the Hight
cancel each other, and it therefore follows that

e 2 oo 828 o e, (B4}

*Thi conclusion also fallaws Fvm the defiinon of By (9,15, for & diffors from —L obly by prd,
whieh doe niat invoive g, explicidy,

The relanon berveen conservaton laws, sylitietey of the Logrimgen, (and de Bamstonas) of the
systen s catbu Noether's thearers. 'Fhe fortnal proofis given in Section 137,
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Thus if £ doesn't appear explichily in L, iv wilt alto not be present in H, and H
wiil be constant in time,

Further, it was proved in Section 2.7 that if the equations of tansformation that
define the generalized coordinates {1.38),

T = Cmdefse oo ani £}

do ot depend explicily spon (e time, and if the petential Is velocity indepen-
dent, ther A is the total energy, T+ V., The identification of # 23 a constant of the
motion and as the total energy ave two sepirate matters, and the conditions sufi-
cient for the one are not enough for the other. 1t can happen that the Eqs. {1.38)
do mvolve tme explicifly but that 7 does not. In this case. £ is & constant of
the motion but it is oz the wial encrgy. Ag was dlse emphasized in Section {2.6),
the Hamiltonian is dependent both in magoitude and i functionat form upon the
initial choice of generalized coordinates. For the Lagrangian, we have a specific
prescription, L = T — ¥, and a change of generalized eonedinates within that
presceiption may change the functional appearance of L bur cannot alter its mag-
nftade. On the other hand, use of a different set of generatized coordinates in the
definition for the Hamiltonian, Eq. (8.15), may lead to an entirely different guan-
sty for the Hamiltopian, 1t may be that for one set of generalized coordinates
is conserved, but that for another it varies i tme.
To Hlustrate some of these peints in a simple example, we may consider a
artificial i i system. Suppose a point mass m is aitached
o 2 spring, of force congtant X, the other end of which i fixed 0n a massless cart
that is being moved upiformly by an extemal device with speed u {of, Fig, 8.1).
I we take as generalized coordinate he position x of the masy particle in the
stationary system, then the Lagrangian of the system is obviously

2 g

L by =T =V o 5t - iy, 542
(For simplicizy, the origin has been chosen so that the cart passes through it &t
£ == 0.3 The conesponding equating of metion i cleardy

mE = —k{x ~ vpth

[

syt

oc—00
=

FIGURE 81 A harmonic oscillator fixed to & unifornuly moviag cart.
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Az obvious way of solving this eguation is te change the snknown to x'()
defined as

¥ x =gt (8.43)

and noting that ¥’ = ¥, the equation of motion becomes

i e —kx' fe s

Frmm Bg. (843), x° is the displacement of the particle relative 10 the carl
Eq. {8.44) says that tn an obsarver on the cart the parricle exhibits simple har
momie mation, as would be expected on the primciple of equivalence in Gatitean
relativity.

Having Tooked at the nature of the metion, let us consider the Hamiltopian
formulation. $ince x iy the Camesion coordinate of the particle, and the potential
does not fnvolve ized velocities, the ittonian retative 1o x is the sum
of the kinetic and potential energtes, that 18, the toral energy. In funciional form
the Hamiltonian is given by

Z
Hixpom T ey = %ﬁ— + g(x —wr)’. (3.45)

The Hamiltonian iy the wotal energy of the system, but since it 35 expheidy a func-
don of t, i is met conserved. Physically this is pnderstandable; energy must fiow
inter and out of the “extemnal physical device™ to keep the can moving uaiformdy
against the reaction of the oscillating particle.*

Suppose now we formated he Lagrangian fom te Kant i@ torms of the ol
ative coordinate x”. Fhe same preseription gives the Lagrangian as

2 md k't
Ly o b o
{x, &7 3 +miwy 2 7

{8.46)

n setting up the comesponding Hamillomian, we Dute there is now a torm linear
in £, with the single component of & being mup. The new Hamilonian is now
7 —m?® ket
- 847
2 2 2 Ban

Hx py =
MNote that the last torm is a constant involving neither x” nor p'; it could, if we
wished, be dropped frum H' without affecting the resultant equations of motion.
Now H' s nat the total enesgy of the system, but i jv conserved. Except for the
Fast term, it cas be easily identified 45 the tofal energy of mation of the particle
relative to the moving cart. The two Hamiltonian's are different in magnitade,

PR gaoiher way, the MVIDG S oDsttes 4 tme-dependent consmhs on e paricls, sod the
fonce of the conuraint doss do work i e (ol viztusl) displacement of the sysemn.
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{0

FIGURE 3.2 Vibeating dumbbelf voder two conditions: {a) frealy oscillating, und (b) os-
cyllating with mass ma kept 8 4 constant velocity

time dependence, and functional behavior, But the reader can sastly verify that
both tead to the same motion for the particle.

Additional insight nto the problem of the mass can previoasly discussed can
be gained by constdering a dumbbell of two misses commected by a spring of
comstant &. We shalf consider the case where the center of mags of the dumbbelt
is in constant metion at a speed vy afong the direction determingzd by the spring
and efiow oscillations of the masses enly along this direction. This is shown in
Fig, 8.2, where C-O-M denotes the center of mass.

The durnbbell iz made to vibrase while its center of mass has an initial velocity
v It @il continue with this velocity with vniform translanonal motion. This
transiations] motion will bave no effect on the oscillanons. The motion of the
center of mass and the motion relative to the cemer of mass separate as they do
in the Kepier problem. Oneg the motion is staried, energy is conserved and the
Harmiltonian is the il conserved energy. The situation i3 different if the mass
my moves at the constant speed wy since 2 periodic force is applied. The center
of mass and the mass my then oscillate refative ta mz. 3ince a changing extemal
force mst be applied 1o the system (o keep mp at the constant velocity ug, the
Hamiltonian is vo lovger conserved, nor i the Hamiltonian the total energy.

ROUTH'S PROCEDIURE

Tt hns been that the Hamilmni fon is ot particelarky helpfol
i ®e direcr solation of mechanical prcb!ems Often we can sofve the G first-
order equations only by elininating some of the vartabley, for example, the p
variables, whick speedity kads back to the second-order Lagrangian equations of
motion, But an important exception should be neled “The Hamiltonisk procedure
is especially adapted to the of dving cyclic dil

Let oy consider the siteation in Lagrangian formubation when some coordmale
3y dq, i cychic. The Lagrangian as a function of 7 asd § can then be writien

L= Ligy,..., gt Gr-.e
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All the ized velocities st occor inthe L ian and in general will be
fonctions of the time. We still have to salve a problem of n degress of freedom,
even though one degree of freedom corresponds fo 2 cyclic conrdinate. A cyclic
coogdinale in the Hamiltonian formulation, on the other hund, truly deserves its al-
rernative description as “ignorable.” for in the same sitnation p, is some constant
e, and H has the form

Hoe g, ognmti Proc- Bomts @it

In effect, the Hemiltonian now describes & problem invelving only m - 1 coordi-
nates, whick may be solved completely ignoriag the cyclic coordinate except 2s
it is manifested in the constant of integration w, 1o be derermined from the inital
conditions. The behavior of the cyckic coordinate itsell with tme is then found by
integrating the equation of motion

. _AH

4 = G

Fhe ud wes of the Hamilton latien i handling cyclic i

may b ined with the 1 gian co i for i i by
a method devised by Routh, Essentially, we cany out a mathematical transforma-
tion from the g. § basts 10 the 4, 77 bass ply for these coordinates that are cyclic,
obtairing their equations of metion in the Hamiltonan form, while the remain-
ing coordinates are governed by Lagrange equations, I the cyclic coordinates are
labeled g4, ..., gn, then & new function R (known as the Routhian} may be
introduced, defined ag

)e
R{gye. o ul 91,00es o3 Prabe. ool T3 Z fds— L. {B4E)

(LTRSS
which is equivalent to writing
Rigy, o us 100 i Papde o o 1)
HeyelkPct1o- -0 Pad = Lnoncyet{g1e .0 G5t Gta e i) (8.49)

1t is easy to show for the 5 bl di the Lagrange
4 {3R aR
bl vl el R LY Il T 8,50,
dr (ﬂqr) A ' ¥ 850

ave satisfied, while for the n—s ignorable coozdinates, Hamilton's equations apply
a5
R . BR
Hmwp.-o. and 5}:?“‘3" fe=stl (8.5
A simple, almost trivial, example may clarify Rowth's procedure and the phys-
ical significance of the quantities involved. Consider the Kepler problem investi-
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gated in Section 3.7, that of 4 single particle moving in a plane under the influence
of the inverse-square centval force F(r) derived from the potential ¥V (r) = ~f/¢®.
The Lageaigian is then

M am R
L-_z—(r «%rﬁ)-ﬁ-;;

As noted before, the ignorable coordinate is @, and if the constant conjugite mo-
menttn i3 denoted by gy, the comesponding Routhian (8.49) is
2
. Pa 1 ., F
Bo(r P, pa) 2 e o ST e e
. pol Tl I T
Physicatly we see that the Routhian is the equivalent one-dimensional potential
Vi(r) mimer e kinetic energy of radinl motion.
Applying the Lagrange equagion (8.50) to the noncyclic radial coordimate r,
we oblain the equation of motion (3.11)

2
B mk
e R R (832

Apolying Hamilton's equation (855} to the cyclic variable #. we obiain the pair
of equationy

om0 and D i .59

whose solution i8 the same a5 Fg. (1.8},
P = mr¥f =1 = copgtant.

Typicaily, Routh’s procedure doey not add o the physics of the anubysis pre-
setted eartier in Chapter 3, but it makes the analysis more automatie. In compli-
cated problems with many degrees of freedom, this feature can be a considersble
advantsge. it is not surprising therefore that Routh's procedure finds its greatest
wsefulbess in the drect selution of problems relating to enginecting applications.
But 25 a fondamental entily, the Roulhian is a sterile hybrid, combining some of
the features of hoth the Lagrangian and the Hamiltonian mctums i-or !ha deus!-
opument of vatious formalisms of clagsical henics, the
formulation is more fruitful,

THE HAMIETONIAN FORMULATION OF RELATIVISTIC MECHANICS

As with tba Lagrangmn pictore i special relativity, two attimdes can be taken ©
thie Hy lation of relativistic hanics. The first makes no pretense
at & covariant description but instead works in some specific Lorentz or inertial
frame. {ime as measurad i the partouiar Loreatz frame is then not treated on 2
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comenen basis with other coordinates it serves, as in ponrelativistic mechanics,
2 3 p describing the evolution of the system. Nonetheless, if the La-
sangian that leads to the Hamiltontan is itself based on & relativistcally invariaat
physicat theory (for example, Maxwell's equations and the Lorentz, force), then
the resubtant Hamiltonian picture wilf be relativistically correct. The second ap-
prosch of course attempty 4 Pully covartant description of the Hamiltonian picture,
but the difficulties that plagued the comrespending Lagrangian appreach (ef, Sec-
don 7.9) are even fiercer here. We shall consider the noncovariant method fisst.
For a single-particle Lagrangian of the form of Eq. (7.136),

Lo —me ] - v,

we have already shewn that the Hamiltonlan (in the gaise of the energy function
A} is the totat energy of the system:

H=T4+V

The energy T can be expressed in terms of the canonical momenta p, (Bg. 7.139)
through £q, {7.38)+

= ’,Zﬂl + mzc‘,
50 that a suitabde form for the Hamifonian i

Hom o\ fpt? b mict 4 V. {8.58)

When the system consists of a single particle moving in an slectromagnetic
field, the Lagrangian has been given as (of. Bg. (7.141))

Lo eme? J1 B2 4 gA v~ g,

The term in £ Hinear in the velocities does not sppesr exphicitly in the H
{cf. Eg. {8.54}). us we have scen, whercas the first term leads to the appearance of
T in the Hamilionian. Thus, the Hamikorden is again the totsl purticle energy:

H=T+4y3q. (3.35)
For this system, the canonical momensa conjugae 1o the Cartesian coordinates of
the particle are defimned by {cf. Eq. (7.142)}

p=mt g A

0 that the relation hetween 7 and p' is given by Bq. (7.168), and the Hamiltonian
has the final form.

*In this section we nse T for the taoton onergy (pc) phis the rest enecgy Pre?} to avold confuseng it
with the ol epergy 7 4 V-
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Hoa (g~ gAP R+ mZet + g, (8.56)

i shonlkd be emphasized again that B hese is the vector of the canonical momenta
conjugate ta the Curiesiun position coordinates of the paniicle, We may aise now
that {# —~ g¢)/c is the zerath component of the 4-vector

ma* 4 gAY

(ef. Bgs. (7.27), {7.38"), apd (7.166)). While the Hamiltonian (8.56) i uot ex-
pressed in covarfant fashion, it does have a defini ransformation bekavior nndes
& Lorentz transforrsation as being, in some Lorentz form, the zeroth component
of a 4-vector.
i & covarant approach 1o the Bamiltonian formulution, tine rast be weated ot
the sarne Tashion as the space coordinates; that is, ime must be tiken as one of the
ical di having an iated conjugale ‘The founda-
tons of such a extension of the dimensionality of phase space can in fact be con-
stracked even 5 nonrelativistic mechanics. Following the pattern of Section, 7.1¢,
the progress of the system point along it rajeclory in phass space can be marked
by some parameter 8, and £ “refeased,” so o spedk, to serve s an additional co-
orfinare, T derivatives with respect to @ are denoted by a superscript prime, the
taprangian in the gy, ..., gai 1) configaration space is (cf. Hg. (7.159)

Mgty = L (q. & r). (57

The momenturs conjegate 10 { s then

"aL 2
gt =By G (558
:

The momentum conpugae lo the time “ceordinate” is therefore the negative of the
ordinary Hamiltontan * While the framework of this derivation is completely non-
relativistic, the result is consistent with (e identification of the tme component of
e d-vector momentim with K¢, As can be seen from the definition, Ey. (8.2),
if ¢ is multiplied by 2 canstant &, then the conjugate momenturs is divided by o,
Hence, the canonical momentus conjugate 1 of 15 H/e,

*¥he remesning mowenta, are snchanged by the shift from ¢ to 4, as oo be seen by avaliating the
cutrspimding dorivative

o BL aL |

@al sgmz’(ﬁ‘—,)an.
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Thus, there seems o be a nawral route available for constructing A relativis.
ticatly covariant Hamiltonian, Bul the route turns out o be mined with booby
traps, It will be weealled that the covariant Lagrangian used to start the process,
Bq. {7.159) or Eq. {8.57). is homogenesus in firs degree in the generalized ve-
locities ¢, and for such a Lagrangian the recipe described sbove for constructing
the Hamiltonian formutation breaks down irreparably. f £ 3s of type L), the cor-
responding Hamiltonias, call it Helg, 1. g. pr). Is identically zero!

Forlnately, there does aot seem to be any compeliing reason why the covari-
ant L ian has to be b in the first degree, at least for classical
selativistic mechanics. It has already heen seen diat for a single free pamicle the
cervariant Lagrangian

Atr Py = fmaut

leads to the correct equations of motion. OF covrse the four-velocity components,
«#, are stili not all independent. but the constraint can be meated s a “weak con-
ditien” {n be imposed only after all the differentiations have been carried thrugh.
There is now no difficulty in obtaining a Hamiltonian from this Lagrangian, by
the samme roule as in nonrelativistic mechanics; the resalt is clearly

"

H, "—;:—. (850

For a single paricle m an ic field, a 1ant L fan has been
found previousty: (cf, Ba. (7.165))%

AfH, ) = fmua 4 gt Ay (n), 147y

with the canonicat momenta (of. Bq. (7.167),
Pu b A (7.149)

In the comesponding Humiltonias, the teom lineas in u,, does not appear ex-
plicitly in the Hamiltonlan, and the remaining Lo part In terms of the canonical
MmoInenta is

(pu — g Au) (o -~ g4%)

H. = T

(360
Both Hamihonians, Fgs. (8.59) and (8.60), are constant, with the same value,
e/ 2, bl tn obtain the equations of motion it is the functional dependence o
the d-vectors of position and moment: that 7 mnporant, With a system of one
particle, the covariant Hamiltonian leads to eight Hrst-order equutions of motion

AThe Legendre transfomateon provess 15 caversible: Given o Hamidoman we can obtun the comre-
sponding Lagmnglan fuf Brenvaron 1) Bt the difficulies alto arise 1n sither dircoton 1 2 goen

e st degres in th them it i qoe posibio w
find 5t nqluvaicm Lagungian
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de¥ aH,  dpY B

3.1

dr T & T e

We know that these fons cannot be all independent. The space parts of
Eas. (861} pbviousiy lead to the spatial equations of motion. We shonld expeet
therefore that the remaining two equations el us nothing new, exactly &5 in the
Lagrengian case. This can be verified by examining the v = 0 equations in some
particnter § orentz frame. One of them is the constitative equation for p®

e S = (7o)

oF

o1 e
=T +ad) = 8.62)

4 general conclusion that has been noted before, The other can be written as

1 dp® 1M,

[T~ ptodr ¢ ar

o
dd BHL,
ALY PR i !
g 3 5 8.63)

As with the covariant Lagrangian formulation, we have the problem of finding
suitable covariant potential lerms i the Lagrangian o describe the forces other
than slecromagnetic. Tn mwitiparticie systeras we are confronted in full measure
with the critical difficultits of heluding interaciions othier than with fields. In
Hemittonian Ianguage, the “no-interaction” theorem already referred to in Sec-
aon T.10 says that only in the absence of direct particie interactions can Loreniz
invariant systems be described in terms of the usual position coordinates and cor-
responding canonical moments. The scope of the relativistic Hamiltonian fame.
work is thezefore quite limited &nd so for the most par we shall confine ourselves
to nonmlativistic mechanics,

8.5 M DERVATION OF HAMILTON'S EQUATEONS FROM
A VARIATHONAL PRINCIPLE

Lagrange's equations hive baen shown to be the consequence of & variational
paisciple, namely, the Hamilton's principle of Saction 2.1. Indeed, the variationa)
method is often the preferable one for derfving Lagrange’s equations, for it is
applicable Lo types of systems not usaally included withis the scope of mechanics.
1t world be similarly advantageous if 2 vaniational principle could be foand that
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Ieads directly to the Hamilton’s equations of motion. Hamilton's principle,
n
Hléﬁf Ldi =10, (8643
"

Jestds itself o this purpase, but as formujated originafly it refers to paths in con-
#yuration space. The first modification therefore i3 that the insegral must be evals
aared over the trajectory of the system point in phase space, and the vagied paths
smast be in the neighbarbood of this phase space trajectory. In the spirit of the
Hamiltonian formulation, both ¢ and p must be teated as independent coordi-
nates of phase space, to be varied independently. To this end the integrand in the
action integral, Bq. (8.64), must be expressed as a function of hoth ¢ and p, and
their time. derivatives, through Eq. {£.15). Equation (8.64) then appenss a3

5= Bf'? (g~ Hig, p. 0} dt = 0. (3.65)
gl

4s a variational principle @ phase space, BQ. (8.65) is sometimes referred w as
the medified Homilion's principle. Alibough it will be used most frequenty in
connection with transformation theory (see Chapter 9}, the magn interest jn it here
is 1o show that the principte Feads to Hamilton’s canonical egoatioas of motion.
The modified Hamibon's priseiple v exactly of the form of the variational
problem in a space of 2n dimensions considered in Section 2.3 {cf. Bg. (2. 143k

.
&1 mﬁ] Jla g, p phde =0, (8.06)
n

for which tha 2 Evles-Lagrange equations are

diary_ & e

Z (E) oy =0 je3,..n (2.67)
LAY

dr (am) T B9

The integrund f as given in Eq. (B.63) contains §; onty through the p, g, term,
and g, only in £, Hence, Hqs. (3.67) Iead 1o

a8
PR (8.69)

Ot the othey haatd, thexe is fo explicit dependence of the integrand in Eq. {3.65)
on f . Equations (8.68) therefore reduce simply to

§y e . &.76)
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Eguations (3.69) and (8.70) are txactly Hamilton's equations of motion, Egs.
{8.18). The Euler-fagrange equations of the modificd Hamilton’s principle are
thus the desired canonical equations of motion.

This derivation of Hamillon's equations from the veriational principle is so
brief as o give the agpesrance of 8 sleight-of-hand wick. One wonders whether
something extrz has been snesked in while we were being misdirected by the
mapician’s patter. ¥s the moidified Hamilton's principle equivalent to Hamilton's
principie, or does it comtain some additional physics? The question is Jargely i
refevemt; the primary justification for the wodified Hamilton's principle is that &t
Ieads to the canonical equations of motion in phase space. After atl, no further
argament was given for the validity of Hamdlton's principle than that it come-
sponded to the Lagrangian equations of motion. 8o long as Hamiltenian can be
consimvced, the Legendre Sansformation proceduse shows that the Lagrangian
and Hamiltonian formulations, and therefore their respective variational prinei-
ples, have the same physical content,

One gueston that can de ralsed however i3 whether the derivation puts limita-
tions on the variation of the trajectory that are net present in Hamditon's prnciple.
The variational principle leading to the BulerE agrange equations is formutated,
as in Section 2.2, such that the variations of the indepsndent variables vanish at
the end points. in phase space, that would require 8g, = 0 and 8p, = 0 at the
end points, whereas Hamifton's principle roquires only the vanishing of dg; un-
der the same ef A look at the derivation as spelled out in Section 2.2
will show however that the variation is required to be zero at the end poinis oaly
in order to get 1id of the integrated terms arising from the variations in the ime
derivatives of the independent varisbles. While the 7 function in Bg. (8.66) that
corresponds 1o the modified Hamidlton®s principle, Bg, (8.65), is indeed a func-
woa of §;, there is no explicit appeatance of P, Equations {8.68) and tierefore
(2,70} follow from Eg. (8.65) without stipulating the vasiations of p, at the end
poinis. The modified Hamilton's principle, wih the integrand L defined in terms
of the Hamiltonian by Ba. (8.19), Jeads to Hamillon's equations ander the same
variation conditions &5 those i Hamilton's pinciple.”

MNonefheless, there are advantages (o requiriag that the varied paths in the mod-
ified Hamilton's principle seturn to the same end polngs in both ¢ and p, for we
then have u more generatized condition for Hamilton's equations of motion. As
with Hamihon's principle, if there ie no variation at the end points we can add a
rotal thme derivative of any arbitrary (twice-differentiable) function Fig. p, )} to
the integrand without affecting the validity of the varlationat principle. Suppose,
for example. we subtragt from the ntegrand of £q, (8.65} the quantity

43t muy ke objected ot g and p cannot be varied sndependentty, becayse the. defimeg Frs {8 2} Kok
pwil g s § Wi could aol ther have # varistion of g (end §7 witholtt 4 cotresponcdityg variatine of
P But this satirs objection & complelaly ot vriance with e maeat .k die spirit of the Hamilorsn
pictaes Oee the Frarmiltesian farmaaian has been sor up. qs (.23 frvsm e pare ofir The momenia
have been ehevaed & the Swius of imdepoadent vanables, an an equal basis with the courditesics and
conmectod with them and the tme only tirougl the modan of the equations of mottor ikemsetves and
ot by any 2 prion defining riasionship
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The modified Hamillon's principle would then read
&3
5] E-fign — Hig o p, 1)y di =0 (BI)
1

Here the f integrand of Eeq. (3.66) is 2 funcrion of p. and ir is easily vesified that
the Faler-Lagrange equations (3.67) and (8.63) with this f again comespond to
Hamilton's equations of motion, Bqs. (K.18), Yet the integrand in Bg. (B.71) is
nol the Lagrangian nor can it in geoeral be simply related to the Lagrmogien by a
point ransformation in configaration space. By restricting the variation of both ¢
anid p to be zero al the end points, the moditied Hamitwon's punciple provides an
independent and general way of seuing op Hamilton's equations of motion with-
onf a prior Lagrangian formulation. If you will, it does away with the necessity
of 4 linkage between the Hamiltonian canonical veriables and a corresponding
Lagrangian ser of generalized coordinates and velocities. This will be very impor
tanl to as in the next chapter whare wz examine transformations of phase space.
varizbles that preserve the Bamiltonias form of the equations of motion.

The requitement of independent Vﬂr;&unn of g and p, go essential for the above.
derivation, highlights the fi between the Lagrangian and
Hamiltonian fnrmulnuans Neither the coordinates ¢, nor the wmomenta p, art
mbe considered there a3 the mose fundamental sat of variables; both are equally

dependent. Only by dening the field of 1 dent varkibles from m to 2n
quantities are we enabled to obtain equations of mouun that are of first order. In
4 sense, the names “coordinates” and “moments” are anfortunate, for they bring
to mind pictures of spatial cocrdinates and lnear, or 2t most, angubar mosienta. A
wider mezning must now be giver 10 the serms. The division into coordinates and
MOMENtE corresponds 1o no more thin 4 separation of the independent variables
desczibing the motion into two groups having an almost symmetrical relationship
to each other through Hamilton's equations.

THE PRINCIPLE OF 1EASY ACTION

Another variations] prizciple iated with the Hamiltowi: ation s
knowa as the principle of leasr action. It involves & new type of varlation, which
we shall cali the A-varation, requiting detailed explanation. In the S-vatiation
provess used in the discussion of Hamilion’s principle in Chapter 2, the varied
path in confignration space alweys terminated at end polnts represeating the
system configuration at the same time 1 and ; as the correct path. Tb obtain
Lagrange’s eguations of motion, we also required that the varied path rersm
to the same end points in configeration space, that i3, g,61) = g, (7z) = 0,
The A-variation is Iess constrained; in general, the vatied path over which an
integral i evaluated may end af different times than the correct path, and there
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may be a vasation in the conrdinates at the end points. We can Bowever use the
same parameierization of the vagied path a4 in the §-variation. T the notation
of Section 2.3, a fanuly of pessible varied paths iz defined by Ametions (of. Eq.
(2150

g7, e g (7, 0 - ey, 8.7

where o is an infinitesima? parameter that goes to zero for the comect path, Here
the fanctions 7; do not necessarily have ko vanish atthe end paints, sither the orig-
inat or the varied. ATl that is required is that they be continuous and differentiable.
Figure 8.3 iilusirates the correct and vavied path for & A-variation n configuration
space.

Let us evaluate the A-variation of the action ingegral:

i1 bl L
Af F] E[ Efeydt - f Liyde, (8.73)
Bl kA i

whers [ (e} means the integral is evalusted along the varied path and L{0) come-
spondingly refers fo the actual path of motion, The variation Is clearly composed
of twa parts. One arises from the changs in the Bmits of the integral; to first-order
Infinitestonals, this part is simply the integrand on the actoat path times the differ-
ence in the Helts in me. The second part is cansed by the change in the integrand
on the varied path, but now between the same time Hwits &5 the original integral.
We may thersfore write the A-variation. of the action integral as

&3 i
af Ldt = Li)an — Liz) Aty +[ SLdr. fERE
f n

Here the variation in the second imtegeal can be cammied oot through & parame-
terization of the varied path, exactly as for Hamilton’s principle excepe that the

4

?4

FIGURE 8.3 The A-variation in configoration space.
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variation ig ¢, does oot vamish at the end poirts. The end point terms arising in
the integration by parts must be wtained, and the imegral term on the dght appears
s

i NPAL  d (3L (I
é'Ldrzf [w"ww(—r)]ﬂ dr + — 8
L AR EPRAETY L R P
By Lagrange's equations the quaatities in the square brackeis vanish, and the A-
variation therefore takes the form

i
A] Lt = (LAf+ pig)[]. (8.75)
"

e Exg. (8.75), 5q, refers to the vadation i g, at the original end point thues 1 and
¢z We would ke to axpress the A-varistion in terms of the change Ag, between
g, ar the end points of the acrual path and g, at the end points of the varied path,
incleding e change in end poin times. It is clear from Fig 8.3 that these oo
vatiations are connecied by the relation®

D =By + AL {8.761

Henge, Bg. (B 73) can e rowritien as

2
Af L= (LAf = pedi A+ prlsa)f
bl

.
A f " Lt = (mad - HADE. BN
1y

To obtain the principle of least actios, we restrict our further considerations by
three imporranr qualificarions:

1. Oaly systems are considered for which L, and thesefore M, are not explicit
fonctions of e, and in consequence F iy conserved,
2. 'The variation is sach that & is conserved on the virled path s well as on
the actusd path.
3. The varied paths are further limdted by requiring that Ag; vanish arthe end
poins tut not Af),
“Equanton (B 76} mey be denved Farmaily fram the parametss fom. B, £8.72), of the vannt puh
Thus, 2t the ugper end pomt we tse
A =gl +an.ab e g B =gl + A8 ~ (0,8 ol + Ak
which 10 first avder 10 small quantiues o and An 1
Ag; (2 = i{2hde + 45 (A,
ehich i< what Eq. {8 76) preduts
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The nature of the resultant variation my be Husirated by noting that the varied
path sasisfying these conditions might very welt describe the same curve in con-
figuration space as the acteal path. The differeace will be e spead with which
the system point traverses this curve; that is. the fanctions g, (1) will be altered in
the varied path. In order then to preserve the same value of the Hamiltonian at alt
polnts on the varied path, the tmes of the end points must be changed. With these
three gualifications satisfied, the A-varation of the action jategral, By, (8.77),
reduges to

™
Af Ldr = ~H(An — Af). 8.7%)
#
Burt under the same conditions, the zction integral itself becomes
n B
f L af P it — Hin — 1),
f f
the A-variation of which is
1 ]
Af Ldi= Af edy B0 — H{AL — A {8.79)
" 1
Comparisos of Bgs. (8.78) and (8.79) finally gives the principle of least acrion:™
]
A f podp dt = 0, (8.30)
n

By way of caition, note that the modified Hamilton's principle can be written
in & forrn with & seperficial resemblunee to Eqg. (.80}, If the trajectory of the sys-
temn point is described by & parameter &, as in Sections 7.1{ and 8.4, the modified
Hamilton's principle sppears as

8y
.s[ {pedy — B dB = 0, 331
0

T will be recalled {cf. footnote ont p. 351) that the mometa p, do not changs
uader the shift from ¢ to 6, and that ' = g/, Further, the momentum conjugate
tar is ~#H. Henge, Fq. {8.81) can be rewritten as

8z kb
a]s 3 pajd =0, (8.52)

(Y

where ¢ has beem denoted by gt These should however be e confusion be-
vween Eq. (8.82) and the principle of least action, Equations (8.82) invelve phase

+fhe mtegret in £q {8.80} is usually referred o in the alder biceatuse a the whon. of acuns salegral,
and the find edition of i baok Foftewed the same qirachioe. 1 i naws crstemary 1o cofer 1o e intogral
1 Hamilien's prncile s the action, ant we have aceepted this asage here. Semetimes the nuegratin
By, (8.80) i designated us the abbreviared action
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space of (In -+ 1) dimensions, as is indicated by the explicit summation to § =
n + |, whereas Bg. {8.80) is in the usval configuration space, But most important,
the pencipie of least action s in terms of & A-variation for constant M, while
Eq (8.82) empioys the §-variation, and # in principle could be a function of tme.
Beuation {8.82) ts nothing more then the modified Hamilton’s principle, and the
absence of a Hamikonian mezely reflects the phenomenon that the Hamiltonian
vanishes identically for the “homogeneous problem.”

The least action principle itself can be exhibited in a variety of forms. In non-
relativistic mechanics, if the defining equations for the generalized coordmates do
Rot imvolve the dme explicitly, then the kinetic energy i3 2 quadratic funcion of
the &, {ef. Bq. (1.7D%

T = 3 Mutgdgan. (8833

When in addition the potential is not velocity dependent, the cancnical momenta
are derived from 7' only, and in consequence

pudy =27

The principle of least action for such systems can therefore be written as
12
Af Tdr =06, {8.84)
()

H, furthey, there wee no exteral forces on the system, as, for example, & rigid body
with 8o net applied forces, then T iy conserved along with the wotal energy . The
1east action principle then wkes the special form

Blry =7y =0 {8.35)

Equation (8.85) states that of all paths possible betwesn Two points, consistent
with conservadon of energy, the sysigm moves along that particstar path for which
the time of transit is the least {more strictly, an extremumy), In this form the princt-
ple of {zast action mealls Fermat's principle in geometrical optics that a light ray
travels Detwesn twe peints along such 4 path that the tirse taken is the feast. We
discussed these constderations in Section (-8 of the Second Bdition whem we
censidered the connection batwaen the Hamiltontan formalation and geometrical
oprics.

i Section 7.4 we discussed the infinilesimal interval in & metric space giving
the inferval as

de® = g vy’ 7323

where g,,, was the metzic of @ possibly curvilinesr space and ds® was the Interval
traversed for displacements given by 4x#. We can do something emsirely simiksr
here whenever T is of the fore of Eg. (2.83). A configueation space is therefore
cuonstructed for which the M 4 coefficients form the metric tensor. In general, the
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space will be corvilinear and nonorthogonal. The element of path length in the
space is then defined by (ef Bg, (7.33))

(o = My dy; dg (8.86)

so that the kinetic eacrgy has the form

1 7do\?
=z .87
T z(m)‘ @5n

or equivalently

dl = (R85

~2T '

Equation (8.88} enables us o change the variable in the abbrevisted sction
infegral from ¢ to p, and the principle of least action becomes

23 ]
Af Tt Qs Af T {2ds,
i i
or, finaity
L3
A[ VH - Vigide =6 £8.59)
o

Bquation (§.89) is often called Jacobi's forn of the least action principle. 1t now
refers 1o the path of the system point in a special curvilinear configuration space
characterized by a metric tensor with glemants M, ;. The system point haverses
the path in this configuration space with » speed given by 3T, If there a1 o
forces acting on the body, T is constant, and Jacobi’s principle says the syster
polat tavels along the shortest path Jength in the configuration space, Equiva-
lently stated, the motion of the system is then such that the systemn poit travels
along the geodesics of the configuntion space.

Nate that the Jacobi form of the principle of teast action Is converned with the
patk of the system point rather than with its motion in fime. Equation (8% i3 a
statement sbout the alesnent of path length do; the ime nowhere appears, since
£ is & coustant and V' depends upon g; only. Indesd, it it possible to uss the
Jacobi form of the principls to furnish the differential equations for the path, by a
procedure somewiat akin to that leading to Lagrange’s equations. In the form of
Fermat's principle, the Jacobi version of the principle of least action finds many
fruitf} apphications in geometrical optes und in electron opties. To go into any
detail here would Jead us koo Far afield.

A host of other simitar, varigtional principles for classios! mechandcs can be
derived in bewildering variety. To give one example owt of many. the principle
of east action leads immediately 10 Hertz's principle of least curvature, which
states that a particle not under the imfluence of external forces mavels along the
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path of least curva(ure By Jucobi” s gnm:iplc suck a path st be & geodesic,
and the ieal property of is one of the well-known
characteristics of a geodesic, It has been pointed out that varialional principles in
themsel ves contain 1o new physical content, and shey ravely simplify the peactcat
solution of 2 given mechanicst problem. Their value Hes chiefly as starting points
for new formulations of the theoretical stuctere of classical mechandes. For this
purpose, Hamikon's pricciple is sspecially fruitfil, aud to a lesser extent, so also
is the principle of Jeust sction.

DERIVATIONS

1. {2 Reverst the Legeadee wmnsformation to devive the properoes of Lig;, 4., 1) from
Hig,, p,. 1}, weaung the 4, 35 independent guantities. and show that ut leads 1o
the Lagranghan cquations of motion,

{b) Ry the same procadure fnd the equations of motion in terms of the fenctiot

Lip. .ty m —Byg — Hig. p.1)-

13

It bt been peeviously noted that the total gme derivawve of & fanction of 4. and ¢
can be added (o the Lagrangian withou! changing the equations of imotion. What does
such aa addition do w the capenscal momanta and the Hambionian? Show that the
expuations of motion 1 tonns of the aew Hamilonian reduce to the origmal Brrmilton's
siuations of metion

b

A Matontan-iike formulation cap be set up in which §; and f, are the mdependant
~variables with 2 “Hamikoran” G{g,. A, (). 1Hewe py i defined in terms of g, 4, in
the usual cranner T Siantiug from the Lagrangian formulaton. show in detaif hew to
Gontruet Gy . ¢, and derive the corresponding “Hazmlton's equation of metien.”

&=

Show that 1f A, are the cigenvaloes of 8 sguare matrx. ther iF the secaprocal famx
exiats it bis the eigenvaues 17!

L

Verify thit the matrix ) has the propenttes piven in Eqs. {8.38c) and {8.38¢} and that
w5 daarminant has the vatue 41,

&

Shonw that Humiison's prmciple Can be wrilten a5

2
5 f PEO 3+ i dr =
I

o=

Versfy thai hoth Hamubionians, Bq. (8451 angd By, (8.47). lead to the sams motion &5
described by Eq. (8.44)

Show that the medriied Hardhon’s prnciple. in the form of Bq. {£.71). Jeads tn Hamd-
108's equalions of mation,

P

Lt

{€ rhe eonopical varables are not it independent, tut are connected by auxilary con-
dhitions of the form

W gy, pyat) = 0.
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show that the canonical equations of motion can be wriken

i BH i
Ekh =d gk e
where the Ap are the ined Lagrange i The fon of the
Hamifeonian equatioss w which 1 is 2 canonical varisble {5 a cese in point, since &
relation exists between a, 4 ¢ and the other cananical vartables:

Higp - geets P o) e =0

Show that wy & esult of these circumsiances the Zn -+ 2 Hamilton's equations of this
formutatian cun be reduced to she 3n ordinary Hamilion's squations phos Bg. (8.41)
and the refaton

N d1
a8
Note that while these results are of the relath covariant B
farmmsation, they have been srmved st eatirely withn the framework of apmetativistic

mecharmics.

BB, Assume that the Lagrangian is a polyeomdal i ¢ of oo hegher onder shan quadrnic,
Convest tie 2n equations (823 and (5.1}
14
pEE MR

mia 20 eguations for f, wnd g, in tevms of ¢ and p, vsing the matrix form of the La-
grangian, Show that these are the same egaatons 35 would be ohtatned from Hamst-
Bof's equations of motion,

EXERCISES

1L A particle ts cunflnzd to » one-dimensions] bax, The ends of the box move slawly
By stowly we the speed of the ends is small whes compared
farthe speed of the particie. Sobve the foltowiag using Lagrangtar formubation and thern
using the Baniitonian,
£a) if the reomentura of the parbele i3 py When de walls ane a distence xq apart, find
the momentum of the paricls A gy Iver time sssanng te collisions with the
walk are perfectly elastic, Al assume she motion it roarelativistic st all temes,
(b} Whes the walls are 2 distance « aparl, whit average external forcs st be applisd
to ench wall in order ko raove it 4t 3 constant speed?

12, Write the problem of centraf fome moten of two mass paings in Harmiltorssn formu-
lation, elrmmanng the cyclic variables. and redicing d problem o quidenes,

13 F I3 daubh ki) blem it} d by Fagr. b4, m s of the Haom)e
worman and Hamalton's equations of motion. 1t is suggested that you find the Hamilo
iy both duresiy from £ wnd by By, (827,
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.

.

s

28,

The Lagrangian for 4 syster cas be wrilten as
B S N T
L=ai +br+cxy4-fy iE 4+ gk k\/::nw

wherea, b, e, f, g, and k e constanty, What is the Hamititoman” What quantsics are
conserved?

A dyneemical sysiem Has the Lagnagan

[¥3
LF o
J A SR, I S .
4 ﬂ+bq§+ 9] T 8192

where @, b, ky, and &7 are consents, Find th fons of motion 1w the
formutatiarn.

A Hamiitoman of one degree of freedom has the form
z ia?
=P et B2 2 ety FE
H_Ea bype™ + g e + b YA

wheze 0, b, o, and & aT8 constants.

{=) Fisd s Lagrangan correspanding to this Hamilonian,

£b) Find an equivalont Lagrangian that is aot explicitly dependent oa time.

{¢) What iv the Hamiltonian corresponding to this second Lagrangiag, and what is
the relationship b e twa ikonians?

Find the Hamilonan for the system described w Exsreise 19 of Chupter 5 and obtan
Hamilton's cquations of motion for the sysiom. Use Doth the direct and the 1ty
approach i Snding the Hasmilionian.

Repeat the praceding exercise exoept this tme idiow the pendulien to move in tiree
dimensions, that ts, aspring-loaded spherical pendulum, Exther the dioct ot e mmatix.
approach may be used.

The point of suspension of 3 seple pandulum of lengsh 7 aied winss o 3 constramed to
move b & paaboli 2 = ax? i tie verticat plane. Derve 2 Hamiltosian governing the
matiop of the perduluem and its point of suspension. Obtatn the Hamilton's eguations
of motian.

¥

Ohtan Hamittan's equations of mofon for s plane pepdulum of leagth ¢ with mass
point m whose eadioe of suspension rofates priformiby on the clrcamferencs of a virti-
cat cule of radivg a. Destribe physicelly the nature of the canoaical momeotum and
the Hamiléanian,
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2E. (a) The poidt of suspension of 2 plane simple pendulum of mess m ond tengsh [ iy
constrained 10 move glong 4 homzostel track and is comected to 4 point on the
circwmiference of a eoiform Avwheel of mase 8 and radius ¢ theongh & mass-
Tews connesting rod alse of lenprh «. a5 shown in the Aigure, The Aywheel romtes
#bout & center fixed on the track. Find a Hamditonian for the combined sysiem and
determine Hamiltan's equations of motion,

by Suppose the paint of suspension were moved afong the ack according to some
fanction of e 5 = F{). where x reverses st x = +2a (relative to the center of
the fiy wheel}, Again, find a Hlamskomian and Hamilion’s equarions of motion,
22, For the srrangement descnbed 1o Bxercisa 21 of Chapter 2, find e Hamilioniay of
the system, first in terms of coorditates in the lsborstory sysiem and then in erms
of coprdinates in the rotating Systems, What ane the conservation propestics of the
Hamultomans, and how are they related to the energy of the systerm?
23. {a) A particle of miss w1 and eloctric chargs ¢ moves m 2 plane under the inflvence
of 4 central force potential V{r) and a constant eniforn magnehc field B, perpen-
ewdar w the plane, gevarated By & stage vector potential

AmiBxr

Fuad the Hamittonizn using coordinates in the ohserver’s tnertial system.
(b} Repeat part (a) using coordinates rotaing relatwe in the previous cotrdingte sys-
tre ahout an axss perpeudicular o the ptane with an anguba mée of rowtion:

e

24, A cfarm cySinder of radius 2 and deasty 5 15 mousted so #s (o rotate freely around

avervent ais. O the outsldo of e cyBnder 18 # ngidly foxed aniform spival or hehoad
triack along which 4 muss point 7 can sitds withoat fricton, Suppose a particle starts

|
«
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25,

i rest at the oy 6f the cylinder 3nd slides down under the influence of gravity. Using
any set of coordinates, arrive al 2 Hanulonsan For the combined systern of paricle
ond cylinder, and salve for de motol of the system,

Suppose thae i the previous exervise the cylinder is constrained 1o rotaie umiformly
with gngWins frequency w, Set up the Bamiltonian for the particle in an inestial system
of conrdinates and lso in 2 sysiem fixed in the 7omating cylindec Identify the physicat
pature of the Hamiltoniun in each case and indheate whether or not the Hamilionians.
are conssyved.

A paricle of mass m can move @ one dimeasion under the influence of two springs.

connected to fixed painis o distaace a aparl (see figure). The spriags ohey Hooke's
taw ant have zepo unstretched tengths and force constants ky and kp, respectively.

g o

{2} Using the posinoa of the papticle from one fixed point as @i jeasratized o
ordifeite, find the Lagrangion and the cormsponding Hamiltonian, Is the cnergy
vonserved? Is te Hamilionian sonsened?

{1} Inroduce a new coordimate  defined by

ke

=g - b, b .
@ == g ~ bstnor, **H‘h

VWhat Is the Lagrangion in terms of @7 What is the comespending Hamultoman?
15 the erergy conserved? Is the Hameltoman conserved?

{a) The Lagrangan for & systenm of one degres of freedom can be wigen as
b= %f(q': sin ot 4 Ggen sin 2t + gra).

What s the comesponding Hamdlionian? Is it oquserved?
(8 Introdior @ sew coerdinute defiasd iy

0 = gsnar.

Find the Lograngtan w terms of the new coordinnia and the corresponding Hamal-
temion, I3 H conserved™

ansider  system of particles mtevacting with each ather though potentials depend-
Frg ordy o the seelar distances botwesn Do and aeted Upon by conservitive el
farees from g Gxed porst. Obtain the Hamilionian of the particle with respect to @
st of axes, with orlia ot the center of Foree, Which 16 rolaling mound some 8xis in
an inertial syswem with anguiar velacity w. What 15 the physicai significance of the
Harittonian in (s case® b #t 8 constant of e motion?
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29,

s

32

n,

M.

35

Chiain the Hamikonin of & heavy symmetricel wop with one point fxed, and from it
the Hanulion's equations of motion. Relate these o the equations of motion discussed
in Sewtion 3.7 and, m particutar, show how the sohitéon may be reduccd 1o quadratares,
Alsy use the Rovthian procedyre 1o eliminats the cyclic coordinates.

In Bxercise 16 of Chiagiter 1, there ia given the velocity-depeadent polential sssamed in
Webers s What id the ifronan for 4 single pawtiele moving under
the imfluence of such & porennal?

“Creat the outation of 4 “fusC” {op a3 an exsmple of wnall oscillations sbout steady
motion, here precession gt constant 8. Find the frequency of antation.

A symiperdcal top 1t movnted 3o that it pivots aboat its center of mass, The pivol in
turm 5 Ared o distance ¥ fom the cenwey of 3 borizontal disk frea o rotare about a
vertieaf axis. The top in stared with an inttial rotation about its Bgore axis, which is
indtialiy & on ongle 8y 10 the vertienl. Anplyze the possitle numtion of the top a5 &
case of smalh osestiations about steady moton.

e maes poines, 1y and mz, are connected by a suing that acts ax 2 Hooke's-law
spring with foroe constant £. Cae particle is free to move without friction on 2 smooth
boresnted plave surface, the otver bangs vertically dovwn from the siring thrangh 3
bole in the sarface, Find the conditon for stady motion in which the mass peini on
the plane motstes unifornly at constsnt distance from the hole. Investigale the smali
ogeHiation in the radigl distance from the hale, and ig the verticat hejghs of the seoond
particle.

A passible covariant Lagrangian for 4 system of one particie interacting with a field is

A hmmitgies + Dy, (Fa i,

whers Dy (Xu) =80 antisymmenn: field tensor and sy, 35 the antisvmmelnic angular
MOMeRtTI teRsar,

My = Mty — St
What are the canonical momeata” What is the coresponding covariant Hamiltoman?
Coasider a Lagrangian of the form
L= Jmiid - s,
whese the particle of mass m moves in one direction. Assume all constants we posi-
e
) Find the equations of meticn.
(b} Tawerpret $he cyuationy by giving & physical interpretation of the frces #ting on
the pariicle,
&) Find th doat d construct the Hamilgnian. Is this
a constant of the motion?
{d) If indtsatly x{0) = O and dx /dt = 0, what is x(#} us  approaches large vilues?




CHAPTER

Canonical Transformations

When apphied in 2 staighiforward manner, the Hamiltonian formutation vsually
does not materiafly decrease the difficulty of su!vmg any given problem in me-
chanics. We wind up with ically the same di tons to be solved
as we provided by the Lagrangian procﬁdam‘ The advantages of the Bamiltonian
formulation e ot in #5 use as a caleutadonal wol, but rther in the deeper in-
s1ghl it affords into the foymal srrucime of mechanics. The equal status accorded

di and a8 0 dent varizbles pes A greater free.
dnm m selecting the physical quantitics o be desipnated as “coordinates” and
“rmomentz” As 2 result we are led to newer, more absmact ways of presenting
the physical content of mechanics. While often of congiderable help in practical
apphications 1o mechanical problerss, these more abstract formulations are primia-
Ay of intesest (o us today because of their essential role in constoicting the more
modern theories of matter, Thus, one of another of thess formulations of clessical
mechanics serves as a point of departure for both statistical mechanies and quan:
tum theory. } is to sach anising as outgrowths of the Hanmd
procedurs, that this and the next chapter are devoted.

9.1 M THE EQUATEQNS OF CANONICAL TRANSFORMATION

368

There is one Lype of problem for which the sofution of the Hamilton's equations is
triviat Consider 2 sifvation in which the Hamiltonian is a constant of the mation,
and where ol coordingles ¢, are cyclic. Under these canditions, the conjugase
momenta p; ars all congtant:

Py,

and since the Hamiltonian cannot be an explicit function of either the time or the
cyelic coordinates, it may be writlen a8

H o= Hgg, ... om0

Consequenty, the Hamitton's equations for 4 are simply

. aH
Q:=5‘{;r“’ﬂm 9.5
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whete the oy's are functions of the o;'s only and therefore are also constant in
time. Equations (9.1} have the immediate solotions

g = il + fr, on

where the f1,"s are constants of integration, determined by the iitial conditions,

I would seesn that the solution % this type of problem, easy as it is, can only
be of academic interest, for it rarely happens fhat afi the peneralized coordinates
are eyclic, But a given system can be described by more than one set of general-
ized coordinates. Thus, to discuss motion of a particle in a plane, we may use a3
generalized coordinates either the Carlesian conrdinates

g =k, g2 =y,
or the plane polar coordinates
g1 = g2 = 6.

Both choices are equatly valid, but one of the ohier set may be more convenient
for the problem. under consideration. Note that for central forees neither ¥ mot »
is eyclic, while the second set does contain a cyclic covrdinate in the angte 8. The
number of cyclic coordinates cat thus depend upen the cheice of genemalized co-
ordinates, and for each problem there may be one particular choice for which all
ceardinates are eyclic. If we can fnd this set, the remander of the job is wivial
Since the ohvious generalived coordinates saggested by the problem will not nore
mally be cyclic, we must first derive a specific procedars for rransferming from
one set of vartables 10 some other set that may be more sujtable.

The transformations considered in the previens chapters have involved poing
from one set of coordinates g; to & new set {7, by mansformation equations of the
form

@ = lg ). 9.3

For examyple, the equations of an orthogonal wamsformation, or of the change
from Cartesian 1o plane patar coordinaies, have the peperal form of Eqs, (9.3,
As hag been previously aoted in Devivation 18 of Chapter 1. such transformnations
B¢ KNOWR. 85 poist iransfermations. But in the Hamiltenian formuliion the mo-
ments axe also independent variables on the same level as the peneralized coordi-
nates. The coneept of wansformation of coordinates must therofore be widened to
include the sisnalianeous transformation of the independent coondinates and mo-
menld, i, P, 10 8 new set £, P, with (invertibie) equations of wansformarion:

Q= Qlq. p.2h
P Pig, p, ). G4y

Thus, the new coordinates will be defined not only in terms of the oid coordi-
nates but also in terms of the ofd momenta. Equations {9.3) may be said to define
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& peint transformation of configutation space; cotrespondingly Bas. (9.4) define
2 point pransfonmation of phase space.

ping only those trangf ions s b of in-
terest for which the new @, P it di This i will be
satisfied provided there exists some function X {3, P, 7} such that the equations
of wotan in the new set are in the Hamtiltonian form
. 8K . &K

28 e, P i 9.5
& 57 i 50, @5

The function & plavs the tole of the Hamilonian in the new coordinate set*
1t is imy for Future iderations that the tr iong considered be
problem-iadependent. Thal is 1o say, {(F. P) must be canonical coondinates not
oaly for some specific mechanical systems, bat for alf systems of the same num-
ber of degrees of freedom. Eguations (9.5) must be the form of the equations of
motion in the new coordinates and momenta no matter what the particelar inital
form of H. We may indeed be incited to develop a partioular transformation from
(g. 2} 1o (2, P} 1 handle, say, a plane harmonic oscillator. But the same rans-
formation must then atso Tead to Hamilton's equations of metion when applied.
For example, 1o the two-dimensions] Kepler problem.

As was sesn in Section 8.5, i @, and P, are to be canonical coordinates, they
st satisfy & modified Hamilion™s prnciple that can be put in e form

wo
5/ (R - K(Q, PO)dr =0, (&6
s

{where sammation over the repeated index ¢ i imphed). At the same time the old
canorical coordinates of conrse satisfy 2 similar principle:

o
5 f (e = Hig, 7, O}t = 0, o5
5

The strnultaneons validity of Egs. (9.0} and (9.7} does not mean of course that the
integrands in both expressions are equal. Since the general frm of the modified
HarmiHor's principle has zero varation at the end poinis, both statements will be
satisfled if the integrands are connected by 2 refation of the form

. daF
Mpds = Hy= B0~ K + e 9.8y
Here F is any function of the phﬁse space coordinates wn.h continecus second
derivatives, and 2 is a constent independent of the f i and the

time, The mubtiplicative constant 2 is related 10 3 particularty simple type of wans-
formation of ¢anonicel coordinntes knowr: 88 4 seale fransformation.

*ir Bas beeo remarked in 3 jocular vee that If 5 sionds for the Hamilroman, & mose seand fﬂr the
Kvaiioonian! O course, K 15 every bilas mischa #,m ® 3
1 conveain substineTe for the lengor fenm “esnsformed Hamsltonian ™
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Suppose we change the size of the units used Lo measure the coordinates and
momenta so that in effect we wansform them 10 a set (', ') defined by

O =g, B=up ®9)

Then il is clear Hamilton's pquations in the form of Bgs. (9.5} will be satisfed
for a transformed Hamilonian K'(Q', P*) = pvHi{g, p). The integrands of e
comesponding modified Hamilton's principles are, also obviously, velated as.

welpid ~ Hy = PO~ K, O

which is of the form of Eq. (9.8) with % = 1w Wath the aid of suitable scafe trans-
formation, it will always be possible to confine our atiention to transformations
of canonical coordinates for which & = 1. Thus, if we have a transformation of
wanomca coordinates (g, g} ~ (', ') for some 4 = 1, then we can abways
find an intermediate set of canonical coordinates (Q, #) related t (), P'y by &
simple scale transformation of the form £9.9) such that v also has the same valus
A. The mansformation between the two sets of canonical coordinates (g, #} and
{0, Py will sarisfy Bq. (2.8), bot now wih A = 1:

. 5 dF
Py — H o= Py~ Kb o @11)

Since the scale mansformadon is basically tivial, the significant mansformations
10 be examined are those for which Bg, {9.11) holds.

A transformation of canosical coordinates for which & # I will be called an
extended canonical rramfannanan Whera A == ), and Eq. (9.11) holds, we witl
speak simply of 2 i _The ugion of the previous para-
graph may then be stated ay saying that any extended canonical transformation
can be made vp of & canonical transformation followsd by a scale twansforima.
tion. Except where atherwise stated, all fowre considetations of sransformations
between canomical coordinates will juvelve only canonice] transformations, It is
aiso convenient o give a specific aame to canonical transformations for witich the
equations of transformation Fgs. (9.4) do not contain the time explicitly; they wiff
e called restricted canomical fransformations.

The last temn on the right in By, (9,11} contributes to the varation of the ac-
tion integral endy at the end points and will therefore vanish if F is a function of
{g, p, 1) o0 (2. P 1) or any wixture of the phase space coordinates since these
have zero vatiation at the end points. Further, through the equations of wansfoe-
mation, £gs. (9.4} and their laverses F' car be expressed partly in terms of the old
set of variables and parly of the new. Indeed, F is yseful for specifiying the exact
Tors of the canonical transformation ondy when half of the vartsbles (beside the
time) are from the old set and Balf are from e new. T then gets, 8s it were, as
& bridge berween the two sets of canoaical varisbles and is catied the generaning
Juncrion of the wansFormaton.

To show how the generating function specifies the equations of Fansforma-
tion, sappose F were giveir a5 a function of the old and new geveralized space
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coordinates:
F=Fig, @1} {9.12)
Edquation (9.11) thea takes te form
; N 15
p.aawﬁmP;Q,warT:
. gF | BF.  aF 4
@ B0 =K 4t g il g 25 9.53
- K+ W +8q,q'+9Q‘Q‘ 5.13

Since the eld and the new coordinates, ¢, and (,, are stparntely independent,
Eq. (9.13) can hold identically only if the coefficients of g, and (; each vanish:

- b4,

PG . 14a)
35

. 9.14b;

< . (9.348)
leaving fnatly
&F

K= H+ e (9.14¢)

Bouations (9143} are n relations defining the p, as functions of Gy Gy and 7,
Assurning they can be inverted, they could then be sotved for the n Q;'s In terms
of ;. p;o and 7, thus yieiding the first half of the transfermation equations {§.4).
Omce the relations between the (;'¢ and the old canonical veriables (g, p) have
Been established, they can be substitnted into Eqs. £9.14b) so that they give the n
25 88 functioas of 4, p;. and 7. that is, the second half of the transfoomation
equations {2.4). To complete the stoty, Eq. (5.34¢) provides the connection he-
tween the new Hamilionian, K. end the old one, &, We must be carefuf fo read
Eq. (9.14c) property. Fitst g and p in i are expressed as functions of @ and P
throwgh the lnverses of Bqs. {9.4), Then the g, in 8 F\ /3¢ are expressed = terms
of Q. F in & similar manacr andg the two functions are added to yield K(Q, P, 1).

The procedure described shows how, surtng from 2 given generating fanction
£y the ions of the ical ion can he obtained. We can useally
reverse the process: Given the equations of transformation (2.4}, an appropriste
generating function ) may be derived. Hquations ($.4) ars Brst inverted to ex-
press p; and F, as fancions of ¢, (2, and 2. Bquations (2. 14a, b) shen constiture
a coupled set of partial differential equations than can be Integrated, In privciple,
to ind F| prowiding the transformation is fndeed cancnical. Thus, Fi is always
vacertaln 1o within e additive arbitrary function of ¢ alons (which doesn’t affect
the equations of transformation), and there may a1 times be ofher ambiguities.

1t sometimes happens that it is not saitable 10 deseribe the canonieal wansfor-
mation by 2 genersting function of the type Fi(q, @, £} For example, the trans-
formation fnay be guch that p, cannot be written as functions of ¢, O, and 7, but
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rather will be functions of ¢, P, and 1. We would then seek 2 genesating o~
tion that is = fnction of the ofd coordinstes ¢ and the new momenta £. Clearly
. (9,13} must then be replaced by an equivalent relation bavolving Fr ratiter than
Qi This can be accomplished by writing F in Eq. (9.5} as

F= Fytg, Py~ Gy P (8.15)

Substicuting this F in Bq. (9.14) leads to

N o
PFQI—HA*‘;_QJPI_K+IF1(‘?’P'!)' ©15)
Again, the wtal denvative of F is expanded and the i of g, and F,
collected, kading to the equations
P B—FZ 9.178)
i,
&Fy
(R 35" [E3 5]
with
&
K=H+a—!z. @170

As before, Egs. {2.17a} are to be sofved for £ 2s funciionz of ¢;, p,, md # to cor
respond to the second helf of the wansformation eguations ($.4), The remaining
Rl of the transforvation eguations is then provided by Egs. (9.17h).

The corresponding procedures for the remaining twe hasic types of generating
funetions are obvious, and the general resufts are displayed in Table 9.1,

B is tempting so look upon the four basic types of genersting functions as
being related to each other through Legendre transfurmations, For example, the

TABLE 2. Fropenties of the Four Basic Cimonieal Translormations

Genepanng Function Genergring Fonvtion Derivisives Torvaal Special Case

Foe Filg. 0.0 = Z‘: £ s*% Frugq, @ =p

F o g, P = P peit =32 | A=ah ea hen
F=Rpdn+an eaﬂ*% Ftﬂ-m:-g- Fy=pfh, G=-g. R=-p
F= Fatp, P+ quin — P, eiﬁn%;;? 2 % Fa=pby,  Gp=py
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transition from £y to F is equivalent to going from the variables g, Qo g, P
with the nelntion

k)
P 9.18
& ) {818
"Pedvn i pasn tn Sorm toguined for 2 .sgendit wandormalon of the bass vandties,
a5 described in Section 8.1, and in analngy to Eq. (8.5} we would ser

Ealg, P = Frlg. 9.0+ By, .19

wmch is equivalent 1o Hq. (9 15) combined with Bq. (2.12). A the other defining
for the funcrions can similarty be lovked on, in combing-

tion with Eq. (9.12) ns Legendre transformations from Fr, with the last entry in
Table 2.1 describing a double Legendre ion. The only ]
s pioruse is that 3t might erroncously lead us 1o believe that any given canomi-
cal transformation can be exprassed in tetms of the four basic types of Legendre
transformations tisted in Table 5.2, This is not always possible. Some twansfor
mations are just not suikable for description in terms of these of other elementary
forms of penerating functions, as has been noted sbove and as will be #lustrated
in the next rection with specific examples. F we ‘W to apply the Legendre ans-
formation process, we are then led to that awe icatt
zexo or are indeterminate. For tus reasen, we have preferred to define each type
of generating function relative to F, which is some wnspecified function of 2n
independ " and

Finally, note tat a sultable generating function dossn’t have to conforin 1o
ome of the four basic types for all the degrees of freedom of the system. It is
possible, and for some canonical transformations tecessary. 1o Use 2 generating
function that i3 a mixtvre of the four pes. To take a simple exampte, it may be
desirable for a particular canonical transformation with 1wa degrees of freedom
10 be defined by a generating function of the form

Fllgy, pr, P, O3 (9.20
This generaing fonction wosld be related o F in Bg. (9.11) by the eguation
F o Fligy, pao Py, 02,00 — Q4P+ qapn ®.21)

and the equations of tansformation wonld be obtained from the relations

A 3F
= e 1 Fry
aF ar
r =, Py ©In
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with

B
K=+ 7 ©.23

Specific iBustrations are given in the next section and in the exercises.

EXAMPLES OF CANOMNICAL TRANSFORMATIONS

The nawre of canonjenl wansformations and the role played by the generating
funetion ¢an best be iflastrated by some simple yet inportant examples, Let vs
consider, first, » generanng function of the second type with the particulur fore

Py Pt {9.24)

found in cotumn 3 of Toble 9.1, From Egs. (9.17), the ransformation equations
ate

)= w P
7= 5
B F
o= 3"‘-,% =g,
K= R 9.25)

The new and ofd coordinates are the same; hence Fy merely generates the idenity
transformation {cf. Table 9.1% We also note, referring to Table 9.1, that the per-
tiewtar generating function. F = p, 0, an identity wansk ton with
negative signs; that is, & = —g;, B = ~p.

A more general type of transformation is described by the generating function

By fla . ga: 115, 19.26)

where the f; may be any desired set of independent functions. By Hgs. (3.17h),
the new coordingtes {3 are piven by

L. .
@ = 5E = H 2 ek

Thus, with this genersting function the new coordinates depend only upon the
old coordinates and the time and do not invelve the old momenta, Such 4 mans-
formation is therefore an example of the class of point transformations defined
by Bas. (9.3) In order to define a point wansformation, the fanctions £ must be
independent and invertible, so that the g can be expressed in terms of e ).
Since the 5 are otherwise completely arbiirary, we may conclede that all point
trangformations are canondcal, Bayation (9.17¢) furnishes the new Hamiltonian
I terms of the old and of the tine derivatives of the £ funetions.
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INote that Fy as given by Eq. (2.26) is not the only generating function leading
1o the point wensformation specified by the £ Cleatly the same point transfor-
mation is implicit in the mere geaeral form

= Algl g DR glan . g th 5.28)

whese g{g, 2) s any {differentiable) funciian of e old coordinates and the Hme.
Equations ¢9.27), the transformation equations for the coordinates, remain unaj-
tered for this generating function. But the wansformation equations of the mo-
menta differ for the two forms. From Egs. {9.17a), we have
iR A,
By s ot mm i + {9.29)
P g éq

vsing the form of F3 given by Eq. ($.28). These equations may be inverted to give
P a3 a funciion of (g, p), most easily by writing them in matrix notation:

pos P o2 (929

Here p. P, and 3g/3q ate n-clements of single-column matrices, and 3i/dqis &
squate matrix whose gt element is 47; /8q,. In two dimensions, Eq, (%.29') can
be written as

o 3
[m}g Yt g {H i g
A S

1 g LH

It fotlows that P is a Hnear function of p given by

24 “[ ag]
P | e 9.30)
[3‘;] P ¢
In two dimensions, (9.30) becomes
3 2R 2
Al _tde op m}_ |8
[&]w oah N | 931y
o g gz

‘Thus, the transformation eguations {9.27) for O are independent of 7 and depend
oy upon the f; (g, 13, but the wansformation. equations {9.29) for P do depend
upon the form of g and are i general fanctions of koth the old coordinates and
raomenta. The generating function given by Eq (2.26% is mly n special e of
Hq. (928) for which g = @, with ;o Y sp

aquations for P,
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An insteuctive transformation is provided by the generating function of the Hrst
kind, Fyfy, {2, 1), of the form

= e Qe

‘The corresponding transformation equations, from {9.1da, b are

B
P i 2, 9.32a)

{2.30)

n effect, fhe tansformanon interchanges the momenta and the. coordinates; the

new coordinates are the old and the new are tally the oid
coordingtes, Table 9.1 shows that the particular generating fanction of lype F4
p. B, produces the same ion, Thess simple ples shouk

the independant status of generalized coordinates and momenta. They ate both
needed by describe the motion of the system in the Hamiltonjan formulation. The
distinction between them fs basically one of nomenciamee. We can shifi the nunes
around with al most 50 more than a change in sign. There is no longer present in
the theory any hingering remnant of the concept of g, as a spatial coordinate and
P, a5 4 mass times a velocity. Incidentally, we may see directdy from Hamiiten's
eguations,

that this exchange teansformation is canoaical, If ¢, is substimted for p, the equa-
tions remain in the canonicat form only iF —p, is substituted for 4,

A fransformation that leaves some of the {g, p) pairs unchanged, and inter-
changes the rest {with & sign change), is obviously a canonical wansformation of
2 “mixed” form. Thus, in a system of two degrees of freadom. the ransformation

Qs = q. Py
Q2= py, Py gy,
is generated by the function
FoqiPy e @30

which js 2 mixiere of the F; and F; types,

THE HARMONIC OSCRLATOR

As a final exatple, let us consider 2 canomica] wansformation that can be used fo
solve the profilem of the simple harmonic oscillator in one dimension. If the force
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contsiant is k. the Hamiltonian for this problem in terms of e sssal coordinates
is
ky®

2
Lo @34

=ty

Designating the ratio k/m by «®, B can also be written as
1
H o= o (7 4 mPaigh), 934
i

This formn of the Hamiltonian, as the sum of two squares, suggests 1 teansfor-
mation in which H is cyclic in the new coordinate, If we could find a canonical
transformation of the form

pe= R0 (6.354}
f(P} —sin (9.35b;
then the Hamilionian as a function of £ and P would be stmply

£ ‘P’(W¥Q+sm o= (‘h’, ©16)

K=
so that {1 is cyclic. The problem 15 to find the form of the yet unspecified function
F{P)that makes the vansformation canonical. If we use a gencrating funclion of
shie fust ing given by

2
Fi = '”“2"* cot g, @1

Has. (5.14) then provide the equations of transformation,
= %?« = e cot {J, (9.38a)

B

Pl (©.385)

Satvlng for ¢ and p, we have*

P Eﬁ sin @, (9.39a)
Ak

T can De argued tat F does aot unembigeously specfy the canonical ransfarmation, because in
solviag Eq (9 50} for g we conld have tiken e a6gaGre squirs ront insizad of e positve root us
Girmyilied) i Bas. (939). Hovnevor, the i Fy differ oly
mwiily; a staft o by % In gesng o ane fioa 10 the e, Noneibeless, it
shotd be kept i tend tha the n:u;lnmmmm detived from 4 gengrating Fanclion msy 5l tmes be
double-valuod it avgn burve ocal singafad
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p o STpmuens 0, £9.39h)
and comparisan with Bq. (3.35a) evaluates f(P):
Y = SImeP, ©.40)
It follows thex that the Hamiltoniaa in the tansformed variables is
H o= wp. {941}

Since the Hamiltoman ks oyclic in {J, the conjugate momentum P is 4 constast, 1t
is seen from Eq. (9.41) that P is in fact equal 1o the conuant energy divided by w:

PR
@
The equation of motion for ) reduces to the simple form
i
2 gp o

with the immedsate sokution
0= r b, 9.47)

where « is a constant of integration fined by fhe imitial conditions. From Egs.
{9.36), the sobutions for ¢ and p are

fIE
g = m skt 4+ a), £9.438)

o= ImE voste +a). (9.43b3

Risi ive ta plot the dme d ok of the oid and new variables as is
shown in Fig. 9.1, We see that ¢ and p oscllate (Fig. 9.8, b) whereas {0 and P
are Haear plots (Fig. 9.1d, &}, The figare also shows the phase space plots for p
versuy ¢ (Fig. 9.6c) and for P versus ) {Fig. ©.10). Fig. %.1c is an eltipse with the
foliowing semimajor axes {for e 4 and p directions, reypectively):

2E and b/ 2mE,

am
At

whese m is the mass of the oscillator, o its Bequency, snd £ the osciliator’s eti-
ergy. The ares, A, of this effipse in phase space is

daﬂdhwgf-é.
w
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?
izmeps
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e
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FIGURE 8.1 The harmosic oscifttor in two cagonical coordirete systeme. D,
wgs {w)-{c) show the 4, p system and {d}-1f} show the F, £ system.

When we invoke quantem mechamcs we wrile B == fio, where £ = h,‘zn ami L3

is Planck’s constant, Thy and g rnd g can b

. fmo B
P and R
¢ £

to make the phase space plot of p° versus ¢’ a circle of area ». This normalized
fiorm will be useful in Secrion 1.1 on chaos.
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1 would seem tat the use of conlact transformations 1o solve the barmonic
wscillmior problem is simitar 1o “cracking r peanut wih 2 sledge hunmer” We
have here however a simple examnple of how the Hamiltiopian can be reduced wa
form eyelic in afl coordinates by means of ical i
of general schemes for the solnton of meck by this tect ‘1 wil}
be reserved for the next chapter. For the present, we shall continue o examine the
formal properties of canonical ransformations.

THE SYMPLECTIC APPROACH TO CANONICAE TRANSFORMATIONS

Ancther method of treating joal 17 ations, fagk tothe

tern, can be exp d in tezmng of the matris or symplectic for
mulation of Hamilton's equations. By way of introduction to this approkch, Ler os
consider 8 resiicied cananical transformation, that is, one i which time does not
Appear in the equations of tansformation:

o= Qg ).
Fo= Pig, p) @44

W know that the Hamiltonian function does not change in such a transformatios.
The time derivative of (), on the basis of Bgs. (9.44), 13 1o be found as

LI Tl e i 40, 30 30, aH

,=~"-— e 945
O 5 4 T, P b b #49
(O the other hand, the nverses of Egs. (0.44),
@ = 4,(Q. P)
= pi((. P}, (0.46}

ennbles us to consider Hig. p, 1) as afonction of 2 and P and ko form the partial
derivative
9H _aH dp, 3K bg,

. 47
ar é‘ﬁ_, FEN By aF, 84T

Costiparing Fgs. {9.45) and (247}, it can be concluded that

that is, the transformation (s canondcal, only i

w), =), (o) (%), o=
(34; r \BE, N A V-3 PR et




382

Chapter 9 Canomical Transformations

The subsceipts on the derivatives are o remtind us that on e Jeft-hand side of
these equations {J; is considered as & function of (g, p) (cf. Egs. (244}, while
o the right-hand side the deivatives are for g; and p, as fonctions of (2, P)(cf.
Eqs. £9.46)). A similar comparison of £, with e partiat of H with respect o (2,

leads 1o the conditions
P, , aF, K]
(), =) ()G, o=
8 lep a2 /e, \BQifge
The sets of Egs. (9.48) together are sometimes Known a3 the “direct conditions™
for a (restricted) camonical transformation.

The algebeaic manipulation /at foads o Eqs. (9.48) can be performed in 2
mmpgl:l and Bleg.\ml manner i we make use of the symplectic notation for the
aboye at the end of Section 8.1 i pisa
ca;umn mattix with the Zn elements g, ;. then Hamilton's equations can be
written, it will be remembered, as Eg. (3.39)

LY
H= o
where 1 is the andsymmetric mawix defined in Eq. (8. BSa) Similarly the new set
ey RonneT st o TR e T
canenical transformation the equations of transformation (944 et fr ey

L=Lim

Anatogousty 10 Hq. {9.43) we can seek the equations of meton i e we
ables by looking st the time devivative of a typical elemem of {

po B ;o
T Bf=loo., .
L= i, Ry E
1n matrix notation, this time derivative can be. writien as
&= M.
where M is the Jacobian matrix of the wansformation with eleaen

i
My =
My a’;’
Making use of the squations of motion for 3, Eq. (9.50) becomes
an
§=M Fr {850
Now, by the inverse transf ton M can be idered as a funcrion of {, and
the derivative with respect to 5, evalnated as
BH _3H ¥,

am 94‘; i,
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oz, i atrix notation™®

M wdf (9.531
] 8
The combinarion of Eqs. (9.523 and (9.53) lsads to the form of the eqoations
of motion for any set of variables £ wansforming, independently of time, from the
canonical set w:

P o~ BH
= MM 2.54)
=M} Ty 9.34)
We have the advantage of knowing from the generator formalism that for a re-
stricsad canonical transformation the old Hamiltogian expressed in terms of the
new vazriables serves as the new Hamilronian:
aH
e 5.54"
L=} Py 8.547
Fhe transformation, Bg. (%.45), will therefore be canonical if M satisfies the con-
diton
MM = . 9.5
That Ba. (9.55} 15 also & necessary condition for a restiicied canonical transforma-
tiom is easily shown d.u't:c{iy by mvumg the m’dm of the steps of the proof. Note

that for an extended where K = M,
the condition of Bq. (9.55) woold be replaced by

MIM = 25, {8.36)

EBquation (9.55) may be expressed It varkous forms. Muttplying from the right
by the matrix inverse to M leads to

M) = 3, ©.57)

(since the iamspose of the inverse is the inverse of the transpose). The elemeats
of the matrix equation (9.57} will be found to be idemdeal with Bgs. (9.48a) and
(9488 H Eq. (9.57) is moltipkied by | from the left and —J from the right, then
by virtue of Eq, (8.386) we have

M= MY,

*Readers of Secticn 7.5 will have vecopuized thar Bg. (2,50} is the staeisont that 4 eransfonms con~
trmvanualy (a5 3 vectar) under the transformanc, and B, ¢9:37) says that the partal derivateve of
h redget o (o 2 o 3-Form fof. s, {750 andl {7,543
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or
MM = ). (5.58)

Edquation (9.55), or its cqmva!en[ version, Eqg. (9.98), is spoken of as the svm-
plectic lition for & ion, énd the matitc M satisfying the
condition is said to be a spmplectic matrix,

“These concepts may beeome more obvious if we dispiay the details of the f and
M marrices corresponding to the mixed ing function F = Falq1, P} +

F1lgz. G2} of Bq. (9.33). The variables % and { are column vestars given by

qt Oy
4] o]

= nd =
T b ¢ A
P 5}

The transfarmation £ = M (cf. Bq, (9.50)) is made by the following M. matrix:

[ 6 ¢ 8llh #
o) 16 6 o 1lin| | &
BiTi0 6 1 89in| T e
P 0 ~1 6 9)ipm g

in agreement with the expressions obtained hy differentiating the results of the
generating function with respect 10 time (of. Column 3, Table 9.1). Hamilion's
equations for the mansformed variables = ;%ﬁ;, {Eq. (9.347)) are expressed as
follows indepeadent of the penerating function F

& 8 0 0[P
i o 0 0 t|]-f
BiT -1 0 0 0| O
By o 00|

where — P, = BH ff, for ¢y anc {p and 0, = 3H/8¢, For {5 and Ly, Note
that M depends ¢ F whereas J does got (ef. By, (8.38a)). This formalism is not
applicable to all cases. For example, a simple M matriz cannot be wrien for the
barmenic osciliator example discussad i Section 9.3,

For 4 canonical transformation that contains the tiree as a parameter, the simplke
desvation given for the symplectic condition no longer holds. Nonetheless, the
symplectic condition remains a necsssury and safficien: condition for a canoricat
ansformation even if it Involves the tme. it m pnsslble to prove the general
validity of the symplect jisons for all ions by steuight-
forward, albeit lengthy. procedures resembling those employed for restricted
eanonicel wanaformations. Instead we shall ke a different wack, one that takes
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d ze of th ic form of the ical i involving tdme.
A cononical transformation of the form
[0 0.5%)

evolves continuousty as Hme incieases from some initial valoe fp. Tt 1S a single-
peeammeser instance of the fumily of continwous tansformations first studied sys-
lematically by the mathematician Sophus Lie and 3s such plays a distinctive rofe
in the tansformation (Reoty of classical mechanics,

I the transformation
- £l {9.60a)
is canonical, then 5o obvicusly is the on
7 - {{ta). (9:600)

[t follews then from the definition of canonical fransformation that the tsansfor-
matton characterized by

St} — L0y (82.60c)
is also canonical. Since 4 in Eq (3.60b) is a fixed constant, this canonioal trans-
ion sulisfies the i) dition (%.58). If now the wansformation of

Eq. (3.60c} obeys the symplectic condition, it i+ easy to show (cf. Derivation 13)
that the general ransformation Bq, (9.60a) will also,

To demnonsirate that the symplectic condition does indeed hold for canonical
ransformations of the type of Ba. (2.60¢), we intraduce the notion of an infinites-
imal canprical sansfornmation {abbreviaied 1.C.T), a concept that wil prove 1o
be widely useful. As in the case of infiniteshigal rotations, such a wensformation
is ope in which the new variables differ from: the old only by infinitesimals. Only
figsi-order verms in thase infiniiesimals are to be tatained in all caleularions, The
sransformation equations can then be wiitten as

2 =g +4g:, 9.615)
Frow=py 4 5p, 9.618)

or i matrix form
L=q48n {2.610)

(Here 8¢, and 8p, do net reprasent virtual dlspla::cmnms bt s wrrpiy !'!w im-
finktesimal changes in the i and 3 And

ransformation thus differs only infinitesimully from the idemity trapsformation
discussed in Section 2.4, In the generator formalisem, & suitable generating func-
tion for an LC.T. would thersfore be

Fy o Py eGig, Pot), {962y
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where ¢ is some infinirasi of the ion, and & is any {edif
{ferentiable) function of #s 2n + 1 arguments. By Eg. (2.17a), the tansformation
eguations for the momenta are to be fornd from

£ G

Ba/
o
G
&py —pj=—€ @ {9.633)
Similarly. by Eq. {9.17b). the ton aquations for 2, are ined by
1he relations

i) 86

&= gp = m ey

Since the second term is already linear it g, and P differs from p only by an in-
fimitesioal, it is consistent fo first order to replace P, in the desivative function by
;. We may then consider G as a function of 4, p only (and possibly £y, Following
ihs ususl practice, we will refer to G{g, p) as the generating fiinction of the in-
finitesimal canonical although strictly speaking that designation
belongs only to F. The transformation sguation for 2, can thercfore be written
as

3G
b, =g (9630}

Both ransformation squations can be combined into one matrix eguation

S =e j% {2.63c)

An ohvio ple of an infmitestmal jeal ko woald be the
transformation of By, (9.60c) when ¢ differs from f by an infinitesioal £

[AEVEFCE TN 9.64)

with 4 us the inBaitesimal &. The cond hation of the twils-

formation £(, £ from i, fp) means that the transformation £{t) — &(f) can
he built up as & succession of such LC.ETs i steps of de. It will therefore suffice
to show that the infinitesimal transformation, Eq. {2.64), satisfes the symplectic
condition {9.58). But it follows from the ranxformetion sguations (%.63) that the
Jacobian matrdx of any LC.T. is a symplectic matrix. By definition the Jacobian
matria {8.51) for an mAnitesimal mansformation is
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of by By, (9.63c)

MM1+€]

311‘ (9.65}

The second derivative in By (9.65) t 2 square, symmetric matrix with elements

#6 ) 96
indy Y an an;

Because of the antisymmetrical property of |, the tinspose of Mis

3 (9.60)

The symplectic conditioa volves the value of the matrix product

M= (140 1-535-(-;»;
n a'r;ay; anay'j’

Consistent to first order in this product is

#
Btyﬁn] i [:21] 51’"

MIM =3+ e
=k

thuy demonstrating that the symplectic conditon holds for any infinitesimal
vanonival transformation, By the chiniz of reasoning we have spun out, it there-
fore follows that any canwnical mansformation, whether or nat i involves time as
ap obeys the symplecti ditions, Egs. (9.95) and (5.48).

The symplectic approuch, for the most part, has been developed independently
of the generating fenction method, sxespt in the traatment of infinitesimat canon-
ical transformations. They are of coutse connected. We shall sketch Jarer, for ex-
atnple, o proof that the symp!ecxic condition implies the existence of & generating
funcimn Bm. the connectmn is lnrgely irrelevant. Both are valid tvays of looking at

and both pass alf of the nesded properties of the
tramsformations. For exampte, either the syraplectic o the generator formalisms
cun be used to prove that canonical transformations have the fonr properties that
characterize a grovp {cf. Appendix B).

1. The identity transformation is canonical.

2. K a mansformation is canomical, so is ks nverse,

3. Two i ical transformations (the group “prodect” cperation)
define a transformation that s also canonical,

4. The product oparation is associative.
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We shalt therefore be free 10 use either the generator or the symplectic approach
at will, depending on which leads 1o the simplest treatment at the moment.

POISSON BRACKETS ANDF OTHER CANONICAL INVARIANTS

The Poisson hrackes of vwo fanctions w, v with respect to the canonical vaziables
g, p) is defined as

Bu dv  Bu v
frt, vlg.p = e e, (5.673
T By @ op 0.
1ns this bitinear expression we have i typical symplecnic structurs, 88 in Hamilton's
equations, where g is conpled with p, and & with —~g. The Poisson bracket thes
Tends itself readily to being written in matdix form, where it appears as
B By
R .68
fo ot = gl 68
The transpose sign is used on the first matebe on the right-hand side 10 indicate
exphicitly that this matrix wust be treated a3 2 single-row matiy in the mull-
plication. On mast eccasions this spacific reminder will not be needed and the
ranspose sigh may be omifted.
Suppose we choose the functions &, v out of the set of canonical wariables
{g. p1themselves. Ther it follows triviaily from the definidon, either as By, (9.67)
or {$.68), that these Poisson brackets have the valges

1950 aklq.p = 8 == [y qelap.

fas Prlg p = 80 = ~{p; il p- .69

We can summarize the relations of Bgs. (9.69) in one eqnation by inwoducing
& square matrix Paisson bracket, {q, 1], whose Im element is {m, me} Equa-
tions {9.59) can then be written as

Il =1 {9.70)

Now let us take for ¥, v the members of the transformed variables (G, ), or
¢. defined in terms of (g, p) by the tmnsformation equations (9.5%), The set of
all the Foisson brackety that can be formmd out of {Q, F) comprise the maws
Potsson bracket defined s

i,
Bdly= o5
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But we recognize the partial dertvatives as defining the square Jacobian matrix of
the transformation, so that the Poisson bracket refation is equivalent o

B Ly = MM @7

If the ion 19 -» § i canonical, then the symplectic condition holds
and Eq. {371} reduces o {cf. Bg. {9.587)

iy =1 9.7

and conversely, i Bq. (3.72) is valid, ther: the transformation is canonical.

Poisson brackels of the cancnical vadables emselves, such as Egs. (5.70)
or {272}, ate referred 1o as the fundpmewal Poisson brackers. Since we have
from B, (3,70} that

.oy =1, 073

Eg. {9.72) states that the fundamental Poisson brackets of the { varishles have the
same value when evahiated with Tespact to any canonical ceordinate set. In other
words, the fundamental Poisson brackeis are imvariant under canonical transfor-
mation. We have seen from Eq. (9.71) that the invariance is a agcessary and suffi-
cient condition for the wansformation matrix to be symplectie. The imeariance of
the fundamental Poisson breckets is thus in all ways equivalent to the sywplectic
condition for a canonical transformation.

Tz dogs not take many more sieps to show thar olf Poisson brackels are tavagiant
wader canonical transformation. Consider the Poisson bracket of tweo functions
u, v with reapect o the 1 set of coordinates, B, (9.6%). In analogy to Bq. (9.53),
the partial derivative of v with Yespeet £0 4 can be expressed in terms of pactial
derivatives with respect 0 { as

W o
— - ML
@9
Hence the Poisson bracket Eqg. (9.68) can be written
Fa_ o
B, vy = ol = o Mw.
= Gt = s
i e fon & i the i dition i the form of
Eq. (9.55) holds, and we then have
fu. vly = wk 5 = vk, 9.74)

iz a;
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‘Thus, the Paisson bracket has the same value when evaliated with respect to any
canosical set of variables—all Poisson brockets are canonical invariants. Ia writ-
g the symbed for the Poisson bracket, we have 50 fr been carefl 1o ndicate by
the subscript the set of variables in termns of which the brackets are defined. So
lomg a5 we use only canonical variables that practics is now seen  be uaneces-
sary, and we shall i general drop the subseript. *

The hallmark of the canonical ransformation IS lhat Hamlllvn ] ex;«uamns of
motion are mvarkam in form under the i . the | in-
variance of Poisson brackets imphies that equations expressed in terms of Polsson
Jrackels are invariant in form under canunmiuuwfm!&um As we shalf sor, we
can develop & structuee of classical 1 the Hamiltoniar for
mulation, espressed solely in terms of Poisson brackets. Historically this Poisson
brackat formulation, which has the same form in 2l canonical coordinates, was
especially usefu] for carrving oot the original wransition from classical to guantmn
mechanics. There is a simple “comespundence principle” that says that. the clas-
sical Poisson pracket is fo be replaced by & suitably defined commutatar of the
comesponding quantam operaturs.

The algebraic properties of the Poisson hracket are therefore of congiderabls
interest. We have already vsed the obvious properties

[, 56} = O, 9.75a)
fu, v} s v u) {andsymmeiry) 19.75m

Almost equally obvious are the characteristics
{au + kv, w] = alu, wi+ v, w], (Hinearity} (9.75¢)

where 4 and b are constants, and

frew, w] = {u, wlv + ulv, wh (9.75d)
Cpe ather property is far from obvious, but is very important in defining the
natate of Gie Poisson bracket. & is usually given in the form of Jacobi's iden-

tity, which states that if u, v, and w are three fuactions with continious second
derivatives, then

IERERTHESEN R RS N R ] 9.752)

that i4, the sum of the cyclie peratutations of the double Poisson bracket of duse
functions is zero. There ssems (o be no simple way of proving Jacobi's identity for
the Polsson bracket without Iengthy algebr. However, it is possible to mitgate
the. plexity of the ipudations by & ing & special ki We

#épte thar for & scaie an axetdded i , whets the symplectic
copdition ks of te fore of By (% 56\ then Potssen brackets do wir hnve ihe same valucs ia al)
coondimals sysiems Thal 15 one of the reasons scels mamaformabons are excliuded from the claus of
wnticss transfeavietions at are uselul 1o consider,
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shatl use subscHpts ok 1, v, w {Or functions of them) to deote partial derivatives
by the comesponding canonical variebla, Thus,

y = and  w, = fe
YT ETEN

In this notation the Poisson bracket of ¥ and v can be exgressed us
B, vl = Sy,
Here ), as usaul, is simply the ijth elentent of 1. In the proot, the only property
of | that we shall need is ils antisymmeny.
Now let us consider the first double Poisson bracket in Eq. {2.75e):
foe, (v i} =, K plm, wd, = o g Qun Sy,

Because the clometis Ji are constants, the denivative with reseer 1o y dossn’t act
ot thers, and we have

T v, il o= st doy Con By + g, Jupver). (9.76)

The other double Poisson brackets can be vbiained from Eq. (9.76) by eychic
permutatiot of i, v, w. Thete are this six terms in all, sach being a fourfold sem
over dammy indices {, 7. k, and £ Consider the tem 16 Eq. (9.76) welving a
socond derivative of w:

o dhmven -

The ouly otiter second dezivative of 1 will appear in svaluating the second double
Poisson bracket in (Bg. 9.75e)

o [, e} o= e S Gy Fprue e
Hevs the term In the second derfvative in 16 is
Iy Juwyuns g

Since the order of differentistion is immaterial, wy = Wy, and B sum of he
fwo ferms is given by

Uy + S Mgy =0,

by vinue of the ant of J. The ining four terms yelic permuta-
dons end can similarly be divided in two pairs, one invelving second derivatives
of 1 and the other of v. By the game easoning, each of these pairs sus (o zere,
and Yacebi's identity is thus verified.

If the Poisson bracket of a, v i Tooked on as defining a “produst” operation
of the two fonctions, then Jacabi's identity is the replacemeur for the associs-
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sive Taw of muldplication. Recall that the ordinary multiplication of arithmetic is
associative; that iy, the order of 4 seq of multiplications s I ial

albcy = fab)c.

Jacohi's identity says (hat the bracket “produst” is Dot associative and gives
the effect of changing the sequence of “multiphications.” Brackers that sathyfy
Egs. (9.75), together with the expression

R ED I [Ches!
&

constitute & generally noncomenenitive algebra called a Lie algebra. For Poisson
brackets in three-dimensionat space, either the staotire constants q’j. are alf zero
aronly one e in the right-hand side of Bg. {9.77) exists for any pair of indlees.
Exermples of this will be given later, and a more detailed discussion of Lie algebras
is given in Appendix B,

Poisson bracket operation is sot the only type of “product” familiar to physi-
cists that satisfies the conditions for 3 Lie algebra. It will be teft o the exerciges
1o show that that vector product of two vectoss,

v[A, Bj - A x B, {9.782)
and the commutator of twa marwices,
MiA B} — AB - BA, £5.78h)

satisfy the same Lie algebra conditions as the Poisson bracket. It is this Fast that
makes it feasible 1o replace the classical Poisson bracket by the commatator of the
quantam mechanical operators, In ofher words, the “cortegpondence principhe”
can work only because both the Poisson bracket and commutator are representa-
tioms of a Lie alpebra "praduct”™

There ate othet canonical imariants besides the Poissan bracket. One, mainly
of historical interest now, is the Lagrange brucket, denoled by {1, v}, Suppose u
and v are two functions ont of a ser of 2n ind: i ions of the :
variabies, By inversion, the canonical varigbles con thes be considered as fune-
tigns of the set of 2n functions. On this basis, the Lagrange bracket of & and v
with respent 10 the (g, p) vadables is defined as

Of course, we tust nat istske the af s veruon af i
principle with 165 physical necessity, The mtesduction of the Goaniuen comtmiation selutions was a
gronc act of physcat discovery by the Pionews of quantan mechanics. ATl we show here {5 that there
is 8 shitlarsty in the methemanicat spuchire of the Doissoa beacket formmlatise of cissical mechanics
s the: commutation etation verston of gueatuss mechanics The fowoal corespondones i that

ft, wf ;-‘E(uv-- e

whete ot tie left o, w are clessiosd funotions and o the dght they ate Qrantiin Spdoatos.
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=288 Op 979
e = G S T B B9
o, n Mawix notation,
in, i
] =t B
Py = S 20 930

Proof of the canonical invariance of the Lagrange bracket parallefs tha for the
Poisson bracket.

T for & and v we take two members of the set of canonical variables, then we
obtain the fundamentad Lagrange brackets:

T gilap =0 = {20 Pilep 19 piap = &y {9.81y
or, in matrns notakion,
{n, m} =) {9.82)

The Lagrange and Foisson brackets clearly stand in some king of inverse reln-
tionship to cach other, but the previse form of this refation is somewhat compli-
cated fo express. Let u, £ = 1, .., 2n, be a set of 2n imdependent fonctions of
the cancmical variables, o be represented by & colomn {or row} mattix v Then
{u, u} ds the 2n x 2n matrix whose (ith element is {w,, w, 1, with 2 similer descrip-
tion for 44, ul. The reciprocal character of the two brackets manifests itseif in the
Ielation

{d, ulfs, uj = 1, (9.83)

If for u we choose the canonical set itself, ), then Eq. {9.83) obviously fol-
lows from the fundamental bracket formulas, Bgs (9.79) and (9.82), and the
propertics of J. The proof for arbitrary & Is not difficult i written in tems of
the matrix definitions of the brackets and is reserved for the cnercises. While
the properties of the Lagrange and Poisson brackets paczilel each other in
many aspects, note that the Lagtange brackets do nor obtey Jacobi's identity.
Lagrange brackets therefore do not qualify as a4 “pmduct” operation in z Lie

algebra,
Another § ot invaciant is the Hude of o volume efewment in
phase space. A jcal iém 1 — ¢ fansforms the 2n-dimensionat

phase space with coordinates 1, 10 another phase space with coordinates £, . The
voluriie glenmett

tdn} =dgrdgz - dgndpy - dpy
transforms to 2 new volame element

(Y= dhd Qr.. d{d Py ... dPn.
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As 35 well known, the sizes of the two volume elements are related by the
absplinte vaine of the facobian determinant |MJ].

) = IMIl(d ).

For exampte, in the two-dimensional taasformation fromn, = ¢, pred; = G, P,
this expression becomes

dg g
ig GF

dGdP = ap ap dydp = lg, pl; dq dp. {9.84)
ig FF

But, by taking the determinant of both sides of the symplectic condition, By, (#.58),
we have

W = 0.85)

Fhuy, in a real canopical ransformation the Jacobian determinant is 1, and the
absolie value is always oity, proving the canonical invarisuce of the volume
element in phase space. Tt follows, also, that the volume of any arbitrary region n

phise space,
I w[---/(a’r,\), {D26)

15 a canonical invadant. In ow tvo-dimensions? example, the mvarant is dy =
dy dp tod Jy = J dg dp.

“The volume imegral in By (9.86) 15 the final mernber of a sequence of caron-
ical ivariants known a3 the intearal invarionts of Peincard, comprsing integeals
over subspaces of phase space of different dimensions. The other members of the
sequence canot be stated as simply as Jy, and because they are not needed for
the further development of the theory, Siey will not be discussed here.

Finally, the invariance of the fundamental Poisson brackets now enables us to
outline & proof that the symplectic condition imphes the existence of a generat-
ing function, as mewioned 4t the conclasion of the previous section. To simplify
considerations, we shail examine coly 2 sysiem with one degree of frasdom; the
general method of the proof can be directly extended fo systerms with many de-
grees of freedom.® We suppose that the first of the eguasions of ransformation,

Q= Oly, 1), F = Plg, p},

*In the lisralurs, the connsction hetwosn the sympléstic appasch and the penstator formalun
womeHmes refacred 10 o the Carehendary theoreim.
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Is invertable 50 a5 1o give p &s a function g and ), say
p=d{g. 3. {9.87}

Substitution in the second equation of tansformation gives & as some function
of g and O, say

Py, ). 9.58)

In such 2 case, we would expect the transformation 10 be generaled by 1 genorating
function of the fisgl kind,* 7y, with Bgs. (9.87) and (9.85) appoaring as

_ ARl 0 __iA
p= T P= 30 (. - (2.89)

I Eq. (9.89) holds. then it st be troe that

£ ap
Y Rl 9.30
Conversely, if we can show that Bq. {9,907 is valid, then there must exist 2 function
1 such that p and F are given by Egs, {9.89).
To demonsirate the validity of Eqg. (9.90), we try (o Jook on 4l quantities as
functions of ¢ and (2. Thus. we of consse have the identity
8.,
a2
bt if Bq. {9.87) be substituied in the At ransformation equation,
@ = Qg ¢ig, U1, (991}
the partial derivative can also be writisn

g 4a de
3¢ apa@

50 that we have the relation

B
gt ©on

Lt the sanire spirit we evaluare the Pofsson bracket

2QIP_aPRg
AR S

HOf eonrse, f the (F wuansformancn squation 18 wow uverible, g in te identity transfarmunon, then
ves wonld invent the P sqastson snd he led b a genecating fenction of the secondkmd.
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The derivatives of P are derivatives of v {rom Ba. {9.88) considercd a5 a fonction
of g and ({g. p). Hence, the Polsson bracket can be written

80 by A0 ag(ﬂ+gg)
G B0 Bp  dp \bg a0 ag )}’

or, consolidating tenns, ag

(o.m1- 2% (1232 070y san
' a0\ 3y dp  3p g, op bg
and therefore
o 22H
o @93y

Combining Egs. (9.92) and {8.93), we have

3y ag - ag i

dp A Ap g’
Since the partial devivative of [ with respect to p is the same on both sides of the
equation, that is, the other variable beyng held conatant is g in both cases, and since
e derivative dosn’t vendsh (else the ) equation could not be inverted), it follows
thiat Bq. (.96} must be true. Thas, from the value of the fendamental Poisson
bracket [, P, which we have seets is equivalent 1o the symplectic condition, we
e led to the exiskence of 2 generating function. The two approsches to canonical
transformarions, though arrived a indepandently, are fally eguivalent.

EQUATIONS OF MOTEON, INFINITESIMAL CANONICAL
TRANSFORMATIONS, AND CONSERVATION THEOREMS
IN THE POISSON BRACKET FORMULATION
Almost the entire & of Hamil can be regtated in terms
of Poisson hrackess. As a result of the canonical inveriance of the Pojsson brack-
efs, the relations 50 obtained will also be tnvarlant in form vnder & cunonical
transformution. Suppose, for example, we ook for the total time derivative of
some function of the canonical variables and tme, uig. p, £}, by use of Hamit-
oS cquagons of motion:

dn au

or

- 994
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T 1erms of the symplectic notation, the desivation of Bq. (9.94) would rin

ECNE. 1 T3

}?:ﬂ“+§w§§jﬂ+‘§;'
from whence Eq. {954) follows, by virtue of (9.68). Squaton (9.94) may be
looked on 2y the genamlized equation of motion for un acbitrery finction u i
the Polsson bracket ion, I comains i jons as a speciat
case when for u we substitute one of the cananical vazisbies

G g B powlp, HL (9,953}

oF, in symplectic notation,
0= [, H7 {2.95h)

That By, (9.95b) is identical with Hamilion's equations of motion may be seen
directly from the observation that by the definition of the Poisson bracket,
Eq. {8.39), we have

aH
o 19.96)

50 that Ba. (9.950) is simply another way of writing Ba. (8.31). Another familiar
propetty may be obtained from Eq. (0.94) by taking & as 4 itself. Bquation (9.94)
then says that

aH BH

FTT

& was obtained previously in Eq, (8.41).
Note that the generslized equation of motion is cancnically invarisat: it is valid
In whatever set of canonical varizbles g, p 15 used to express the function « or to
evaluate the Poisson brackat. However, the Hamittonian used must be spproprs:
to the particular set of canondcat vmables Upon transforming to another set of
vartubles by a ¢ d fon, we must also change to
the transformed Hamibionian K.
§f u 15 2 constar of the motion, then Eq. {9.94) says it must have the property

du
LH, 4} == 5 (8.97)

All functions that obey Eq. (5.97) are constants of the motion, and conversely the
Polsson bracke: of H with any constant of the morion most be equal © (e explickt
tisae derivative of the constant Tunction. We thus have a general test for seeking
and identifying the constants of the system. For those constants of the motion ot
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invalving the time explicitly, the test of Eg. (9.97) reduces to requiring that theix
Poisson brackets with the Hamiltontan wanish, that is, [H, ] = 0.*

i two constants of the motion are kaows, the Jacobi identity provides a possi-
ble way for obminiag further consiants. Suppose # and v are (w0 constants of the
mwtion not explicidy fanctions of time, Then if w in B, (9.756) is akento be H,
the Jacobi identity says

P, vl = G

that is. the Potwsson bracket of « aud ¥ is also a constant in time. Even when
the conserved guantities depend upon tiuwe explicity, it can be shown with a bit
mere algebra (of. Bxercise 30) that the Paisson hracket of any two constonts of the
marion is alen g constant of the motion {Polsson’s theorem). Repeated applicadon
of the Jacob: identity in this manner can in principle Jead 1 2 complete sequence
of constants of the motior. Quite often, however, the process is disappointing,
“The Poisson bracket of ¥ and v frequently turms out t be & trivial function of
and v themsefves, or eves identically zero. Still, the possibility of generating new
independent constants of motion by Poisson’s thaarem. should be kept in nrnd,

The Poisson bracket notation can also be used 1o reformulate (he basic equa-
tiops of an infinitesimal canonical transformation, Ay discussed above (Sec.
tion 4.4}, such a transformarion is & special case of a transformation et 15 2
contituous functon of a paranster, starting from the jdentity transformation af
some initial valve of the perameter (which may, for convenience, be set equal
0 zero). If the parmmeter is small enough 1o be mrested as a fisst-order {nfinitest-
aal, then the mansformed canonicat variables differ only infinitesimally from the
initial coordinates:

{=q+bn 9.98
wiih the change being given in terms of the generator G through Eq. (9.63¢):

G
B === gf wmentic,
=l g
Mow, by the definition (§.68) of the Poisson bracket, it follows that

S.9%

{cf. B (9.96)), a relarion that remains valid when the Poisson bracket is evalpated
i termns of any other caronical varighles, If i i5 taken to be G, it is seen that the
eguations of trensformation for an infinitesimat canonical transformation can be

*In wew of the "comespandance prmesple” betvesn the etassical Porsson Bracket and the quantum
eommutator, 1t & seen dhat thes stalement cormesponds L the well-Eausn quantum theorem that con-
<erved quantities commate wich the Hamiloni,
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WIHIED a3

&1y = ein, Gl ©.160)

Consider now an mfinitesipa} icad i ion in which the contin-

voys parameter is £ (a5 was done in proving the symplectic condition} so that

£ == dt. and let the genetating function © be the Hamniltonisn, Then the equations
of transformation for this LC.T. become, by Eq. (9,160,

Sy = drfw, Hi = #pdf = dn. {3,101}

These ions state that the on changes the and mo-
mente at the tme ¢ 1 tha vakies they kave at the Sme ¢+ di. Thus, the motion of
the system in a time aterval df can be described by an infinitesimal comact mans-
formation d By the Hamiltonian. Coespondi the system motion in
& fatite time interval frowm i 1o £ s d by a ton of infinitest
contact transformations, which, as we have ssen, is aguivalent 1o 2 single finite
canomical transformation. Thus, te values of g and p at any thme 1 cag be ob-
tained from their inittal values by # canonica! transformation that is a contingous
function of ime. According to this view, the motion of & mechanical sysiem cor-
responds o the 1 evolution or unfolding of a ical tragsfonmeion.
En & very literal sense, the Hamillonian is the generator of the system motion with
time.

Comversely, there must Xist & canonical maasformation fom the valaes of the
coordinates and momenta sk any fime ¢ K their constant indtal values, Obtain-
ing such & 77 ion s obviously equi 10 sobving the problem of the
system motion. At the beginning of the chaptet # was polited out Ht 2 mechsn-
icat problem corld be reduced to finding the canonical ransformation for which
alt momienia are constants of the motion. The present considerations indicate the
possibility of an alternative solution by means of the cunonical transformation for
which both the momeyita and coordinates are constants of the motiop, These two
sirggestions will be alaborated in the next chapter in order 1w show how formal
sojutions may be obtained for any mechanical problem.

Traplicit w0 thig discussion has been am sltered way of looking at 2 canonical
wransformstion and the effect it produces. The potion of 3 canopical transforma-
ton was introduced a a change of the coordinates used to charatierize phase
space. In effect, we switched from one phase space i with coordinates {g, pj to
anather, [, with coordinates (2, PL H the state of the system al a given tinie was
described by 2 point A in one sysiem, # could also be described equally well
by the wapsformed point A’ (cf. Fig. 9.2). Any fonetion of the system variables
would have the same value for & given system configuration whether it was de-
seribad by the (g, p) set or by the (£, P) set. In other words, the function would
have the same valec at A’ as at A In analogy o the comespondiag description
of orthagonal transformations, we may cail thiy the passive view of 2 canonical
wansfonnation,
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Ay

fa.p}

FIGURE .2 The pasnive view of a canomcal ransformanon.,

In contrast, we have spoken of the canonical transformation generated by the
Hamikoniun as relating the coordinates of one point in phase space to those of
another point in the same phase space. From this viewpoint, the canopical trans-

f e feian's linguage, a imapplng of the pointy
of phase space onto themsetves, In effect, we have an sctive interpretation of the
cenonical tansformation s “moeving'” e system point from one position, with
coordinates (g, p). to another point, ((J, P}, in phase space {ef Fig. 9.3), Of
course, the canopical transformation in itseif casnot move o change the syyem
configuration, What it does is Sxpress | one conﬁguramn of the systen in ﬁerms of
another. With some classes of ion, the active viewpoint is
ot helpful. For example, the point tmngformauon from. Canesnan coordinates 1o
iphenc&i pol:sr di isa ] ter: of the passive type, and
an “active” interpretation of # wonld Border on the Judicrous.

The wetive views is pardeulaely useful for {ong o
tintously on & gingle Pa:nmetc; Cn the aetive imerpretation, the eﬁeu of the
traasformation is to “move” the sysiem poiat continucusly on a curve in phase
space as the parameter changes continuously. When the generator of the ussoci-
ated 1.C.T. 5 the Huniltonian, the corve on which the system point moves s the
wraectory of the system in phase space.

B
o . P
spuic
A,

4 i

FIGURE 9.3 The active view of 2 canstneal transformation,
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I we pose the guestios, How does a function chenge under a canonical ans-
formation? the answer depends on whether we should take an active or a passive
point of view. From the passive potit of view, the function changes i form, of In
Functional dependence, but it does not change in value. This is because in general
the function, call it U, hes a different fonctional dependence on (@, £} than it
does on {g, 7). Iis velue however remaing the same at the comresponding pointy
Utgo, po} and U((o. Fo) since (o =2 (g, po} and Fy == P{gy, po), 5o both
sets of coordinates refer to the same physical location in phase space but use dif-
ferent coordinates todescribe the phase space.

In contrast to this, if we consider the canonical transformation from an active
point of view, then we are talking sboat o wanslation of the sysem frow point
A to posnt B, from position {g.4, p.4) 1o position {gn, pp}. From this point of
view, fhe function iy, p} does wot change its fupcrional dependence upon po-
sition and momentun, rather it chauges its velues as & result of replacing the
values (¢ 4, .43 by {gi. pia) in the function U{y, p), There are then two distinct
phase spaces, one using (g, p) and de other using (0. P}, The trensformation
formalism uses the notation {g, p} for the variables at point A and (@, P} for the
variables at point 8. This is analogous 10 3 passive rotation in coordinate space
corresponding 1o the rotation of the covdinate axes ralative 1o 4 stadonary ob-
ject, and aa active rotation correspending 1o rowtiag an object relative to & fiked
coordinate system.

We shall pse the symbol 8 to denote o change in the value of a funcrion wnder
an “active” infinitesimal canonical transformation:

du == (B ~ uldy, (9.102)

where of course A4 and 8§ will be infinitesizmally close. Using the mateix notation
for the canonical variables, the chapge in the funetion value under aa LC.T. would
be defined as

B == aiyg -+ b} — wim.

Expanding in a Trylor series and retaining terms in first-order infinitesimals, we
have, by virtue of Eq. (9.683¢},

Recaliiag the definition of the Poisson bracket, Eq. (6.68), we see that the change
can be written as

Bu = elu, G {9.303)

Ar immediate application of Bq. (9.303) i to take for x one f the phase space
coordinates themselves {or the matrix of the coordinates). We ihen have, by
Eqg, (9.100},

an = eln, Gle by,
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OF eourse, this result is obvious from the definition of the point B in rejation to
A; the “change” in the cocrdinates from A 10 B is jost the infinitesimal difference
between the otd and new coordinaies.

These considerations must be generalized somewhar in talking sbout the
“change in the Hamiltonian.” Recall that the desigsation “Hamiltondzaa™ does not
mean & specific function, the same in all coordinaie systems. Rather it refess 1o
that function which in the given phase space defines the canonical equations of
motion. Where the canoricat transformation depends upon the time, e very
mearing of “Hamiltonian™ is also transformed. Thus, H{A) goes over not into
H{A) but into K{A"), and H{4} will not necessarily have the same value as
K ¢.A'). In such a case, we shall mesn by 3H in effect the difference in the value
of the Hamiltonian under the two interpretations:

IH = H(B) —~ K(A). (9.104)

Where the function itself does not change under the canonical transformation the
two forms for the change, Fgs, (9,102) and (9,304), are identical since (A" =
#{.A). In general, X is related to H by the equation
K= H4+ —3—}2‘
8t

where for an LC.T. the generating function is given by Eq. {9.62) in terms of G.
Sinee osly G in that equation can be an explicit functior of time, the value of the
new Hamiltonian is given by

G
E{AY = HEAY 4 6 = H{A) + ¢ a—G
at Bt
and the change in the Hamiltonian is
GH = H(E’)—H(A)—e%(:m {9.1489)

Follewing along the path that fed from By, (9.103), we sce that 8K is giver by

3H = €[H, G]—e?a—i;-. {9.106)

From the genersdized equation of motion, Eq. (9.106), with & as «, it follows

finadly that the change in H is
dG

GH = —e —. 2.107

i ¢ }

If G is a constant of the motion, Eq. (9.107) says that it generates an infinites-

imal canonical transformation that does not change the value of the Hamiltonian,

Equivalently, the constants of the motion are the generating functions of those

infinitesimal canonical rransformations that leave the Hamiltonian invariant. It
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plied in this conclusion is a connection between the symunetry properties of the
system and conserved quantities, a connection that is simplest to see for constants
of the motion not explicitly depending upon time. The change in the Hamiltonian
gnder the ransformation is then simply the change i the value of the Hamil-
tonian as the system i3 moved from confignvation .A to configuration B. if the
system is symmetrical under the operation that produces this change of config-
uration, then the Hamiltonian will obviously remain unaffected under the corre-
sponding transformation. To take a simple example, if the system is symmetricat
abowt a given direction, then the Hamiltonian will not change in vaiue if the sys-
tern as & wholg i3 rotated about thar direction, It follows then that the quantity that
generates {hrough as 1.C.T) such a rotation of the system must be conserved,
The rotational syrunesry of the system implies a particalar constant of the mo-
tion. This is not the first ingtance of a connection between constants of the motion
and sypumetry characreristics, We eacountered it previously (Sections 2.6, 8.2)
in connection with the congervation of generatized momenta. Here, however, the
theoren: i3 more slegant, and more complete, for it embraces ali independent con-
stants of the motion and not merely the conserved generalized monsenta.

The momenium conservation theorems appear now as a special case of the
general statement: If a coordinate g; is cyclic, the Hamiltonian is independent
of g; and wil} certainly be invariant under an infinitesimal transformation that
involves & displacement of g; alone. Consider, now, a transformation generated
by the ge tized tum confugale 1o g;:

Gig. p) = pi. (5.108)

By Eqgs. {9.63a and b), the resultant infinitesimal canonical transformation is

8q, = edy;,

ap, =0, (9.109)
that is, exactly the reguired infinitesimal displacement of ¢; and only g;. We read-
ily recognize this as the familiar momentum theorem: if & coordinate is cyclic, its
confugate momentum is a constant of the motion, The observation that a displace-
ment of ore coondinate alons is geserated by the conjugate momentum may be
put in a siightly expanded form. If the geperating function of an LC.T. is given by
Gy == (b == Jiripr, (9311

then the equations of wansformation as obtained from By, (9.63¢) appear 48
ag
Sup = ediy e &dig by = 6 Jig dis
s

By viztue of the onthogonality of |, these reduce Gnafly o

By, == €8py; (8.111)
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that is, a displacensent of any canonical vartables n; alone is generated in termas of
the conjugate variable in the form given by Bq. (9.110}. Of course, if ny is ¢, G
from Eg. (9.110) is just py, and if mz is p;, G is then —~g;.

As & specific illustration of these concepts, let us consider again the infinites-
imal contact wansformation of the dynamica variables that produces a rotation
of the sysiem as a whole by an angle d¢. The physical significance of the core-
spornding generating function cannot depend upon the cholce of initial canonical
coordinates,* and it is convenient to use for this purpose the Cartesian coordinates
of ail particles in the system. Nor will there be any loss in generatity if the axes are
so oriented that the infinitesimal rotation is along the z axis, For an infinitesimal
counterclockwise rotation of each particle, the change in the positicn vectors is o
be found from the infinitesimal rotation mawix of Eq. (4.69). With a rotation only
sbont the z axis, the changes in the particls coordinates are

Bx; = —y; 28, Sy =x;dB, Sz =0 (9.112a)

The effecs of the nansformation on the companents of the Cartesian vectors

formed by the momenta conjugate to the particle coordinates is similarly given
by

8pic = ~piyd, Spiy = pixdf,  Gpiy =0, (9.1135}

Comparing these transformation equations with Bygs. (9.63a and b}, it i5 seen that
the corcesponding generating function is

G = X Py = ¥ Pixs 9.113)

with d& as the infinitesimal parameter €. For a direct cheek, note that

3G
bx; = dl
ap

ix

G
= -y i, Bpi = —db Froke -~ Piy df,
aG aG
by; = dff e =X A8, Apiy = —dB - = py A6,
¥ B =T piy Pl l

agreging with Egs. {9.112). The generating function {9.113) in addition has the
physical significance of being the z-component of the total canonical angular mo-
mentum:

G Ly o= (ry X py)y. (9.114)

Since the 3 axis was arbiteartly chosen, we can state that the generating Fanction
corresponding o an infinitesimal rotation about an axis denoted by the unit vector

*This can most easily be ses from the canenieally invariant Eq. (6.100). The chanpe in the canonical
variable p; remains the same no matter in what sel of canonical variables G is expressed.
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mis
G=L.n ©.11%)

Note that the canonical angular momenum as defined here may differ from
the mechanical angalar momentum. I she forces on the system are dezivabie from
velocity-dependent potentials, then the canontcal momentam vectors p; are not
necessarily the same as the linear momentam vectors, and L is Egs, 9.114) and
{9.113) may not be the same as the ical angalar Mo . The resalt
abained hete is therefore a generalization of the conclssion given in Section 2.6
that the momentiun sonjugate 1o a rotation coordinate is the comesponding com-
ponent of the total angular momentam. The proof presented there was restricted
o systems with velocity-independent potentiais. By virtve of Egs. (9.108) and
{9169, we can now conclude that the momenivm conjugate to a generatized co-
otdinate that measares the rotation of the system as a whole about an axis n is the
component of the total canonical angular momentuzmn along the same axis. Just as
the Hamiltonian is the generator of a displacement of the system in time, so the
engular momenfum is the generator of the spatial rotations of the system.

1t has already been noted that on the “active” interpretation a canonical mans-
formation depending upon 2 parameter “moves” the system point along a con-
tinuous trajectory in phase space. Since the finite transformation can be locked
on as the sum of an infinite succession of infinitesimal canonical transformations,
cach corresponding to an infinitesimal displacement along the curve, it should
therefore be possible formally to obtain the finite ransformation by integrating
the expression for the infinitesimal displacements. We can do this by noting that
zach poist on the irajectory in phase space corresponds to a particular vaiue of
the parameter, which we shall caff o, starting from the initial system configura-
tion denoted by o = 0. If # is some function of the system configuration, then u
wili be a continnous function of & along the trajectory , u(n), with initizl value
ug = u{D). (For simplicity, we shall consider u as not depending explicitly upon
time.) Equatios (9.163) for the infinitesimal change of # on the trajectory can be
writien as

Ju = defu. G},

or 2s 2 differential equation in the variable o
— == i, G}. 9.116)

‘We can get u(a), and therefore the effect of the finite cancpical transformation,
by integrating this differential equation. A formal sclution may be obtained by
expanding #{x} in  Taylor series about the initial conditions:

d
ufe) = uo+ut-t-(-

o2 d2u o d3u
Tl T aht Tkt

3 da?
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By Eq. (9,116}, we have

du
=i = fu, Glg,

Toly = 1 Glo

the zero subscript meaning that the value of the Poisson bracket is to be taken at
the initial point, o = 8, Repeated application of Eq. (9.116), taking [, G) Hself
25 4 function of the system configusation, gives

d*u

v il {{u. G1, G1,

and the process can be repeated o give the third derivative of 1 and so on. The
Taylor series for u{er) thus leads to the formal series solution

2 3
i@ = up + fit, Gly + -1, G1. Glo-+ 5 [flw G, 6L Gl -+, ©117)

If for 1 we iake any of the canonical variables £, with ug the starting set of vazi-
ables #;, then Bq. (9.115) is a prescription for Bading the ransformation eguations
of the finite canonical srassformation generated by 6.

it is not difficult 1o find specific examples showing that this procedure acte-
ally works. Suppose for G we ke L, so that the final canonical sransformation
should correspond to 2 finite coration about the z axis. The natiral parameter to
use for & i the rotasion angle. For u, 1ot us take the x-coordinate of the ith particle
in the system. Either by direct evaluation of the Poisson brackets or by inference
from Bas, (9.112a), it is easy to see that

2 C M o ¥, L) = X, 9,118}

where capiral fesiers have been used to denote the coordinates after some retation
4, that is, the final coordinate. The initial coordinates, that is, before rotation, are
a4 usual represented by lowercase letters. It follows then that
X5, Lodo = e,
HXp L] Lodo = — [V Ledo = ~xi,
(X Lod Led, Bodo = 16 LoJo = w,
and so on. The series representation for X; thus becomes
& g

92
Xi = x ‘"}’.‘9"'“%'? BT i

¢t &
=xg(1—i+i—ﬁ—---)—y;‘(9“'5'!'4“" .
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The two series will be recognized as the expansion for the cosize and sine, re-
spectively. Hence, the equation for the finite transformation of X is

Xi = x; 0086 — y;sind,

which is exactly what we would expect for the finite rotation of a vector counter-
clockwise about the 7 axis.

For another exampte, et us consider the situation when G == K and the pa-
rameter is the time. Equation (9.116) then reduces to the equation of motion for
Hl

£
i fu, H].
with the formal solution
2 3
() = ug +éfu, Hlp+ %E{u. HL Hlg+ %;[[[u, HYL H) Hig+---. (9.119)

Here the subscript zero refers 1o the initia] conditions at £ = 0.
Let us apply this prescription to the simple problem of one-dimensional motion
with a constant acceleration a, for which the Hamiltoman is

z
2

H = o max,
2

with u as the position coordinate x. The Poisson brackets needed in Eq. {9.119)
are easy 1o evaluate directly or from the fundamental brackets:

i, Hl= £,
m
ffr. HLHy = —(p, H] =

Becauge this last Poisson bracket is z constant, all higher-order brackets vanish
identically and the series terminates, with the complete solution being given by

2
PR L.
m 2

Remembering that po/m = v, this will be recognized as the familiar elementary
solution to the problem.

1t may be felt thar what we have done hewe is & four de forze, a mere virtuoso
performance. There is force to the objection. We would not propose the formal se-
ries solution, Bq. (9.119), as the preferred method for solving realistic problems
in mecharics. It is surely one of the most recoadite procedures we can conceive of
for solving the easiest of freshman physics problems! Nonctheless, the technique
provides insights into the stucture of classical mechanics as based or canoni-
cal transformation theory. The series expansion shows directly that infinitesimat
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canonical transformations can generate fnite canonical ansformations, depend-
ing on a parameter, apd thus lead to solutions to the equations of motion. Of par-
ticular interest for the refation between classical and guentums mechanics is the
observation that the series in Hqs, (9.117) or (9.119) bear a family resemblance
o the series for an exponential. The nest of Poisson brackers in the mth teem can
be considered as the nth repeated application (from the right!) of the aperator
{ , G, or the nth power of the operator, Bquation (9.119), for example, could
symbolically be writien as

u() = uett - (8.120)

The gxponcntial here means no more than iis series representations and the sym-
bol H is used to indicate the operator { , H}. What we have here is very remi-
niscent of the Heisenberg picture in quantam mechanics where the #{2) become
time-varying operators. whose tme dependence is given in terms of expli Hi/h)
in such a manner as to lead to the same equation of motion, Eg, {9.94). (The
additional factor i/ arises out of the correspondence between the classical Pois-
son bracket and the quantumn commutator.} The Poisson brackes formulation of
mechanics is thus the classical analog of the Heisenberg picture of quantum me-
chanics.

9.7 8 THE ANGULAR MOMENTUM POISSON BRACKET RELATIONS

The identification of the canonical angular momentum as the generator of a rigid
rotation of the system leads to a number of interesting and important Poisson
bracket relations. Equations {9.103) for the change of a function # under an in-
finitesimal cancnical transformation (on the “active” view} is also valid if « is
taken as the component of & vector along a fixed axis in ordinary space. Thus, if
¥ is a vector function of the system configuration, then {cf. Eq. (9.116)

F; = doif;, G

Note thas the direction slong which the conponent is taken muss be fixed, that is,
not affected by the canonical transformation. ¥ the direction Hself is determined
in terms of the system variabies, then the mansformation changes not only the
valise of the function but the natore of the function, just as with the Hamiltondan,
With this understanding the change in a vector ¥ under & rotation of the systera
about a fixed axis n, generated by L - &, can be written in vector notation (+f. Eg.
(9.3150

F = d01F. L - n} (9.121)

To put it in other words, Eq. (9.121) implies that the unit veeters i, §, & that form
the basis set for F are not themselves rofated by L - n.
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‘the words describing what is meant by Fqg. {(9.121) must be chosen carefuily
for another reason. What i3 spokes: of is the rotation of the system under the LC.T.,
not necessarily the rotation of the vector F. The generator L + n induces a spatial
rotation of the system variables, not for example of some external vector suchasa
magnetc field or the vector of the acceleration of gravity, Usnder what conditions
then dogs L - 0 generate & spatial rotation of F* The answer is clear—when ¥ is
a function only of the systern variables {g, p} and does not involve any external
guantities of vectors not affected by the LCT, Only under these conditions does a
spatial sotation bmply 4 corresponding rotation of F. We shall designate such vec-
tors as systent vectors. The chiange in & vector under infinitesiznal rotation about
an axis » has been given several times before {cf. Eq. (2.50) and Eq. (4.75)):

dF = ndf x F.

For a system vector ¥, the change induced under an 1.C.T. generated by L.« ncan
therefore be written as

8F = d¢[F,L-n}=nds x F. (9.122

Equation {9.122) implies an important Poisson bracket identity obeved by ail sys-
tem vectors:

F,L..aj=unxF. 9.123

Note that in Eq. (9.123} there is no Jonger any reference to a canonical transforma-
tion or even to a spatial rotation. It is simply a statement ahout the value of certain
Poisson brackess for a specific class of vectors and, as such, can be verified by
direct evalzation in any given case. Suppose, for example, we had a system of an
uncenstrained particle and used the Cartesian coordinates as the canonical space
coordinates. Then the Cartesian vector p is certainly a suitable system vector. i n
is fakes as a unit vector in the 7 direction, then by direct evaluation we have

[ps, 20y =~ ¥pal = —py.
[y, xpy = P2t == pa,
{py, xpy =~ ¥Pz} = 0.

Fhe right-hand sides of these identities is clearly the same as the components of
n % p, a8 predicred by Bq, (9.123),

On the other hand, suppose that in the same problem we tried to use for F the
vector A = %(r x B) where B == Bi is a fixed vector afong the x axis. The vector
A will be recognized as the vector potential cor ding to a uniform 4
field B in the x-direction. As A depends upon a vector external to the system., we
would expect it not to fit the characteristics of a system vector and Eq. (5.123)
should not hold for it. Indeed, we see that the Poisson brackets invobved are here




418

Chapter & Canonical Transformations
[ xpy ~ ypr} =0,
[%zBJPy - ynx] =0,
[—%yB,xpy - }’le = —4 Bx,

whereas the vector & x A, has insiead the components (~ Bz, 0, 0).

‘The refation {9.123) may be expressed in various notations, Perhaps the most
advantageous i3 a form using the Levi-Civita density to express the cross product
{cf. Eqt. (4.77)). The ith component of Eq. (9.123) for arbitrary n then can be
wrisgen

PF;, Ling} = egun; Fi, (9.124)
which implies the strple resalt
EFi, LjY = en Fi. (9.£25)

An shernative staternent of Eq. (9.123) is 1o note that if [, m, » are three indices
i1 cyelic order, then

[Fy, L} = F,, { m, nincyclicorder 9.1257

Another consequence of g, (9.123) refates to the dot product of two system
vectors: F - G. Being a scalar, such a dot product shouid be invariant under rota-
tion, and indeed the Poisson brackes of the dot product with L + n is easily shown
to vagish:

F-G.L-n]=F-{GL-nj+G- ¥ L a]
=F-nxG+G-nxF
=F.axG+F-Gxn
= 0. (9.126)

The magnitude of any system vector therefore has a vanishing Poisson bracket
with any component of E.

Perhaps the most frequent application of these results arises from laking F 10

be the vector . itself. We then have
L.L:ni=nxLk, 9.12h
L. L} = ejply, {9.128)

and

L3 L0} =0 9.129)
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A number of interesting conseguences follow from Egs. (9.127)

{p.L-al=nxp
[per L71 = €ja e

I Ly and 1, are constants of the motion, Poisson’s theorem then stales that
{hy, Ly} = L 3 also & constant of the motion, Thus, if any two components of
the anguiar momentuim are constant, the 101al angular MormeaiunG vector i con-
served. As a further instance, let us assume that in addition o L, and L, being
conserved there is a Cartesian vector of canorical momentum p with p, 2 con-
stant of the motion. Not only is L, conserved but we have two further constants
of the moten;

(Pe Lel = py
and
fpo Lyl = = ps,
that is, both L and p are conserved. We have here an instance in which Peisson’s

thearem does yield new constants of the motion. Note, however, that if p., py,
and L, were the given constants of the motion, thes their Poisson brackets are

[Pz 1y} =8,
Lpe Lo} = —py,
[y, Lol = pa.

Here no new constants can be obtained from Poisson’s theorem.

Recali from the fundamental Poisson brackets, Hgs. (9.69), that the Pois-
son bracket of any two canonical momenta must always be zero. But, from
Eq. (9.328), L; does not have a vanishing Poissos bracket with any of the other
components of K. Thus, while we have described L as the total caponical sngular
momentm by virne of it definition as r; x p; (summed over all pardcles),
BO WG COmp of L. can simult: susly be canonical varisbles. However,
Eq. {9.12¢) shows that any one of the comp of L, and i1z itude £, can
be chosen 1o be canonica) variables at the same time.®

Tt has heest remasked previously that ty pondence between quantam and classicat mechanics is
such that the quantum mochanical goes over iafly into the glassical Poigson hracket
as -+ (. Much of the formal structors of quantum mechagics appears 25 a close copy of the Poisson
bracket formudation of claysical mechanics, AL e cesitlts of this section thevefore have closs guantum
anatogs. For example, the fact that two of L cannot be si tcel momenta
appears as the well-knows statement thas [, and £.; cannot have simuilancous cigenvalves. But L
and any L; cun be quamntized rogether. Indeed, most of thess relations are knows far batter in their
quantum form than 25 classical thearems,
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SYMMETRY GROUPS OF MECHANICAL SYSTEMS

It has already bees pointed out that casonical sransformations form a group.
Canonical transformations that ate anatytic functions of continuous parameters
form grovps that are Lic groups. A Lie group with continuous parameters, 6,
as associated with it 2 flat vector space whose basis veciors, u;, constitute a Lie
algebea satisfying the previously given condition on the Poisson bracket

S = Y tue k)]
k

The elements, Q{8), of the associated Lie group are refated to the elements of
the: Lie algebra by

Q) = exp (iz EB;H.’) . (5,130}

‘Fhe definitions of Lie groups and Lie algebras are considered in more detail in
Appendix B.

In Chapter 4 of the first twe editions of this text, an extensive discussion was
given of the Pauli matrix representation of the rotational group in three dimensions
where the Pauli matrices thaf form the basis,

01 (T 10
=l oe) =G oo ) D= g

are both hermitian (the matsix is equal to its own transpose complex conjugate}
and unizary {the transpose complex conjugate of the matrix is the inverse). These
matrices have the properties®

fo;,0;7] = 2igy

fori. j, and & n cyclic permutation of x, v, and z. The strectare constants are thus
ciff = Zig, and of = |, the unit 2 x 2 matrix. The Buler angles can be used
as the parameters that generate the group ¢lerments. For a rotation in the y-z plane
we have, for example,

O = 1ces§ +£o‘,sing =

*Some physicists define 2 Lie afgebra with the exprossion {e.u;] = (T, q',&"k instead of
Bg. (9.77). This makes the shucture constants in the following di ion peal. Many fei
omit the i = /1 in the definition. The prescnt text foflows the jatter canvention.
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ot this formalism, vectors are represented by 2 x 2 matrices of the form

y o w n-iy
tx.y.2) Yo iv, v )

and a rofation is performed by a similarity transformation
Vo p.ey = QO Viap.0 216,

where ©7 is the adjoint, or complex conjugate transpose of the matzix Q.

The 2 x 2 matrices  are unitary with determinant +4-1, 3¢ they constifute s
representation of the special unitary group in two dimensions, SU{Z). The set
of unitary 2 x 2 matrices with determinant either +1 or ~—| has twice as many
elements {both infinite in number}, which form the fall unitary group U2} in two
dimensions. This group of 2 x 2 rotatation matrices has the same properties as
the group of the associated infinitesimal canonical transformations (LE.T) Mis
customary to work primarily with the L.C.IVs aa they are easier 10 handie. The
Lie groups of LC.Ts whose generators are the constants of the motion of the
system are known as the symimetry groups of the system for, as we bave seen, such
transformations leave the Hamiltondan invariant. Finding the symmetry groups of
a system goes a long way toward solving the problem of its classical motion and
is even closer to a solution of the quantum-mechanical probiem,

A systemn with sphericat symmetry is invariant under sotation about any axis, s0
it can be represented by the group SU(2) as discussed above. Of more practical use
is the set of the usual 3 » 3 rotation mairices with d inant -1, which sey
the special rotation group in free dimessions R(3) = SO¢3). The vector L is
conserved o such 2 syster in accord with our identification of the components of
L. as the generators of spatigl rorations. For thé group of traasformations generated
by Ly, Eq. (9.128) shows that the structute constants are cf_," = gz, and it is this
selationship that stamps the group as being the rotation group in three dimensions.
Thus, the matrix generators M; of infinitesimal rotations, Eqgs. {4.79), have been
seen to obey the conmmutation relatiosns, Eq. (4.80),

My, M;1 = 1M, {4.80)

that is, with the same structure constants as for L;. The guantities L; and M;
are different physically; the brackets in Eqs. (9.125) and {4.80) refer to different
operations (although they share the same significant algebraic properties). But
the identity of the structure constants for L; and M; {cf. Egs. (9.128} and {4.80))
shows that they have the same group structure, that of SQ(3).

For the bound Kepler problem, we have seen {Section 3.9) that thers exists
in addition to L another conserved vector guantity, A, the Laplace-Runge-Lenz
veator defined by By, (3.823

AmpxL- T (3.82)
r
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The Poisson bracket relations of the components of A with themselves and with
the compongnis of L, can be obeained in & srraightforward manner. Since A clearly
qualifies as a system vestor, we immediately have the bracket relations

[Ai L} = ¢ A 9.130

The Poisson brackets of the components of A among shemselves cannot be ob~
wained by any such simple stratagers, bat after a fair amount of tedious maniptla-
ton it is found that*

iAhAz}:m(pzm zm’:‘f‘n) La (9132

The quantity on the right in the parentheses will be recognized as 2m H, which
has the conserved value 2mE. If we therefore introduce z new constant vector D
defined as

9.13%

(note that F is negative for bound motion!}, then the components of I» satisfy the
Paisson bracket relation

Dy, Dl = L
By cyclically permuting the indices, the complete set of Poisson brackets follows

immediately. Thus, the components of L and I} together form a Lie algebra for the
bound Kepler problem, with structure constants 1o be obtained frotn the identities.

L L= el (9.128;

[Dy, L= e Dk, (9.134
and

(D, D} o= egpuky. {9,135}

An examigation of the fundamental manices for rotation will show that the
symimetry group for the bound Kepler problem is 1o be identified with g group
of four-dimensional real proper otations, called the special orthogonal growp of
dimension 4, which is usnafly designated as SO(4) o7 R{(4}. Such 2 transformaticn
proserves the value of the scalar quadratic form x,x,., whese all the x,, are real.
An orthogonal tragsformation in four dimensions has 10 coaditions on the 16 el-

*Some reduction in the length of the derivation is obtained by identifying p x L a8 a system vector £,
and firs: evaloating the Poisson brackets (O, (p x EJ2} and [C. 1/rF making use of the fundamental
Poisson brackets and Hae. (9.125) 10 the utmost.
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emenis of the matrix with determinant +1, 50 only 6 are independent. By looking
on the infinitesimal transformation s being made up of a sequence of rotations in
the various planes. we cai sasily oblain the comresponding six generators. Three
of them are rotations in the thyee distinct x;-x, planes and so correspond to the M;

generators of Egs. (4.79), except that there are adéed zeros in the zeroth row and
column, The ining three itesimal rotations in the xg-x; planes.

Thus, the generator matrix for an infinitesimal rotation in the xp-x; plane would
be

Ny = (3.136)

[l R e e}
o0 oo

0 -1
o
(U
¢ 0

with Ny and N3 given in corresponding fashion. Direct matrix multiplication
shows that these six matrices satisfy the commutater {or Lie bracket) relations
[, M1 o= e
INg, M T = e
NG NGT o 6,
with structure constants c;j* = € Since these are the same as the Poisson
bracket relations, Bgs. (9.128, (9.134), and (2.135), the identification of the sym-
metry group of the bound Kepler problem with R(4) is thus proves.
Note that for the Kepler problem with positive energy {that is, scantering) A is

still a constast of the motion,® but the appropriate reduced real vecros, instead of
D, is € defined as

A
VImE'
and the Poisson bracket relations for L ang C are now
[Lis L) = el
[C Lgl = ejaCh, {91383
{Ch Y 5= e L

£

(9.137)

These structure constants are the same as for the restricted Lorentz group, which
must therefore be the symmetry group for the positive energy Kepler problem—in
nenrelativistic mechanics. We must not read any kinship of physical ideas itto this
happenstance. The Kepler problem does nor contain in it the seed of the basic con-
ceptions of special relativity; it is purely a problem of nonrelativistic Newtonian
mechagics. That the sympetry growp may invelve a space of higher dimension
than ardinary space is conaected with the fact that the symmetry we seek here

*The argunents of Section 3.9 are independent of the sign of either £ or the fores constant &,
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is one in the six-dimensicnal phase space. The symmetry group consists of the
canonical transformations in this space that leave the Hamiltondan unchanged. It
shoudd not be sutprising therefors that the group can be mterpreted in terms of
wansformations of spaces of move than three dimensions.

The two-dimensional isotropic harmonic osciliator is another mechanical sys-
tern for which & symaneiry group is eastly identified. In Cartesian coordinates, the
Hamiirondan for this system may be written as

1

HﬁQm

1
o} + mfta®) + E-mw(pi +mat Y. (9.139)
As it doesn't depend on time explicitly, the Hamiltonian is constant and is equal
1o the toral energy of the syster. The ¢ axis is an axis of symmetzry for the system,
ard hence B angular inomenturn along that axis (which is In fact the total angular
momentum} 13 also a constant of motio:

L= xpy ~ yPx. (9.148)

Further constants of the motion exist for this problem that can be written as com-
ponents of a symmetrical two-dimensicnal tensor A defined as

1
Ay = E(Pi‘uj + mzwzx;xj). (9.141}

OF the thees distinet elernents of the tensor, the diagonal terms may be identified
a8 the energies associated with the sepazate one-dimensional motiens along the
x and y axes, respectively. Physically, as there is no coupling between the two
motions. the two energies must separately be constant. A Little more formaly, it
is ohvious From the way in which B has been written in Bq. (9.139) thar 41y
and Ay each have a vanishing Poisson bracket with H. The off-diagonal elerent
of A,

1
A= A = peipepy EmietER), (9.34%)
is & Hitle more difficult to recognize. That it is & constant of the motien may easily
be seen by evaluating the Polsson bracket with H | In refation 1o the separate r and
y motions, Ay and Az are related to the amplitsdes of the oscillations, whereas

Aty 18 determined by the phase difference between the two vibrations. Thus, the
solutions for the motion can be written as

A

o=y L sinfer + 1),
i
154

y = —2§ sin{wt + &2,
i
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and it then follows from Eq. {9.142) that

Ay == f Ay Agy cosieh -~ ). (9.143)

The trace of the A tensor is the total energy of the karmonic esciflator, Out of
the clernents of the matrix, we can form two other distinct constants of the motion,
which it is convenient to write in the form

A+ Ay 1 2
8§y s S me(pxpy + mtutay), (9.144)
_An=An 1 ra o 2.2 2
5= PR Wémw{ 2 g miut(yt - )1, (9.145)

‘Fo shese we may add a third constant of the metien from Eq. (9.140%:

L 1
&= 5 = ﬁ{xpy = YBe). (9.146}
The quantities S; plus the total energy # form four algebraic constams of the
motion not involving ime explicitly. It is clear that nor all of them can be inde-
pendent, because in a system of two degrees of freedom there can at most be only
three such constants. We know that the orbit for the isotropic harmonic oscillator
is an ellipse and three constants of the motion are aceded to describe the param-
eters of the orbit in the plane—say, the semimajor axis, the eccentricity, and the
orientation of the eilipse. The fourth constant of motion reares 10 the passage of
the parzicle through a specific point al a given time and woukd therefors be explic-
itly time dependent. Hence, there must exist & single relation connecting §; and
H . By direct evaluation it is easy to show that*

2. B
Sfb8F+ 8] = s {9.147)
By styaight forward manipulation of the Poisson brackess, we can verify that
the three §; quantities satisfy the relations

£5;. 8,1 = e Sk {9.148)

Fhese are the saroe refations as for the three-di ional angular mo vec-
tor, or for the generators of rotation in a three-dimensional space. The group of
iransformations generated by §; may therefore be identified with R{3) or 30(3).
Actually, there is some ambiguity in the identification.

*AR equivatent form of the conditdon By, {9.347) is that the detenmdnant of A is Lzmz,'d. It will e
recalied that similarly in the case of the Kepler problems, the components of the new vectos constant
of motion A were not 2l independent of the other constants of the mation. There exist indeed two
zelations tnking A, L, and A, Eqs. (3.83) and (3.87).
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There is 2 homomorphism (in this case, 4 2 0 1 mapping) between the orthog-
onal snimodular group SO(3) also cailed the rotation group R(3) in theee dimen-
sions and the unitary unimodudar group® SU{2) in two dimensions. It wras out
shat $U¢2} is here more appropriate. To glimpse ai the circumstances justifying
this choice, note shat Bq. (9.147) suggests there is a three-dimensional space, each
point of which corresponds {0 2 particular set of orbital parameters. For a given
sysiem energy, Eq. (9.147) says the orbit “points” in this space lic on a sphere.
‘The s 8 g three-di fonal rotations on this sphere; that is, they
change one arbit into another orbit having the same energy. It may be shown that
§; generates & transformation that changes the eccentricity of the orbit and that
for any given final eccentricity we can find nwe sransformations leading to it. It is
this double-valued guatity of the wansformation that indicates SU(2) rather than
$O43) is the corgect symmetry group for the two-dimensional harmenic oscifla-
o

For higher dimensions, the structure constants of the Lie algebras of the SG(n)
rotation groups and the SU{n) unitary groups are no fonger identical, and a clear-
cut separation between the two cat be made. For the tree-dimensional isotzopic
harmosic oscillator, these is again a fensor constant of the motion defined by
Eg. {9.141), except that the indices now ran fom | to 3. The distinct components
of this tensor, together with the components of L tow satisfy Poisson bracket rela-
tiens with the rather complicated structure constants that belong to SU(3). Indeed,
i is possible to show shat for the a-di ional isotropic h ic oscitlator the
symmetry group is SUn).

1t has previously been pointed out iz Section 3.9 that there exists a connestion
between the existence of additional algebraic constants of the motion—and there-
fore of higher-symmetry groups—and degeneracy in the motions of the system.
In the case of the Kepler and isotropic harmonic cscitlator problems, the addi-
tional constants of the motion are related 1o parameters of the orbit. Hnless the
orbit is closed, that is, the motion is confined to a single curve, we can hardly
talk of such orbital parameters. Only when the various compenents of the mo-
tion have commensurate periods will the orbit be clesed. The classic example
is the two-dimensional anisotropic osciliator. When the frequencies in the x and
y directions are rational fractions of each other, the particle raverses a closed
Lissajous figure. But if the freq ies are inco the motion of the
particle is space-filling or ergodic. eventually coming as close as desired to any
specific point in the rectangle defined by the energies of motion in the two disee-
tions (ergotic hypothesis). Attempts at finding complicated {and perhaps complex)
symmetry groups for incommensurate systerns, applicable to ail problems of the
saime number of degrees of freedom, have not et proved fruitful. We shall have
accasion n Section 13.7 to consider further the refation between symmetry and
invariznce when we discuss Neether's theorem which gives a formal proof of the
retation between invariance and conserved quantities.

*A matrix is unitary if its fverse s its pose complex eon end & unimoduiar mamix is one
whose delerminent is -+1.
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9.9 M LIOUVIELE'S THEOREM

As a final application of the Poisson brackes formatism, we shafl briefly discuss
a fundamental sheorem of statistical mechanics known as Liouville's theorem.
‘While the exact motion of agy system is compleiely detesmined in classical me-
chanics by the initial conditions, it is often impracticable 10 calcuiaie an exact
solution for complex systems. It would be obviously hopeless, for example, to
cajculate completely the motien of some 102 molecules in a volume of gas. In
addition, the initial conditions are often only incompletely known. We may be
able to state that at time rp & given tnass of gas has a certain enesgy, but we can-
not determine the inftial coordinates and velocities of each molecule. Statistical
mechanics therefore makes no attempt to oblain a complete solution for systems
containing many particles. Its aim, insiead, is to make predictions about certain
average propesties by examining the motion of a large number of identical sys-
tems. The values of the desired guantities are then computed by forming averages
aver alf the systems o the ble. All the bers of the ensemble are as like
the actual systemns as our imperfect knowledge permits, but they may have any of
the initial conditions that are consistent with this incomplete information, Since
@ach systern is represented by a single point in phase space, the ensembie of sys-
tems cosresponds to a swarm of points in phase space. Liouvilie’s theorem states
that the deasity of systems in the neighborhood of some given system in phase
Space remains cotistant in timne.

The density, D. as defined above can vary with time through two separate
mechanisms. Since it is the density in the neighborhood of a given system point,
there will be an implicit dependence as the coordinates of the system {g;, p;) vary
with time, and the system point wanders thyough phase space. There may also be
an explicit dependence upon time. The density may atilf vary with time even whea
evainated at a fixed point in phase space. By Eg. (9.94), the toial gme derivative
of D, dug 10 both types of variation with time, can be written as

dD aD
— e 9.3149
P [D, H] 4 TR (9.149)

where the Poisson bracket arises from the implick dependence, aod the last term
from the explicit dependence.

The ¢nsemble of system points moving through phase space behaves much like
a fiuid in & multidimensional space, and there are pumerous similarities berween
our discussion of the ensemble and the wetl-known notions of fluid dynasics, In
En. (9.149), the totat derivative is a derivative of the density as we follow the mo-
tion of a particular bit of the ensemble “fiuid” in time, 12 is sometitnes referred to
as the mazerial or hydrodynamic derévative, On the other hand, the pastial deriva-
tive is at fixed (g, p); it is as if we station ourselves at & particular spot in phase
space and measure the time variation of the density as the ensembie of sysiem
points flows by us. These two derivatives correspond to two viewpoints frequency
used in considering fuid Sow. The partial derivative at a fixed point in phase space
is in line with the Eulerian viewpoint that looks on the conrdinates solely as iden-
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tifying a point in space. The total derivative fits in with the Lagrangian picture
in which individual particles are followed in time; the coordinates ins effect rather
identify a particle than a point in space. Bagically, our consideration of phase
space has been more Hke the Lagrangian viewpeint; the collection of quantisies
1g. p) identifies a system: and its changing configuration with time.

Consider an infinitesimal volume in phase space sutrounding 2 given system
point, with the boundary of the volume formed by some surface of neighboring
systers peints at the time ¢+ = 0. Note that the surface of the volume is one-
dimension less than the volurae. In the course of time. the system points defining
the volume move about in phase space, and the volume contained by them wiil
take on different shapes as time progresses. The dashed curve in Fig. 9.4 indicates
the evolution of the infinitesimal volume with time. It is clear that the number
of gystems within the volume remains constant, for a system initially inside can
never get out. If some system point were to cross the border, it would occupy at
some time the same position in phase space as one of the system peints defining
the boundary surface. Since the subsequent motion of a system is uniquely deter-
mined by its focation in phase space at a particular time, the two systems would
travel together from there on. Hence, the system can pever eave the volume. By
the same token, a systemn initially outside can never enter the volume.

1t has been shown that on the agtive picture of 2 caponical ansformation, the
motion of & system point in time is simply the evolution of a canonical transfor-
mation generated by the Hamiltonian. The canenical variables (g, p) at time 12, a5
shown in Fig. 9.4, are related to the variables at time #; by a particular canonical
rransformation. The change in the infiniresimal volume element abour the system
POINE over the time interval is given by the same canogical ransformation. Now,
Poincard's integral invariant, g, (9,86}, says that a volume element in phase space
is invariant wider a canomical transformation. Thexefore, the size of the volume:
element zbout the system peint cannot vary with time.

Thus, both the number of systems in the infinitesimal region, dN, and the
volurae, 4V, are constants, and consequently the density

’, L

\
P R I
- ;

L3

FIGURE 94 Motion of a volumie in two-dimensional phase space.
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dN
D w o
dv
must also be constant in fime, that is,
dn
@ =

which proves Liouville’s thecrem. An alternative statement of the theorem follows
from Eq. {9.149) as

3D
5= ~{D. H]. (9.150%
‘When the bie of is in statistical equifibrinm, the number of sys-

tems in a given state must be constant in time, which is to say that the density
of system peints af a given spot in phase space does not change with time. The
vatiation of [ with time at a fixed point corresponds to the partial derivative with
respect to £, which therefore must vanish in statistical eguilibrium. By Eq. (9.130),
1t follows that the equilibrium condition can be expressed as

D.H]=0

We can ensure equilthriur therefore by choosing the density I to be a function
of those constants of the mozion of the system not involving time explicidy, for
then the Poisson bracket with & must venish. Thus, for conservative systems [
can be any function of the energy, and the equilibtium condition is automatically
satisfied, The characteristics of the ensembie will be deterrmined by the choice of
function for D. As an example, one well-known ensembie, the microcanonical
ensernble, oocurs if D is constant for systerns having & given parrow suergy range
and zero outside the range.

The considerations have been presented hete to illustzate the usefulness of the
Poisson bracket formulation in ciassical statistical mechanics. Further discussion
of these points would carsy vs far ovtside our field.

DERIVATIONS

1. One of the artermprs ar combiaing the two sets of Hamilton's equations into one tries lo
take g wnd p &s forming a complex quantity. Skow directly from Hamilton's equations
of motion that for & system of one degree of freedom the transformation

Pmgtip. P=g°

is not canenical if the Hamiltonian is left uneliered. Can you find another set of cootdi-
nates (7, P’ that are selated 10 O, P by a change of seale only, and that are canonical?
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2. Show that the transformation for 4 system of one degree of freedorm,
= geose — psing,
Pgsing+ peosa,

safisfies the symplectic condition for any value of the parameter o, Find a generating
function for the transformation. What is the physical significance of the ransformation
for o == (9 For o == 7727 Does your generating function wotk for both of these cases.

kd

In Section 84 some of the problems of treating time as one of the canomicat variables
are discussed. If we are able to sidestep these difficulties, show that the equations of
ransformation in which 7 is considerad a canonical variable reduce to Eqs. (9.14) i
in fact the transformation does not affect the time scale.

=

Show directly that the transformation
1.
Q= log Esmp , P=gcotp

is canonical.

W

Show directly that for a system of one degree of freedom the transformation

] 2
g g z
= ArC A —, P o oete § 1 e el
2 s 5 ( + ang)
15 canonical, where & is an arbimrary constant of sultable dimensions.
6. The transformation equations hetween two sets of coordinates are
Q == log{l +q1f2cosp),
P =L+ g2 cos pya' P sin p.

(a} Show directly from these fransformation equations that 0, F are canonical vari-
ables if ¢ and p are,
{h) Show that the function that generates this transformation is

Fy = ~{e2 ~ 1 um p.

bl

(a} ¥ each of the four typss of generating functions exist for a ghven canonical rans-
formation, use the Legendre transformation Lo derive relations between them.

) Fnd a gererating function of the Fy type for the idemtify ransformation and of
the F3 type for the exchange trapsformation.

{c} For an orthogonal point transformation of ¢ in a system of n degrees of freedom,
show that the new momenta are likewise given by the orthogonal wansformation
of an n-dimensional vector whose components are the old momenta plus a gradi-
ent in configeration space.

8. Prove directly that the transformation



Derivations 423

16,

1

=

12

14.

Si=q. Py=p-Ip
Gr=p P=-lp-q
i canonical and find 2 generating function,

(a} For a single particle show directly {that is, by direct evaluation of the Poisson
brackets}, that if & is a scalar function only of r%, p=, and ¥ « p, then

[, L} = 0.
(%) Similarly show directly that if ¥ i3 a vector function,
F o=t vp + wir x p,
where u, v, and w are scalar functions of the same type as in part (3), then
TRl LY €0 B
Find under what conditions
ap

= pg?
wa» P o= fat,

where o and £ are constants, represents a canonical transformation for a syslem of
one degrae of freedom, and obiain a suitable generating function. Apply the transfor-
matios 10 the solution of the Hnear harmonic oscitlator,

Determine whether the transformation

G1 = 9192, P ELIEL
-1

Gre=q+q  P=DBRTOH g4
g2~ ¢

is canonical.

Show that the direct conditions for a canonical condition are given immediately by
ke symplectic condition expressed in the form

IM = M

The setof icled ica A ions has a group-propesty. Verify this state-
mens once using the invasiance of Hamilton's principie under canonical gansforma-
tion (cf. Eq. (9.11)), and again using the symplectic condition,

Prove that the transformation
Q1 =4}, 2 = gy sec py,
preospy — o A
FORE it b Py o= -
L vy "y = 5t py - 29y

i canonical, by any method you choose. Find a suitable generating fonction that will
fead to this transformation.
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15, {a) Using the fundamentat Poisson drackets find the values of « and f for which the

equations
C=qg%cosfp, Pe=gsinfp
P a ical fon
{b} For what values of ¢ and § do these equad o an ded ical

transformation? Find a generating function of the F3 foym for the transformation.

(s} Cn the basis of part {b}, can the wansformation equations be medified sa that they
describe a canonicai ransformation for all values of 87

16, For a symmerric rigld body, obtain forzaulas for evaluating the Polsson brackets
[ F@8. 6. WL T fE 69

where &, ¢. and yr are the Buler angles, and £ s any acbitrary function of the Fuler
angles.

17. Show that the Jacobi identity is satisfied if the Poisson bracket sign stands for the
of two sqquare t

[A.Bi = AB ~ BA,
Show also that for the same representation of the Poisson bracket that
[A, BC) = (A, BJC + BIA, CL.

18. Prove Eg. (2.83) using the symplectic matrix notation for the Lagrange and Poisson
brackets.
19, Verify the analog of the Jacobi identity for Lagmnge brackets,
Au, v}l A{w,wl  Hw, u} =0
i au [

where u, v, and w are three functions in terms of which the {g, p) set can be specified.

20. (a) Verify that the o of the two-di ional mateix A, defined by Eq.
€9.1415. are constants of the motion for the Two-di ional isowopic B
oscillator problem.

{b) Verify that the quantities 5;, { = 1, 2, 3, defined by Fqs. (9.1443, {9.145), (9.146),
have the properties stated in Egs. (9.147) and (9.148),

EXERCISES

21, (a) For s one-dimensionsl system with the Hamiltonian

T

H o=

w3y

H
‘2;3,
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show that there is a constant of the motion
Pe
D= T Hi
z

{b} As a generalization of part {a), for saotion in a plane with the Hamiltoniaa

"

H = fpf* - ar”

where p is the vector of the momenta conjogate to the Cartesian coordinates, show
that there Is a constant of the motion

o r
=25
N

ic) The ransformation £ == Agq, p = &P is chviously canonical, However, the same
transformation with 7 time dilatation, 0 = Aq, p = AP, [’ = AZ:, is not. Show
that, however, the equations of motion for ¢ and p for the Hamiltonian in part {a)
are Hwariant under this traasformation. The constant of the motion D is said to be
associated with this invariance,

22. For the point transformation in & syster of two degrees of freedom,

Qi=¢}, Ca=qta

find the most general transformation equations for £ and Py consistent with the over-
ad) transformation being canonical. Show that with a particular choice for Py and Py
the Hamilontan

N7
HZ(M) & Py Ay gt
ko

can be transformed to one in which both @y and O are ignorsble. By this means
soive the problem and obtain expressions for ¢y, ¢z, py, &nd py as functions of time
an their initial values.

23. By any method you choose, show that the following wransformation is canonical:
1 . o
x:;(,IZP; sti-o-P;}, pxwi(ﬁ"ﬁ'cosglwgz).

r=p (et a). p=-f (e - R).

where « is some Sxed parameter.

Apply this transformation to the problem of a particle of charge ¢ moving in 4 plane
that is perpendicelar to a constant magnetic field B, Express the Hamilioniay for this
problem in the ( ;. £} coominates letting the parameter o take the form

ot =98

o

From this Hamiltonian, obtain the motion of the particle as a function of time.
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24. {a) Show that the transformation

0= ptiag, P= bl
e
is canonical and find a generating function.

B} Use the transformation to solve the linear harmonie oscillator problerm.

25. (a3 The Hamiltonian for a system has the form

(Gre7)

q
Find the equation of motion for ¢.

(b) Find a canonical wansformation that reduces H to the form of 2 harmonie oscilla-
tor. Show that the solutien for the wansformed varisbles s such that the equation
of motion feund in part (2) is sstisfied.

H=

26, A system of n particles moves in a plane under the influence of interaction forces
derived from potestial terms depending only upon the scaler distances hetween parti-
cles,

{#) Using plane polar coordinates for each particle (relative to a commen origin),
identify the form of the Hamiltontan for the system.

{b) Find a generating funciion for the canomical ansformation that corresponds 10 8
wansformation o coordinates rotsting in the plane counterclockwise with & uni-
form angular rate o (the same for all particles). What are the transformation equa-
tions for the snomenty?

(e} What is the new HamiRonian? What physical significance can vou give to the
difference between the old and the new Hamiltonians?

27, (8} In the problem of small osciflations about steady motion, show that at the point
of steady motion aif the Hamiltonian veriables w are constant. If the values for
steady motion are 7 so that 3 = 1 + £, show that 10 the lowest nonvanishing
approximation e effective Hamihonian for small osciflation can be expressed as

Hisg, {3 = $88E,

where § is a square maiX with components that are fanctions of 1 enly,

(b) Assuming ail frequencies of smal} cscillation are distinet, ket M be a square 2n x
2r matrix formed by the components of 2 possible set of eigenvectors {for both
positive and negative frequencies). Only the directions of the eigenvecters are
fixed, not their magnitudes. Show that it is possible to apply conditions to the
eigenvectors {in effest fixing their magnitudes) that make M the Jacobian marrix
of a canonical transformation.

(e} Show that the canonical 1 fon so found wansf the effective Hamil-
tonian to the form

H o deriqip.

where ; is the magnitude of the normal fie ies. What are the equations of
motion in this set ¢f canonical coordinates?
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{d} Finally, show that
- S
¥ 3 2
By g Py + 5ot gy
B I wp 4 1

ieads w & canonical transformation that decomposes H into the Hamiltonians for
2 set of uncoupled lnear barmonic oscillators that osclflate in the normal modes.

28, A charged particle moves in space with a constant magnetic field B such thar the
vector potential, A, is

Am%(ﬁxr)

(a) If v; are the Canesian components of the velocity of the particle, evaluate the
Poisson brackets

[ovid. i#7=1,23

{b) ¥ p; is the canonical momestum conjugate 1o x;. slse evaluare the Poisson brack-
ety

Ereovile Ipsowgl
f=i. 841 Epes B5)
29, The semimagor axis a of the eliiptical Kepler orbit and the eccentricity ¢ are functions

of first integrals of the motion, and therefore of the canonical vaziables. Sixilarty, the
meah anomaly

¢@mal ~ Iy =f —esinyg

is a function of r, &, and the conjugate momenta, Here T is e thme of periapsis
passage and is & constant of the motion, Hvaluate the Poisson brackets that can be
formed of &, e, ¢, e, and T'. There are in fact only nine nonvanishing distinct Polsson
brackets out of these guantities,

38, (a) Prove that the Poisson tracket of two consiants of the motion is #tself a constant
of the motion even when the constants depend upon time exphicidy.

{b) Show that if the Hamiltonian and a quantity F are constants of the morion, then
e nth partial derivative of F with respect 1o ¢ mvist also be a constant of the
motion.

(e} As an illustration of this result, consider the uniform motion of a free particle of
mass m. The Hamiltonian is certainty conserved, and there exists a constant of the
motion

Fox i
m
Show by direct computation thar the partial derivative of F with 1, which is a
censtant of the motion, agrees with [H, F1.

31. Show by the use of Poisson brackers hat for a one-dimensional harmonic osciflator
there is a constant of the motion # defined s

uig. pot) = lnlp +imogy -~ iol, o= J;i:;
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32

3.

3.

36.

.

‘What is the physical significance of this constant of the motion?

A system of two degrees of freedont is described by the Hamiltonian
H o _ S
=q1py — gap2 —agi + baj.
Show that

Fy=

P - ag1
BT g Fy=qiqz
]

are consiants of the motion. Are there any other independent algebraic constants of
the motion? Can any be constructed from Jacobi's identity?

Set up the magnetic monopole deseribed i Exercise 28 (Chapter 3} in Hamiltonian
formulation (You may want w0 use spherical polar ceordinates). By means of the Pois.
sen bracket formulation, show thal the guantity I¥ defined in that exercise is con-
served.

Obtain the motion in time of 3 linear barmonic osciliator by means of the format
solation for the Poisson bracket version of the equation of motion as derived from
Eq. (9.116). Assume that ar time r = { the hsitial values are xg and pg.

. A particle moves in one dimension under a potential

mk
Voo -
x2
Find x 45 & function of time, by using the symbolic solution of the Poisson bracker
form for the equation of motion for the quantity ¥ = x2. Tnitial conditions are that at
Loy =g and v

{8} Using the theorem concerning Peisson brackets of vector functions and contpo-
nents of the angular momentury, show that if F and G are two vector functions of
the coordinates and momenta oaly, then

(LG kI =L-(Gx B+ L, 6,1

(h) Ler 1. be the total angular momentum of a rigid bedy with one point fixed and
fer L be its component along a set of Cartesian axes fixed in the rigid body. By
means of part (a) find a general expansion for

L Lyl mov=123

{Hini: Choose for F aad G unit vectors along the p and v axes.)

{¢) From the Poisson bracket equations of mation for L, derive Euler's equations of
motion for a rigid body.

Set up the problem of the spherical pendulum in the Hamiltonian formulation, using
spherical polar coordinares for Se g;. Evauate directly in terms of these cancnical
variables e following Poisson brackets:
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38

4t

-

elyl Uyl Lo lal

showing that they have the values predicted by Eq, (9.128). Why is it that pg and py
can be used as canonical momenta, sithough they are perpendicular components of
the anguiar mementum?

In Section 9.7, it is shown that if any fwe components of the angular mementum are
conserved, then the total angular mormentum is conserved. If two of the components
are identicaily zero, the third must be conserved. From this it would appear to follow
that i any motion confined to 3 plang, 4o that the components of the angular mo-
mestum in the plane ere zero, the total angular momentas is constant. There appear
to be a number of abvious contradictions to this prediction; for example, the angular
momentum of an oscillaing spring in a watch, or the angular momentam of & plane
disk rolting down an inclined piane afl in the same vertical plane. Discuss e force of
these objections and whether the statement of the theorem requires any restrictions.

{a) Show from the Poisson bracket condition for conserved quantities that the
Laplace-Runge—Lenz vector A,
mky
A=pxi - -

is a constant of the motion for the Kepler problem.
{b) Verify the Poisson bracket relations for the components of A as given by
Bq. {5.131)
Consider a system that consists of a rigid body in three-space with one point fixed.
Using cylindricat coordinztes find the canonieal transformation comespending to new
axes rotating about the z-axis with an arbitrary time-dependent angular velocity. Ver-
ify that your proposed solution is canonical.
We start with a time independent Hamiltonian Ho{g. p) and impose ah externa} oscil-
lating field meking the Hamiltonian

H = Hylg, p} — tsinwr

where ¢ and w are given constants,
{a) How are the canonical equations modified?
{b) Find s canonical transformmation that restores the canomical form of the equations

of motion and d ing the “new” F
{¢) Give a possibile physical interpretation of the imposed field.
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Hamilton-Jacobi Theory and
Action-Angle Variables

1t has already been mentioned that canonical transformations may be used to pro-
vide a general procedure for solving mechanical problems, Two methods have
been suggested. If the Harsiltonian is conserved, then a sclution couid be obtained
by transforming to new canonics] coordinates that are all cyclic, thereby provid-
ing new equations of motion with trivial solutions. An aiternative technique is to
seck a canopical transformaton froms the coordinates and momenta, (g, p), at the
time 1, t0 2 new set of consiant quantities, which may be the 2n initial values,
{go, pod, at ¢ = 0. With suck a tansformation. the equations of ransformation
relfating the old and new canonical variables are exactly the desired sofution of the
meckanical problem:

q = qigo. Po. ().
P = plgo. po. 1).

They give the coordinates and momenta as & function of their ipitial values and the
time. This last procedure i3 the mote general one, especially as it is applicable, in
pringiple at least, even when the Hamiltenian involves the time. We shall therefore
begin our discussion by consideriag how sich a wansformation rmay be found.

THE HAMILTON-JACOBI EQUATION
FOR HAMILTON'S PRINCIPAL FUNCTION

We can automatically ensure that the new vardables are constant i time by requir-
ng that the transformed Hamillosian, X, shall be identically zero, for then the
equations of motion are

‘H“E_‘MQ.-HO

aK .

e 2 P2 (), 10.1
ag =0 0 (10.1)

Az we have seen, K must be related to the oid Hamiltonian and te the generating
function by the equation
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and hence will be zero i F satisfies the equation
ar
Hig, p. f)-f'"é?ﬁo. (10.2)

It is convenfent 1o take F as 2 fanction of the old coordinates g, the new constant
momenta P, and the time; in the notation of the previous chapter we would desig-
nate the generating function as F (g, P, f). To write the Hamiitonian in Eq. (10.2)
as a fanction of the same variables, use may be made of the equations of transfor-
mation (cf. Bq. (9.17a)),

3F
Pi = _—345 .
so that Eq. {10.2) becomes
3Fy 3F a5
H RO ey i = 10..
(ql qn £ o ) + I 4] (103

Equation (10,3} knewn as the Hamilton-Jacobi equation, conslitutes a partial
differential eqwation in {n + 1) variables, g1, ..., gn; 1, for the desired genersting
function. i is custemary (¢ denote the solution F; of Eq. {10.3) by § and to call
it Hamilton's principal function.

Of course, the integration of Bq, (10.3) only provides the dependence on the
old coordipates and tizne; it would ot appear to tell how the new momenta are
contained in §. Indeed, the new momenta have ot yet been specified except that
we know they must be constants. However, the nature of the solution indicates
how the new F;'s are to be sefected,

Mathematically Eq. {10.3) bas the form of a first-order partial differestial equa-
tion in # 4 | variables. Suppose there exists a solution 10 Bq. £10.3) of the form

Fr= 8w 80G1 ..o g e, tpas 1), (104}

where the guantities oy, . . ., Wy 27 1 4 1 independent constants of integration,
Such solutions are known as complete solutions of the first-order partial differen-
tial equation.* One of the constants of integration, however, is in fact irrelevant to
the solition, for it will be noted that § iself does not appear in Bg, (30.3); osly
its partial derbvatives with respect 1o g ot ¢ are involved. Hence, if § is some so-
tution of the differential equation, then 5 + o, where « is any constant, must alsc
be a sofution. One of the n 4+ 1 constants of integration in Eg. (10.4) must there-
fore appear only as an additive constant tacked on to S, But by the same token,
an additive constant has no importance in & generating function, since ouly par-
tial derivatives of the generating fumction ocour in the transformation equations.

*Bauation {304} is 0ot the only type of soluion possible for Bg. £10.3). The most generat foom
of the salution isvalves une or ihtrs arbitrasy funclions ratier than arhitrary constants, Nor is there.
necessarily a unique sotution of the form (14, These may be severat complete sojutions for the given.
equation. But alf that is impottant for the subsequent argurment is that there exist a complete solution.
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Henee, for our purposes a complete solation to Eq. {10.3) can be written in the
form

S=8(q1 0 gal QL G (10.5)

where none of the n independent constants is solely additive. In this mathemarical
garb, § tallies exactly with the desired form for an /% type of generating fonc-
tien, for Bg. (16.3) presests § as a function of N coordinates, the time ¢, and »
independent quantities ;. We are therefore at liberty to take the »# constants of
integration to be the new {constant) momenta:

B o=y (106}

Such & choice does not contradict the original assertion that the new momenta
are connected with the initial values of ¢ and p at time 1p. The » transfocmation
equations (9.17a) can now be written as

_BS(g, 1)

dgy
where g, o stand for the compiete set of quantities. At the time 1y, these constitute
n equations relating the » «'s with the initial ¢ and p valugs, thus enabling us to
evaiuate the constants of integration in terms of the specific initial conditions of
the problem. The other half of the equations of transformation. which provide the
new constant coordinates, appear as

(107

a8g, o, 1)
do

O = fy = (16.8)
The constant 8°s can be similarly obtained from the initial conditions, simply by
calculating the value of the right side of Eq. (10.83 at r == 1p with the known initial
vitlues of g;. Equations (10.8) cas then be “furned inside out” o fumish g; in
terms of e, 8, and 2

g; =gyl B, 1), (0.9

which solves the problem of giving the coordinales as functions of time and the
initial conditions.® After the differentiation in Eqgs. {310.7) has bgen performed,

*Ag a mhath ical point, &t may be questiosed whether the process of “luming inside oul™ is feasible
for Bgs. (10.9) and (10.9), that ks, whether they can be solved for o; and g, , respectvely. The question
hinges on whether the equations in sach set ate independent, for atheywise they are obviously not
suffciant to d ine the n ind d @; of ¢; a8 the sase may be. To simplify the
notation, let §y symbolze members of (he sst of partial depivatives of § with respect to ¢y, 5o that
Eq. (10.8} is represamiad by 8 == Sy, That the derivatives Sy in (10.5} form independent functions
of e ¢7s follows dirsedy from e nature of 2 complete solution 1o the Hzmuimnwiacch oquauoﬂ,
indeed this is what we mean by saying the n constants of & ion are i C 2y
the Jacobian of 5, with respect to g; cansot vapish. Since the order of differentiation is immaterial,
this is equivalent 10 saying that the Jacobtun of Sg with respect 10 oy cannot vanieh, which proves the
independence of Eqs. (10.7).
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Egs. (10.9) may be substituted for the g°s, thus giving the momenta p; as fupctions
of thew, 8, and 12

P pate B (10.30)

Fquations {10.9) and (10.10) thus constitute the desired complete solution of
Hamiltor's equations of motion,

Hamilton's principal function is thus the generator of a cancnical transforma-
tion to constant coordinates and momenta; when solving the Hamilton—-Jacobi
equation, we are at the same fime oblaining a solution to the mechanical prob-
lem. Mathematically speaking, we have established an equivalence between the
2n canonical equations of moticn, which are first-order differential equations, to
the firsi-order partial differential Hamilton-#acobi equation. This cerrespondence
is not Testricted to equations governed by the Hamiltontap; indeed, the general
theery of first-order partial differential equations is targely concerned with the
propetiies of the eqaivalent set of first-order ordinary differential equations. Es-
sentially, the connection can be traced to the fact that both the partial differential
equation and its caponical equations stem from 2 commeon variational principle,
in this case Hamilton’s modified principle.

To a certain extent, the choice of the @;’s as the new momenta is arbitrary. We
conid jast as well choose any # quantities, y;, which are independent functions of
the &; constants of integration:

¥i = pdag, o o) (411

By means of these defining refations, Hamilton's principat function can be written
as a function of ¢;, ., and ¢, and the rest of the derivatios then goes through
unchanged. It often proves convenient to take some particalar set of y;'s as the
new momentz, rather than the constants of istegration that appear natuzally in
integrating the Hamilton--Facobi equation.

Further insight into the physical significance of Hamilton's principal function
S is furpished by an examination of its total time derivative, which can be com-
puted from the formula

ds _as. &%
dr gt W

since the F;’s are constant iz time. By Eqs. (1(.7) and (10.3), this relation can also
be written

a3 .

e = pigim B Ly (10.12)

so that Hamilton’s principal function differs at most from the indefisite time inte-
grai of the Lagrangian only by a constant:

S:fl-d!+ccnstam. (1013
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Now, Hamilton's principle is a statement about the definite integral of L, and from
# we obrained the solution of the problem via the Lagrange equations, Hete the
sane action integral, in an indefinite form, furnishes another way of solving the
problem, In actual caicutations, the resalt expressed by Eq. {30.13) is of no help,
because we cannot integrate the Lagrangian with respect to time until ¢; and p;
are known as functions of time, that is, uniif the problem is solved.

‘When the Hasmiltonian does not depend explicitly upon the time, Hamilton's
principle function can be written in the form

S{g, &, 1) = W{g, o) ~az, (10.14)
where Wiy, @) is catled Hamilton's characteristic function. The physical signifi-
cance of W can be understood by writing its total time derivative

dW  GW
=i

dt Bg;

Comparing this expressios to the results of substinting Eg, (10.14) into Bq, (18.7),
it i§ clear that

aw
§ 10,15
P PP ( )
and hence,
aw .
T P (10.16)
This can be integrated 1o give
Wmfpxésdtmfpsa’qs. (10.17)

which is just the abbreviated action defined by Eq. (8.80).

142 W THE HARMONIC OSCILEATOR PROBLEM AS AN EXAMPLE

OF THE HAMILYON-JACORBE METHOD
To ifiustrate the Hamilten—facobi technique for solving the motion of mechanical
systerns, we shall work out in detail the simple problem of a one-dimensionat
harmonic oscillator. The Hamiltonian is
1
H= E’;(pz +mulq?) = E, (10,18

where

(10.19)
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i being the force constant. We obtain the Hamilton-Jacobi eguations for § by
setting p equat to 85/9q and substitating in the Hamiltonian; the requirement
that the new Hamiltonian vanishes becomes

Lfrasyd . 5557 a8
A

Since the expikcit dependence of $ on 7 is present only in the last term, Bq. (10.14)
can be used to efiminate the lime from the Hamiiton-Jacobi equation (14.20}

Lifawy® oo,
5 [(34—) +miwtgt ] =, (10.21)

The integration constant « is thus to be identified with the total energy E. This
can aise be recognized directly from Bq. {10.14) and the relation (cf. Eq. {20.3))

a8
E-{-H*O,

which then reduces to
Hoa

Equation (10.21) can be integrated iznmediately ro

— 22
W = Ji??mqu‘h - 33”2“_‘1", (10.22)
2,2
S= JZmuquﬁ . ”";: —ar. (10.23)

Whiles the iniegration involved in Eq. (10.23) is got panticuiarly difficuls, there
is no reason to carvy i¢ out at this stage, for what i5 desired is not § but its partial
derivatives. The sotation for g arises out of the transformation equation (10.8):

so that

PO
The VIS e

which can be integrated without trouble to give

H 2
:+ﬁ':ma:csiaq,f%, (10.24)
@
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Equation (10.24) can be immediately “turned inside out™ to furnish g as a
function of £ and the two constants of integration « and § = f'a:

4= s siniar + B), a0.25)
mar

which is the familiar solution for 2 harmonic osciflator, Formaliy, the solution
for the momentum comes from the transformation equation (10.7), which, using
Eq. {10.22), can be writlen

El W
b= LA o me — mPalg?, (10.26)

dg  dq
in conjunction with the solution for ¢, Eqg. {10.23), this becomes

V2matl — sinor -+ 8,

p=

P == & 2ma coser + ) (0.2

Of course, this resait checks with the simpie identification of p as mgq.

Yo complete the story, the constants « and 3 raust be connected with the initial
conditions go and py ot time ¢ = 0. By squariog Bgs. (10.25) and (10.27), it §s
clessty seen that o i5 given in terms of g and pp by the equation

Ima = p} +miergl. (10.28)

The same result folows immediately of course from the previous identification of
o as the conserved total energy E. Finally, the phase constant 8 is related to gp
and po by

tan g = maodl. (10.29)
P

The choice gg = 0 and hence § = § corresponds to sfarting the raotion with the
oscillator at its equilibrium position g = (.

Thus, Hamilton's principle function is the generator of 2 canonical transforma-
tich 20 & new codrdinate that measures the phase angle of the oscillation and to a
new canonical momentem identified as the total energy.

if the sofution for g is substitated into Eq. {10.23), Bamilton’s principal func-
tion can be written as

§= Zafcosz(wr + Bt —at = 2 f{cosz(wr + 8y~ (3030



10,2 The Harmonic Oscilfator Problem as an Example 437

Now, the Lagrangian is
L e %(pz B B

= w(cos? (et + B) — sin*(of + B3}

= 2arfoos” (et + ) — §),
50 that § is the time integral of the Lagrangien, in agreement with the general
relation (16.13). Note that the identity coutd not be proved unti} after the solation
10 the probleme had been obtalned.

As another illustration for the Hamilton-Jacobi method, it is mstractive (o con-

sider the two-dirpensional anisotropic harmonic ascillator. If we let m be the mass

of the osciliating body and &, and &, be the spring constants in the x- and y-
directions, respectively, the Hamiltonian is

a2 223 332
E:%(px+p_‘.+m wex® +miwgyt),

Ky ﬁ;
s f— d =
wy =, o wy =

Since the coordinates and momemna separate into 3wo distinet sets, the principal
function can be written as a sam of the characteristic function for each pair. As-
suining that we sojve the y-funcrional dependency first, this means

wheze

S(x, v a0y, 5 = Felx )+ Py, o) —at, {1030

and the Hamilton-JFacobi equation assumes the form

2
L[(?-W-) +mzm2x2+( W) +mzm2yz] {10.32)
Zm dx ay

in apalogy with Bg. {106.18), Since the variables are separated, the y-par of the
Eq. (1.32) must be equal %0 a constant, which we call oy, 50

1 7awy 1
(5 ) tamirt=e {039

and we replace the y-term in (10.32} with &, from (10.33), yielding

A
5;(3}_) +amadt =, (L0.34)

where we write & — ¢y = a, showing the symmetry of Bqs. (10,33} and (10.34).



Chapter 10 Hamilton-Jacobi Theory and Action-Angle Variables

Each equation has a sclation analogous to Egs. {10.25) and (10.27}, so

{2a,
X e m—(:%sm{wxf + B:)

Pr == o My cos{wet + B

day
¥ o M% sin{wyt + 8,)
med

Py == o 2maty coslont + By ),
where the f;'s are phase constants and the total energy is given by

{10.35)

E=actay=o

As a third example of Hamilton-Jacobi theory, we again consider the two-
dimensionat harmenic escillator; only we wilk assume the osciliator i5 isotropic,
5C

by =ky =k and ay m Gy = @,

and use potar coordinates to write

% = roesd F= eyl

y = ring g=tant Y
. o7 (10.36)
Px = mx P = mi
py=my pa = mrg.
The Hamiltonian now written as
1y B 3
fimz—”;(p,,+rz +miwr (10.37)

is cyelic in the angular coordinate #. The principie function can then be writtes as
S(r 8,0, ag) = W@ a) + We (9, ag) ~ ot

= Wolr, o) 4 fog — af, (1638

where, as we show later, a cyclic coordinate g; atways has the characteristic func-

tion compuonent Wy, = groy. The canonical momentum py associated with the
cyclic coordinate, 8, is calculated from the generating function
8F
T e = g
Pa v

has its expected consiant vatue,
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When this pp is substituted into Eqs, (10.37) and (10.38), W.(r, @) satisfies

LAY I
Zm( Br ) + Sr? +2mw o= {10.39)

Rather than sciving this equation directly for W,, we shall write the Cartesian
coordinate solation for these conditions as

X = 113‘5-" SNt + ) py =~/ 2ma costwr + )
mes

5 {10.35)
¥y f s sin et Py o=/ 2mocos o,
ma? ’
and use these to get the polar connierparts,
200
P -3 R i
r_mez\/sm wf - sin“ (e + ), pr = mr,
and {16.40p
sinat .
8 = tan™! ) = mr?g.
a [sin(mt + ﬂ}} pe=mr

There are two lmiting cases. The loear case is when 8 = {, for which

| A |
r=J—sinat, Pr = ' 2me cos w,
mo

and (1041}

3
#
ISR

. ps =0,

‘The motion in a4 x-y plot will be an osciliation along a diagonal line as shown
in Fig. 10.1a. The other Hrmiting case is when § = = /2, for which

=0
(10.42}

Do = mrgm.

The moetion in an x-y plot for this limiting case is a circle of radius ry as is shown
in Figore 10.1b. For other values of 8 (0 < 8 < m/2), the orbit in coordinate
space is an ellipse. The case for 8 == 7 /4 is shown in Big. 10.1¢, The plots shown
in Fig. 10.1 are further examples of Lissajons figures.
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¥ ¥ ¥

N o
@a=o @ p =3 @ h=]

FIGURE 0.1 The two Hmiting cases (a} and {b) for the harmonie oseillator and an
intermediate example (o).

10.3 B THE HAMILTON-JACOBI EQUATION FOR
HAMILTON'S CHARACTERISTIC FUNCTION

Tr was possible to integrate the Hamikon—facobi equation for the simple harmonic
oscillaror primarity because § could be separmed into two parts, one involving g
only and the other ondy time. Such 4 separation of vatlables using Hamilton's
characteristic function Wig, &) {Fq. (10.14)) 1s always possible whenever the old
Hamiltonian does not involve time explicitly. This provides us with the restricted
Hamilton-Jacobi equarion

aw
Hlg, —} =ap, 1043
(q! a4 ) " ¢ )

which no longer involves the time. One of the constanty of integration, parnely
ay, is thus equal to the consfant vatue of H. (Normaliy A wilt be the energy, but
remember that this need not always be the case, cf. Section 8.2.)

The time-independent fumcrion, Hamilton’s characteristic function W, appears
here merely 25 a part of the generating function § when H is constant. it can
aiso be shown that W separately gensrates Hs own contact transformation with
properties quite different from that generated by §. Let us consider & canonical
transformation in which the new momenta are all censtants of the motion a;, and
where @y i particidar is the constant of motion . ¥ the generating function for
this transformation be denoted by W{g, #), then the squations of transformation
are

aW aw _aw

Pi = @

B 88 e, 10.44;
B aF  Boy { !

While these equations resemble Egs, (10.7) and {10.8) respactively for Hawil-
ton's priveipai function 5, the condition now desermining W is that H is the new
canosical THomeiun o

Higi, pi) = o,
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Using Egs. {10.44), this requirement becomes the partial differential equation:

W
"(Qf-?qf)”“
;

which is seen to be identical with Eg. (10.43). Since W does not involve the time,
the new and ofd Hamiltionians sre equal, and it folfows that & == ay.

Hamilton's charactenistic function W thus generates a canonical transforma-
tion in which all the new coordinates are cyclic. It was noted in the introduction
to this chapter that when H is a constant of the motion, a transformation of this
nature in effect solves the mechanical problem involved, for the integration of the
new equations of metion is then trivisi. The canonical equations for £, ir fact,
merely repeat the statement that the mamenta conjugate to the cyclic coordinates
are all constant:

Bt wl), Pmoy. (10.45)

Because the rew Hamiltonian depends upon only one of the momenta a;, the
equations of motion for ¢ are

=i, i=l,
o Bery i
=0, i#t
with the immediate solutions
aw
Qi=tthe ool
an; (10.46)
O = A= e Pl
o

The only coordinate that is not simply a constant of the motion is 3, which is
equal to the time phas a constant. We have here another instance of the conjugate
relationship between the time as & coordinate and the Hamittonian as its conjugate
momenturm.

The dependence of W on the old coordinates ¢; is determined by the par-
tial differential equation {10.43), which, like Eq. {10.3), is also referred to as the
Hamiltos-Jacobi aquasion. There will now be n constants of integration in a com-
piete solution, but again one of them must be merely an additive constant. The
n - 1 remaining independent constants. &, . . ., &y, together with oy may thenbe
taken as the new constanl canomical momenta, When evaiunated at fp the first half
of Eqgs. (10.44) serve to relate the » constants o with the initial valnes of g; and
py. Finally, Bgs. {20.45) and (10.46) can be solved for the g; as & function of o,
B, and the time £, thus completing the solution of the problern. It will be noted
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that (n — 1) of the Eqgs. (10.46) do net involve the time at all. One of the 4;"s can
be chosen as an independent variable, and the remaining coordinates can then be
expressed in terms of it by solving only these dme-independent equations, We are
thus led directly to the orbit equations of the motion. In central force moten, for
example, this technique woald furnich » as a function of 8, without the need for
separately finding r and # as functions of time.

It is not always necessary to take oy and the constants of integration in W as
the new constant caponical momenta. Occasionally i1 is desirable rather to use
some particuiar set of 7 independent functions of the ;s as the transformed mo-
menta. Designating these constants by y; the characteristic function W can then
be expressed in terms of ¢; and y; as the independent variables. The Hamiltonian
will in general depend upon more thar one of the 33 and the equations of motion
for Qi become

K

9= 2K

=,
aw

where the v;"s are functions of y;. In this case, ail the new coordinates are Hnear
fanctions of time:

Qi = vt + B (1047

The form of W cannot be found a pricri withowt cbtaining & complete integral of
the Hamilton-Jacobi equation. The procedures isvelved in solving a mechanical
problem by either Hamikon’s principal or characteristic function may now by
summarized in the following tabular form:

The two methods of selution are applicable when the Hamiltonian

is conserved:
Hig, p) = constant.

is any general function of g, p. #:
Hig, p. 1.

We seek cancnical transformatjons 1o new variables such that

all the coordinates and momenta | all the reomenta P are constants,

L, P; are constants of the motion,

Te et these requirements it is sufficient to demand that the new Hamittonian

shalt vanish identically: shall be cyclic in ali the coordi-

K =0 nates;
4 K =H(P)=ay.
Under these conditions, the sew equations of motion become
: aK : K
s e s ), j o Y,
[ 57 & 5B Y
Be2K g B=-2K o

ag TEG T
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with the immediate solutions

G = Bi,
Pyo= oy,

;== vt iy
Py

which satisfy the stipulated requirements,
The generating function producing the desired franaformation is Hamilton's

Principal Fanction: Charscteristic Fanctios:
Sg, P. 1) Wig, P},

satisfying the Hamilton-Jacobi partial differential equation:

a5 a8 ‘ aw
H(g.E.J)JrE!-..ﬂ. E H(‘-B?)—a;-o.

A complete solution to the equation contains

n zontrivial constants of integra- ¢ m — 1 nontrivial constants of in-

tion &y, ... . O tegration, which fogether with oy
form a set of n independent con-
Stants oy, .. o Gy

The new constant momenta, F; = 31, can be chosen a5 any # independent func-
tions of the » constants of integration:;

Pyowoylan, .. ooay), i LR ICTHRN 5 S

s0 that the complete sobstions to the Hamilton—Jacobi equation mey be considered
as functions of the new momenta:

§ = Sigi, vi, 1), | W= Wigi, w).

In particular, the 3;'s may be chosen to be the @;'s themselves., One-hatf of the
sransformations equations,

_ 88 ! __i]W
P B0 P PP

are fulfilled sutomatically, since they have been used in constructing the Hamilton—
Facobi equation. The other half,

38 W
Q= g =B | o= G = ut A

can be sotved for g; in terms of t and the 2n constants §;, y:. The solution 1o the
probiem is then pleted by ing these 2n ¢ in terms of the mitial
values, {gig. pio), of the coordinates and momenta.
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When the Hamiltonian does not involve time explicitly, both methods are suit-
abie, and the generating functions are then related to each other according to the
formula

g, Py = Wig, P} —ayt.

16.4 B SEPARATION OF VAREABLES IN THE HAMILTON-JACOB1 EQUATION

It might appear from the preceding section that littfe practical advantage has been
gained through the introduction of the Hamikon-Jacobi procedure, Instead of
solving the 2n ordinary differential equations that make up the canonical egua-
tions of motion, we now must solve the partial differeatial Hamifton-Yacobi equa-
tion, and partial differential equations can be notoriously complicated to solve.
‘Under certain conditions, | ., it is possible to sep the variables in the
Hamilton-Jacobi equation, and the sofution can then atways be reduced to quadra-
tures, Jn practics, the Harnilton-Jacobi tachpigue becomes a usefid computational
toof only when such a sepazation cas be effected.

A coordinate g; s said o b separable in the Hamilton-Jacobi equation when
{say) Hamilton's principal function can be sptif into two additive parts, one of
which depends only on the coordinate g; and the other is entirely independent of
g;- Thas, if ¢ i tahen 23 a separable coordinate, then the Hamiltonian must be
stich that ope can wiite

R TR S TR - S 5 ER T T TR FH 5

82 ns @18 1), (10.48)
and the Hamilton—Jacobi equation can be split into twe egeations—one separately
For $y and the other for §'. Similarly the Hamilton-JYacobi equation is described as
completely separabie (or simply, separabie) if all the coordinates in the problem
are separable. A solution for Hamilton®s principal function of the form

S= Y Sign oo (16.49}
[
witl then split the Hamilton-Yacobi equation into 2 equations of the type
a8; a8;
H; (r:;: gj;an.m,mn;z)amgfmﬂ. (16503

Tf the Hamiitonian does not explicitly depead upon the time, then, for each §; we
have

Silqjs @, oy 1) = Wilgy ... o 1) — oyt (16.5%)

whick provide # restricted Hamilton-JYacobi equations,
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aw;
i (qi‘; *5;1}"; @y, u,u.q) = gy, (10.52

(No summation in Eqgs, (16.303 o0 (10.5231)

The functions H} in Eqgs. (1.50) and (10.52) may or may not be Hamiltosians,
and the oy reay be an energy, an angslar momentar squared, of some other quan-
tity depending on the nature of ¢;. We shall show this by exampie in the Kepler
problem in the next section.

The constants o are referred to now s the separation constants. Sach of the
Egs. (1€.52) involves only one of the coordinates g; and the cotresponding partiat
derivative of W; with respect to g1 They are therefore a set of ordinary differential
equations of a particutarly simple form. Since the ¢quations are only of first order,
it is abways possible to reduce them to quadratares; we have only to soive for the
pattial desivative of W; with respect to ¢; and then integrate over g. In practice,
each H; will only contain one or at most a few of the a's. There will also be
cases where & subset of » variables can be separated in this fashion, leaving n —r
vartables, which will not separate. We shall afso examine this eventuality in the
néxt section.

i is possibie to find exampies in which the Hamilton-$acobi equation can be
solved without separaring the e varisble (cf. Exervise 83 Nonetheless, almost
afl wsefui applications of the Hamilson-Jacobi method involve Hamiltonians not
explicitly dependent upon time, for which 7 is therefore a separable variable. The
subsequent discussion on separability is thus restricted to such systems where H
is a constant of motion, and Hamilton's characteristic function W wiil be vsed
exclusively.

IGNORABLE COORDENATES AND THE KEPLER PROBLEM
We can easily show that any cyclic or ignorsble coordinate is separable. Suppose

that the eyclic coordinate is g;; the conjugate momentam py is & constant, say y.
‘The Hamilten—Facobi equation for W is then

aw aw
Hlgp oitei ¥ o1y o =y, 10.
('32 Il ¥ EPy 3q,,) ot {10.53)

1 we try a separated solution of the form
W= Wilge, o) + Wign. ..., got ), (10.54)

then it is obvious tat Eq. {10.53) involves only the separate function W, while
W} is the sofation of the equation

Py (10,38
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The constant y is thus the separation constant, and the obvious solution for Wy
{to within a triviaf additive congtant) is

Wy = yqi,
and W is given by
W= W'+ pan. (10.56)

There is an sbvious resemblance between Eq. (10.563 and the form § assumes
when H is not an explicit function of time, Eg. (10.43). Indeed, both equations
can be considered as arising under similar circumstances. We have sean that  may
be considered in some sense as a generalized coordinate with — i as its canonical
momentum {cf. Bq. (8.38)). If H is conserved, then 1 may be treated as a cyclic
coordinate,

If § of the # coordinates are noncyclic {that is, they appear explicitly in the
Hamiltonian), then the Hamiltonian is of the form Higy,....gs 00, ... @i t).
The characteristic function can then be written as

5 #
Wigi, o gsi@ . m) =y Wilgrs a0+ 3 g, (16.56)
=3 (e a0
and there are s Hamilton~Jacobi equations to be solved:
aw
H(qa;mlxuz.m,an)nw (10.57)
dq1

Since these are ordinazy first-order differential equations in the independent vari-
able g1, they can be immediately reduced to quadratures, and the complete sofa-
tions for W can be obtained.

n general, a coordinate q; can be separated if ¢; and the conjugate momentnm
Pj can be segregated in the Hamiltonian into seme function f(g;, p;) that does
not contain any of the other variables, If we then seek a trial solution of the form

Wom Wiigs, o) + Wigr e,
where g; represents the set of atl ¢’s except g, then the Hamilton-Jacobi equation
appears as
aW’ aW;
PP ,,,,-L)) . 1058
(q’ ks (gj dg; ’ (s

In principle, 2t least, Eg. (10.58) can be inverted s0 as to solve for f:

aw, W'
f (q;‘ 'é?;',-’) =g (q-, e u;) . (10,59
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The argument used previously in connection with Eg. (10.31) holds hers in
slightly varied guise; f is not a function of any of the ¢'s except g;1 g on the
other hand is independent of g;, Hence, Bq. (10.59) can Bold only if both sides
are equal 10 the same constant, independent of aff g's:

aw;
f( s M)mm-,
q;i g i
aw
g (q,. —E‘I) =qy, {10.60)

and the separation of the variable has been accomplished.

Note that the separability of the Hamilton-$acobi equation depends not oniy
on the physical problem involved but also en the choice of the system of gegeral-
ized coordinates employed. Thus, the ose-body central force problem is separable
in polar coordinates, but not in Cartesian coordinates. For some prohlems, it is ot
possible to completely sepasate the Hamilton—Jacobi equation, the famous three-
body problers being one iHlusation. On the other hand, in many of the basic prob-
lems of mechanics and atomic physics, separation is possible in more than one set
of coordinates. In general, it is feasible to solve the Hamilton-Jacobi equation in
closed form only when the variables are completely separable. Considerable inge-
ity has therefore been devoted 1o finding the separable systems of coordinates
appropriske to each probietn.

No simple criterion cant be given to indicate what coordinate systems lead to
separable Hamilton-Jacobi equations for any particular problem. In the case of
orthogonal coordinate systems, the so-cajled Staecke] conditions have proved use-
ful. They provide necessary and safficient conditions for separability under certain
circumstances. A proaf of the sufficiency of the conditions and references wili be
found in Appendix D of the second sdition of this ext.

The Seckel conditions for the separation of the Harmdlion-Jacobi equations
are:

. The Hamiltonian is conserved.

The Lagrangian is no more than a guadratic function of the generalized
vekicities. sa the Hamiltonian takes the form:

b

H=ip-aT p-a+ Vg (827

[

. The vector & has elements 4; that are functions only of the corresponding
coordinate, that is o; = a;(g;).
the potential function can be written as a sum of the form

e

Vigy= }:m‘f‘%‘f—*l {1061
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5. Consider the matrix ¢!, with an inverse ¢ whose elements are

ngqb,;' = %: {no surmation on i) (10.62)

where

W
(“c:,;“:“ - az) = 2ipe; v

with p a constant unspecified vector. If the diagonal elements of both ¢
and ¢~ depend only upon the associated coordinate, at is, ¢™%; and
i are constants or & function of g; only, then provided {4 are true, the
Hamiltonian-Jacobi equations separate.

Since we have assumed that the generalized coordinates gy form an orthogonal
coordinate system, the matrix T (introduced in Section 8.1) is diagonal. It foliows
that the inverse matrix T™! is aiso dizgonal and, if we ave dealing with a particle
in an external force field, the diagonal elements are:

{ 1
ot (ne summation) {10.63)
i m
50 the fifth Stacke! condition is satisfied.

¥ the Smeckel conditions are satisfied, then Hamitton™s characisistic function

is complerely separable:

&7 =

Wigr=3 " Wila),
i
with the W; satisfying equations of the form
aw; 2
(E}‘ —a.) = 2V} + 2, (1064
:

where ¥, are constants of integration (and there i3 summation ondy over the in-
dex /).

While these conditions appear mysterons 4od complicated, their application
usually is fairly seaightforward. As an ilfustration of some of the idens developed
here about separability, the Hamiton-Jacobi equation for a particle moving in
a central farce will be discussed in polar coordinates. The probiem will then be
generalized 1o arbitrary potential aws, to furnish an application of the Staeckel
conditions,

Let us first consider the contral Force probiem in terms of the polar coordinates
{r, ) in the plane of the orbit. The motion then involves only two degrees of
freedom and the Hamiltonian has the form

1 Py
s 2
o= (p, + rz) + Vi), (10.65)
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which is cyclic in . Consequently, Hamilton's characteristic function appears as

W= Wilr) + oy, {10.66)
where wy is the constant angular Py conjugate to . The Hamil
Facobi equation then becomes

aw 2 122
OV X mv () = 2me, (1067
ar 2

where oy is the constant identified physically as the rotaj energy of the system.
Sotving Eq. {10.66) for the partial derivative of Wy we abtain

awy o
Fri 2"‘(0!3*")*7.

2
W e /dr\/zma, -y ;{i gy, {1068)

50 that W is

With this forrm for the chagacteristic function, the transformation equations
{10.46) appear as

8w
AP wdr

L — {10.692)
oy ol
o ety - V) - 2%
and
b e = f e e + . (10690)
ety 2

rz\/2m(aq -V)— i:-gﬁ

Equation (10.69a} furnishes r as a function of ¢ and agreees with the correspond-
ing solution, E. (3.18), found in Chapter 3, with oy and oy written explicitly as £
and [, respectively. It has been remarked previously that the remairing transforma-
tion equations for ¢, here only Eq. (10.69b), should provide the arbit aquation.
3f the variable of integration in Eq. {10.69b) is changed to u == 1/r, the equation
reduces o

o
V;:,s;mfmmm“_wm_m
/%mmw

whick agrees with Bq. (3.37) previously found for the orbit, identifying ¥ as 6
and #; as fp.
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As a further example of separation of varigbles, we shall examine the same
central force problem. bt in spherdcal poler coordinates, that is, ignoring ouwr
a prioti kpowledge that the orbit Hes in a plane. The sppropriste Hamiltonian kas
been shown to be (of. Bg, {8.29))

1 I 73
Heoe{p2+ Lo 2 by 16,70
an (P’ e taas) T n (1670

If the variables in the carresponding Hamilton—-Jacobl equation ane separable, then
Hamilton’s characieristic function renst have the form
W= Wy (r) + Wal8) + Wyid). (.78}
The coondinate ¢ is cyclic in the Hamiltonian and hence
Wy = g (10.72

where oy is a constant of integration. In terms of this form for W, the Harmilton—
Jacobi equation reduces to

aw? 1 Trawn\? o)
o b g et 2mV(r) = 2mE, 10.7
( ar ) APrZ {( ag ) + sint 8 * i " ¢ %
where we have explicitly identified the constant Hamiltonian with the total en-
agy E. Note that alf dependence on @, and on ¢ alone, has been segregated into
the expression within the square brackets. The Hamilton-Jacobi equation then

conforms to the appearance of Eg, {319.58), and following the argument given
there we see that the quantity in the square brackets oust be a constant:

L A" N
e = 0. 10.74
(as) t e T {7

Fizatly the dependence of W on 7 is gives by the remainder of the Hamilton--
JFacobi equation:

2 A
(BW’) + R ImE - V. 10.75)
or r?
The variabjes in the Hamilton-Jacobi equation are thus completely separated.
Eguations {10.74) and (10.75) may be easily reduced to quadratures providing
at least a formal solution for W {#) and W (r), respectively.

Note that the constants of integration ey, g, o) all have directly recognizable
physical meanings. The quantity a4 is of course the constant vatue of the angular
maomentam abewt the polar axis {cf. Eq. (10.44)):

aw,
Go = pp= aﬁ, (1076)
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To identify otg we use Eq. {10.44) to rewrite Eg. (10.74) as

P2
B+ e o, (18749

50 that the Hamiltordan, Eq. (16.70) appears as

PRIV T B (070

=\t Et . ’
Comparison with Eq. (10.65) for the Hamiltonian as expressed in termg of polar
coordinates in the plane of the orbit shows that ug is the seme as py, the magni-
fude of the total angular momentum:

g = py =l {10.77)

Lastly, &) is of course the tofal energy £. Indeed, the three differential equations
for the component parts of W can be looked on as staternents of conservation the-
orems. Equation (10.75) says the z-coraponent of the angular momentum vector,
L, is conserved. while Eq. (10.74) states the conservation of the magnitude, 1,
of the angular momentum. And Eg. (16.73} is a forro of the energy conservation
theorens.

In this simple example, some of the power and slegance of the Hamilton—
Jacobi method begins to be apparent. A few short sieps suffice to obtain the de-
pendence of » o ¢ and the orbit eguation, Bgs. {10.69a and b), results derived
eardier only with considerable labor, Fhe conserved quartitics of the central force
problem also appear automatically, Separation of variables for the purely central
force problem can alse be performed in other coordinate systems, for example,
parabolic coordinases, and the conserved gquantities sppear there ia forms sppro-
priate to the particular coordinates.

Finatly, we can employ the Sweckel conditions 10 nd the most general form of
a scalar potential V for & single particle for which the Hamilton-Facobi equation
is separable in spherical polar coordinates. The matrix ¢ of the Staecke? condi-
fons depends only on the coordinate system and not on the potential. Since the
Hamilton-Facobi equation is separable in spherical polar coordinates for at least
one porsatial, that is, the central force potential, it follows that the matrix o does
exist. The specific form of ¢ is not Reeded 10 answer our question. Further, since a
by kypothesis is zexo, all we need do is apply Eq. (10.62) to find the most general
separable form of V. From the Xinetic energy (Eq. 8.28), the diagonal elements
of T are

Ter=m, Tpg= mri, Top = mrtsing,
By Eqg. (10.62) it follows that the desired potential must have the form

Vg(d ¥,
Vigh = Vo) + u-‘:%w} 28

. 10.78)
r2sin? 8 ¢
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1t is easy to verify directly that wish this potential the Hamilton—Facobi equation
is still completely separable in spherica polar coordinates.

ACTION-ANGLE YARIABLES IN
SYSTEMS OF ONE DEGREE OF FREEDOM

Of especial importance in many branches of physics are systems in which the
motion is periodic. Very often we are interested not so much in the details of the
orbit as in the frequencies of the motion. An elegant and powerful method of han-
diing such systems is provided by a variation of the Hamiiion—JFacobi procedure.
in this technique, the integration constants a; appearing directly in the solution of
the Hamiltor~Jacobi equation are not themselves chosen to be the new rmomenta.
Instead, we use suitably defined constants J. which form a set of n independent
functions of the n;'s, and which are Known as the action variables.

For siraplicizy, we shall fisst consider in this section systems of one degree of
freedon. i is assumed the system is conservative so that the Hamiltonian can be
written as

H(q,p}zo{;.

Solving for the momentume. we have that

P = pig, ai), {10.79)

which can be fooked on as the equation of the orbit traced 0wt by the system
paint in the two-dimensionsi phase space, p, ¢ when the Hamibonian has the
constant value oy What is meant by the term “periedic motion” is determined by
the characteristics of the phase space orbit. Two types of pesiodic motion may be
distinguished:

E. Tn the first type, the orbit is closed, as shown in Fig. 10.2(a}, and the system
poiat retraces its steps periodically. Both g and p are then pericdic fanctions
of the time with the same frequency. Periodic motion of this nature wiil be
found when the initial position lies between two zeros of the kinetic energy.
Ii is oflen designated by the astronomical name libration, although to a
physicist it is more likely to call 0 mind the common scitlatory systems,
stch as the one-dimensional harmenic oscillator.

In the second type of periodic motion, the orbis in phase space is such that p
is some periodic fanction of ¢, with perfod go, #s ivstrated in Big. 10.2(b).
Equivalently, this kind of motion implies that When a 1s increased by gg,
the configuration of the system i ially d. Fhe most
familiar example is that of a rigid body constrained to rotate about a given
axis, with g as the angle of rotztion. Incrensing ¢ by 27 then produces no
essential change in the state of the system. Indeed, the position coordinate
in this type of periodicity is invariably an angle of rotation, and the motios

|
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» # H
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o

() Libration ik} Rotation

FEGURE 10.2  Orbit of the system point in phase space for periadic motion of one-
dimensional systems,

will be referved o simply as potarion, in contrast 1o Hbration. The values of
g are ne loager bounded but can inerease indefinitely.

It may serve to clarify these ideas to note that both types of periadicity may
occur in the same physical system. The classic example is the simple pendalum
where ¢ is the angie of deflection 6. I the length of the pendutum is { and the
potential energy is taken as zero at the point of suspension, then the constant
energy of the system 3s given by

v
=
E = G mglcosd, (1083

Sotving Eq. (10.64} for py, the equation of the path of the system point in phase

SpACE 1§
Po == Fnf 2mIHE 4 mgl cos8). (10.81)

If E is less than mgl, then physical moiion of the syster can onty ocour for (8]
tess than 4 bound, &7, defined by the equation

605 @ s e

Under these conditions, the penduium osciliates between —8° and +6°, which is a
periodic motion of the libration type. The systern point then traverses some such
path in phase space as the curve I of Fig. 10.3. However, if £ > mg/, ali values
af 8 correspand o physical motion and & can increase without liznit to produce a
peridic motion of the rotation type. What happens physicaily in this case is that
the pendukim. has so much energy that it can swing through the vertical position
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FIGURE 10.3  Phase space orbits for the simple pendulum.

@ = i and therefore continnes rotating. Curve 3 in Fig. 10.3 corresponds to the
rotation motion. of the pendubim. The limiting case when E = mg! is illustrated
by enrves 2 and 27 in Fig. 10.3. At this energy, the pendulum arrives at 8 = 7, the
vertical position, with zero kinetic energy, that is, pg = 8. It is then in unstable
eguilibrive and could in principle remain there indefinitely. However, if there
is the slightest pesturbation, it could contiave s motion sither along curve 2 ar
switch 1o curve 2 —it could £l down either way. The point 8 = 7, pp = 0
is a saddle point of the Hamiltonian function # == E{pg, #) and there are two
paths of constant E in phase space that intersect at the saddie point. We have here
an instance of what is called 2 bifarcation, a phenomeson that will be discussed
extensively in the next chapter. (See also Section 6.8.)

For either type of periedic motion, we can intrsduce a new variable J designed
1o replace oy as the transformed (constant} momentam. The so-called action. vari-
able J is defined as {cf. Eq. (8.80))

7= f Py, (10.82)

where the integration is to be carsted over 2 complete period of libsation or of
rotation, as the case may be. (The designation as action varisble stems from the
resemblasce of Eq, (10.82) to the abbseviated action of Section 8.6, Note that J
always has the dimensions of ag angular momestin. ) From Eq, {10.79), it follows
that J is always some fimction of @ alone:

oy = H o= H(JI). (10.83)
Hence, Hamilten's characteristic function can be written as

W= Wig, J). (10.34)
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The generalized coordinate conjugate to J, known as the angle variable w, is
defined by the transformation equation:

W
B .85
w 57 {10.85}

Correspendingly, the equation of motion for wis

. BH)
et

EV vi{J), {$0.86)

where v is a constant fanction of J only. Equation (10.86} bas the immediate
solution

w o= v 4 f, {i0.87)

so that w is & linesr function of time, exactly as in Eq. (10.47).

So far the action-angle variables appear as 5o more than 4 particular set of the
general class of transformed coordinates to which the Hamilton-Jacobi equation
leads. Equation (106.85) could be sotved for g as a function of w and J, which, in
combination with g, {10.87), wonid give the desired solution for ¢ as a function
of ime. But when employed in this fashion the variables have ne significant ad-
vantage over any other set of coordinates generated by W, Their particylar merit
rises rather from the physical interpretation that can be given o v. Consider the
change in w as ¢ goes through a complete cycle of libration or rotation, as given
by

dw
= P e g .
Aw % T g {10.88)
By Egq. (10.85), this can also be writien

hEy
w= e A .89

b §£ dgai 9 (10,55
Becanse J is a consian, the derivative with respect to J can be taken entside the
integral sign:

4 aw d
A ey D dg e =1, 16.90
BT A aal dffpdq ! (650
where the last step follows from the definition for J, Eq. (10.82).
Baguation (10.90) states that w changes by uaity as g goes through a complete
period, But from Eq. (10.87), it follows that if © is the period for a comptete cycle

of g, then

Aw = =T,
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Hence, the constant v can be identified as the reciprocal of the period,

=

1 (1091}
T
and is therefore the frequency ussociated with the periedic motion of g. The use
of action-angle variables thus provides a powerful technigue for obtaining the
frequency of periodic motion withou! finding o complete solution to the motion of
the system. 1 it is knows a priori that a system of one degree of freedom is pe-
riodic according to the definitions given above, then the frequency can be found
once Hf is determined as a function of J. The destvative of H with respect to 1,
by By, (10.86), then directly gives the frequency v of the motion. The designa-
tion of w as an angle variable becomes obvious from the identification of v in
Eq. (10.87) as a frequency. Since J has the dimensions of an angular momentum,
the coordinate w conjugate to it is a angle.®

As an ilinstration of the application of action-angle variables to find frequen-
cles, let us again consider the familiar linear harmonic oscillator problem. From
Egs. {10.26) and the defining equation {10.82), the constant action variable J is
given by

e s
j:%pdq:%vﬁnmwmz gidg, (10.92)
where o is the constant total energy and o = & /m. The substitution (10.25}
HE
g = \f s sing
rednces the integral to
3
7= E[ cos® 6 49, (10.53)
@ Jg

where the limits are such as to correspond to a complete cycle in g. This integrates
o

2
i

@

or, solving for o,

amH= (10.94)

Rls

The frequency of oscillation is therefore

“For some applications the action variable s defined in the literature of celestial mechanics as (2.’(}"1
tintes the value given in Bg. (10.82). By Eq. {10500, the corresponding angle variable is 27 times our
definition and in place of v we have e, the tngalar frequency. However, we shall stick throughout 1o
the fawniliar definitions used in physics, ss given ahove,
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an @ 1 fk

CF I - {0.9%
which is the customary formula for the frequency of a linear harmosic osciliator.
Although it is entirely v for obtaining the frequencies, it is hel
instructive {and usefud for future applications) 3o write the solutions, Egs. (16.25}
and (10.27), in terms of J and w. It will be recognized first that the combinatien
(et + B} is by Egs. {10.95) and {10.87) the same as 2w, with the constant
of integration suitably redefined. Hence, the solutions for g, Eq. {30.25), and p,
Eq. (10.27), take on the form

i
g = =l s 2w, (10.96)
Y rme

7
oy ”‘n“’ cos 2w, {10.97)

Note that £gs. (10.96) and (10.97) can alsc be locked on as the transformation
equations from the (w, J) set of canonical variables to the (g, p) cancnical set.

ACYION-ANGLE VARIABLES FOR COMPLETELY
SEPARABLE SYSTEMS*

Action-angle variables can also be introduced for certain types of motion of sys-
tems with mapy degrees of freedom, providing there exists one or more seis of
coordinates i which the Familton-Jacobi equation is completely separable. As
before, only conservative systems wilt be considered, so that Hamilton's charac-
reristic function wilt be used. Complete separability means that the equatiens of
canonical transformation have the form

Pi:aw’;(qj,m;,...,an), (£0.9%)

8gy

which provides each p; as a function of the q; and the # integration constants o;:
P pilgiy @, ..., Oa). {10.5%)

Equation (10.99) i the counterpart of Eq. {10.79), which applied to systems of
one degree of freedom. It will be recogrized that Eq. (10.99) here represents
the orbit equation of the projection of the system point on the (p;, g;) plane in
phase space. We can define action-angle variables for the system when the orbit
equations for aif of the (g, m) pairs describe either closed orbits (libration, as in
Fig. 10.2(a)) or periodic functions of g; {rotation, as in Fig. 10.2(b)).

Note that this characterization of the motion does not mean that sach g; and
pi will necessarily e periodic functions of the time, that is, that they repeat their

*Unfess otherwise stated, the surmustion convention will not be used in this section.
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values af fixed time intervals. Even when each of the separated (g7, p;) sets are fa-
deed periodic in this sense, the overal system motion need not be periodic. Thus,
it a three-dimensional harmonic oscillator the frequencies of motion along the
three Cartesian axes may ail be different. To such an example, it is clear the com-
plete motion of the particle may not be periodic. If the separate frequencies are
not rational fractions of each other, the particke will not traverse a closed curve in
space but will describe an open “Lissajous figure.” Such motion will be described
as muldply periodic, It is the advantage of the action-angle variables that they
lead to an evabaation of alt the frequencies involved in multiply periodic motion
without requiring 4 complete solution of the motion.

I analogy to Eq. (10.82), the action varibles J; are defined in terms of line
integrals over complete periods of the orbit in the (g;, p;} plane:

A= fps dgi. (10.108)

1f one of the separation coordinates is cyclic, ifs conjugate momentum is constant.
The comesponding orbit in the g1, pr plane of phase space is then a horizontad
straight line, which would not appear to be in the nature of a periodic motion,
Actually the motion can be considered as & limiting case of the rotation type of
periodicity, in which g; may be assigned any arbitrary period. Since the coordinate
ir & rotation periodicity is invariably an angle, such a cyclic ¢; ahways has a natural
pericd of 27. Accordingly, the integral in the definition of the action variable
corresponding to a cyclic angle coordinate is to be evaluated from 9 to 2, and
hence

Ji = 2mpy; {10.1013

for afl cyclic vatiabies.
By Eq. (16.98), J; can also be written as

sz W (g @, ... ) da. £0.102)
dg;

Siace g; is here merely a varishle of integration, each action variable J; is a
function only of the n constants of integration appearing in the solution of the
Harnilton—Jacobi equation. Further, it foliows from the independence of the sep-
arate variable pairs (g, pr) that the J;’s form n independent functions of the ;s
and hence are suifable for use a5 a set of new constant moment4, Expressing the
o;'s as fanctions of the action variables, the chesacteristic function W can be writ-
ten in the form

W Wignoodm o = S Wilgs T J),
£

while the Hamiltoniar appears as a function of the J;'s only:

H=o = H(J, ..., 0 (16.103;
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As in the system of one degree of freedom, we can define conjugate angle
variables w; by the equations of transfornzation that here appear as

{10.164)

Wi

aw :f: aWilgs Ji,..., Jnd

BT "R ¥

Note in general w; conid be & function of several or a8l of the g;; that is, uy =

Wilgi, ... gus Fiv .., Jpk The wy’s satisfy equations of motion given by
sH(h, ..., ],
g DU Jd = U de) £0.109)
3k
B the v;'s are fanctions of the action variables only, the angle

variables are all linear functions of time
wy = vt b B {10.106)

Note that in general the separate w; s increase in time at different rates.

The constants v; can be identified with the frequencies of the muinply peri-
odic motion, but the argument to demonstrate the relation is more subtle than for
periodic systems of one degree of freedom. The transformation equations 1o the
(w, J) set of variables implies that each g; {and p,) is a function of the constants
J; and the variables w;, What we want o find is what sort of mathematical func-
tion the ¢'s are of the w's. To do this, we examne the change in 4 partcular w;
when each of the variables g, is taken through an integral number, mj, of cycles
of libration or rotation. In carrying out this purely mathematical procedure, we
are clearly not following the metion of the system in time, ¥t is as if the flow of
time were suspended and each of the ¢'s were moved, manuaily as i were, inde-
pendently through a snmber of cycles of their motion. In effect, we are dealing
with analogues of the virtzal displacements of Chapser 1, aad accordingly the in-
finitesimal change in wy as the g;'s are changed infinitesimally will be desoted
by §w; and is given by

Jw; W
Bupp = T dgy = o dig
' ; Py z Birdg;

whese use has been made of Bq. (16,104}, The derivative with respect to ¢; van-
ishes except for the W; constituent of W, so that by Eq. (10.98) Suwy; reduces to

E]
sy = o 5" pilayp Ddg;. (18.207)
;o
i

Equation (10.1067) represents Sw; as the sum of independent contributions each
involving the g; motion. The total change in w; as & result of the specified ma-
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meuver is therefore

3
Aw; :?a_h?fp,—@j.ndw (10.108)
my

the differential operator with vespect 1o J; can be kept outside the integral signs
because throughont the cyclic motion of g; all the J's are of conrse constant. Be-
low each integral sign, the symbol m; indicates the integration is over m; cycles
of q;. But each of the integrals is, by the definition of the action variables, exactly
m ;5. Since the J's are independent, it follows that

Auy == my, (10.109

Farther, note that if any 4 ; does not go through a compiete number of cycles, then,
in the integration over ¢, there will be a remainder of an integral over a fraction
of & cycke and Aw; will not have an integral value. If the sets of w's and m's are
treated as vectors W and m, respectively, Eq. (10.109) can be written as

AW = I, (10.109")

Suppose, first, that the separable motions are all of the fibration type 50 that
each ¢, as well as py, returns to fts indtial value on completion of & complete
cycle. The result described by Eg. (10.109') conid now be expressed somewhat
as follows: 7 (the vector of ¢’s and p’s) is such a fanction of w that a change
A7 = 0 corresponds 10 a change Aw = 1n, a vector of integer values, Since the
number of cycles in the chosen motions of ¢; are arbitrary, m can be taken as zero
except for my; = 1, and all the components of % remain unchanged or return to
their original vatues. Hence, in the most genera! case the components of 7 must
be periodic functions of emch w; with period unity; that is, the ¢"s and p’s are
multiply periodic functions of the w's with nait periods, Such a multiply periodic
fanction can always be represented by a mubtiple Fourier expansion, which fer gy,
say, would appear &s

o0 X 0o
- @3 Ik frwat fswate by via b thrati
gk = }: z: e X ay e ., (libraticn)

o0 fyeo Jommoa
(10.110)
where the J's are # integer indices rusming from —00 10 00. By treating the set of
778 al80 as a vector in the same n-dirensional space with w, thie expansion can be
writiell more compactly as

g 3 al e Y, ibration). (10.1109
7

1£ we similarly write Eq. (16.109") as & vector equation,

w4 B, (10.106")
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then the thme dependence of ¢; appears in the form

gty = 32O OB (iation). (0.1
i

Note that in general g¢(2} is not a periodic function of 1. Unless the various u;’s
are commensurate (that is, rational multiples of each other), gx will not repeat its
values at regular imtervais of time. Considered as a function of 4, g4 is designated
as a guasi-periodic function. Finally it should be remembered that the coefficients
a(-ﬂ can be found by the standard procedure for Fourier coefficients; that is, they
are given by the multiple integrat over the upit cell in w space:

i i
e = | atwe gy, (10,112}
i 3 o

Here (dw) stands for the volume element in the z-dimensional space of the w, s,

When the motion is iz the nature of a rotation, then in a complee cycle of the
separated variable pair (ge., pr) the coordinate g¢ does net return to its original
value, but instead incresses by the value of its period g Such a rotation coordi-
nate i3 therefore net iself even mulziply periodic. However, durisg the cycle we
have seen that wy, increases by unity. Hence, the function g — wigy: does return
to #3 ivitial value and, like the librational ceordinates, is a multiply periodic func-
tion of all the w's with unit periods, We can therefore expand the fonction 1 a
multiple Fourler serles analogous 1o Eq. (18110}

i~ Wraok = Zaj(mez’”j'"‘ {rotation) {10,113
i

or

a = qalut + B0+ 3 af PR qomtion). (10.114)
i

Thus, it is always possible to derive a multiply periedic function from a rotation
coordinate, which can then be handled exactly like a libration coordinate. To sim-
plify the further discussion, we shail therefore confine ourseives primarily to the
libration type of motion.

The separable momentum coordinates, py, are by the nature of the assumed
motion also multiply periodic functions of the w's and cas be expanded in & mul-
tiple Fourier series similar to Eq. (10.110). It follows then that any fusction of the
several variable pairs (gx, pi) will also be muitiply periedic functions of the w’s
and can be written in the form

flam =Y et o N et trd), (10.115)
H H
For example, where the Cartesian coordinate of particles in the system are not

themseives the separation coordinates, they can still be written as functions of
time in the fashion of Bq. (10.115).
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While Eqgs. {10.110} and (30.111) represent the most general type of motion
consistens with the assumed nature of the problern, not all systers will exhibit
this full generality. In particutar, for most problems simple enough 1o be used as
iHustrations of the application of action-angle variables, Eg. (10.104) simplifies
il

duy
w; = ﬁ(qf; T 4 (10.116)

and each separation coordinate g; is a function only of its corresponding wy.
‘When this happens, ¢, is then & periodic fanction of uy (and therefore of time),
and the muitiple Fourier series reduces to a single Fourier series:

& j &
o = Z“S ) ij Za} ) LALi s B 46117
ki i

In the language of Chapter &, in such probiems the g, 's are iz effect the normal
coordinates of the systern, However, even when the motion in the ¢7s can be 50
simplified, ¥ frequently happens that functions of all the ¢ 's, such as Cartesian co-
ordinates, remain sltiply periodic functions of the w’s and must be represented
as in Eq. {30.115). If the various freq s v are inec ate, then such
functions are not perfodic functions of time. The motion of & two-dimensional
anisotropic harmozic oseillasor provides a convenient and fariliar example of
these considerations.

Suppose that in a particular set of Cartestan coordinaés the Hamiltonian is
ghven by

= -2%[(115 + 47(1m1ufx2) + (pﬁ +4n2m2u§y2)].
These Cartesian coordinates are therefore suitable separation variables, and each
will exhibit simple harmonic motion with frequencies v; and vy, respectively.
Fhus, the selutions for x and y ave particularly simple forms of the single Fourier
expansions of Eq. (30.117). Suppose now that the coordinates are roiated 45%
about the 7 axis; the compenents of the motion along the new x’, ¥ axes will be

I
x = ﬁ{xu o8 27 (st + Bx) + Yo cos 2 (uyz ++ By},

o %{yu cos 2w (Uyr + By ) ~ xp 008 2ir{vet + Bl (10118}
1 o, 15 a rational number, these two expressions will be commensurate. corre-
sponding to closed Lissajous figures of the type shown in Fig. 10.4. But if v, and
by are ine able, the Eissajons figire never sxactly retraces its steps and
Egs. (10.118) provide simple examples of muitiply petiodic series expansions of
the form (16.117).
Even when gy is a mudtiply periedic function of all the w's, we intuitively feel
there must be a special relationship between ¢; and its corresponding w; tand
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1
3

B ha =0 e

FIGURE 10.4 Lissajons figures for Eo (104181 @) Bx = By = . B = (B gx = |

gyma‘g?:g

therefore o). After all, the argument culminating in Eq. (10.109) says that when
4 alone goes through s complete cycle, wy increases by unity, while the other
w's retumn to their initial values. Tt was only in 1961 that J. Vinti succeeded in
expressing this intuitive feeling in a precise and rigorous statement.*

Suppose that the time interval T' contains m complete cycles of gx plus a frac-
tion of a cycle. In general, the times required for each successive cycle will be
different, since gx will not be a periodic function of £. Then Vinti showed, on the
basis of a theoten: in number theory, that as T incresses indefinitely,

Lim 2 = vy {10119
toma T
The mean frequency of the motion of g is therefore always given by v, even
whea the entire motion is more complicared than & periodie function with fre-
quency vi.

Barring comtensurability of all the frequencies, a swmitiply pedfodic furction
car: always be formed from the gererating function W. The defining equation
for J;. Bg. (19,102} in effect states that when g; gees through a complete cyck
that is, when w; changes by unity, the characteristic function increases by J;. It
follows that the function

WY mede (10.120)
&

remains unchanged when each wy is increased by unity, ail the other angle vari-
ables remaining constant. Equation (30.120} therefore represents a multiply peri-
edic fenction that can be expanded in terms of the wy {or of the frequencies )
by a series of the form of Eq. {(10.115). Since the transformation equations for the

*}. Vind, J Res. Nat. Bur. Standprds, 658, 133 {19613,
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angle variables are

IW
i
it will be recognized that Bq. (10.120) defines a Legendre transformation from
the g, J basis to the g. w basis. Indeed, comparison with Ex. (9.15) in combina-
tion with Eg. (9.12) shows that if W{g, J) is & generating Fanciion of the form
Falg. P), then W'(g, w) is the corresponding generating fanction of the type
Filg, @), transforming in both cases from the {g, p) variabies to the {w, J) vari-
gbles, While W thus generates the same transforimation as W, it is of course not
4 solutien of the Hamnilton Jacobi equation.

Tt has been emphasized that the sysiem configuration is multiply periodic only
i the frequencies v are not rational fractions of cach other. Otherwise, the con-
figuration repeats after & sufficiendy long time and would therefore be sxmply
periodic. The formal condition for the co bitity of two freg v
and v; is Lhat they satisfy the refation v = j;v; (no sum) whese j; and j; are
nonzere positive itegers. For complete oc bitity, afl pairs of fi
maist satisfy relations of the form

wy =

Jivi = v, (nosum} {10.121)

where the j; and ji are nonzero positive integers.

‘When we can express any v; as a rational fraction of any of the other frequen-
cies, the system is said to be complerely commensurate. If only m + 1 of the o
frequencies satisfy Eq. {10.121), the system is said to be m-fold commensurate.
For example, consider the set of seven frequencies vy = 3 MHz, v = 5 MHz,
vg = 7 MHz, vg = 2+/2 MHz, vs = 34/ MHz, 05 = +/3 MHz, #7 = /7 MHz.
The first three vy, va, and v are triply commensurate, sthe next two vy and vs am
doubly commensurate.

There is an interesting connection between commensurabitity and the coordi-
nales in which the Hamilion-Jacobi equation is separable. It can be shown that the
path of the system point for a noncommensurate system completedy fils a limjted
region of both configuration and phase space. This can be seen in the Lissajous
figures of incommensurale frequencies.

Suppose the problem is such that the motion in any one of the separation coor-
dinates is simply periodic and has therefore been shown to be independent of the
motion of the other coordinates. Hence, the path of the system point as a whole
must e Himied by the surfaces of constant ¢; and p; that mark the bounds of the
ascitlatory motion of the separation variables. (The argument is eastly extended to
rolation by limiting all angles to the segion 0 to 2.} These surfaces therefore de-
fine the volwme in space that is densely filled by the system point oebit, It follows
that the separation of variables in noncommensuzate systems must be unigue; the
Hamil Jacobi equation eatmot be sep d in two different coordinate sys-
tems (aside from srivial variations such as change of scale). The possibility of
separating the motion in more thas one set of coordinates thus normatly provides
evidence that the sysien is commensurate,
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The simplest example of being commensurate is degensracy whick cecurs
when two or more of the frequencies are equal, I two of the force constants
in a three-dimensional harmonic cscillator are equal, then the coresponding fre-
quencies are identical and the system is singly degenerate. In an isotropic linear
oscillator, the force constants are the same aleng al} directions, ali frequencies are
equal, and the system is completety degeneraie,

Whenever this simple degeneracy is present, the fandamentat frequencies are
no Jonger independent, and the periodic metion of the system can be deseribed
by less than the fult Dt of n freq ies. Indeed, the m conditions of
degeneracy can be used to reduce the number of frequencies to # ~ m + 1. The
reduction of the frequencies roay be most elegantty performed by means of a peint
transformation of the action-angle variables. The m degeneracy conditions may be
written where ji; are positive or negative integers

p
Nm=0 k=1...m (10.122)

Consider now a peint transformation from (w. J3 to (w', J') defined by the
generating function (cf. Bq. {9.26) where the summation convention is used).

H

iz T ferw 4 i Jw. (10.123)

LT AT kampet]

3

= iis k=1,...,m,

= W, kw=m+1,...,0. {10.1249)

Correspondingly, the pew frequencies are

"
u;:@;,:zjk,uf:a k=1,... m

= g k=m+1,...,n €10.125)

‘Thus in the transformed coordinates, m of the frequencies axe zero. and we are lefi
with a set of n — m independent frequencies plus the zere frequency, It is chvious
thal the new w; may also be termed as angle variables in the sense that the system
configuration is multiply periodic in the wj coordinates with the fundatental
period anity. The cosresponding constant action variables are given as the solution
of the n equations of trapsformation

ZJ,(;;”-)- Z F5y. (10.126)

kw41
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The zero frequencies correspond o constant factors in the Fourier expansion,
These are of course also present in the original Fourier geries in terms of the
w's, Eq. (10.110), occurring whenever the indices j; are such that degeneracy
conditions are satisfied. Since

, M
vy ﬁ-é-}g,

the Hamiltonian must be independent of the action variables J; whose corre-
spending frequencies vanish. In a completely degenerate system, the Hamsltonian
can therefore be made to deperd upon only one of the action variables.

Note that Hamilton’s characteristic function W also serves as the generating
function for the transformation from the {g, p) st o the (w’, J*} set. Since the J°
guantities are » independent constants, the originad constants of integration may
be expressed in terms of the J” set, and W given as Wig, J'}. In this form, itis a
generating function to a new set of canonical vaziables for which the J' quantilies
are the canonical momenta. But by virue of the peint transformation generated
by the £ of By, (10.123), we know that ' is conjugate to J'. Hence, it follows
that the new coordinates generated by W (g, J') must be the angle variable ' set,
with equations of ransformation given by

.
wl = 37 (19.127)
{For a mors forroal proof of Bg, {10,127} based on the algebraic structure of
Eg. (10.123), see Derivation 3.)

The problen: of the bound motion of a particle in an inverse-square law central
force Hustrates many of the phenomena involved in degereracy. A discassion of
this problem aiso affoids ar epporsmity to show how the action-angle techrique is
applied to specific systems, and to indicate the connections with Bohe's quantum
mecharics and with celestial mechanics. Accordingty, the next secticn is devoted
to a detailed treattsent of the Kepler problem in lerms of aclion-angle variables.

THE KEPLER PROBLEM IN ACTION-ANGLE VARIABLES*

To exhibiz all of the properties of the solution, we shall examine the motion in
three dimensional space, rather than make use of cur a priori knowledge that the
oebit Ties in a plane. In terms of spherical potar coordinates, the Kepler problem
becomes & special case of the general treatment given above in Section 10.5 for
central force motion in space. Equations (10.70) througls (10.77) can be taken
over here & datety, replacing V(r) wh T it cccurs by its specific form

B

Vir) -’;‘. (10.128)

*The summation convention will be reszmed fom here on.
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Since the potentiai V (r) depends only upon one of the three coordinates, it fol-
lows that the Hamélton—Jacobi equation is compietely separable in spherical potar
coordinaies, We shall corfine our discussion to the bound case, that is, £ < 0.
Henee, the motion in each of the coordinates will be periodic—Iibration in » and
&, and rotation in ¢. The conditions for the application of action-angle variables
are thus satisfied, and we can proceed to construct the action variables on the basis
of the defining equation {10,162}, From Eq. (10.72), it folfows that

J¢=f%gmd¢=fa¢d¢. {10.12%a)

Similarly, on the basis of Eq. {(10.74), Jp is given by

2
aw bt
Ty = 2. 8 X 3
7 éw——ae ¢ % L ey L) (10.328by

Finally the integzal for J, from Bg. {30.75), is

W 2mk of

J,:}gi-dr:jg mE+ T Ty {10.129¢)
or r r?

The first integral is wivial; ¢ goes theoughk 27 radians in a complete revelution

and therefore

Jp = Doy = Wnpy. (19.130)

‘This result contd have been predicied beforehand, for ¢ is a cyclic coordinate
in H, and Eq. (10.130) is merely a special case of Eq. {10.101} for the action
variables corresponding to cyclic coordinates. Integration of Eq. (10.129h) can
bhe performed in various ways; a procedure invelving only elementary rules of
integration will be sketched here. If the polar angle of the tolal angular momenium
vegtor is denoted by {, so that

cosi w2 (10.131;
g

then Haq. (10.120b) can alse be written as
Jy = oy é‘ 1~ cos?icsc? 6 de. {10.132)
The comptete circuital path of integration is for @ going from a limit 6 to +8

and back again, where sinfly == cosi, or 6 = {m/2) ~ i, Hence, the circuital
integral can be written as 4 times the integral over from { o 8, or after some

manipulation,
" -
Jg = g f cae By sin? § — cos? 8 4.
o
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The substicution
€056 == gini sin g

transforms the integral to

#f2 2y d
Jg = detg sinzz‘f mc"sm;ﬁm%m (10,133
o 1 sintisin® g

Finally, with the substination
& = tan
the integral becomes
hd du
Jg = o i’ f [P
R A T R e )
bt I costi
= oy L T e B arae = N 10.134
ﬁ,[g) u(1+u2 1~§~u2cus2£) ¢ )
This iast form involves onty well-known integrals, and the final result* is

Jo = Imop{} ~ cosi) = Zm{ap — o). (10.135)

The last integral (Eg. (10.129c)}, for J;, can now be wrilten as

A :f 2mE+%MM {16.136)
v drlr?

After performing the integration, this equation can be solved for the energy F =
H in termas of the three action variables Jy, Jp, J-. Note that J4 and Jy can occur
in E only in the combination Jp + J, and hence the corresponding frequencies
¥y and vg must be equal, indicating a degeneracy. This result has not involved the
inverse-square Iaw nature of the central force; any motion prodiced by a central
Jorce is at least singly degenerate. The degeneracy is of course a consequence
of the fact that the motion is confined to a plane normal to the constamt angular
momentun vector L. Motion in this pfane implies that 6 and ¢ are related o
zach other such that as ¢ goes through a complete 2 period, @ varies through a
complete cycle between the limils (/23 + i. Hence, the frequencies in @ and ¢
are necessarily equal.

The integral involved in Eq. {10.136) can be evaluated by elementary means,
but the mtegration is most clegantly and quickly performed using the complex
*Ttt evaluating the integral of the second term in the final integrand of Bq, {10,134}, it has been assumed.
Hat cosd 35 positive. This is akways possible, since there Is no preferred direction for the ¢ axis in the
problem and it may be chosen at will. I cos ¢ were negative, Bie sign of wg in Bq. (10.035) would be
positive. For changes in the suhsequent formulas, see Exercise 23.
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contour integration method of residues, Por the benefit of those familiar with this
technique, we shall outling the steps involved in integrating Eq. (10.136). Bound
motior can occur only when E is negative (of. Section 3.3), and since the inte-
grand is equal to p, = mF, the limits of the motion are defined by the roots r; and
rz of the expression in the square root sige. If ry is the inoer bound, as in Fig. 3.6,
& comnpiete cyele of ¢ involves going from ry to ry and then back again to ;. On
the owward half of the journey, from ry te ra, pr is positive and we must take
the positive squars rool. However, on the retass trip te ry, pr is negative and the
square root gist kewise be negative. The integration thus invelves both branches
of a double-valued function, with ry and 7y as the branch points. Consequently,
the complex plane can be represented as one of the sheets of & Riemann surface,
slit along the real axis from ry to 2 (as indicated in Fig. 10.5).

Since the path of integration encloses the line between the branch poists ry
and 13, the methed of residues cannot be apphied direcily. However, we may also
consider the path as enclosing a¥f the rest of the compiex plane, the direction of
integration now being in the reverse (clockwise) direction. The integrand is single-
valued in this region. and there is now o bar to the application of the method of
residues. Only two singular points are preseni, namely, the origin and infinity, and
the integration path can be distorted inle two clockwise circles enclosing these
two points. Now, the sign in front of the seurare root in the integrand must be neg-
ative for the region along the real axis below ry, 48 can be seen by examining the
behavior of the function in the neighborhood of ry. If the integrand is represented
as

the residue ar the origin is

Above 2, the sign of the square root on the reat axis is found to be positve,
and the residue is obtained by the standard 1echnique of changing the variable of
integration to 2 = ¢~

H
Mﬁ ;E""A + 2Bz - O dp. {10.137)

/‘\ Negative I - ww 3 Postiive /‘\
\y SqUare root r R ETETT square root \y

FIGURE 108 The complex r plane in the neighborhood of e real axis; showing the
paths of integration occunring in the evalvation of J
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Expansion abowi 2 = { now furnishes the residue

R o~
VA
The total integral is —2sr] tioes the sum of the residues:
I mznx(Ji'6+ i), (146.138)
VA

or, upoe substituting the coefficients A, B, and C:

dy = (4 Ay} + xk\/%. (10,139

Equation (10.139) supplies the functional dependence of & upon the action
variables; for solving for £, we have

2tk

F I R T
g -+ Jp)t

{10.1403
Note that, as predicted, Jy and Jy occur only in the combination Jg + Jp. More
than that, ali three of the action variables appear only in the form J. + Jo +
Js. Hence. all of the frequencies are equal; the motion iy completely degenerare,
Fhis result could also have been predicted beforehand, for we know that with
an inverse-square law of force the orbit is closed for negative energies, With a
closed orbiz, the motion is sioply periodic ard therefore, in this case, completely
degenerate. T the central force contained an ™ texm, such as is provided by first-
order relativistie cotzections, then the orbit is no longer closed but is in the form
of a precessing eliipse. One of the degeneracies will be removed in this case, but
the motion is still singly degenerate, since v = g for all central forces, The one
frequency for the motion here is given by

8H  aH  8H A 2mk?

S i T

Wﬁ: (j;mm+ A (10,141

If we evaluate the sum of the J's i serms of the energy from Eq. £10.140) the
period of the orbitis

{m
‘::m‘cvﬁ. (10.3142)

This foroutda for the period agrees with Kepler's third law, Eq. £3.71), if i is
remembered that the semimajor axis a is equal to ~&/2E.

The degenerate freq ies may be eli i by canonical ransformation
@ a new set of action-angle varizbles, foltowing the procedure outlined in the
previous section, Expressing the degeneracy conditions as

vp — g =90, vg — = G,
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the appropriate generating function is
F o= (wp —woddy + (we — wrd o +w, Ja. (10.143)
The new angle variables are
Wy = Wy - tg
Wy = Wy - w,,
w3 = 1y, (16.144)

and, as planmed, two of the new frequencies, »; and up, are zero. We can obtain
the new action variables from the iransformation equations

Jg == gy,
Jg w Ja e
Jp = 0y B,
which yields the relations
Iy =y,
Jy = Jy + Tg, (16.145)
B gy ds 4
In terms of these wansformed variables the Hamiltonian appears as

2 tmk?
5

» {16.146)

a form involving only that action variable for which the correspording frequency
is different from zero.

If we are willing to use, from the start, our a priori knowledge that the motion
for the bound Kepler problem is a particular closed orbit in 2 plane, then the inte-
grals for Jy and J; can be evaluated very quickly and simply. For the Jy integral,
we can apply the following procedure. It will be recafled that when the defining
equations for the generalized coerdinates do not involve time explicitly, then (of.
Eg. (8.20) and the materiat following {8.20)

Pigi = 2hagigy = 2T.
Knowing thar the motéon is confined 1o a plane, we ¢an express the kinetic ensrgy
T either in spherical polar coordinates or in the plane polar coordinates {r, ). It
follows, then, that

2T = p,f + pobl + pod = p,f + pil, (10.347%)
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where p {s= {) is the magnitude of the totat angular momentum. Hence, the defi-
nition for Js can also be written as

Iy = 5{ po dft = jﬂpdw w}gp@dqs. (10.148)

Because the frequencies for # and ¢ ave equal, both ¢ and yr vary by 2r as £ goes
through a complete cycle of libration, and the integrals defining Jp reduce to

Jg = 2m{p — py) = Imimy ~ agh

in agreement with Eq. {1).135),

The integral for J,, Eq. (10.136), was evaluated in order to obtain H = £ in
terms of the three action variables, If we use the fact that the closed elliptical orbit
in the bound Kepler probiem is such that the frequency for v is the same as that
for & and ¢, then the fapctional dependence of H on J can also be obtained from
Eg. {10.147). In effect then we are evaluating J, in & different way. The vigal
theorerm for the bound orbits in the Kepler probler says that (of. Bq. (3.300

V= 2T,

where the bar depotes an average over a single compiete period of the motion. It
follows that

Hebt=T+V=-T (10.149)
Intograting Bq. (10,147} with respect to time over a complete peried of motion we
have

zl;iwjr+13+1¢m13, (10.15%

3

where v3 is the frequency ef the metion, that Is, the reciprocal of the period.
Combining Egs. (10.149} and (10.150) teads to the relation
2w 14H
FOH  HdR
where use has been made of Eg. {30.103). Equation (10,151 is in effect a differ-

ential equation for the functional behavier of H on Ji. Integraiion of the equation
immediately leads to the solution

{10151

D

H e —
=
i3

{10.152)
where D is a constant that cannot invelve any of the J's, and must therefore de-
pend only upon m and k. Hence, we cap evaluate D by considering the elementary
case of a circular orbit, of radius rg, for which J, == 9 and J1 = 2xp. The total
energy is here
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k

2rg

(as can most immediately been seen from the vizial tieorem). Further, the cone

dition for circularity, Eq. (3.40), can be written for the inverse-square force law
as

(10.153)

LA S (10154
i omrd Antme}

Eliminating rp between Fas, (10133 and (10.154) leads 1o

2ntmkt

H o
4

(10.135)

This result has been dedived only for circular orbits, But Bg. (10.152) says it must
also be correct for afl bound orbits of the Kepier problem, and indeed it is identical
with Eq. (10.146). Thus, if the existence of a single period for all coordinates is
taken as known beforehand, it is possible to obtain H (J) without direct evaluation
of the circuital integrals.

In any problem with theee degrees of freedosn, there must of course be six
constants of motion. It has previously been pointed out that in the Kepter problem
five of these are algebraic functions of the coordinates and mmomenta and describe
the pature of the orbit in space, and only the last refers to the position of the
particke in the orbit at 2 given me (¢f. Sections 3.7 to 3.9), It is casy 10 see that
five parameters are needed to completely specify, say, the elliptica orbit of the
bound Kepler problem in space. Sinee the motion s in & plane, two constants are
needed to deseribe the orientation of that plane in space. One constant is requited
to pive the scale of the ellipse, for example, the semimajor axis &, and the other
the shape of the ellipse, say, through the eccentricity ¢. Finally, the fifth parameter
must specify the erieniation of the eflipse relative to some arbivary direction in
the orbital plane,

The classical astronomical elements of the orbit provide the orbital parameters
almeost directly in the form given above. Two of the angles appearing in these
elements have unfamiliar bt time-honored nemes. Their definitions, and func-
tions a8 orbital parameters, can best be seen from a diagram, such as is given in
Fig. 10.6. Here xyz defines the chosen set of axes fixed in space, and the mmit
vector 0 charactesizes the notmal 1o the orbital plane, The mlersection between
the xy plaae and the orbital plane is called the Hine of nodes, Thers are 1w points
on the line of nodes at which the elliptical orbit intersects the xy plane; the point
at which the particle enters from below into the upper hemisphete (or goes frore
the: “southers™ to the “norhem” hemispheres) is known as the ascending node. In
Fig. 10.6, the portion of the orbit in the southern hemisphere is shown, for clasity,
a5 a dashed line. The dot-dasbed line OV is a portion of the line of nodes contain-
ing the ascending node. We can measure the divection of ON in the xy plane by
the angle xON, which is customarily denoted by €2, and s known as the longitude
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A

FIGURE 10,6  Angular elements of the orbit in the bound Kepler probles.

of the ascending node. Finally, if C denotes the point of periapsts in the orbit,
then the angle N OC in the orbieal plane is denoted by w and is catled the argu-
ment of the perifielion.™ The more familiar angle i, introduced in Eg. (10.13%), is
in its astronomical usage known as the inclination of the orbit, One usuai set of
astre feal el therefore consists of the six constants

i R.aewl,

where the last one, T', is the time of passage through the periapsis point, Of the
remaining five, the first two define the orientation of the orbital plane in space,
while g, ¢, and o directly specify the scale, shape, and orientation of the elliptic
orbit, respectively.

The action-angle variable treatmeent of the Kepler problem also leads to five
algebraic constants of the motion. Theee of them are obviots as the three constant
action variables, Jy, /. and /5. The remaining two ate the angle variables w;
and w, which are constunts, becanse their cortesponding frequencies are zero. It
must therefore be possible w express the five constants Jy, J, J3, wy, and wy in
terms of the classicel orbital elements i, €2, @, e, and w, and vice versa. Some of
these interrelations are itmediately obvions. From Egs. (10.145) and (10.135) it
follows that

Jy m 2worg s 2nd, (14,156}
and hence, by Eg. (10.131),

i'"l- =GOS, (19.157
)

As is well known, the semdmajos axis @ is 4 fanctioa only of the total caergy E
{ef, Bg- {3.61)) ard therefore, by By, (10,146), @ s given directly in terms of Js:

*This terminology appears 1o be commonly used even for orbits that ere not around the sen. The
proper ferm for orhits about stars is periastea; for Barth-orbiting suteBites, this term is perigee.



10.8 The Kepler Problem in Action-angle Variables 475

k .___132 10,158
4T T itk (10.158)
in terims of Jp, Eq. (3.62} for the eccentricities can be written as
72
RN | [Pt
drrtmba
or
2
e=x f1—~ (E) R (10.359)
5

it remaing only o relate the angle variables wi and wy o the classic orbital
elements, Obviously, they must involve 2 and . In fact, it can be shown that for
suitable choice of addiive constants of integration they are indeed proportional 1o
§2 and @, respectively. This will be demonstrated for wq; the identification of w;
wil be left as an exescise.

The equation of transformation defining w) iz, by Eq. {10.127),

W
A

1t can be seen from the separated form of W, Eq. (10.71), that W can be written
as the sum of indefinite integrals:

Wy

W:fp@dnﬂ-i-fpsdﬁ-é-fprdr. {10160}

As we have seen from the discussion on J,, the radial momentum p, does not
involve Jy, but only J3 (through E) and the combination J3 -+ Jy = J3. Only the
first two integrals are therefore involved in the derivative with respect to J;. By
Eq. {10.130,

7
g == tig = 57'? (10.561)

and by Bq. (10.74), with the help of Egs. {10.156) and (10.161),

al 1 77
RPN Y St O I g oy 10.162
be \/"’ sinfe  2n¥ ' sin’e ¢ !

It turns out that in order to relate w; to the ascending node, it is necessary o
cheose the negative sign of the squaze roet.® The angular varlable w is therefore
determined by

*Note that when the particle passes through the ascending node (ef, Fig. 10.6) 8 is decreasing and

the cosresponding momentm is negative. In calcatating Jg, it was not necessary to worry ahout the
cheice of sign because in going through o complete cycle both signs are ercountered.
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Ji dé

B R
sin?g 7} - Hlosc 6
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Hrwy =¢~+vcosif POt A —
sin? 8T —~ cost § csc2 8

coti cse? @ de

Vi <ol cattd
By a change of variable 1o w, defined through

= ¢4

sinu = ¢otf cotd, {10.163;
the integration can be performed trivially, and the ¢xpression for wy reduces to
2wy =B WL (10.164)

The angle coordinate ¢ is the azimuthal angle of the projection on the xy plane
measured relative (o the x axis, Clearly, from Eq. (10.163) « is a function of the
polar angle @ of the particle. But what is its geometrical significance? We can
see what i is by reference to Napier's rules* as applied to the spherical oiangle
defined by the line of nodes, the radius vector, and the projection of the radius
vector on the xy plane. However, it ragy be more satisfydag to indulge in a little
trgonometric manipnlation and detive the relatien ab initie. In Fig, 10.7, the line
ON is the lise of nodes. O R is the line of e radius vector at some time, and the
Jdotted line O P is the projection of the radius vector o the xy plane. The angle
that P makes with the x axis is the azimuth angle ¢. We contend that « is the
angle O F makes with the line of nodes. To prove this, imagine 2 plane normal
beth to the xy plane and {0 the Hine of nodes, which intersects the radins vector
at unit distance O B from the origin O, The points of intersection A, B, and € of
this plane, with the thwee lines from the origin, define with the origin four fghl
trizngles. Since OB has unit length, it follows that BC = cosd and therefore
AC = cosf coti. On the other hand, ¢C = sin@ and therefore it is also true that
AC = sind sinu. Hence. siny = cofi cotd, which is identical with Eq. (16.163)
and proves the stipulated identification of the angle u. Figure 10.7 shows clearly
that the difference between ¢ and w aust be £2, so that

Trun = Q. (165

in a similar fashion, we can identify the physical natare of the constant wy. Of
the integrals making up W, Eq. {10.160), the two over 8 and r contain J3 and

*For an explanation of Napier's rules for spherical triangles, see handbooks suth a5 the Handbook of
Mathemaiical Tabies (Chersicsl Rubber Publishing Co.} or Handbook of Applied Mathematics (Van
Nostrand-Reinhold).
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T

FIGURE 167 Diagram ilustrating angles appearing in action-angle treatment of the
Kepler problem.

are therefore involved in finding we. After differeniiation with respect to 7, the
integral over 6 can be performed by the same type of trigonometric substitution as
employed for wy, The correspondiog istegral over r ¢an be carried out in 4 avmber
of ways, most directly by using the orbit equation for r in teyms of the polar
coordinate angle in the orbital piane. By suitable choice of the arbitrary lower
limit of integration, it can thus be found that 2orw is the difference between two
angles in the orbital plane, one of which is the angle of the radias vector relative
1o the line of nodes and the other is the same angle but relative to the line of the
pertapsis. In ofther words, 27wy is the argument of the perhelion:

2w = w. {10.168)

Detailed derivation is left to one of the exercises.

The methed of action-angle variables is certainly not the quickest way to solve
the Kepler problem, asd the practical vsefulness of the set of variables is not ob-
vions. However, their valve has Jong been demonstrated in ¢elestisl mechanics,
where they appear wnder the guise of the Delaunay variables.® As will be seen in
Section 12.2, they provide the nataral orbital elements that ¢an be used in pertur-
batien theory, to describe the modifications of the nomina} Kepler orbits produced
by small deviations of the force from the inverse-square law. Many of the basic
studies on possible perturbations of satellite orbits were carried out in wrms of
the action-engle variables.

*As customarify defined, the Delzunay vatiables differ fiom the (J,, w,) set by multiplieative con-
stants.
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DERIVATIONS

1. For a conservative system show that by sobving an appropriate partial differential
equation we can construct & canonical transformation such, that the pew Hamilionian
is & function of the new coordinates only. {Do 5ot wse the exchange transformation,
Fy.) Show how 2 formal soltion to the motion of the system is given in terms of the
new coordinates and momenta.

=3

. In the text, the Hamilton-Jacobi equation for § was obtained by seeking a con-
tact transformation from the camonical coordinates (g, p) to the constants {w, ).
Conversely, if §{g;, ;. 1} is eny complete solution of the Hamilton-facobi equa-
tion {10.3), show that the set of variables {{;, p;) defined by Egs. (10.7) and (10.8)
are canopical variables, that is, that they satisfy Hamilton's equations,

3. inthe action-angle formalism, the arguments of Hamilton's characteristic function are
lhc original coerdinates gy and the action variables Jy. In the case of degeneracy. a

icaj ir for is made to new variables (w], J7) from (wg, ),

in order 10 replace the degeneracies by zere frequencies. By cens;denng each Jy a
function of the J] quantities as defined by Eq. (10.128), show thal it remains irue thay

aw

Frat
,

4. The so-called Poincaré clements of the Kepler orbits can be written as

Wy + Wy b ws, Is.

li:tcosbr(wz + ), i;fsin&r(wz + w13,

p/ Ja .
ﬁcns drwy, —931112:1';0;‘
m x
Show that they form 2 canonical set of 4 with the new i forming

the left-hand colume, their conjugate momemta being given on the right-hand side.

EXERCISES

5, Show that the function
8§ = %ﬂml +oc2) Cot W — M G5e wt

is a solation of the Hamilton-Jacobi for Hamilton's principal function for the linear
harmonic csciflator with
Fep? bomPaa?
H o= — .
o (7" +mietg")
Show that this function generates & correct soluion to the motion of the harmonic
osciliator,

6. A charged particle i3 constrained to move in n pla.ne under the influence of a central
force potential {nonelectromagpetic) V. = Ikr . and a constant magnetic field B
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had

B

b

16

15

i

perpendicular 1o the plane, so that
A=iBxr

Set up the Hamilton-Jacobi equation for Hamilton's characteristic function in plane
polar coordinates. Separate the equation and reduce it to quadratures, Discuss the
motion if the canonical momentum pg i5 2ero artime £ = 0,

(#) A single particle moves in space under a conservative poential. Set up the
Hamilon-facobi equation i ellipsoidal coordinates u, v, ¢ defined in terms of
the uyual cylindrical covedinates r, ¢, ¢ by the equations

r = asinhvsing, z=acoshvcosu.

For what forms of Viu, v, ¢) is the equation separable?

(b) Use the resulis of part (2) to reduce to quadratures the problem of 2 point pariicle
of mass m moving in the gravitational field of twe unequal mass points fixed on
fhe z axis & distance 2a apart,

Suppose the potential in a problem of one degree of freedom is linearly dependem
upon time, sueh it the Homilonian has the foro
2
H= ;“,; ALK,

where 4 js a constant, Solve the dynamical preblen by means of Hamifton's principal
function, under the initial conditions £ =8, x =0, p = mup.

Set up the plane Kepler problem in terms of the generalized coordinases
WP,
LR e

Obtaim the Hamilton-Jacobi equaton in terms of these coordinates, and mduece 3 o
quadratures {at least).

One end of 4 uniform rod of fength 21 amd mass m rests against a smooth horizontal
Aoor and the other aganst & smooth vertical surface. Assuming that the rod is con-
strained to move under gravity with its ends slways in contact with the surfaces, se
the Hamilton-Jacobi equations fo reduce the solution of the problem to quadratures.
A particle is constrained o move on a roffer coasier, the equation of whose curve i3

5 2T
= A Rt
g Aoy’

There is the wsual constant downward force of gravity. Discuss the sysiem irgjectories
in phase space under alf possible initial conditions, describing the phase space orbits
in as much detail a5 you can, paying special attention to tarning pobats and transitions
between different types of motion.

A particle of mass m moves in a plane in 2 square well potendal:
Vir) = ~¥p 0=y <rg,

=0 P g
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3.

.

5.

6.

8.

9.

(@) Under what initial conditions can the method of action-angle varkables be applied?
(b} Assuming these copditions hold, use the method of action-aagle variables o find
the frequencies of the motion.

A partitle moves in periodic smotion is one dimension under the influence of 2 poten-
tal V{x} == Fly|, where F is a constant. Uging action-angle variables, find the period
of the motion as a function of the particle’s energy.

A particle of mass m moves in one dimension under a potential ¥V = ~k/x|. For
energies that are negative, the motion is bounded and oscillatory. By the method of
action-angle variables, find an expression for the period of motion as a function of the
particle's energy.

A pariicle of sass m moves in one dimension subject o the potential
a
=
sin (?6}

Obtain an integrat expression for £ istic function. Under what con-
ditions can acti gl iables be used? / ing these are med, find the frequency
of oscillation by the sction-angle method. (The integral for J can be evaluated by ma-
nipulating the integrand so thar the square root appears in the denominator) Check
your tesult in the Hmit of oscillations of small amplitude,

A particle of mass m is consirzined {0 move on a curve in the vertical plane defined
by the parametric equations

¥ = (L~ cos 20,
= H2p + sin 24).

There is the usual constant gravitational force acting in the vertica? y direction. By
the method of action-angle variables, find ihe frequency of osciifation for aif initia}
conditions such dhat fe maximum of ¢ 1s less than or equal to w/4.

Solve the problem of the motion of 2 point projectile in a vertical plane, vsing the
Hamikon-facebi method. Find both the equation of the trajectory and the dependence
of the coordinates on tme, assuming the projectile is fired off at time ¢ = 0 from the
origin with the velocity vg, making an angle o with the horizontal.

For the system described in Exercise {2 of Chapter 6, find a linear point transformation
to variables in which the Hamilton—tacobi equation is separable. By use of the action-
angle variables, find the eigenireq ies of the system.

A three-di ional b 3 iftator has the force constant &y in the x- and y-
directions and &z in the z-direction, Using cylindrical coordinates {with the axis of
the cylinder in the z direction), describe the motion in erms of the comesponding
action-angle variables, showing how the frequencies can be obtaired. Trensform to
the “proper™ action-angle variabl it d i

ELe] fr

Find the freqaenties of a three-dimensional harmonic oscillator with snegual force
constants using the method of action-angle vaziables. Obtin the solution for each
Cartesian coordinate and conjugate momentum as finctions of the action-angle vani-
ables,
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2L

.

{a) fu the harsonic oscillator of Exercise 20, alfow al! the frequencies to become
equal {iseiropic oscillator) 5o that the motion is completely degenerate. Transform
10 the “proper’” action-angle variables, expressing the energy in terms of oaly one
of the action variables.

(b} Selve the problem: of the isotropic oscillator in action-angle variables using spher-
ical polar coordinates. Transfonm again to proper action-angle variables and com-
pare with the result of part {a). Are the two sets of proper variables the same?
What are their physicel significances? This problem illustrates the feasibility of
separating & degenerate motion i more thas one set of coordinates, The ponde~
generate oscillator can be separated only in Cartesian coordinates, aot in polar
coordinates.

. The sotion of & degenerate plane harmonic oscillator can be separated in any Carte-

sian coordinate system. Obtain the relations between the two sets of action-angle vari~
ablez corresponding to two Cartesian systems of axes makieg an angle & with each
other. Note that the transformation between the two sets is aef the orthogonal trans-
formation of the rosation.

{a) Evaluate the Jp integral in the Kepler problem by the method of complex con-
wour jmegration. To get the integral imto a useful form. it is suggested that the
substitution cos # = x sini might be made.

) Verify the integration procedure used for Jy in the ext, carrying out the final
ntegrations in Eg. (30.134).

(¢} Follow the consequences of the inclination being grester than 90°, that is, cosi
neganve In perticular. what are the changes in Eq. {10.135), in the canonical
ions 1o zers frog ies and th in Egs. (10.143)7 Can you write

Lhcse equations in such a form that they are valid whether cos! is positive of
negative? Justify your apswer.

Evaduate the integral for J; in the Kepler problem by elementary means. This inclodes
using tables of imegras, bu if so, explicit and demiled references should be given to
the tables used.

Shaow, but the method ovtlined in the text (or any other), that 27 w s o, the argument
of the periapsis, i the three-dimensional Kepler problem.

Set up the problem of the heavy symmetrical fop. with cne point fixed, in the
Hamilton-Jacobi method, and obtain the formal solution te He moton as given
by Eq. (5.63).

Pescribe the phenomenon of small radial oscillations about steady circutar moton in
& centrad force potential as a one-dimensional problem in the achon-angle formatism.
With a suitable Taylor series expansion of the potential, find the period of the small
oscillations. Express the motion in teems of J and its conjugate sngle variable.

Ser up the probless of the refativisic Kepler motion in action-angle variables, using
the Hamikonian in the form given by Eq. (8.54). Show in particular that the roral
energy (including rest mass) is given by
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Note that the degeneracy as been parily lifted, because the orbit is no lonper closed,
but is wili confined to & plane. In the imit 2s ¢ approaches infinity, show that this
reduces e Bq. (10.146).



CHAPTER

11

Classical Chaos

We have in the previous chapters deveted most of our atiention fo integrable prob-
lemns, that is, problems in which the equations of motion can be integrated to
provide sofutions in closed form. For example, in Sections 3.7 and 3.8 we found
exact solatons for the two-body, inverse-square force law problem by integrations
of the equations of motion. For many physical situations exact solntions cannot
be found. In the nexit chapter we shalt examine problems with potentials that can
be broken into a main integrable part and a weaker additional part that renders the
problem nenintegrable, but that can be taken into account by applying classicat
perturbation theory. A weak interaction terrn might, for example, coupie sogether
two equations of motion so the variables are no longer separable. The present
chapier deals with some situations invelving perturbations and lack of integrabil-
ity that cannot be conveniently handled by classicat pertarbation theory.

1f the interaction term is no longer “smali” in the sense of classical perturbation
theary {cf. Section 12,1}, the solutions may become complex and differ consider-
ably from those of the uncoupled equations. in some cases new solutions appear
that cannot be gencrated fror the uncoupled equations. These solutions are often
weil bebaved in the sense that a smali change in the initial conditions brings about
only a small change in the motion. When this is the case, the solutions are refemed
to as regular or normal. There alsc exist cases in which the motion evolves in en-
tirely different ways even for nearly identical starting circumstances. Selutions
of this type are referred to as chaatic. 1t is important to point out that this chacs
s} involves deterministic solutions to deterministic equations. They are cailed
chaotic becanse, aithough d inistic, they are not predictable b they are
tighly sensitive to initiat conditions. ¥ we consider two bounded sohtions in
the nenchaotic regime that start nearby within a small region of phase space, the
phase space region covered by the solutions at a later time will stilt be relatively
small and compact as expected from Liouville’s theorem (cf. Section 9.9). in the
chaotic regime, the sector of phase space covered by these solations will contina-
ally disperse in one or moge directions with the pagsage of time,

Chaos is a type of motion thai lies between ihe regular deterministic twa-
Jectories arising from solutions of integrable equations and a state of noise or
unpredictable stochastic behavior characterized by complete randomness. Chaos
exhibits extensive randomness tempered by some regularity. Chaotic trajectories
arise from the motion of nontinear systems, which is nonperiodic, but stifl some-
what predictable. Specific sclutions change exponentially in response to small
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changes in the initial conditions. In this chapter we shall examine some of the
properties of this chactic motjon, and give examples of it.

This chapter is only an introduction to the subject of chdos; it presents the
generad principles that underlie chaotic motion. We begin with a discassion of pe-
riodic motion in general, and we discuss ways to transform it to circatar metions
in phase space. Then we add perturbations that disturb the regular motion, and
examine the Kolmogorov-Amold-Moser (KAM} thecrem, which provides con-
ditions for the breakdown of regularity. We introduce the Liapunov exponent as
a quanttative measure of chaos through dispersion in phase space and use it to
summarize some predictions concerning the stability of the solar system. The zole
played by attractors in nonchaotic motion i3 explained, ag well as the character-
istics of the strange asractor involved in chacs. Our next task is to show how to
conveniently display the regulasiiies and kregularities of motion with the aid of
Poincaré sections. We then examine the motions of independent osciflators and,
using the Hénon~Heiles Hamilionian as an example, we introduce the effect of a
pertazbation interaction and demonstrate thas orbits that are igitially regatar will,
when subject t0 a continual increase in the magaitude of the perturbing coupling
potential, gradually transform to a state of chaos. The logistic equation is treated
in detail and used to explain bifircations and invariants. including & universal
constant associated with chaos, Some brief comments are made on nonintegral
dirsensionality and fractals before closing.

11.1 W PERIODIC MOTION

In Chapter 3, we discussed bounded motion with an emphasis on motion in which
the orbits are closed; that is, the trajectory repeats itself every period. The sim-
ple barmonic oscillator and the Xepler problem are examples of closed pesiodic
maoticn. In the latter case there arc two pestadicities, the radial coordinate » varies
from its mirimum value ry at perihelion to its maximurm ry at aphelion and then
back to perihelion during the time that the angular motion goes from ¢ = 0 3
8 = 2x, Henee, the periods for the radial and the angular moticns are the same.
Fhese periods exemplify two types of motion that are degenerate. We know from
Section 3.2 that the rate of change, é, depends upon the radial distance »

{1} = iz (3.8}
i
and the rate of change of r Is & complicated asalytical ¢losed-form expression.
The angular speed vy = ] depends upon the angle & in the mapner sketched in
Fig. 3.17. in Chapter 3, we showed how to integrate the eguations of motion to
obtain the polar coordinate equation for the orbit

_ali~édy
=3 +ecosd’ 364
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where the origin of the angular coordinate, # = 0, js chosen at perihelion. Fig-
ures 3.16 and 3.17 present phase space plots in the v, versus » and vg versus &
planes, respectively, for Kepler orbits with the same energy and different cceen-
fricities.

in Section 10.6, we found that a convenient way 1o represent perodic motion is
to carry out a variant of the Harsilton—Jacobi procedure and transforrs the Hamil-
tonian to action-angle variables. The new momentum, calied the sction variable

= § pdq is & constant of the motion, and the new conjugate coordinate w
depends linearly upon the time: w = or + f. We are interested in a Hamilto-
nian Mg g2, ... gni Pl P20-. .. Pas 1) 0f 2 cOnservative system containing
several variables p;, g;, which exhibits bounded motion. If this Hamiltonian M is
transformed to a new set of casonical variables Fy, O; in which all of the (J;"s are
cyclic, thatds, M = M{Py, Py, ... Py ). then Hamilton™s equations (8.18) can
be readily integrated 1o provide the solution

e} = wit) =y + fy Pift) = B0y — o, Ly

where the 2n constants of Integration #; and «; are invariants of the motion. When
canogical transformations exist that provide this type of solution, then the Hamil-
tonian is said to be integrable. This solution is similar to the action-angie variables
discussed in Chapler 10, For the motien to remain bounded, that is, confined to
a finite region of phase space, the coosdinates wi{r), which are growing finearly
with the time, must be arguments of bounded functions, and in many cases, they
wili be arguments of periodic functions, as is the case with the radiai variable » of
Eq. (3.64) quoted above.

Iz Sections 10.2 and 10.7, we showed that the Hamiltonias of & harmenic os-
cillator can undergo & canonical transformation to conjugate coordinates and mao-
menta with the time dependencies of Eqs. (11.1}. It follows that 2 Hamiltosian
with the cocrdinates Q;{¢) and F;(#) can be ransforroed to that of a harmonic
osciltator in standard form, with the coordinates g/, p/. For the case n = 2, this
gives

p i p H
2”’1 + zmiw}qi + 5«-» + 2’”2“’2‘?2 . (11D

which corresponds to a system of two uncoupled harmonic oscillators with a
Hamiltonian that equals the total energy

H=H;+Hy = Er, {11.3)

where we have, in action vasizble notation {cf. (10.94))

S
My = e By and My m s = Ea. (114}
% b2
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To visualize the motion, we can express each individual osciflator in normatized
coordinases

pi = '('ia_"mﬂ)"i'ﬁ ad g = gidmel R (1L.5)
4

Hach part H; of Hamiitonian {11.3) corresponds o0 the equation of a circle In its
P, 4 phane of phase space

Pl tgl =B (116}

Figure 11.1 itlustrates these circles by presenting constant tota energy £y =
Ey + Ey plots in the py, 4; plane for £5 < E; (small circle), £y ~ E; (mediurm-
size circle) and £| > £y (large circle).

This representation of an oscillator by uniform circular motion provides us
with an easy way to picture the moton associated with the double oscilla-
tor {11.23, where for convenience we select e 3 wy. Consider the movement
of the Jow-frequency oscillator wy proceeding along a cirele of large radiug in
the py, 41 plane and then plot the wajectory of the high-freguency ascitlator an
along a small circle v a pa, g2 plane drawn perpendicsilar 1o the cirele of a) and
cemered on ity circumference, as shown ia Fig. 11.2 for the case o > . The
joint motion in the total phase space is a spiraling of the sysiem point along the
siface of a zorus, as Mostrated in the Bpure, If the freguency wz 1s 2 multiple of
wy. meaning that their ratie is an integer

22 o, (L7

FIGURE 111 Circular orbits in the py, ) phase space for three values of the energy
ratio E1/E3 of twe uncoupled harmonic oscillators plotted for the same total enesgy Ex =
Ey + Fa.
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FIGURE 11.2  Circular motions of a low-frequency (@) ) harmonic oscillator in the hor-
izomal g1, g plane and of 2 high-freq v {en > wy} h ic ascillator in the wal-
formiy moving pp. g7 vertical plane. The oscillators are oncoupled, and the resultant spl-
raking motion of the second oscillator generates a torus, as shown,

then the trajectory will close on itself and repeat the same pattern every period
7y = /w;. More generally, if the frequencies are commensurate, meaning that
n in this Bq. (11.7} is a rational number like % then the orbit will stilt be closed,
but it will trace out more than one path arcund the py, g1 circle before clesing
on itself. ¥, however, the frequencies are incommensuraie. meaning that 2 in
Bq. (11.7) is an irrational number, then the trajectory will never close, but will
gradually cover the surface of the torus, without ever passing through exactly the
same point twice. Evenmuatly, however, if will pass arbitrarily close to every point
on the surface. This is catled a dense periodic orbit. Such an orbit is bounded and
confined to a surface, but it is net closed.

This approach can be generalized fo more than twe oscillators, If thege are
three such cscillaters with the frequencies @, wp. and w3, then the motion will
be confined to a three-dimensionat surface calted a 3-torus in the six-dimensional
Pi, P2, P3. @4, 42, g3 phase space. For N oscillators, there will be an N-torus ina
IN-dimensionat phase space. It is not easy 0 visualize the ¥-tori for N = 2.

PERTURBATIONS AND THE KOLMOGOROV-
ARNOLD-MOSER THEQOREM

1n the real world we can often express the dynamics of a system in terms of an in-
tegrable Haeniltonian perturbed by a smafl interaceion that makes it nonintegrable.
An esavsple 1s the motion of Earth in a Keplerian orbit around the Sun primarily
perturbed by the presence of the planets Mars and Jupiter. This interaction is so
weak that there is very little disturbance of Earth’s orbit. Weak interactions of this
type are most conveniently treated with the aid of canonical perturbation theery,
which is explained in detail in Chapter 12, The following outline of the method
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discussed in Section 12.2 is sufficient for the consideration of chaos. References
are given to the equations in Chaprer 12 but reading the chapter is not necessary
to follow the arpuments, 5o we have placed thig chapter firse.

We assume a Hamiltonian H iavolving a dominant interaction ariging from an
integrable Hamiliontan Mg for which the solwion js known, plus an addidonal
interaction arising from a small perterbation term AF

H=Ho+ AH. (1.8

it is convenient 10 use the generating function ${g, P, 1) = Faig, P, 1} intco-
duced in Section 9.1 te rransform the dominant Hamiltorian term Hy from the
phase space coordinaies p, g 10 new coordinates P, @ of a tramsformed Hamilto-
nian Ko(, ). that is identically zero, as was Hlustrated in the Hamilton—Jacohi
approact of Chapier 10, Hamilton's equations (101} for Kp = 0 provide siew
coordinates and momenta, Jp and Fp, which are constants of the motion. The
same transfermation caried ot for the toral Hamiltonian, 7 = g + A, pro-
vides a tansformed Hamiltonian AXg, witich can be used to obtain first-order
corrections Py, 21 1o the time derivatives of the coordinates and momenta via
Hamilton's equations (cf. Equation (1243}

AR O =01 EAKP O =B (19)
After differentiation, O and P aze replaced in AKqg by Seir unpertucbed forms,
that is, by ¢ = Qg and p = Fp. These expressions (11.9) can be integrated
over time to give the first-order determination of G = @y and P = Fy. The
procedure provides us with a new generating fumction §(Qs, Py, 1), and hence a
new perturbed Harniltonian AK;, which can be iserated to give the next higher-
order terms (7 and P, and so on. Further cycles of perturbation are obtained by
iteration with the aid of the following relations {cf. Eq. {12.6)) with no summation
imtended:

FRAKELC) = O 5
Thus, we have a systematic canonical iteration techaique for obtaining better and
better approximations to the selation when the perturbation AHM is present. This
method can be continued to higher order, as discussed in Chapter 12,

We have seen that perturbation theory provides s with a solution when AN is
small rejative to Hy, but the question arises as 1o whether the perturbed solution is
stable, and wheiher or not the orbits will remain close to the unperturbed ones over
long periods of time. Large perturbations can clearly disturb the regular motion. A
theorem known as the Kelmogorov-Amold-Moser (KAM} theorem provides the
conditions for the breakdows of repularity. This theorem tells us that

S AKAR O = - Fa. (11103

If the bounded motion of an integrable Hamiltonian Hy is disturbed by ¢ small
perturbation, A'H, that makes the total Homiltonian, H = Hy + AN, roninte-
grable and if two conditions are satisfied:
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fa} the perfurbation AH is small, and
{b) the frequencies oy of Hy are incommensurale,

then the motion remains confined to an N-torus, except for a negligible set of
initial conditions that result in a meandering frajectory on the energy sutface.

Thus, the perterbed orbits will be stable, only shightly aitered in shape, and lo-
calized in the same region as the unperturbed ones. Another way to say this is
to observe that for a perturbation of the Hamiltonian that is sufficiently srmail,
most quasi-periodic orbits will only experience minimal changes. The method of
proof for this theorem was originally suggesied by Kolmogorov in 1954, and the
proofs thersselves, approsched from different viewpoints, were worked oit inde-
pasdently by Arpold and by Moser a decade later. A great deal of mathematical
sophistication is needed for the proof, and references can be consulted for de-
suils.® For example, the second condition (b) of the theorem is mathematically
more complex than simple incommensurabitity.

The caveat “except for a negligible set of initial condkions” introduces the pos-
sibility of initial conditions for which the theorem does not hold. This is analogous
10 the case of a differential equation with well-behaved solutions over an entire
domain except for one or more singular points where the solutions blow up 10
infinity. The exceptions are so few that they have very Jittle effect on applications.
Chaos can occur when KAM does not hotd.

ATERACTORS

The previous section was concerned with an integrable Hamiltonian My being
disturbed by a small permarbation AH. We found that stable orbits of Hy persist
as shghtly snodified but still stable orbits of the total Hamiltonian, M == Hg-+ AH.
Another case to consider is that of a system in which the initial conditions start the
motion on a trajectory that does not lie on a stable path but that evolves toward a
particular fixed point in phase space or toward a siable orbit in phase space called
a limit cycle. A fixed point of this type as well as a Himiz cycle are examples of
attractors.

In general, an a#tractor is a set of peints in phase space o which the solution
of an equation evolves long after transients have died out. It might be a point with
it ion dq = 0, 2 traj v or Himit cycle orbit {cf. Fig, $1.1) with dimension
da =, or perhaps a toroidal surface or torus with dimension dy = 2. For a reg-
ular attractor, the atizactor dimension, ds, is an integer that is less than the overall
dimensions of the phase space. In higher dimensiops, the atactors can be N-
dimensional tori, where d4 = 2 for the torus generaied by the orbis in Fig. 11.2.
Fhere also exist somewhat bizarre types of atiractors called strange attractors,

*See. for sxample. B, Bai-Lin, Chaos, Singapore: Wordd Science, 1984; E. AL Jackson, Perspectives
of Nonfinear Dynamics, Cambridge, England: Cambridge University Press, 198%; L. E. Reichl, The
Transition to Chaos, Berlin: Springer-Verlag, 1992,
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asyociated with chaos, which tend to be widely dispersed rather than localized in
phase space. In addition, they have fractal dimensions—in other words, dimen-
sions that are fractions or irrational nimbers rather than whole numbers. These
properties, as well as the term fracial dimension, are counterintuitive. We shall
clarify the meanings of strange attraciors and fractal dimensions later in the chap-
ter,

An example of & fixed-point attractor is the equilibrium position of a pendu-
ham at rest. If the pendulum is osciflating while subject to the action of a weak
frictional drag force, then successive osciflalions will decrease in amplitude until
the pendulum finafly comes to a stop at its equitibrium position. We say that the
motien is drawn to the attractor. If the drag force is a perturbation on the main
Hamiltonian, then the motion is underdamped and the pendulurm andergoes many
oscillations before stopping at the attractor point. If the damping term exceeds the
main Hamiltonian term, then the motion is overdamped and the pendulum falls to
zest without undergoing any oscitlations. Either way, the motion of the pendulum
finds its way to the attractor. Being a point, it is clear thar the dimensionality of
this arractor ks zero, dyg = 8.

An example of a limit cycle type of anractor is provided by ihe var der Pol
efuation,

d*x 4, dx 3
mmﬁe(lmx)z-i‘mwux:Fcosmm, (1111}

which has been employed to describe oscillarions in mechanical and electrical
sysiems, as well as cardiac rhythems. If we set € = 0, then we have & driven simple
harmenic osciltator with a resonant frequency ap and a driving frequency wp. If
wp is close o wy, then the motion repeats itself at the frequency wp of the applied
force, If F = 0, then the motion will be simple h ic a1 the frequency
. F the smali damping term e} ~x2) dx jdt is incinded in the equation, Lhen the
moticn will be dravm toward the Limit cycle, which in this case is a circle of unit
radius, ¥ x% > 1, the damping i positive and the motion spirals inward toward
the Himit cycle, while for x? < 1, the damping is negative and the motion spirals
outward toward the limit cycle. Both cases are ghown in Fig. 11.3a. The final
state of motion has long-term stability since the damping vanishes for x = i, and
the system point moves atong the circular part, which by its nature has dimension
dy = 1. If ¢ is large enough, the damping term becomes comparable in magnitude
to the other terms in the equation of motion, and the damping stili draws the
ajectories toward the limiz eycle, but ihe cycle itself becomes distorted from a
circular shape. as shown in Fig. 11,3k, The distortion in shape does not change the
dimension of the path, which remains ds4 = 1. In addition, the strong damping
causes the previcusly simple harmonic oscillations x = sinwgt to decrease in
freguency and become distorted, as shown in Fig. 11.3¢. For very large damping,
the shape approximates a sguare wave,
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FIGURE 153 Limit cycles {darkened curves) of the van der Pol equation in the %, x
phase space showing (3) citeular motion for a small damping coefficient ¢, and (b) distorted
curve for large damping. Approaches to the limiy cycles via orbits cutside and inside them
are shown. Part (o) sketches the distorted sine wave obtained for the case of appreciable
danmping (latge €3

11,4 W CHAOTIC TRAJECTORIES AND LIAPUNOV EXPONENTS

The orbits that we have discussed thus far have been well behaved, and confined
to arelatively small region of phase space. Exampies are the eltipses of the Kepler
problers, the circles of the simple harmonic oscillator, and the Hmit cycle of the
van der Pol equation (11.113. Under certain conditions, trajectories, called chaotic
trajectonies, will be encountered in which the metios wanders around an extensive
and perhaps treegularly shaped region of phase space in a manner that appears
o be random, but that in fact is tempered by constraints. This path or region
where the meandering takes place is an example of a strange astractor. ¥t is catled
strange because of iss {fracial) geomerry and chaotic becanse of i dynamics.*
The chaotic ajectory roams here and there, back and forth through this strange
atiractor region seeming to fill the space, but without ever actually passing through
the same peint twice. In shert, chaotic motion has affinities with ergotic motion
(cf. Section 9.8), with characteristics between regular deterministic trajectories
and totally random roaming.

The motion invalved in chaos has the properties of mixing, dense quasi-
periodic orbits, and sensitivity to initia conditions. The propesties ave as follows.
Mixing means that if we choose two arbiarily small but sonzero regions, f; and
. of the domain of the moticn and we follow an orbit that passes through region
It, then it will eventually pass through region J>. The osbits are quasi-periodic

*See A. B, Cambel, Applied Chaos Theory, New York: Academic Press. 1993, p. 70
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in the sense that they repeatediy and irregularly pass through the whole range
of the domain without ever closing on themseives, and without any particular
titme period associated with successive transits. They are dense because they pass
droagh or achitrarily close to every point of the domain, & property that conforms
with the ergotic hypothesis (¢f. Sectios 9.8), A chaotic orbit that visits and revisits
(that is, mixes with) ali regions of the availgble phase ypace is identified with what
is called a strange attractor. Its association is not wiih a localized attractor such
as a fixed point or a limit cycie, but rather with 4 very extended region of phase
space, hence the designation strange. The property of ergodicity, which involves
covering all accessible reglons of 4 domain, is shared by izcommensurate non-~
chaotic orbits with espect 10 an ordinary attractor (for example, a torus), and by
chaotic arbits with respect 1o & strange atlractor.

Sensitivity to initial conditions means that a smal change in the initial con-
ditions can result in 2 lage change in position and velocity many tansits or it
erations later. For example, a small change can convert a parabolic orbit of the
Kepier probiers to either a weakly bound elliptic orbit or to a hyperbolic orbit thas
extends to infinity, In the Hénon-Heites Hamidtonian, (cf. Section 11.6), a smalj
increase in the energy can induce the onset of chaos with the Liapunov exponent
{defined below) giving the time scale for this breakdown of order.

The KAM theorem of the previous section is vahid for small perturbations. As
the perturbation increases, the effect on the motion of the system becomes more
and more prepounced. I the pesarbation becomes sufficiently large, the behavior
may becorne chaotic, Then successively calculated orbits move farther and far-
ther away from each other. Even if the first fow orbits of a chactie sequence He
relatively close to the original one, each iteration involves 2 greater recession than
the previous one, so the extent to which they move apart can increase exponen-
tially with the number of iterations. An example is a spaceship in an Earth orbit.
A small rocket boost will move it to a nearby orbit whereas a strong boost conld
throw it out of orbit, heading for outer space. Another common example of how
lingar and chaotic motions differ when pericdicity is not present is turbulence in
water, While there is streamline flow, two nearby peinis in the water sty close
togethet as they move along; after the onset of turbulence the same two points, on
average, keep moving farther and farther apas

A quantitative measize of this exponential divergenee is & coefficient, A, called
& Liapunov exponent, {sometimes speiled Lyapunov or Ljapunov), In the chaotic
region of many systems, if two orbits are separated by the small distance 5 at the
tiine 7 == {, then at a later time ¢ their separation is given by

sy ~ sge™, {1112

12 > O the moiion is chactic, and the Liapunov exporent A guantifies the average
growth of an infinitesimally smali deviation of a regular orbit arising from a per-
turbation. It sets a thine scale v ~ 1/ for the growth of divergences brought about
by sufficiently large pertarbations. The chaos becomes appreciable for 1 % ¢
when the trajectory winds its way around the extensive. but bounded, phase space
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of the strange attractor. Eventually the separation s{¢} becornes comparable 1o the
dimensions of the accessible coprdinate space so it can no longer increase further,
and from that point on the separations ${¢) vary randomly i tine.

1f the systens evolves by an iterative process rasher thas by a remporal process
then Eq. {11.12) assumes the form

s(n) ~ spe™, {1113

where # is the number of iterations, and the exponent A is now dimensicnless.
Mareover, this divergence of orbits is not reversible. In a chactic region it is im-
possible 10 reconstout the distant past history of a system from its present state.
This eeans that curent rajectories ¢an no longer be projected back o determine
the initial configuration.

If the Liapunov exponent is negative it measures the rate at which a system
point approaches a regular attsactor. Fa other words, it the nonchaotic region 2 <
0 and the distance (¢} from an arracior at time ¢ s given by the expression

$(7) ~ spe M (11.14)

where §p 1 the initial distance at tise £ = 0, For an jrerative process we have the
analogous exprassion

s(n) ~ sge~M {11.15)

for the distance s{n) after » iferations. A negative exponent characterizes the rate
at which the orbit spirals into the circle on Fig. 11.3a. In the previously consid-
ered damped penduium case the time constant T of the damping process is the
reciprocal of the associated negative Liapegov expenent, © ~ 1/{A]

As an example. consider the eiliptic orbit of a planet in the sotar system that
is perturbed by the gravitationa! interaction with another planet. The perturbation
is nonlinear, and it is also small since the gravitational interactions of the two
planets with the much Iarger Sun are domipant. We might expect that the KAM
theorem would predict that any perturbed orbit is stable, but this is not comect
for two reasons, First, many nateral frequencies in the solar sysiem comespond
o resonances involving individual planets and asteroids. Second, rany of the
objects iz the solar systern are asteroids, and perturbations resuiling from their
presence ne longer remain small. Both of these effects Jead to chaotic resuits.
Some of this ¢haos simply means that we cannot make exact predictions about
the future. Grher effects may lead to the eventual gjection of one or more bodies
from bound orbits, a possibility that was mentioned in Section 3,12 on the three-
body problem.

When we consider natural frequencies, itis not orly the orbital periods that are
important. The rotation, obliquity (axial tilt), rotational plane, orbital plane, and
eccepiricity provide some of the other frequencies that may interact in surprising
ways, The massive planets of the outer solar system have apparently settled into
quasi-pericdic orbits of marginal stability, Marginal stability means that their or-
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bital motion is stable on a time scale comparable with the age of the solar system.
Other orbital parameters occasionally change. The obliquity of Barth's axis is ap-
parently stabilized by the presence of the Moon. Both Venus and Earth interact
in a boended chaotic fashion with litde chiange in their periods. Mercury, Mars,
Ptuto, and many astercids may undergo avch mere chaotic motion.

Caleulations, projecting motions for the next 100 Gyr, show that there is a finite
probability tat Mercury will be gjected or collide with Venus some time during
the next 3.5 Gyr. Using the approximation ¢ ~ 1/{A] with 1 = 3.5 Gyr provides
a Liapunov exponent A ~ 3 x 107 per year as the time scale for planetary
chaos. The eccentricity of the orbit of Mars could increase to 0.2, while its axial
Lt can vary by 60°, perhaps sufficient to release water on the surface through the
possible melting of its ice caps, Pluto also has chaotic moticns, but they seem
to be bounded. Thus, chaos has been 4 mechanism for the reorganization of the
planetary bodies since the formation of the solar system.

Motions in both the cuter (> 2.8 AU} and famer (< 2.5 AU} asteroid beits
are chaotic. The outer helt chaos is dominated by Jupiter and the Jupiter-Saturn—
asteroid interactions, while the inner belt chaos involves Mars and Mars—Fupiter—
asteroid resonances. These interactions provide a steady impetus for Mars cross-
ing asteroids. Once established aleng such a path, the Liapunov exponent is much
larger, leading to changes in orbit.

We must aote that these conclusions are based uper the resulis of numerical
calcudations. Bvery effort has been made to ensure that current Himits of numerical
accuracy, as weil as the inclusion or exclusion of members of the solar family, do
not affect the conclusions. Although there is evidence of past chaos in the solar
systemn, we must remersber that our future predictions are based upon our model
of the solar sysiem, not the system itself. Stability could be better ot worse than
the mode] predicts, but the chaos itself is definitely present,

POINCARE MAPS

In Section 11.1, we discussed the periodic motion of uncoupled oscillators. When
wo one-dimensional sicitlators become coupled by adding & term sueh a5 17y to
the Hamilonian. then the motion becomes rather complex in the four-dimensional
Pxxpyy phase space, and it i no longer feasible to follow the trajectories. It is
more convenient to sampie the motion at regular intervals and use the resulting
information to deduce some of its general characleristics. A comvenient way o
sample the motian 13 to map it on & cross section of phase space.

Whes the total energy, Er, of a double oscillator is fixed, the dimensionality
of the space is lowered by one, and the motion is confined to a three-dimensional
region in this phase space called an erergy hypersurface. Some authors refer w
it as a “'three-dimensional energy surface.” To avoid the complications of tracing
out orbils wandering arpund this three-dimensional region, it is more advanta-
geous Lo study a two-dimensional sHce or scotien through the hypersurface, The
slice is called a Poincard section. We calcolate the positions of points where or-
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bits pass through the section. A convenient choice for this section js either the
pxx of the pyy phane. Since the equations of motion are known via Hamilton's
equations (3.18), the positions where successive orbits pass through this two-
dimensional section can be calculated, For bounded motion, soch sequences of
poinis map out closed curves. The paths on the section defined by these points
constitute what is called s Poincaré map.

As an example of the determination of a Poincaré map, consider the Kepler
problem that was sofved in Section 3.7 for the case of nepative energics. We now
reexamine this problem using Cartesian coordinates x, p, = mX. y and py = my,
taking into account a perturbation that causes the elliptical orbit (o precess in the
xy (that i3, in the r, ) goordinate space plane, as shown in Fig. 11.4. The energy
E 15 conserved with the vaiue

E = dmit 4 Lt -k 4y 12, (1L16}

On this figure we imagine a vertical plane located at the position y = 0, with the
vertical ordinate py axis and the horizontal abscissa x axis showninFig. 11.5. T
calculate a Poincaré map on this pox ¢ross section, we start the motion (f = O} at
the perihelion point 4 of Fig. 11.4 with the initial values x <= #, 3 = 8, 2 = 0,
and the velecity component ¥ a maxium value determined by Eq. (11.163. The
polar coordinates for this stasting peint are r = ry and # = 0. The equations of

B
AEANANCT \AC

FIGURE 11.4  Precessing elliptic orbits of the Keplerian problem sketched in Cartesian
cnordinate space. The figare shows the vector velociy v tangent to the orbit af 2 point
{r, 8}, together with its radial () and angular ) components. Points 4, B, and C along
the x axis near periielion denote successive penetrations of orbits through the &, x Poincaré
section of Fig. 11.5 located along the x axis where y = .
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mi=p,

» 1
- —f, =r & g
x

FIGURE 118 A p.x Poincaré section for the Kepler problem with the solid curve on
the right tracing out the orbit generated by points A, B, C. ... of the precessing elfipse of
Fig- 11.4. Points A', B, €’ are not shown but are located ot negative values of x.

motion are used to calculate successive points that trace out the orbit. Every time
the orbit passes through the prx section, a point is marked on it indicating the
valve of py. Since the orbit is fixed for the unperturbed Kepler problem, the orbit
will atways pass through the same two points on the section, point A going from
back to front and A’ going from front to back, with p, = O for both points, a5
mdicated in Fig. 11.5. Poincaré maps generally only show points going through
the section in one directien, which does not melude poiat A', so this Poincaré
map consists of only one point A. When the perturbation is taken into account,
perhaps arising from the attractive forces of other planets on Earth as it travels
around the Sun, then the orbit can precess in time, in the fashion of Fig. 11.4.
Successive orbits pass through the x axis at different orbital distances indicated
by points 4, B, C, ... on Fig. 11.4. These points map onto the p,x section at the
positions indicated in Fig. 11.5, and trace out the solid curve called the Poincaré
map on the right side of the figure. The amount of precession that takes place for
each cycle has been greatly exaggerated on these figures.

We have seen that in a four-dimensional phase space a Poincaré section is &
two-dimensional shice throwgh a three-dimensional constant-energy hypersurface.
More generally, a Poincaré section is a 2N-2 dimensional slice through a 2N-
1 dimensional constant energy hypersurface in a 2N dimensional phase space.
Although the concept of a Poiacaré section is defined for these higher dirensions,
its main usefulness is for the N = 2 case where it provides a twe-dimensional
representation of the orbits, which is sasy o visualize. For N > 2, it is not nearly
as essy to visualize the orbits.

HENON-HEILES HAMILTONIAN

Over three decades ago, M. Hénor and C. Heiles were investigating the motion of
stars about the galactic center. Two constants of the motion are the vector angular
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momentum £ and the scaler energy E. The observed motions of stars near the Sim
suggested that one additiona} constraint might, under cersain coaditions, restrict
the possible motions. Under other energy conditions, however, the motion i not
restricted, 50 only the two standard constants the angular mowmesturn £ and the
energy E are available. Rather than sobve this problem with the the actual potenrial
of the galaxy, which Is relatively unmanageable, Hénos and Heiles restricted the
motion to the xy plane, as in the Kepler problerm, and studied 4 relatively simple
anatyltic posestial Vix, ») that Blustrates she gonetal features of the probiem*
This potential, catled Bie Hénon—FHeiles potential. provides two cubic pertirbation
terms, which couple together two standard harmenic escillators, corresponding o
the Hamilionian,
2 2
By Py l,a. 2 2, ba
R Sl P 4 A - ' i1.17
H 2m+2m+2{x+y)+ ¥y ¥ { ]
where the coefficient 2 is small so the iast 1erm serves as a pexturbation. These
cubic teyms prevent the equations of motion from being integrated in closed form.
‘When this Hamiltonian js expressed in polar coordinates x = rcos@, y =rsiné@
the perturbation potential exhibits threefold symmetry,
I P\% Lpp? g kg,
Mo St o o kr® b 507 5in 30, 1118
I I L ¢ )
To simplify their computer calculations, Hénon and Heiles set py = mi and
py = my, expressed the Flamiltonian in normalized form using dimensionless
upits, and set it equal to a dimensionless epergy £, with A = 1,

E= i 1P 4 b e Lt oty - B (1119

The equations of motion, which may be obtained from either Lagrange’s equa-
tions or Hamilon’s equations,

(11.20

are coupled together and nonlinear, so there is no soluticn in closed form. We
can see from the form of the dimensionless poiential energy expressed in polar
coordinates,

Vir 6y =4’ ¢ §risin 39, (1120}
that for a particular vatue of ¥, the radial coordinate r attains its maximam value
for sin 39 = -1 (thatis, for § = 90°, 210°, 3307), and it atiains its minmimum
*M. Hépon, ¥ ical Expleration of Hamiltonian Systems, Course 2 in Chaotie Behavior of Deter-

ministic Systems. at the 1981 Les Houekes Erole LEié de Physique Théoretique, Session 36, G. Jooss,
R. H. G. Helleman, and R. Stora (#ds.), New York: North Hofland, 1983,
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FIGURE 116 Hénon—Heiles equipotentials Jabeled with their dimensionless energies
E plotted on the y., x plane. Closed curves for energies £ = % reduce o an equilateral
triangie for the Emit £ = % Open curves outside the iriangle (not shown) exist for higher
energies. Adepted from M. Hénor (1983}, Fig. 19,

valye for sin 36 = -1 (that is, for & = 307, 150°, 270°). Figure 11.6 presemis
equipotential curves (that is, curves of constant V') drawn for severat values of the
enezgy E. For the Himit £ « %' not represented in the figure, the cubic pertarba-
tion terms x%y - 3‘ ¥ are negligible relative to the quadratic harmeonic oscillator
potential terrms. %{xz + y2), and the curves closely approximate circles centered
at x =y = 0. Whenp the cabic terms are appreciable for £ < é, the equipotentials
form closed curves as shown , and for E = il,’ the curve becomes an equilateral
triangle with e /rin == 2. For energies exceeding Eli’ the equipotentials (not
shown} lie beyond the equilateral triangle, are open, and diverge to infinsty. Thus,
the magnitude of the energy determines whether or not the cubic terms constitute
a perturbation or serve as main potential terms,

When the energy is fixed a2 a value £ < % thie som of the fenms in the Hamil-
tonjan must be equal to F, which means that the kinetic and potential terms both
sattsfy the inegualities

Vir,y) 2 E
1P +i’ 5 E (1122

becaase the porential is positive defimite, The first inequality selle us that any tre-
jectory started inside the closed equipotential carve V(z, ¥) = E must remain
entirely within that fine, the second ineqguality sets Jimits to the allowed kinetic
epergy, and the overal} effect is to restrict the molion to a finite region in four-
dimensionzal phase space. To help us visualize what is happening, we examine
Poincaré sections in the ¥, v plane located at x = 0. The accessible region in such
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a section lies within the Hmits set by letting x = 0 and X = 0 in Eq. (11.19),
W+l -5Hi=E (1123

The maximum velocity ¥ eceurs at y = (, and the extrema of the coordinate y
are found by solving the cubic equation (11.23) with ¥ set equal to zero.

To give an example of the caleulation of a Poincard map on & ¥, ¥ section
iocated at the position x = 0 in phase space, we follow Hénon and Heiles and
select the energy £ = -1‘7 and the values ¥y = —0.08, y = 0.02 as stasting points
for the calculation. The initial velociiy, 11, is fixed by Eq. {11.19) withx =0

. . 12
iy (2E~y%~y3+%y?) , (11.24)

where we set x; = 0 since the stasting point is on the section. A numerical caleu-
tation provides the seguence of peints (72, ¥23, (3. 333, (¥4, ¥a). .. .. which are
iabeted 2,3, 4, ... on the Poincaré map of Fig. 11.7. The first eight points e on
a closed curve, as shown, the next nine points retrace this same curve, as do the
subsequent poiats 18, 19, 20, ..., A number of 1rajectories that were cafculated
by Hénon-Heiles for the same energy and different stasting points are displayed
in Fig. 11.8¢a).

Note that Fig. 11.7 provides an enlargement of the large oval curve on the right
side of Fig. 11.8(a). The outermost curve of the fatter figure marks the boundary
of the accessible region defined by solutions to Eq. {11.23). For £ = Tii the
velocity ¥ reaches its maximum value ¥ = £(2E)'7 = 0408 at the position
¥ = 0, and the coordinate y attains its extrernal values at the velocity y = 0 given
by the two roots to the cubic equation {11.23),

y=4 ~dfi-n (3128

FIGURE 11.Y Poincaré section in the ¥y plane showing the successive potnts 1,2, 3., .,
of 3 Hénon—Heiles orhit for the energy E = 4. This particular curve aiso appears on the
right side of Fig, 11.8a. From M. Hénon (1983), Fig. 20.
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FIGURE 11.8(s) Poincaré maps in the , v plane showing several Hénon-Hefles orbizs:
(a) £ =y with regular orbits,

as indicated in Fig. 11.8(a). The third root of the cubic equation +%{\/5 + 1)
violates cendition {11.22), so it is not acceptable. The figure shows that thete are
four regions with oval-shaped orbits, which £if calculated for smaller and smafler
circumferences) would shrisk to four fixed points called efliptic fixed points. Sep-
arating and bounding these regions of elliptic type closed orbits s 2 single con-
tinuous Gurve that crosses itsetf three times at what are ¢alied hyperbolic peints.
A horizontal line drawn for 3 = 0 is a line of mirror symmetry with the curves
above this line being mirror images of those below it. This symmetry results from
the Hamiltonian being invariant under the transformation § — —3$, bur aot in-
variant snder the: transformatien y - —y because odd powers of y iz g, {11.19)
produce asymmetry in the y-direction.

1 the energy is increased to £ = { and the caleulations are repeated, an un-
expected result is obtained. The regions whiere the ovat orbils were found for
the lower energy £ = {7 stilt produce closed trajectorics with fixed points at
their centers; however, in the regions between these closed trajectories, there is
7o continuogs curve and the points there appear to have no regularity, as showsn
in Fig. 11.8(b). If we follow the order in which thege scattersdt points appear, we
find that, instead of foflowing a regular curve, they huup arcund in a more or less
ranctom fashion from one part of the Poincaré section 1o another. All of the scat-
teted points on Fig. 11.8(h) arose from the same single chaotic rajectory, and the
chaotic region where they appear on the figures constitutes a cross section of a
strange aitractor. kn other words, they all originate from a single otbit meandering
throwgh the strange attractor region of phase space and repeatedty pesetrating the
Poincaré section randoemly throughout the chaotic regien of this section, Raising
the energy sil} frher to the critical value £ = % causes the strange arractor
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FIGURE 11.8(&c) (b} E = % with regions of regular motion and regions of chacs, and
) B é with chaos dominant. The orbit on the right side of (a) Is plotted in Fig, 117 on
an enfarged scale, From M. Hénon (1983}, Figs. 21, 22, and 23,

10 fili most of the available phase space, and this has the effect of extending the
chaotic region 10 include almost the entire accessible area of Fig. 11.8{c). Anin-
dex of the extent of the chaos Is the fraction of the accessible region where the
calculated points He on regular trajectories. Figure 11.9 shows how the relative
area of the egnlar region declines as the energy increases. The onset of ¢haos
oecuts near £ = é beyend which the region of regularity decreases linearly with
the energy uatil complete chaos sets in at about £ = }. Calcalations for this
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FIGURE 119 Fraction of the available Hénon-Heiles Hamilicnian phase space otcu-
pied by regular (nonchaotic) orbits plowed as a function of the energy £. From M. Hénon
(1983), Fig, 24,

fgure at higher energies are not meaningful because the equipotential lines no
tonger ciose on Hemsetves, and the accessible arca becomes infinite.

Chaos can also be viewed as a breakdown of integrability. The trajectories of
Figs. 11.7 and 1 L.8(a) for £ = 152 <an be oblained by mtegrating the eqguations
of rootion for particular initiat conditions; the results obtained by carrying oot the
integrations are unique and reproducible, and the path foilowed by the position
point is predictable. At the higher energy £ = % the equations are integrabie
for some initial conditions, but produce points randomly located in the chactic
region for other ingtial conditiens, in accordance with Fig. 11.8(h). For E = %.
integrability breaks down over virtualty the entire accessible region of phase space
depicted in Fig. 11.8{c).

Another interesting featuze of chaos is the appearance of what are called is-
Lands, For very small coupling, such as for energies in the range E ~ 1077, the
¥ versus y section consists of closed orbits slightly perturbed from being circular.
Fhe much farger perivrbation for the energy E = TlI produces four sets of elliptic
type orbits, and the increase in the energy to £ = % results in the appearance of
five islands of integrabitity along the border of the chaotic region on the right side
of Fig. 11.8(b). Figure 11.8(c) shows that such islands persist even when almost
complete chaos reigas.



1.6 Hénon-Heifes Hamiltonian 503

In addition to the above features, the chaotic region can exhibit an hierarchy
of islands, and these are most easily visualized by plotting constant energy orbits
in xy coordinate space. This can be done for the Hénon-Heiles system, but it will
be more instructive for ug 10 plot these ceordingte space orbits and display some
features of the hierarchy of islands with the aid of ancther chaotic system cajled
quadratic mapping, which srises fors the set of coupled equations

pat 7= Xy COS — Yy SIN K +x3 sino
Vil :x,,sina+yncosw—x3cosm‘ (11.26)
where the variables Hie in the ramges —~1 < x < +1, ~1 < y < 1, and , which

might be called a convm! purameter, determines the extent to which the solutions
are regular or chaotic. These equations are solved by an iteralion techrique similar

0.5

]

. 0.5 a T3 .0
[N x

{a)

FIGURE ILita) (a) Trajectories in coordinate space for the guadratic mapping sys-
{em {11.26) at an energy near the onset of cheos. From M. Hénon (1983}, Figs. 33 and 34.
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to that described for the logistic equation at the beginning of Section 11.8. Trajec-
tories ¢aleulated numerically for the case coso = (.4 are plotted in Fig. 11.10a).
We see from the figure that this system exhibits one main centrally Jocated elliptic-
fype region, five hyperbolic points where trajectories appear to cross, five outlying
elliptic-type regions, and what appears fo be a somewhar irregular distribation of
dots calied istands. The main trajectories can also be referred to as zero-order is-
lands. When the area near one of the hypesbolic points (for example, x = 0.57,
¥ = (.15} is enfarged by a factor of 20, we see from Fig. 11.16(b) that the ra-
Jjectories do aof actually cross at a hyperbolic point, but rather there are several
series of islands in this region, and some hint of incipient chaos. Fhe well-formed
curves on the left are associated with the main centeal elliptic-type zero-ordes is-
land region, and the structure at the upper sight involves a continuows curve that

FIGURE 1L10(b} (b} Enlargement of the rightmost hypetholic polmt of (2) showing
several orders of “islands.”
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encircles the ordered region of Fig. 11.10(a). The long dashed curves at the bottom
of Fig. £1.10(b) are part of an outlying elliptic-type region of zero-order isiands,
and directly above them are first-order islands. each of which has four second-
order islands nearby. At the upper border of the figiwe are first- and second-order
islands associated with the zero-order island out of view sbove the figure. In gen-
eral, istands tend to be organized in an infinkie hierarchy, they are setf-similar, and
the relatively few islands at one leve? of enlargement are ssseciated with maay
fslands at the next lower leved, Indeed, Fig. 11.10(b) shows istands with a large
range of diameters: ~ 1.8, 0.3, 0,01, 8,003, and 0.0005.

The property of “islands™ being replicated at higher and higher levels of mag-
nification is a propexty chasacteristic of entities called fractals. This self similarity
i much more regular in the case of fractals because highly magnified regions can
took almost identica? to views at mach lower magnification. The nonintegral di-
mensionality assoctated with a strange atiractor that was mentioned earlier in the
chapter is also characteristic of fractals. We will have more to say about fractals
fater i the chapter.

BIFURCATIONS, DRIVEN-DAMPED HARMONIC OSCILLATOR,
AND PARAMETRIC RESONANCE

The minimal requirements for a system of first-order eguations 1o exhibit chacs
is that they be nonlinear and have at least three varisbles, While many nontinear
equations in physics are setond order, it is possible to reduce a set of second-order
nonjinesy differential equations to a targer system of first-order nonlinear differ-
enlial equations. Recall from Section 8.1 that a set of N second-order Lagrange
egiations reduces (0 a set of 2N first-order Hamilton equations. (ar present topic
deals with the noslinesr analogue of this behavior.

TFhe Hénon—Heiles Hamilionian satisfies these minimum exiteria for chaotic
motjon. This cap be seen by rewriting its twe nondinear second-order egwations of
motion (11.20) as fonr first-order equations, two of which ase nonlinear

dx dvy

TN Ry

dy du, 2 3

2 o B oy 12
o Uy o VA S o ( )

whese thers are now four generatized coordinates x, y, ur, and vy,
Let us consider. as another example, the driven, damped, harmonic osciflator
that has the following eguation of motion (cf. Eq. (6.90)):

el

CE AV e m g cosiwps, {11.28)
de?

g/ dt

wheie wp i5 the driving fequency which is independent of time, and the angle
and time coordinates have been renormalized to absorb the excess constants, This
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nentinear second-order differential equation can be converted 1o a systen of three
first-order differential equations by writing

d -

ar T

d8

e 2 1129
T ( )
o 1@ ing + goose

p sing + g

where ¢ i the phase of the driving term. There are row three dependent variables,
@{r). #(7), w{1}, and one independent variable ¢. Sisce the third of these equations
is nonlinear, we expect that particular valses of the parameters g, g, and wp might
praduce chaotic motion. One physical way to justify this expestation is o note
that the motion of the pendulum shouid depend upon the interplay between the
“natural” frequency ¢ and the driving frequency wp.

To obtain quantitative resaits, we choose g = 2 and let the amplitude g of
the forcing function play the role of what is called a control parameter. Such a
patameter is an index that delineates regions of nermal and chaotic behavior. In
Fig. 11.11(a). we show the w =  versus & Poincaré section for the contro} param-
eter g = .9, We see from this figure that the motion is regular, wile Fig. 11.11(b}
constructed for g = 1.15 displays chactic motion, that Is, randoroness in the dis-
tribution of points. The periodic nature of the differential equations (11.29) pro-
duces regions of stability, and then regions of clisos 2s the control parameter g is
increased.

if we examine how the frequency of oscillation, w, depends upon this forc-
tng function amplitude g for 2 fixed choice of phase, ¢. we find that the system
undergoes a number of bifurcations in the measured frequency of the oscilla-
tor. At each bifurcation, the number of aliowed frequencies doubles. A plat of
this is shown in Fig. 11.12. The bifurcations are associated with normal or non-
chaotic behavior. The figure also shows shaded regions where the oscillator ex-
hibits chaos. Fig. 11.12(b), which is a factor of ten enlargement of a region of {a),
shows that bifurcations and chaos have a complex dependence apon the control
parameter, Figures of this type are called bifurcation diagrams or Feigenbaum
pios. A comparison of the iwo Feigenbaum plots of Fig. 11.12 makes it clear
that this system exhibits the property of self-similarity whersby the behavior of
w(1) in the neighborhood of cne bifarcation resembles that in the neighboshood
of ather bifurcations, even though the scale or linear dimensions are se such dif-
ferent. R is also evident that the guantity g seems to “control” the sxtent to which
the system bifurcates and displays chaos, In the Hénon-Heiles system discussed
in the previoes section, the control parameter is the magnitude of the perturba-
ton AT == x%y - 1y3. In the dimensionless units being used there, the effective
maganilude of AT was set by the choice of energy.
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FIGURE 11.11 Phase space diagramm of an orbit of the driven, darnped hormonic oscil-
1ator () in the normal behavior region for ¢ = 2 end control perameter g = 0.9, and (b} in
the chaotic region for g = Zand g = 1.15. Reprinted with the permission of Cambridge
Universgity Press. From G. L. Baker and 1. P. Gollub, Chaotic Dynamics, An Infroduction,
Cambridge. England: Cambridge University Press, 1990, Figs. 3-4a and 3-tc,
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145 146 147 198 148 150
b 9

FIGURYE ¥1.12  Feigenbaum plot of the driven, damped harmonic oscillator showing
regions of regular and of chaotic behavior. Part (b) is an enlargement of the region on
the right side of (a). Reprinted with the permission of Cambridge University Press. From
G. I.. Baker and J. P. Gollub, Chaotic Dynamics, An Introduetion, Cambridge, England:
Cambridge University Press, 1990, Fg, 4-22.

Ag example of 3 parametric harmonic escillator type system that can become
chaotic is the paramerric osciliator, which satisfies the equation

‘;2 +Ge, r)x“mdz - (mak+ k() x =0 (1130)
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where G{t, 7} is the parameter of the osciliator, and the term &(2) = k(t + 1)
is & perturbation pericdic in the time r. Many functions k{3 produce what is
called parametric resonance, and we give an example of one. Recall that for a
simple rigid rod pendulum of length L, corresponding to & = 0 is Eq. (11.30),
the resonant frequency wg = (g/L)'/? and the oscillations can be perturbed by
changing the length of the bob. Parametric resonance can be induced in a simple
pendulum by shortening the length L by a small amount AL when the mass is at
its lowest point with the maximum kinetic energy, and increasing the length by
the same amount AJ, at the top of the moticn where the mass is instantaneously
at rest, with the kinetic energy zero and the potential energy a maximum, More
energy is added ar the botiom than is subtracted at the top, 50 there is a continual
increase in energy every cycle.

In genera), the evolution in time of the solution of Bq. (11.36) can be highly
sensitive 1o small changes in the initial conditions and the nature of k(r}. This is
a condition for chaos,

THE LOGISTIC EQUATION

Since the driven-damped harmonic oscillator and the parametric resonance os-
cillator solutions can only be calculated with the aid of sophisticated numerical
techniques, we shall consider the detailed analysis of a much simpler mathemat-
ical equation called the {ogistic equation ot quademtic iterator, which lends itself
to elementary calculations and exemplifies most of the charactesistics of chaos.
Its solutions exhibit regularities as well as chaotic behavior. The properties of this
equation, using successive iterations, are easy to carry out on a small caleslator,
and 1he description of chaos that the calculations provide has much in common
with many realistic physical situations. This ubiquitons equation describes be-
havior in various disciplines such as physics, engineering and economics. For
example, in biclogy # describes population dynamics, or the rise and decline
of populations interacting with each other through predator-prey relationships.
Other simple functions with a quadratic term also give qualitative and guantiia-
tive resulis similar to those of the quadratic iterator.
The logistic eguation is defined by the expression

Xpiy = @xpll = xu), (1131}

where « is the control parameter, with the variable x is restricted 1o the domain
B<x=l (1133
Successive iterations of this equation are expected to bring x,..; closer and closer
to a Hindting valug, xeo, so that further iterations produce no additionat change in

Xy, This limiting valuse xo s cafled a fixed point, and it is obtained by setting
Xp41 == Xy it the logistic equation (15.31), which gives
a—1

Yoo = . (11.3%)
a
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Since xy is limited to the range given by g, {11.32), the control parameter must
be positive with the Bmit 1 < ¢. Eguation (11.33) does not set any upper limit on
the contsof parameter, and ordinarily the range ! < o < 4 is studied.

It is of interest to know the conditions for the fixed point to be stable. For
stability, 2 vatue of x, near the fixed point will iterate to a vaiue x,..1, which is
<loser to xq than x, was. To check this, we can select a value of x,, that is close
{0 the fixed-point value by writing

&8, (11.34a)
where 8 < 1. We shall show in Derivation 4 thar this gives, to first order in 8
-}
PIPRG (2 - a). (11.348)

For canvergence (0 X, we require the coefficient {2 — ) of § 1o have an absolute
value less than 1, which means that this siable fixed point has the condition

HE N (11.35)

Such & fixed point constitstes an altractor since values of x,, are attracted to it; that
is, they ierate toward it. We dee from a left-hand column of Table 11.1 that for
the choice a = 2 and the initial valse xp = 0.3, less than half a dozen iterations
are needed to xeach the fixed point xeo = ji obtamed from Eg. (11.33).

It is of interest to find out what happens when we iterate the logistic eqaation
for control parameters beyond the valoe g = 3. For a = 3.2 then, we find that
after two dozen iferations the value of x,, alternates between two final values or
atiractors as follows:

xn = 0.51304
Xngr = 079946, {11.36}
as shown in the cepter columms of Table 11.1, and for the contrel parameter

a == 3.5, a double bifurcation corresponds 10 a fovsfold cycle involving the four
attractors

= 0,508
tng1 = 0.875
nez = 0383
Xps = 0.827. €11.37)

There 15 an cightfold cycle for @ = 3.5, 4 sixteenfold cyele fora = 3566, ...
Figares 11.13(a) and Fig. 11,14 Hustrate the bifurcations. These Feigenbaum di-
agrams, which plot x. against @, show how the number of vatues of koo sucCes-
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FABLE 111 Examples of iterations of the logistic equation {11.31) before bifurcation
with centrol parameter g == 2.0 (left side), afler one hifurcation with control parameter
@ = 3.2 (center). and in the chaotic region {# > doq) with control parameter a = 4.0
{right side). In the normal regions, values of jx; = Xoo| are given, and ia the chaotic
region, values of Axy = |, — x};} are given for two iterations x, and xj;, which start
close together.

Normal, a = 2.0 MNormmal, a = 3.2 Chaotic. a = 4.0
o oAn Map—xeol XY xp e —xedw 10 g xp  Axg x 107
¢ 03000 2000 0.3006 2130 0.3000 0.300% i
1 04200 8§00 06720 1590 0.8400 0.8402 2
2 GA4872 128 0.7053 942 0.5376 05372 4
3 Ga9s7 3 0.6651 1521 0.9643 0.9948 M
4 0.5060 o 07128 367 00225 0.0220 5
5 G.5000 ] 0.6351 M 0.0879 0.085% 20
& 0.5000 o 0.723¢ 765 0.3208 0.3143 63
7T 65000 o 0.6408 1278 08716 0.8621 95
§ G.5000 o 0.7365 630 04476 04755 219
G 0.5060 o 0.6210 1680 0.9890 0.9976¢ 86
10 G.5000 o 0.7531 264 0.0434  0.0096 338
1 0.5950 320 01661 0.0381 1280
i2 07751 284 05542 0.1465 4077
i3 0.5647 37 00734 04714 4268
it 0.7866 129 0.2720 09967 247
13 0.5372 242 07922 0.619% 7723
16 0.7960 35 06586 0.2877 3709
17 05204 74 0.8999 08197 802
iR 0.7987 g 03610 0.5911 2292
i9 0.5146 16 0.9237 0.9668 431
20 0.7993 2 02819 0.1282 1537
21 0.5133 3 0.8097 04472 3625
sively doubles: 1, 2, 4, 8, .. ., for increasing control parameter a until the value
fhog == 35609456 .. {11.38)

cailed the Feigenbaum point is reached, beyond which the behavior becomes
chaotic. For the choice of contro} parameter @ = 4.0 in the chaotic region be-
yond au, successive xg-terms generate a sequence of what seems like random
numbers. B we start with twe very close indiial values, such as xg = 0.3000 and
xp, = .3001, we see from the right-hand column of Table $1.1 that after 10 or 11
iterations x, and x] become widely separated from cach other, and their differ-
ence Ax, = iz, ~ xj} becomes comparable to their values. Additional iterations
produce seemiy random values of x, and x;,.

A Feigenbaum diagram has some other interesting properties. When the re-
gion near each bifurcation is enlarged, we find successive bifurcations that are



312

Chapter 11 Classical Chaos

/
\

a

{a}

34 3635 37 3E 8§ Ao
)

FIGURE 11,13 Correfation between Fejgenbaum plot (3) and the Lispunov exponent
A (b) of the fogistic equation in the contro} parameler range from « = 34 to g = 4.0
‘The figures are aligned with cormesponding valuzes of 4 o show how sharp minima in A
cartelate with bands of normal behavior embedded in the chaos. The Liapunov exponent
is negative in the Tange 2 < dso of normael behavior, and positive in the chaotic region
@ * aga, except where regions of normead behavior appear in the chaos beyond g =z asg.
From Peitgen et al. (1992), Fig. 11-1 {upper figure) and R. Shaw, Z. Natwrforsch, 36, 80
£1981) (lower figure).
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3 35 3.678

BRI B e . T
358416 356 357490

FIGURE 1134  Feigenbaum diagram of the logistic equation over 2 wide range {1-4) of
conirol parameder g (a). Diagrams (b), (¢), and (d) show successively greater enlargerments
of regions rear bifurcations, Note the reversals in order of the ordinate scales o the right

sidde of successive figures. From Peitgen et al. {1992), Fig. 11.3.
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self-similar to each other, but on successively smadler scales, This is iHlustrated
graphically in the sequence of enlargements, Figs. 11.14{a~d}. The ratio of the
herizental spaciag between successive bifurcations converges fo a limit called the
Feigenbaum number §

§= lim SRl 4660206, ., (11.39)
Rer02 By ] - i

and the ratic of successive vertical spacings also converges to a limit o:

a= dim B0 o s0z00787 (11.40)
AN Xppy = X

The Feigenbaum mamber § is a universal constant found with many chaotic sys-
tems, but the numbers o and a depend upon the specific modet, which in the
present case is the logistic equation. Another interesting property of s Feigen-
baum diagram is the presence of regions of normality embedded in the chaos.
This is evident in Fig. 11.13(a}, and is more prominent in the expanded dizgrams
of Fig. 11,33, which Gisplay bifurcations for three levels of enlargements, Each
endargement displays more bifurcations and new regicns of normality within the
chaos. The fracial property of self-siziiarity is evident.

In Section $1.4, we discussed how the rate of approach to & nommal-stae fixed
paoint or to randomization in the chaotic region is determined by the value of the
associated Liapunov exponent A. This exponent A from Eig. (11.13) is dimension-
less, and we write for the normal and chaotic reglons, respectively, as

i}

Jin = ool &t a e {normal region) (11.41a)

[ = XL = o™ P (chaotic region). (11.41b)

Note that the exponent ni is written as --nji{ for the normal region because A
is negative there. In the normal region x, = X for farge n, so the difference
|Xa = %oaf gots to zero. In the chaotic region, the difference {x, - x}| grows
exponentially until it becomes comparable to the overall range of vaiues, namely
0 < x < }, which meaps exponential growth in separation uatt perhaps I —
xpi > 0.2. Further iteratians keep this separation x, — ¥/ in the approximate range
0.2 < x < 1. These bebaviors are clear from the data in the right-hand cotumns
of Table 11.1. Figure 11.13 shows how the Liapunov exponent depends upon the
control parameter. We see from the figure that A is negalive in the pormal range
a4 < &s. and fises to zero at bifurcation points, as can be seen by comparing
Figs. 11.13(a) and {b). It is positive in the chaotic region whers a > Geg, EXCEPL
where regions of normeal behavior that appear white in Fig. 11.13(a) are embedded
in the chacs. Near control parameter o = 3.83, we see three successive minima of
A in the region of negative values that correspond to the period doublings visible
in Fig. 11.13{a), and that appear considerably enlarged in Fig. 11.15,

‘We must remerber when studying systems such a3 the logistic equation that
values of x, obtained from the iterative process of Eq. (11.31) do not correspond
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FIGURE 11.15 Feigenbaum diagram of the logistic equation showing regions of normal

behavior embedded in regions of ¢haos. Three successive enlargement figures are shown,
as indicated by their abscissa and ordinate scales. From Peitgen et o], (1992), Fig 1141
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to a particle moving in space. Successive iterations merely iliusirate some of the
properties of chaos. We must maintain a clear distinction between the chaos that
results from simplified models such as that of Hénen-Heiles, and the actual mo-
tion of reat stary in the galaxy, These simplified models display many of the fea-
tures that are found io anmerical solutions that more closely spproxiamate the redl
world, but they cannot meake reasonable quantizative predictions about the onset
of chaos in real physica? siteations.

By way of suramary, we have seen that where the logistic equation bebaves
in & nomnal mannet, the solutions occur at values of x called atfractors, stable
fixed points that constitite one-dimensional analogues of limit cyeles. Beyond
this, successive bifurcations are found. In the chaetic region the equation gener-
ates numbers in a random manner so that if we start with a value of x in one smail
interval, the iteration wil} eventually produce a number in another previously des-
ignated small interval, corresponding to the property of mixing. We also saw that
in the chaotic region two points that are initially very close generate successive
sequences that do not remain near each other, comresponding to the property of
sensitivity to initial conditions. There are also regions of order with attractors,
period doublings, and negative Liapunov exponents imbedded in the chaos.

FRACTALS AND DHMENSIONALETY

The phenomenon of “islands™ being replicated at higher and higher fevels of mag-
nification, as deseribed in Section 11.6, is charactesistic of many chaotic systers,
20d also of emtizies called fractals. A fractal is an object or set with nonintegral
dimensions that exhibits the property of self-similarity. For example, consider a
line segment, remove its middie third to produce two lHne segments. remove the
middle third of these latter line segments 10 produce a total of four, and so on,
&8 indicated in Fig. 11.16(a). If this process of removing the middle third of suc-
cessively smaller Hine segenents is continued indefinisely, we end up with 4 seres
of dots with characteristic spacings called a Canior ser. The Cantor set at various
stages in its generation is self-similar in the sense that magnifications of the set
at fater stages of generation have the same appearance as the set itself at earlier
stages of formation. The dimensionality of the Cantor set is a little more subtie to
deduce because the recersion process of its generation continuaily increases the
number and reduces the size of the residuat “dots”

Before discussing the dimensionality of the Cantor set it will be helpful to say
2 few words about dimensionality 4 in ordinary Cartesian or Euclidian space. In
one dimension consider 2 line segment of fength ap divided into a large number
of eguat subdivisions each of length @ < ap. In two dimensions we have a square
of side ay subdivided into many equal sebdivisions each of side @ < ap. In three
dimensions the same type liny squares are made of a cube of side ap. Tn each case
the to1a) number of sebdivisions, which we denote by N(a), is given by

Nia) = {ag/a}’
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{a)

(b}

FIGURE I1.16 Recursive procednre that generates (a) the Cantor set, and (b) the Sier-
pinski carpet shown after four steps of {teration. From R. 3. Creswick, H. A. Farach, and
C. P Poole, v, Introduction to Renprmalization Groups in Physics, New York: Wiley
(1992}, Figs. .1l and 1.2.3.

where the dimensionality d = 1, 2, 3 for these three cases. Solving this expression
for the dimensionality of the space we obtain

" log A(a)

- S 1142
oglap/a) ( }

This formuia for the dimension d is intuitively obvious for systematic subdivi-
sions of ordinary Enclidian space in any number of dimensions, We will also find
it applicable for what we might cali the pathological subdivisions of space that
are characteristic of fractals. In this application the dimensionality o determined
by the application of By. (11.42) is called the Hausdorff or fractal dimension dp.
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Retuming to the Cantor set, it involves subdividing a fine originally of length
ag, which is one-dmensional; that is, Hs Beclidear dimensionality dg = 1. Bven-
tually we feel by intuition that afier an infinity of splittings the lines diminish
{6 points that have a dimensionality of zero, and we say that the topological di-
menstonality of the Cantor set dr = 0. Further consideration, however, leads us
1o think that the Hmit is never reafly reached, and that any Jarge but finite num-
ber of splittings stilt leaves an enormous number of infinitesimal one-dimensional
line segments present. This suggests that we need another way to assign dimen-
siomality. This can be done by noting that at the nth level of subdivision the iine
segments are of length a = ag /3", and the number of them N{a) is 2. Thus, we
have

a = 3y

Nig) = 2", (11.43)
The fracial dimension or Hausdorff dimension dg is defined by the expression

tog N{g)

P 11.44
logiag/a) ¢ ?

dy =
This definition is choser to be consisient with the resulls of Eg. {11.42). Inserting
Has. (11.43) into B, {11.449) to get for the Cantor set
log?2
dp = B2 0,630, {11.45)
log3
in the following discussion, we shall use dg for the initial Euclidean dimen-
siom, dr, for the ﬁnal lmutmg Euclidean (calied topological} dimension, and
dp for the ¢ ve non-imeger di ion characteristic of fractals and
strange attractoss. The fractal dimension dy Js always between the two limiting
vatues dr and dg,

dy < dp < dg, (11.46}
and we see that this relation is satisfied for the Cantor set
0 < {6309 < |, {(11.4%

It wil} be mstructive to determine the fractal dimensions of an initially two-
dimensional (dg = 2) self-similar figure cailed the Sierpinski carpet of linear
dimension ap and area Ag = ag Hustrated in Fig. 11.16(b). To start, a square 15
divided into nine squares of length a4 == ap/3 and area A = % = {ap/3)?, and the
middle square removed. Then each of the remaining cight squares Js divided into
nine smafler squares, and the middie one of sach is removed. The figure shows
the fourth steps in this ireration process, At the nih level of subdivision, the sguares
gte of length @ = ao3™" and the number of thems N{a) is 8*. Thus, we have
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a = agd "
N () = 8", {11.48)

The appropriate Iimit is a set of edges of squares delineating intersecting jagged
filamentary lines, which become progressively thinner and thinner with successive
iterations, appearing to approach oy == 1. The fracial dimension dy is again given
by Bq. (11.44),

dy = iﬂﬁ = 1.8028, (11.40)
in3
and Eq. (11.46} is satisfied by the Sierpinski carpet, as expected,
1< 18928 < 2. {1150y

In the general case of a fractal object in a dg-dimensional Eoclidesn space, we
define the fractat dimensionality dp, also referred to as the capacity dimension,
by a covering of the region ecoupied by the object by dp-dimensional spheres in
accordance with the expression

. logN(r)

dp = lim

= fity (£1.5D)

where r is the radins of the dp-dimensional spheres. This defimition 13 cleady
independent of the value of rg. If dg = 2, the sphere is a 2-sphexe or citcle of
radius r, and if dg = 1, the “sphere” is a {-sphere or line segment of length 2r.
Ia the case of the Cantor set the ohject being covered by line segments or one
dimensicnal spheres of radius r = @/2 is the multitnde of residual tine segments
after many subdivisions. In the Sierpinski carpet case the covering is by circles of
radius r == a/+/Z, where a circte of radius r = ag/+/2 covers the inittal square
before any subdivisions. Fractal di ions have been eval  for many chaotic
systems.* For example, the logistic equation was quoted as baving a strange at-
tractor dimension of $.538, which is between the topotogical dimension dy = 0
corresponding 1o the individual points x, and the Euclidean dimension dg = 1
corresponding to the range of x given by Eq. {11.32). The driven-damped pen-
dulusm with the equation of metion {11.25) exists in two-dimensional (x, ¥) Bu-
clidean space, and has one-dimensional orbits of the type shown in Fig. 11.1Ka).
Its fractal dimensionality determined from Liapunov exponents ranges from 1.2
t6 1.4 for vadeus damping factors, which is between the values of dy = 1 and
dg = 2 that we just mentionad.

We saw in the previous section that chaotic systems exhibit a type of self-
similarity, but less regular than in the case of systematically constructed fractals
such as those in Fig. 11.16, This does, however, suggest that chaotic systers
could have & fractal-type nature, and that nonintegral dimensionality might be a

*See A, B. Cambel, Applied Chaos Theory, New York: Acadernic Press, 1993, p. 70; G, L Baker and
1. ©. Gollub, Chantic Dyramics, An fntroduction, Cambridge, England: Cambridge University Press,
1990,
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characterigtic of chaos, This suggestion Is correct. The fiactal dimensionatity 4
of a strange artractor can be cajculated from the Liapunoy exponents associated
with its expansion in phase space. To illustzate this. we consider the particular case
of & strange attractor in two-dimensional configuration space, which evolves in
time by continuously expanding in one direction and continusously contracting in
its orthogenal direction in such a manner that its area A{¢) continuously decreases
in magnitude with the passage of time. This permits it to continuously elongate
and meander throughout the available regions of phase space. We smrt with a
square zone in the x, y plane of a chaotic region with the initial dimension ap in
the x- and y-directions and the corresponding initial area, Ag = aé. as shown in
Fig. t1.17a. This means that dg = 2. H the area evolves in ime by contracting
in the x-direction with the negative Lispunov exponeni A; and expanding in the
y-direction with the positive Liapunov exponent A; it gets contineously thinner
and evelves toward a line of topological dimension dp = 1. I terms of these
Liapunov exp the x- and y-di ioms of the area have the respective tine

LLILILLETITE]

a,(t) = aget

I

I%fﬂx.h

g

TTETT

o
a ity = agebalt
ta} [}
FIGURE 1317 Role of the Liapuniov ekponents &y < G and Ay > G, subject to the con-
ditton [A¢] > Ay, in the evolution of an initially square area (a} in phase space that expands
along ope coordinate direction and contracts along the other with the passage of tme (b},
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dependencies from Eq. (11.12),

agft) mage ™ g () = apet, (11,52

and the area A{?} evolves in time as
A1) = Ageaihli (1L3%)

where Ap = ai. Since Ay s negative and Az is positive, it is necessary to have
A3l > A2 sotha the area (11.50) will continually decrease with time. The feature
of & continuons decrease in the fractal area A(r) 0f Eq. {11.50) is analogous to the
continuous decrease in overall length of the line segments in the Cantor ¢t and
of the continuous decrease in the net remaining area in the Sierpinski carpet case,
as the ilerations progross fo the Hmit a =3 oo,

If we consider the evolved eloagated arca A(r) as contaisming & munber N{?}
of small squares of individual area AA(#) = a7, as indicated in Fig, 11.37h then
we have

BALY = afem b, (11.54)
where 21 is negative, and

Af)  agellr
AAQY T ademthale

Ny = = Ol (11.55)

By analogy with Eg. (11.44), the strange attractor dimension dp, is given by

_WlogN(s) _ J}&
T loglag/a ih T il

which has a nonintegral or fractal value. For the present case, Ay < [Az], s0
¥q. (11.46} is satisfied with 1 < dy < 2. Thus, 2 strange atiractor is related
0 a fractal s the sense that its dimension is “strange”; that is, it is not an integer,

There is a fundamentat difference between the time evolution and the space-
filling effect of regular wajectories and chaotic wajectories. We saw in Sec-
sion 111 how the orbits of incommensurate osclllators can “ll” the space of a
{orus by ranging over the entire domain. However, technically speaking, these
regutar orbits do not occupy any of the area of the toroidal surface because they
are one-dimensional curves without any width, meaning that the actual area taken
up by them is zero. Chaotic orbits aiso range over their entire domain of phase
space, bui they do so by otcupying ares in this space. What is strange is that the
more the chaotic orbits “Al" phase space, the smaller the area that they actuadly
occupy of Bq, (11.33)). Thiy makes # appropriate to refer to the domain over
which the chactic orhits roam as a strange attractor. The onset of chaos may be
{ooked upon as the increase in the dimension of a regular orbit from its topolog-
icgl value dr = | to its fractal value | < dp < 2 as it begins to occupy space
in an area of Fuclidesn dimension dg = 2. The fractal dimension may be locked

(11.56)
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upon as an index of how much space is occupied by the fractat orbit. We should
of course contine 10 bear in mind the fact that the main difference between the
space-"filling™ aspects of regular and chaotic orhits is that in the regular incom-
mensurate case the space is “filled” in a systematic manner by the predetermined
spiraling molion around the toras, while in the chaotic case the orbit “fills” space
in a random, meandering, macoer.

‘This nonintsitive manner in which chaotic orbits in 4 sense spread out more
and more, and in another sense become more antengated, as they develop in time
is very analogous to the behavior of fractals, We saw above how the Cantor set
and the Sierpinski carpet illuserated in Fig, 11,16 both become more disperse
2nd more attenuated as they g0 Bwough ssocessive iterations, always remaining
finite throughout the process. There is an analogue of the Sierpinski carpet in
three-dimensionat Fuclidian space called a Sierpinski sponge. which evolves in
an analogous wmanner through an iterative process, dispersing through space while
Tosing volume in accordance with & fractal dimension. Chaotic trajectories are
indeed closely related to fractals,

In our treatment of the quantitative aspects of chaos, we have placed more
emphasis on the fractal property of nonintegrai dimensionality than we have on
iis property of self-similarity. In the applications of fracials outside the domain
of ¢lassical mechanics, the emphasis is often more on the self-similarity aspect.
Many hooks display beautiful pictures of precisely drawn figures that ilustrate
seif-similarity down to infinite levels of subdivision, such as the Sierpinski carpet
sketched in Fig, 11,16, There are also examples from nature, such as the dendritic
growth of the branches of a tree, in which the self-similarity is more approximate
and iregular,

DERIVATIONS

1. Show that the system v, 4 = § — yyf with ~1 < y < tandd < p < 2canbe
wansformed to the logistc equation (11.31) by the substitution ¥ == cx + 4. Find y,
<, and d in terms of the control parameter g of the fogistic equation.

2. Show that the Hénon-Heiles Hamiltonian (1117} can be written in polar coordinates
as

2 2
ol PO g2y -;;lrssirﬁ@.

Tm a3
This form explicitly exhibits the threefold symmietry,

3. Show that for the energy E = é, the bounding squipotential (V(r, 8) = %} for the
dimensiontess Hénox—Heiles potential

Vir Gy %rz + 3’;?‘3 sin 38,
forms ar equilateral tangle i the x, y plane (cf. Fig. 11.6).

4. Show that Eq. (11.34b) follows from inserting Eq. {11.34a) into Eq. (11.31}. In addj-
tion, show that the stability range given in the text {cf. Bq. (11.35)) also foflows.
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EXERCISES

Most of the following exercises are best completed using a personal computer
able to run programs such as Maple™, Mathematica™, or Maxima™, in these
exetcises the notation d7/dt = 7 is used.

5. Find the first three bifurcations for the Sysem v,.y.y = 1 - byZ, where =1 < y < 1
wdB<b=2

6. Tn an attempt to predict weather pattems, Edward N. Lorenz developed & model in
1569 with the following three coupled equations (Lorenz moded) a x(1r}, ¥(2), and
ey

i—::g(y—x}, %mrx-ymzz. %fuxyvbz,

where &, r, and b ame positive constants and x, v, and 2 are real. Lorenz chose, for

physical reasons, ¢ = Wand b = %, and the parameter r is increased from 0. Let

20y = 2, y(0) = 5, and £(8) = 5. Investigate the behavior for

(@) r=0 0 and20, 0 <r <20

i) r = 28,0 = ¢ = 20, where chactic behavior sets in for r = 7

In both cases, investigate the trajectories by using either three-dimensional plots of

the coordinates x {1}, y{73, z{r) for different time steps or, if yeur numeric programs

do not generate such plots, plot x{r} versus ¢,

7. A system of equations simpler than the Lorenz equations of Excrcisc 6 were proposed

by O. E. Rassler in 1976, with only one nonlinear system coupling term. This system
had no physical iment except to show chaos.

B Do 2 by o)
Fr RS '

with &, b, and ¢ positive constants and x(£}, ¥(r), and 2(r} real.

{&) Takea = & == 0.2, and initial conditions {0} = ~1, {0} = z(0) = 0. Investigate
the effects of changing ¢ around ¢ = 5.7, holding a azd b fixed.

(B) Take ¢ = b = 0.2, ¢ = 5.7 and investigate the offects of changing the initial
conditions starting with x(8) = ~1, {0} = z(0} = 0.

w

The general forced damped osciliator equation studied by F Duffing in 1918 (Duffing
oscillator) can be written as
d*x dx 3
= +2y r +ox 4 Bx” om Foosat
fay Take o = 1L B = 02 y = 0, F = 4.0, {dx/dt].p = € and choose 2 st
of vaiues of X;.g and @ to show that ihe amplitude (absolute mageitude of the
maximm x) of the steady-state oscillation shows hysteresis. This is best done by
platting the behavior for incrensing o until there is 2 jump in the amplitude and
then continuing the plot for slawly decreasing w from 2 value slightly larger than
where the jump oceurred.
(b) Having solved part (&), pick a value of w in the range of the jump and slightly
vary F to determine how the amplitude varies for a fixed w as F is changed.
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9.

14,

1L

=1

12.

13

Study the van der Pol equation (31.11),
2
] g—;—; - ef) sz) %:; +mm§x = Foosapt

{&) Fos the initial conditions near x = 0.5 and dx/drf = 0 for the values of ¢ = 0,
@4, 0.2, and 9.3, Plot x{t} as a functien of time to determine empirically the rate
at which the orbit approaches the attractor at x = 1.

(B) Repeat for the initial conditions ¥ = 1 5, dx/dr =0,

Construgy the Poincaré saction kg for the particular Duffing osciltater
d*x dx 5
Sl i0E gxt=0s
e +07dlix 0.75c08¢t,

where p o e %ff—, with initial conditions x (0} == ‘ff'.l{(}) =14,
Consiruct the Poincaré section, as in Exervise 10, for the imverted Duffing oscillator,

dlx dx 3

i LS e = F

P + prltd +x o5 e,
for vahues of F in the range 0.24 to 0.35. This oscillator is said to be inverted because
the coefficient of the Hinear termn. is negative.

The diffusion equation is Br/8t == p¥in where u(x, ¢} is the density and n is the

diffusion copstant. The mode} of diffusion by Witten aad Sadler can be approximated

for nemerical i iom in two d 1ons by tdering a two-di fonal square
lamice and defining e size of a cluster as the minimum radius that includes alf of its
particles. Mathematically perform the following:

{a) Place a particle at the center of a 25 % 25 lattive of spacing o,

b} Place a particle at a random position away from the center but not adjacent to
the center and allow this particle to randomly move one location at a time unsl it
either leaves the lattice or becomes adiacent to the original particle. For the latter
eventuaiity, draw a circle centered on the center of the cluster that just includes
these two particles. Call this radius Ry, After completing this step Ry, = a/2.

€} Repear this process by adding additional pasticles at random, § ing Ry i
necessary to include alf adjacent particles.
{d) After a reasonable number of patticles, N, are gated, calcelate the fractal
dimension, £, by the rule
_ N
" in R

Construct a Poincard section for the Hénon-Heiles potental. It is suggested that you
raake the plot in the v plane so that you can compare your reseits with Figs. 11.7
and 11.8. Choose an energy, £, and initial conditions, x = O and £ = &, and initial
eonditions on ¥ and ¥ 10 satisfy the energy condition and find the boundary curve.
Relax the condition on & and choose conditions on £, y, and 3 that satisfy the energy
condition for x = 0. Integraie the equations of motion to find e crossings,
(a) Choose E = Tif‘ yg = 001, §ig = 0.062, and xp = 0. Use the enargy equation o
detersaine . Integrate the equations to find the values of ¢ where x{#) ~ 0 saving
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the values £, xit) = O, 2()}, ¥{2), ¥(r}, Find the fist 27 crossings and compare
with Fig. 117,
(b) Repeat this process for £ = % and plot the chaotic behavior.

4. Censtruct the enties in Table 11.1 for ¢ = 3,35 and @ = 3.60.

15. Refer to Figs. 11.13 and §1.15 for the logistic equation. Find the vaiues of the three
eyele attractors embedded in the region of chaos. Use the control parameter @ = 3.83.
Also find the values of the next higher cycle obtained for a larger contyol parameter in
this same embedded regien of normality.

16. Shew that is the conirel parametey range between the first and second bifarcatons of
the fogistic equation the two final values of the aractors, X, and X,..; such as those
given by Eq. (11.36) satisfy the cubic aguation

FrUI-xy—aMa+ O+ @ ~ 13 =0
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Almost all of the problems in classical mechanica di § in Chapters 1-10,
whether in the text or in the exercises, have had exact solutions, Nevertheless,
it should be clear from Chapter 11 on chaos that the great majority of problems
in classical mechanics cannot be solved exactly, We have found solutions for the
two-bady Kepler probiem, but with the exception of a few special cases the clas-
sical mation of three-point hodies acted upon oaly by their mutval gravitational
forces has proved intrgctable (see Section 3.12). Even for two bodies the solutions
are implicit; no closed expiicit formuda can be found for the coordinates as a func-
tion of time (cf. Section 3.8}, There is thus considerable incentive for developing
approximate methods of solution.

Tt often happens, forrunately, that in a physical problem that cannot be sotved
directly the Hamiltonian differs only slightly from the Hamilionian for a prob-
fem that can be solved tigorousty. The more complicated problem is then said
to he a perturbation of the soluble problem, and the difference between the two
Hamiltonians is called the perturbation Hamiftonigr. Pertarbation theory consists
of techniques for obtaining approximate solutions based on the smafloess of the
perturbation Hamiltonian and on the assumed smaflness of the changes in the so-
tutions. We know from the discussion in Chapier 11 that even when the change in
the Hamiltonian is smell, the evenmal effect of the perturbation on the meticn can
be large. This suggests that any perturbation solution must be carefully analyzed
to be sure that it is physically correct.

The development of pertushation theory goes back to the eardiest days of ce~
testial mechanics. Newton realized, for exgmple, that most of the osciliations in
the Moon’s motion were the resulz of smafl changes i the atiraction te the Sun
as the Maon revolves about Baeth, His initial atternpts at a tonar theory including
these effects cortesponded roughty fo & form of pertarbation theory. Many of
the subsequent developments in the formal structure of cassicat mechanics, such
a5 Hamilton's canonical theery, steramed in lasge measure from the desire o
perfect perturbation techniques in celestdal mechanics, The nead for predicting
highly accurate orbits for space vehicles and the epormousty increased capacity
for numerical computations have spurred further improverments in pértarbation
theery.

526
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Classical perturbation theory can be divided into two approaches: time-
dependent and time-independent perturbations. The terminology is chosen with
an eye ip perturbation theory as developed for guantum mechanics, and indeed
there are many points of analogy between the classical perturbation techudques
and their quantem counterparts. Generally spesking, classical perturbation theory
is considerably more complicated than the correspending quantam mechanical
version. We shall treat time-dependent perturbation first as being the easier form
1o understand. While perturbation theory can be developed for all versions of
classical mechanics, it is simplest to use the Hamilton-Jacobi formulation.

TIME-DEPENDENT PERTURSATION THECORY

Let Hyplg, p. t) represent the Hamiltonian for the soluble, unperturbed problerm,
We inagine the solurion has been obtained through Hamilton’s principal function
S{g, a, 1), which generates a canonical transformation in which the new Hamilto-
nian, Kg, for the unpertiurbed problem is identicaily zera. The transformed canon-
ical variables, {&, 8}, are then all constant in the unperturbed sitzation. Now let
us consider the perturbed problem for which we write the Hamiltonian as (of.
Bg. (11.8)

Hig,p.0) = Holg. p. 1Y+ AH{g, p, 1), {(12.1y

As has been emphasized before, the canonical property of a given coordinate
wransformation is independent of the particular form of the Hamiltonian. There-
fore. the wansformation

(p.q) — (o, B)

generated by S{g, o, t) remains a canonical transformation for the perturbed
problem. Galy sow the new Hamiltopian will not vanish and the transformed
variables may not be constant. For the perturbed problem, the transformed Harnil-
tonian witl be

3

KA, ﬁ,l)ﬁHg«}"AH’-i--a—:‘ = AH{o, B, 1). (12.2)

Hence, the equations of motion satisfied by the ransformed variables are now

LG aal(m 1}
- A

i (12.3}
Equations {}2.3) are rigorous; no approximation has yer been made. If the set of
2n equations ean be solved for @, and fy as functions of time, then the equations
of transformation between {p, 47 and (o, B) give g, and p; as functions of time,
that is, solve the problem, However, the exact solution of Bags. ( 12.3) is usually
no less difficult to obtaln than for the original equations of mation. The use of
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Egs. (12.3) as an ajternative approach to the rigorous solution is therefore not
particularly fruirful.

12 the perturbation wohnigue, however, advantage is taken of the fact thur A H
is small. The quantities (e, 8}, while to lorger constant, therefore do net change
rapidly, at least compared to the explicit dependence of A H on time. A first-order
approximation to the time vasiation of {w, ) is obtained by replacing o and £ on
the right-hand side of Egs. (12.3) by their constant unperturbed valtes:

IAH{a, B, 03 b = 3AHe 8.0

124
36, o 8o o te

gy = -
Here oy; and 8y, stand for the first-order perturbation solutions for a; and §,
respectively, and the vertical lines with subscript 0 indicate that affer differentia-
tion e« and 8 are 1o be replaced by their unperturbed forms; that is, the constants
{2, o). Eguations (12.4) can be placed in matix form by designating ¥ as the
column matrix of the 8 and o canonical varisbles, so that

BAH{y, 1}

Fi = | i

{12.5)
where } s the malrix given by Eg. (8.38a). Equations (12.4) car cow be integrated
directly fo yield the &y and B as functions of time. Through the transformation
equations, we then cbtain {g, p} as functions of time to first order in the pertur-
bation. Clearly, the second-order perturbation is obtained by using the first-order
dependence of @ and £ on time in the right-hand sides of Eqs. (124}, and so
on. In general, the nth-order perturbation solntion is obteined by integrating the
equations {in mairix form) for ¢, given by

AAH(y, 1)

o = .
" [ A

{12.6)

As a wivial example of these procedures, let us consider as the naperturhed
system the force-free motion in cne dimension of a particte of mass =, The un-
pertarbed Hamblsonian is

2
P

Hp = L,
© " I

The momentin p is clearly conserved; cali its constams value o. For this system
the Hamilton-facobi equation is

1oas\?  as
5 (—3-;) +or =0 ann

Because the system s conservative and x is cyclic, we know immediately that the
solution for Hamilton's principal function is
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&
§e=gxr— —. 128
ar— o (128

‘The transformed momentum is «; the transformed constant coordinate is

&5 ot
Qaﬁr—“é-&—x-—«’;
or
s=24g 2.9}
m

the expected solution for the force-free motion, While Eq, (12.9) Is cbvions ¢ pri-
ori, this formal derivation via the Hamikon—facobi equation at least shows that o
and B, so defined, forin a canonical sel.

Noew suppose the pertutbation Hamiltenian is

wixd
AR = TEE {12.30)
2
where e 8 some copstant, The wotal Hamihonian is
H
Ho= He+ AH = i“mw(p2+m2w7'x2). (12.11)

We are thus considering the harmonic oscillator potential s a pertrbation on
force-free motion! In terms of the o, § variables, the perturbation Hamiitoniaz,
by Eq. (32.9), is

3 2
T (°‘_'+,g) ) (1219
7 \m

In the perturbed system, the equations of motion for e, 8 are {cf. Egs. (12.3))

P (i’i 4 ﬁ) , (12.130)
Fi3
i_ 1 ﬁ{
,sﬁm:(mqn,s). (12.130)
Note that
B+ ::["fx =B, {12.14)

A rigorous solution of Eqs. (12.13) cas be oblained by taking the time derivative
of Eq. (12.13a):

& = —wty — mo” ( - gz_z) =~ {(12.15)
m
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Thus, & in the perturbed system rigorously has a simple harmonic variation with
time, From Eqgs. (12.134) and (1.9}, it follows x = —a&/{mw’), snd hence the
solistion for x is also simple harmonic motion, Considered a5 rigerous equations
of metien, Bgs. (12,13} therefore lead propetly to the correct and well-known
solution.

But sow let us weat me? (= &, the force constant) as a small paramenes and
seck pertarbation solations. The first-order periurbation is obtained by replacing
« and 8 on the right by their unperturbed valves ap and By, For simplicity, we
shall take x = 0 inftialiy, so that fp = O; the initia) value of p is then ap. The
first-order equaticns of motion are then

) 22
by = —alept, i = dye—, (12.16)
m
with immediate solutions
2orns? )
oot eperi
= oy — R = . 12.17
@y = o 5 B T ( )
Selutions for x and p to first order are then
33
X,Z‘Lbrﬁi:f‘i(w,ww‘“), (12.18a)
m e 6
and
2,2
P =ap (1»« %’w) (12.180)

Substitgting Eas. (12.17) for « and # on the right-hand side of Eqs. {12.13), the
second-order equations of motion become

z 2.4
f = 22 (rz L ) , (1219

with solutions

wlagt® | wlegt®

ap = op —

3 O
age? (17
Loy L el 12,209
o= (3 0 {22

The corresponding second-order solutions for x and p are
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N w3!3+m2t5
S L T R

2,2 a4
wt wh
p:ag(lwu-z-r+-;{!~‘). (12,21
By now we have enough to see whers the mth-order sofution is going. The gaan-
tities in the parentheses in Fqs. (12,21} are the first three terms in the expansion
of the sine and cosine, Tespectively. i the limit of infinite order of perturbation,
clearly

s .
X o e GV EL, B GCOS M,
i

which are the standard solutiotis consistent with the initiat conditions.

The: constant fransformed variables (e, §) incorporate information on the pa-
rameters of the unperturbed orbit. Thus, if the Kepler problem in three dimensions
degcribes the unperturbed system, then a suitable set of (o, §) are the Delaunay
variables, that is, the constant action variables J5 and the constant terras in the cor-
responding angle variables w;. We have seen in Section 10.8 that the Delaunay
varigbles are simply related to the orbital parameters—semimajor axis, eccentric-
ity, inclination, end so on. The effect of the perturbation is 1o cause these parame-
texs to vary with time. If the perturhation is smali, the variaton of the parameters
within one period of the uapernwbed motion will else be small. Time-dependent
perturbation theory thus implies a picture in which the perturbed system moves
during small intervals of time in an orbit of the same functional form as the nnper-
turbed system, as orbit whose parameters however will be changing in time. The
unperturbed orbit along which the system is momentarily raveling is sometimes
described as the “esculating orbit.” In position and teogent direction, it matches
instantaneously the true trajeciory.

As determined by a permarbation ¢ the p of the fats
orbit may vary with time in two ways, There may be a periedic varation, in
which 2 parameter comes back 1¢ an initial value in a time interval that 1o first
order is usually the period of the unperturbed motien, Or there may Temain a
set increment in the value of the parameter at the end of each successive orbital
period—and the perturbed parameters are said to exhibit secular change. Peri-
odic effects of perturbation do noi change the average paremelers of the orbit;
on the whole, the trajectory remains looking much like the unperturbed orbit. A
secular chenge, no matter bow small per orbital period, means that eventualy,
after many periods, the i wis perturbed par may be quile differ-
ent from their unperturbed values. Therefore, the major interest in a perturbation
calculation will often be in the secufar terms only, and the periodic ¢ffects may be
eliminated early in the game by averaging the perturbation over the smperturbed
pericd, Effectively, this js what was done in Section 5.8 when the perturbing
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gravitational potential of the obiste Barth was averaged over the sateilite period
{ct. By, (5.900).

Often we would like w0 d ine the time depend of the orbital “con-
stants”—for example, eccentricity, or inclination-directly, rather than through
the intermediaty of the canonical set {w, 8). This can be done easily through the
Poisson bracket formatism. Let ¢; e any set of Zn independent functions of the

{e, B} constants of the unpernabed system:

o =cilm, §). (12.22)

One or mare of the ¢; may be the desired orbital parameters. Then in the perturbed
system the time d d of the ¢; quantities is d ined by the equations of
motion

& = [o;, K= le;, AH} {12.23)

But AH{c, 8,1} may equally well, by the inverse of Bqgs. (12.22), be considered
a function of the ¢’s and r, so that {cf. Eq (9.68))

SAH  de; BAH dej

3y dm Bc, an

= {Cf,Cj]

Hence,
H

3
¢ = foi oyl BA (12.24)

As with Eqs. (12.3), Bgs. (12.24} are rigorous equations of motion for the ¢;'s
They become first-order perturbation equations when the right-hand sides, in-
cluding the Poisson brackets, are evaluatod for the tmpertarbed motion. In general
the th-crder perturbation is obtatped when the right-hand sides are evaluated in
terms of the (n — 1)st order of perturbation. Bquations (12.24) thus correspond,
in generalized form, 1o Eqs. (12.6).

“The circumstances 4 oftea be more licated than as described in this For axample.
#he periodic varistion of orbit} parametecs can exhibit more than one perlod. This woutd obviousty
oeosr wher the perturbing potential has its own intrinsic perodicity, for example, the varying periur-
baton of the Sun’s gravity on Earth-Moon orbit as Barth revoives around the Sun, Multiply periodic
behivior can also appear through interactions. between perturbations. Thus, the periodic pertusbation
of sateliite paramerets can show both short and long periods, and it is necessary to average over both
kinds of periads to find the secular pertarbation effects. Sometimes the dividing line between periodic
and secular perturhutions becomes a bit vague, What may appear a5 a secular perturbation in first order
will at times on closer axamination furn out to be 4 periodic punurbanun with & very loag period, as
we discovered in Section 11, with the by jic osciltator p h ion. Depanding on the
purpose of the calculatton, it may still be advisable 1o traag u 5 & secular pertachation term. Nonethe-
fess, the distinction between periodic and seculir terms remains useful and normally straightiorward,
espectally in first-order parturbation theory,
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A version of Bgs. (12.24) expressed in Lagrange brackets {cf. Eq. (9.79)) is
often found in the literature of celesiial mechanics. Mukiply the equation for ¢,
by the Lagrange bracket {cg, ¢;} and sum over -

, AAH
few, cidér = {owa o Jei, ) v

By the theorer expressed in Eq. (9.83), this reduces to

dAH
dcy

= {e;, ei}éi (12.25)

Historically, the perturbaiion equations of celestial mechanics are expressed in
terms of the disturbing fanction R, defined as —A N, so that Egs. (12,25} appear
as
ar
e mm fag, o b (1225
dc;
Equations {12.24) or {12.25) are frequently denoted as the Lagrange perturbation
EGUATIONS.

ILLUSTRATIONS OF TIME-DEPENDENT PERTURBATION THEORY

A. Period of the plane pendilum with finite amplitude. In the lmit of small oscil-
tations a plane penduium behaves like a harmenic osciliator and is isochronous;
that is, the frequency is independent of the amplitude. As the amplitude increases,
however, the correct potential energy deviates from the harmonic oscillator forsm,
and the frequency shows 2 small dependence on the amplitade, The smal differ-
ence hetween the potential energy and the harmonic oscillator limit can be con-
sidered as the perturbation Hamiltonian, and the shift in frequency derived from
the time varigtion of the perturbed phase angle.

The Hamiltonian for a plane pendul onsisting of a mass point m at the end
of a weightless rod of length 1, is

2
»
H o= 5 + mgl{l —cosd). {12.263

where, for simplicity. the momentum conjugate to £ is denofed by p. Expanding
the cos v in o Taylor series, the Hamiltonian can be written as

2 2 2 4

P mgld & g
I Ly 3 DA NN AV 1 1227
H 2miz + 2 (l 12 * 366G ) ¢ )

The small arplitude limis consists of dropping ali but the first term fn the paren-
theses. We can get an idea of the magnitude of the correction terms by introducing
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artificially a parameser
6} e o (12.28)

and the refated parameter

The series in the parentheses (of. {12.27)) then looks fike

Vi(f_)uﬁ(ﬁ)z_
2348 1448 :

Now, the ratic 8/8) rises 1o the order of unity & the reaximum amplitude. Indeed,
; is the maximum amplitsde of osciliation when E, and therefore the amplitade,
is small. Heoce, the raw of convergence of the expansion is determined by the
magnitde of A,

f only one correetion ferm is retained, first-order perturbation introduces terms
of the ordesr A in the motion. Second-order perturbation with the same perturbaion
Hamiltonian introduces A% terms. Thus, fo obiain modifications of the motion
consistently correct to A%, we would have (o compute second-order perturbation
on the A term in the Hamilronian, and first-order pertuzbation on the A% term in
the Hamiltovian, We shall here content ourselves with a consistent treatment to
order A; that is. retain only the first correction term in the Hamiltonian and carry
ot & first-order perturbation solution.

The unperturbed Hamiltonian derived from Eq. (32.27) can be put in the form
of a harmaonic oscillator by writing it as (cf. Bq. (10.183)

H= él?-{pz + g™, (12.24)

where J = mi*, the moment of inestia of the penduium, and

3 mgl g

e B 12,30
! i { )
A suitable set of canonical variables corresponding to a vanishing K for the un-
perturbed system are the action varisble J and the phase angle 8 in the angle
variable:
a
= L pas e 1231
w=u+f v T { 1
The effect of the persorbation s 10 cause both J and £ fo vary with tme. The
equations of transformation relating p and 8 to J and 8, respectively, have already
been giver in Hgs. {10.98) and (10.97), which here take the form



12.3  illustrations of Time-dependent Perturbation Theory 535

J
8 mm \f e sin 207 (92 4 B3,
aiw

(12.32
y iiﬁ cos Zrr (vt -+ )

p=

in the unperturbed system J and § are constant and Egs. (12.32) constitute the
complete solutions for the motion. But the equations remain vatid for the per-
turbed case, only J and £ heve time dependencies 1o be determined.

The unperturbed Hamiltonian is Hp = Jv, bul the perturbation Hamiltonian
takes the form

7o
5 mmmsm“zw(umﬁ). (12.33)

The first-order time dependence of 8 and J are to be obtained from

. O0AH : Ry
o J D e 12.34
A=y T (12.343
where on the right-hand side of each equation the unperturbed solutions for J and
£ are 1o be used; that s, J and 8 are considered constant. Thus,
= it 2 4 ) (12.35)
T f2mtmi ’ -
Equation (12.35) says that to first order, _B varies over the cycle of the ynpesrarbed
oscillation. But there is a net value for 4 when averaged over a complete cycle,
for the average of sin® is % Hence, f exhibits a secular pertuzbation at a constant
rate given by

J
Brimit

A= (12.36)

Viewed over times ong compared 16 the unperturbed period, 8 has a time depen-
denee

£ = Bt + Bo. (237
Such & variation, when inserted in B, {12.32), says that, on average, the first-order
solution is still simple-harmonic with a frequency

vy 4 _E
Now, in the unperterbed motion

E t
J = ZJ(W =2ﬂw§w,
i@
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50 that E Eq. (12.36}, becomes

FooE W
L6 mg! 167

(12.38)

The first-order fractional change in the frequency at a finite amptitude £ is there-
fore

22—t (12,393

a wetl-known result that can also be obtained by approximating the eliiptic-
function representation of the motion.

From Egs. (12.33) and (12.34), it is seen that o first order the time variation of
Fis

FE
R sy sin® 2 (vr + ) cos 2o (vt + £).
7T

The average of sin’ ¢ cos ¢ over even o half period of ¢ is 280! hence, J shows
ne secular perturbation. We would expect this fesult physically, as J 18 & measure

of the amplitude of the oscillations (cf. Egs. (12.32)), and the perturbation would
not be such as to cause the amplitude to grow or decay with time.

B. A cemtral force perturbation of the bound Kepler problem. In Exercise 21,
Chapter 3, #t was shown rigorously that if & potential with & 1/r% form is added
to the Coulomb potential, the orbit in the bound problem is an ellipse in a rotar-
ing coordinate syster. In effect, the ellipse rotates, and the periapsis appears to
precess. Here we will find the precession rate by firsl-order perturbation theory,
considering a somewhat more general form for the pertarbing potential.

Suppose the total potential is

Vo ——— —, 2.

[ o 1249
where # is an integer greater than or equal to -+2. The constant & will be assumed
to be such that the second term is a small perturbation on the first for the range of
r considered. The perturbation Hamsltonian is thus

h
AH = w122 (1241

e =
Ir: the unperturbed problers the angular position of the periapsis in the plane of the
oebit is given by the constant w = 2wy (cf. Eq. (10.166)). With the perturbation,
@ has a time dependence determined by

JoH _ astl (12.42)

s T
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using the relation Jf; = 2n! (Bg. (10.156)). First-order perfurbation results are
obained by evaluating AH, and the derivarive, in terms of the unpertubed mo-
tion, Further, the instantancous change in w is rarely of inferest. In most situations
where the perturbation formalism is of value, @ is so small the change in w is dif-
ficutt or impossible to perceive within a single orbital period, and it is sufficient to
measute only the secular change in w after many orbits. Therefore, what is wanted
18 averaged over a thine interval 7, the period of the unperturbed orbis

-~ 1 [Y3AH
= e 4
“ tj.; 3

The derivative can be taken outside the integral sign, since 7 is a function of J3

only (Eq. (10.142) combined with Eq. (10.146)), whereas the derivative is with
respect to [ == J; /2. Hence,

— af1gr GAH
w == 5 ( f Hdt) = {12.43)
But the time average of the perturbation Hamiltonian is here

AF = —ﬁ( ) = ——f &t {1244)

By using the conservation of angular momentura in the form {4 = mrdi, the
integral can be converied into ong over ¥

e g
AR = -T2 A % {12.45)
b mk\"? -
:m% (i:’-f) f {1+ ecostp — 97 vy, {12.45)
i

whete » has been expressed in terms of  through the orbit equation, Bg. (3.56)
{with ¥ used in place of 8} In general, oniy terms invelving even powers of the
eccentricity ¢ will give nonvanishing contributions to the integral. The derivative
with respect to ! also involves ¢ and its powers, since, by Eq. (10.159), ¢ is a
function only of J; and J1.

Twao special cases are of particular inferest. One occurs when z = 2, mentioned
briefly at the start of this ifhustration. The average perturbation Hamiltonian is then
simply

and the secular precession rate is
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f (1246}

which agrees with Exercise 21 of Chapter 3.
The other case of iterest i for n = 3 (a 1/r? perturbation potential}, for which
Eq. (12.45) reduces 1o

[ Bowmthk
WH = -
By
and
L Gumihk
&= ”;’T (1247

What makes this choice of n of particular significance is hat general relativity
theory predicts a correction to Newsondan motion tat ¢an be construed as an
3 potential. The so-called Schwarzsehild spherically symmetric solution of the
Einstein field equations corresponds for weak fields to an additional Hamiltenian
term in the Kepler problem of the form of Bq. (12.41), withn = 3and

k2
he =, (12.4%)
so that Bg. {12.47) becomes
~  6mk?
@ = (12,49}

To apply Fq. (12.49) to the secular precession rate for the precession of a bady
revolving around the Sun, k is sef equal to GMm and Eg. (3.63), valid for the
unperturbed ellipse, is nsed

12 = mka(l ~ ). (12,503

Equation (12.49) can then be put in the form

e 54 R
w s T (;) (12.31}

where & is the so-calied gravitational radius of the Sun is

G

M
Roaz g s 14766 km. (12.52)
e

B

For the planet Mercury, ¢ = 0.2409 sidereal years, ¢ = 0.2056, and a4 =
5790 x 107 kmy; Bg. {32.51) then predicts a precession of the perihelion of
Mercury arising from general relativity at an average rate of

& e 4298 foentary.
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The observed secudar precession of the peribelion of Mercury i over 100 times
lazger than this velue, namely 3599,74 £0,41" fcentury. Most of this is due to the

ion of the equi of the remainder. about 531.54" foentury arises from
perrarhations of the orbit of Mercary by other planets. Only after these two sets of
effects are subtracted from the observed precession does the smail general relativ-
ity effect of approximately 437 fcentary become visible. The currently accepted
observational vakug is stared o be 43.17 £ 0.5 fcentury; the deviation from the
theoretical prediction is not considersd sigaificant.

One point reroaing o be made. In the application to relativistic effects, the
constant &, Bq. (12.48), is a function of the value of /. It might be asked therefore
that in finding &, why doesn’t the derivative with respect to ! act also on &7 The
¥ey here is that 4 is not functionally dependent on { as a canonical momentum,
Equation (12.48) says only how the value of the constant & is determined in terms
of the value of the orbit parameter /. In other words, the perturbation pofential is
2 function of the dynamical variables only through r; it is not to be construed as
velocigy dependent.

C. Precession of the equinoxes and of satellite orbits. The family of problems o
be considered here was discussed previously in Sectior 3.8, which bears the seme
title. We wish to describe the relative motion of two bodies interacting through
their gravitational attraction, one a spherically symmetric or point body, the other
being slightly oblate with a resultant gravitational guadrupole moment. The effect
of the stight oblate shape of Harth is physically that the torques exerted by the
Sun and Moon on the equatorial bulge cause Earth's rotation axis to precess very
slowly. Reciprocaily, the effect on an object orbiting arcund Earth, such as the
Moon or an artificial satelliie, is to cause the plane of the orbit o precess aboug
the figure axis of Earth. The small magnitude of the gravieationat quadrupole term.,
manifested by the very sjow rate of precession, suggests that a perturbation treas-
ment shoutd be an extremely good approximation. We shal} actually examine here
only the case of the perturbation of a sateliite’s orbit; the reciprocal phenomenon
of the precession of the equinoxes proceeds very similarly (though with different
notation) from the same perturbation Hamiltonian, and wifl be left for the exer-
cises.

Since the ensphasis hete witl be on a point satelite moving about o much more
massive Earth, the notation of Section (5.8) wili be reversed here and m used
o denole the mass of the sateilite while M stands for Earth’s mass. The total
poteniial acting on the satellite, by Eq. (5.88), is then

ok kR {lke1n
Ve r + M3
whete k == G#m, Po(y) is the second-order Legendre pelynomial, and ¥ is the
cosine of the angle & between the rading vector 10 the satellize and Earih's figare
axis. For the perturbation Hamilionian, we therefore have
B 1
2Mr?

Pyiy), (12.33)

AH =k (3cos? @ - 1} (12.54}



540

Chapter 12 Canonical Perturbation Theory

The poiar angle ¢ can be expressed in terms of the inclination anghe of the orbiz,
i, and the angle of the radius vector in the orbital plane refative to the periupsis,
i, {the so-calied trae anomaly) by the relation*

c0s @ = sini sy + ), {12.55)

wheze & is the argument of the periapsis. A small amount of manipulation enables
us to rewrite the angular dependence of AH as

3c0s* 8 = 1w (4 — 3 cos? i} — 4 sin® i cos 2(¥ + ). {12.56)

Now, because of the sraall size of the perturbation, the chief interest is in the
camiiative effects of the secular portion. Thus, the precession of the orbital plane
shows wp as a secular change in 2, the angle of the line of nodes (or longitude of
the ascending pode), By the same arguraent used in the previcus illustration we
can obtain the secudar effects by averaging A H prior to taking derivatives:

1T m [
AHawf AHdt:-w[ rrAHdy
T Jo It Jo

L omL - 1

i
2 -
= Ta 0T j; {1 +ecosyi(3cos & — Lrdye.  (12.57)

The term in cos 2{r + ) in Bq. (12.56} gives zero contribution to the infegral
because it is orthogonal, in the interval of integration, to both { and cos . Hence
the averaged perturbation Hamiltonian is

252
gy RN - 1)
Al = 2M3e

In view of Egs. (Hh157) and (10.165) linking £2 and { with the action-angle veri-
ables, the first-order perturbation vatue for $3 is to be found from

(1~ 3cos?i). (12.58)

= g dAH

Q= Dy w2 e m
3t 1 Ed i

or

A 3wkl - fyeosi
My ’

Finaily, using Eq. (12.30}, the average fractional change in £2 per wnperturbed
revolution i8

*Equation (12.55) can be obtained in many ways, for eaustnple, by mattin sotation of the plane of
the orbit into the xy plone. It is piven, most simply perbaps, by some cld-fashioned tigoncmetic
reasoning based on Fig. 10.7. As OB = 1, BC = cos8, but AB = sin{\F + o) and therefore 5C" is
also sinf sin(y + ).
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ETN 3 —§ cosi
It 2 Ma® (|- ehy

(12.5%

which is the appropriate generatization of Fg. {5.96) 1o an eltiptic sateflite orbit,
Once the average perrarbazion Hamiltonian is jmown, the effect of the pertar-

bation on other avernge parameters of the orbit can be found. Thus, the secular
precession of the periapsis in the plane of the orbit is immediately given by

T T 2y BH _ OAH

O A R T T
The canonical variable J; occurs in AH as given by Bq. (12.58) in two forms: in
the {* term in the denominator and int the term containing cosi == J; /2. Upon
carrying cut the derivative, it i found that

-1

m(s cos’ i - 1), (12.603

ar 3

r 4
The maximum vaie of @ is thus about the same as that of Q, but the dependence
upon § is quite different. At erftical inclivations of 63°26” and 116°34', the pre-
cession of the periapsis vanishes (at least o first order) and changes sign above
and below these points. It is clear that. to first ordes, there is no secular change
in gither ¢ or ¢, since AH does 5ot contain the constant parts of any of the angle
variables. The shape and size of the oscolating eflipse, when averaged over the
orbital period, thus does not change with time.

Tt may be noted from the fast two illustrations that the general relativiey cor-
rection and the gravitational quadrupole field both give rise to a precession of the
periapsis of an orbiting body, The Former is believed to be the more dominans
factor contributing to the observed precession of the peribelion of Mercury, since
the measured quadrupole componem: of the Sun’s mass is too small,

TIME-INDEPENDENY PERTURBATION THEORY

Consider conservative periodic separable tystems of arbitrary number of degress
of freedom with a perturbation parameter <. For the unperiurbed problem, we as-
sume a set of action-angle variables (Jo;, wo;) such that the unperturbed Hamik-
tonian, Hy, is a fanction only of the action variables Jy, and correspondingly, the
wyy are then Hnear functions of time. In the notation of Bq. (10.110°), the refation
between, say, g and the we; can be written compactly as

=3 AP g, (261

Ed

where J, wo, and Jp are n-dimensional vectors of the integer indices, angle vari-
abies, aad action varizbles, respectively.
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In the perturbed system, (wo. Jo) remain 2 valid canonical set of variables,
‘When expressed in terms of the set (wy, Jp), the perturbed Hamikonian can be
expanded in powers of a small perturbation parameter ¢;

Hiwg, Jo. ) = Ho(dg) + € Hytwg, Jo) + €* Hatwe, J) + . (12.62)

‘We seek a canenical transformation from (wy, Jo) to a new set (w, J), such that
the J are all constants and the w therefore linear functions of time. In this set, H
is a function only of J (and ¢) and, in its functional form with respect 1o §, will be
writien as

a(f, €} = aold) + ey () + o+ (1263

‘o obtain the perturbed frequencies through a given order in ¢, it suffices to find
the appropriate fanctions @y, @y, .. ., for then the vector representing the fraquen-
cies 13
ot Bery
= = Juinc DI 12.64
v e s baor { )
The generator of the caponical transformation from (wo, Jo} to {w, J) is
¥ (wa, ), €), with o corresponding expansion in e:

Yiwg, J ) = wo « J+e¥i(wWo, B+ *Ta(wo, B + . (12,65

We seek to find ¥ as the solution of the appropriste Hamilton-Jacobi equation:

ay
" (Wu, 5;;6,6) = uf], €} (12.66)

As before, the terms in 4 to a given order in ¢ are found by expanding both sides in
powers of ¢ and collecting coefficients of the same order on both sides. We shall
ilfustraee the process for 2 second-order calculation, where the Hamilton-Jacobi
equation reduces o

Hg (ﬂ) +&H; (Wo‘ ﬁ) +e*Hy (WQ, “331) = ag () +eny (§) +€Top (31
E By

Bwy Wo
{1287
Bach of By teams on the lef are functions of € through the derivative of Y
ar 3, ah
=3 LLIg L 12.68
Jo prm E) eawo e T { 1

‘We again expand the terms Hj in a Tayior serjes around Jo = J, retaining terms
of order & in Hy and of order ¢ in H;, with Jo replaced directly by J in . The
expansions for Hp and Hy, in matrix notation, are then
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ay a¥; | 4 2 BHy
Hu(aw) Ho(D+( aw‘)-&e’g;; 51

i aY 32’39 ( Y
t3 ( awg) ENErS awo) (1269
ay vy oM,
Hy (Wu, -é-;‘-]") Hifwg, I+ ¢ -é-;w?)-j* {12.76)

Collecting powers of < in By. (12.67) then Jeads 1o the following expressions for
the figss thees serms in e

oy == H(J), (12.7t2)
8Y

@) == g + Hi(Wo, 5, {12.71b)
Wo
o

ooy = VoawO + ®aiwg, B, (12.7tc}

where

Ay, My 1 a¥: DRHy aYy
Patwy, J) = Halwo, B + FRT + 3 5w 5153 v’ (272

Again, the equation of transformation lnking w and wy is given by

e aY g e iy e 28%

TR YW

In order for the (g, p) set to be periodic in both wgy and w with period 1, all of the
¥y terms must be pesiodic Tunctions of wy, that is, of the form

-+ [$ ¥4

Fiwe, By = 3 B pet=iim, (278
3

Hence, alt derivatives of Yj with respect 1o wy have no constant term, and the
first terms on the right of Eqs. {12.71b.c) do not contribute t the J dependence.
Eguations (12.71) can therefore also be written as

ag(J) = Hp(J) (12,753
cr (1) = Hi(wy, J), (12.75b)
oz {F) = $alwy, 1), (12.75¢)

whese the: bar denotes an average over the periods of all wg. We can conveniently
express ali of Bgs. (12.75) in a comnon format by

a3 = 0w, 3, (12759
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where @0 = Hp and ¢y = H. In addition, Eqs. (12.71) have coumerparts peri-
odic: in wy with zere mean:
Y,

m% = @ - By (12.76)
Note that in second-order perrarbation the terms in Y; de not necessarily vanish
in the mean. It is true that the derivatives of ¥} themselves have zere mean, but
they are multiplied by other functions that will be periodic in wq, and there is
no guarantee that the average of the product vanishes. Hence, to find the second-
order correction 1o the frequencies, we need to know the first-order cancnical
trapsformation. {Analogously in quantum mechanics, a second-order gigenvalue
involves first-order corrections of the wave function.} In principle, the coefficients
B Qefining ¥y through Ba. (12.74) can be found directly from Ha. {12.76) for
i = 1. Subtraction of the average means that Hy — H; can be expanded in a
Fourier series analogous to Egs. (12.61) or (12.74) but without any constant term:

Hi - H =¥ CBeriv, {12.77)
i#e

Using the derivative of ¥y in Eq. (12.76) with respect so one of the wy, say wig,
will bring down & factor 2 j. Hence, the matrix product on the left-hand side of
Eq. (1276} can be written

w 3 BE i - vl £12.98)
dwy 1
0
From Egs, (12.76) and ( 12.77), the coefficients in the series for ¥; can be obtained
48

Citdy
i vy’

itis true the constant terms in ¥y are not determined in this way, but it is only the
derivatives of ¥y that enter into the expressions for o and these do nol involve the
constant terms (cf. Bqs (12.71)).

While we have caried out the procedure in detail only for second-order per-
tushation, it is easy to see that the general form of the higher-order calculations
must be similar; only the details of the algebra wili be more compiex. For the ith
order perturbation, we witl again be able 1o write oy in the form

B0 = j#o. (12.79)

a¥;
o fJ) = ng-‘-;; + Ps{wp, 1) 32.71d)

The first texmn on the right will come from the first-derivative term jn the Taylor
expansion of H{Jp) abowi Jo = J, where all lerms in the difference Jy ~ J ave
kept through order ¢'. Only in this term will ¥; appear; hence, &, can contmin onty
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the generators Yy for order fess than . By virtue of the arguments already used
for first- and second-order perturbattons, the first term of the right in the previous
eguation {12.71d) has zero mean when avernged over complete cycles in wo, and
hence, Bgs. {12.75) and (12.76) are valid i al} ordess. Of course, for ¥ > 2, &
becomes increasingly more complicated than Eq. (12.72), but it always contains
anly such funpctions as have already been found in lower order calcufations. Thus,
step by step, we could in principle work up o any order perturbation.

There are practical problems in such a series of calcelations of course, but the
most serious and obviocus conceptual difficulty occurs if the unperturbed system
is degenerate, As we see from Eg. (10.122), the existence of & degeneracy means
there will be at least one vector of indices j such that j» »y = 0. The corresponding
coefficient " in the Fourier series for ¥} will therefore, by Fiq. (12,79, blow up.
Indeed. something similar takes place even when the unpertuthed system is noz
degenerate. Hven if the frequencies are pot exactly equal, as we go to higher and
higher values of the integer indices in j, eventually there will be found a vector }
for whick }» wy s very small even if not zero, and the corresponding coefficients
B become very large {the so-calted problem of “small divisors™).* This crudety
quatitative observation is the basis of the elegant proof by Poincaré at the end of
the last century that the Fourier series for Yy, and therefore for the motion, are
oanly semiconvergent. Nonetheless, the series can be truncated at some reasonable
valties of the Indices and still give extremely pracise resudts, af least for times that
are not tno long.

We. shalt discuss later what caz be done in the presence of degencracy, but at
this poirt it may be well to illustrate a second-order calculation with & specific
exampie of a system with one degree of freedom.

Consider a one-dimensional arharmonic osciliator, that is, one with a g7 term
in the potential energy. The Hamiltonian can be writien as

L I 4
szm{p +m g l+eq0 ' {12.80)

where wp is the unperturbed angular frequency:

&
g = Dy == 2o, —,
m

g0 i a reference amplitude that can be left unspecified for the moment, and e is 2
small dimensionless parameter. Taken as an expansion in powers of e, H consists
of the terms

1
Hy = 5;(;:2 + mtwig™, {12814}

*Similay phenomena, it will be recaled, are fonnd in quantem mechanics, whers degeneracy weans
that there are teveral states with Gie same energy E. Denosminators of the form E; — E; will then
vanisk, or hecome small even if there is Ro exsct degeneracy.
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2.3
Hy = 0 (12.81b}
a0
and
(1281}
Hy =0, (322 (12.81d)

Using the unperturbed action-angle variables (Jp, wy) as canonical varisbles the
nonvanishing parts of H can, by Egs. (18.96) and (10.97}. be written as

Hy = Jow (12,8283
and
2 32
Hy o= 2R ( 7 ) sin® 2wy, (12.825)
2g0 \ mmay

The recipes of Egs. (12.752,b) then give a¢ the lowest twe terms in a{J)
wld) = Hwi () =0.

“Fo obtain the second-order term oz(S), we note that since By is Hanear in J, and
H2 vanishes, then @ (of. Bq. (12.72)) reduces to
ak, aH;
Dy s e |
2 dupg 8J
Bul the vanishing of Hr meats that Eq, (12.76) for i = | bas the skmple form
3% _ H

By v

Combining these two results leads to

1 3H}
2 e h 12.83
2 5o BT ( )
Now from £qg. {12.82b),
3
H‘Z(wo, J} = Wuuj»«ﬁ sin® 2 wp,
2 tmgd
leading to
Y
Pafwy, J) = ~ 5 si 2mwp. {12.84y
dsrtmgl

Since the average of sin® over one period is i‘—?, wz(Sf) is sitaply
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157%
e e o 12.85
A P oy { )
and 10 second order in € the pertbed frequency is
dur s 157
B s T ) e €7 et | 12.86
V=g e SZJrzmqg { 3

1t is convenient to use for gp the maxtmum amplirude the oscitlator would have
for the given encrgy in its unperturbed form, so that to lowest order

malgs i
2
or, since E == San/{r},
J
mgg = o {12.87)

In terms of this refereace amplitude, Eq. {12.86) is equivalent to saying that the
second-~-order fractional shift in the frequency is simply

S T e G {12.88)

Mention bas already been made of the difficulties that appear in perturbation
theory arising out of the existence of degeneracy, for example, the vanishing (or
near vanishing} of §j - # i the denominators of Eq. (12,79} Treatment of degen-
eracies in classical perturbation theory is much more complicated than in quantsm
mechanics. The mathernatics that has been brought to bear o the problem is both
subtle and complicated, and a full exposition would be out of place here, Ouly
some brief and introductory remarks can be made at this point.

We speak of exact (or “proper”) degeneracy, as in Section 10.7, when the un-
perturbed frequencies m are such that there are one or more sets of integers j for
which j + pp = 0. As has been pointed out in Section 10.7, we can then transform
to a new set of variables (Jo, we) for which the degeneracies appear as zero fre-
quencies and the remaining nonzero unperfurbed freguencies are not degenerate.
The effect of the perturbation is o lift the degeneracy so that the corresponding
frequencies are not exactly zero but bave smail values. In consequence, there ap-
pear in the sofution terms that bave smalt frequencies, that is, long periods. The
corresponding angle variables aye known as “siow” variables, in contrast to the
angle variables with nondegenerate frequencies, which are therefore cailed the
“fast” variables. L.ong-period terms may appear as secular ferms over restricted
iime intervals; for example, sin2:r v can be taken as a linear function of ¢ se long
as vl & 1.

‘Whezn there is exact degeneracy, a transformation is first made to the {wp, Ju)
set. The mnperturbed Hamiltondan will be a fanction only of the nondegencrate
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Jp variables; in af other respects Bq. (12.82) stilf represents the complete Handl-
woniag, We now carry through the canonical transformation of the perturbation
cajculation, but osly for the nonpertarbed variables, leaving the degenerate vari-
ables unchanged. The new Hamiltonian, Eg. {12.62). now has the form

a(d, B, wh, €) == apid) -y (3, B, wh) + Fo(d, B wh 4 -

Here w), stands for the m {degenerate) variables that in the imperturbed problem
bave zero values and J, for their conjugate momenta. The transformed nondegen-
eraie moreenta are represented by J. The resuit of the canonical transformation
is thus to elimi the “fast” variables, but to leave in terms with the “slow”
variables. Note that since & is eyclic in w, the transformed J momenta are true
constants of the motion, and a(J, J, wj. ¢} can be considered as a Hamiltonian
of a system with m degrees of freedom. Purther, since ap(J) is 2 constant, inde-
pendent of the remaining variables, it doesn’t matier for the squations of motion
of (J3, wy) and can be dropped from «. Thus, the new effective Hamiltonian is
now of order ¢, in effect, the “unperturbed Hamiltonian™ is ea; {J, .I{,, wf)), and in
this unpertarhed problem w), no longer consists of 2640 values. I there is only ong
degeneracy condition, the effective problem is of only one depree of freedom and
1s in principle immediately integrable. With more degeneracy conditions, we can
seek a second canonical transformation to eliminate the “slow™ variable terms juse
as was done for the “fast” variables. in practice, the procedure cbviously becomes
quite complicated.

1t hias aiready been pointed our, it connection with Eg. (12.79), that evess with
nondegenerate frequencies, small values of the dvisor § - »g will ievitably oc-
cur as the indices § become larger and larges, This phenomenoz is referred 16 &8s
resonance, moplying that the amplitude of some particular term in the Fourier
expansions becomes very large. It would seen thereforg that the problems of de-
generacy will always be with us, no matter what the unperturbed frequencies are!
The situation is not all as bad as that, in part because of the nagurs of the pernirba-
tion Hamiltoniang encounterad in practice, From Eq. (12.79), it will be noted that
what coumts i3 not 3o mrich the valiue of § - 1 as the ratio

G
Frw’

where Cj is the Fourier series expansion of the perturbation Hamiltonian Hi, of.
Eq. (3277, It nuns out that in celestial mechanics, at least, most perturbation
Hamiltonians have what is called the D'Alembert characteristic. While the formal
wmathematical definition of the property is complicated, what it says, roughly, is
that when the valugs of the integess in the j indices are larger than the exponent of
€ in the Hamiftenian, the magsitudes of Cy falt rapidly (generally exponentialty)
with increasing values of the indices. The ratios in ¥q. {12.79) then do not become
too large, and the expansion process actually can be proved o converge when the
frequencies vy Are INCoMMERsurate,
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Resonant behavior in the presence of the D’ Alembert charactenistic, or gener
ally when Cj/(3-#0) < O{e'/?), is described as a shallow resonance. In principle,
at Jeast, shallow rescnances may not upset the perturbation expansion process and
can be tolerated without introducing new methods. There aze sieuations where the
ratio C3/(j » 7y} becomes large, ar least targer than order €/, and these are re-
ferred to as deep resonances. Special methods have to be devised to handie deep
resonances, such as the so-called Bohlin expansion in powess of ¢¥/? rather than
in powers of &.

ADIABATIC INVARIANTS

Al the firgt Sobvay Conference in 1911, which grappled with the problems of in-
troducisg quasitura notions into physics, & deceptively simple problem in ciassical
mechandics was raised. Consider 2 bob on a siring oscillating as a plane pendulum,
with the string passing through 2 smal hole in the ceiling. Now imnagine that the
string is either putled up or let down siowly, so slowly that there is little change in
the length of the pendulum doring one period of oscitlation. What happens to the
frequency of escilation during this process? Note that the energy of the pendu-
tom is not conserved, for work is done on the system {or extracted from it) as the
length of the string is aitered. By elementary means it was demonstrated that for
very slow change of the ratic E/v would be constant. |t wil} be recognized that
this ratio is precisely the action variable J. The adigbatic invariance of the action
variables under slow change of parameters was a very satisfying property to physi-
cists developing quantumn mechasics, For simplicity, we shall examine only peri-
odic systems with one degree of freedom, aithough the extension to many degrees
of freedom normaily is not difficult in the absence of degeneracy. We consider a
system thal inilially has no dependence on the time, and thal involves a parameter
a. Implicit in the method is a picture of the system as initially conservative with ¢
constant. Time dependence of a is then “swilched on,” and ¢ varies slowly over a
long time, eventvally reaching a constant value. When « is constant, the motion ts
periodic, and the slow change in the parameter does not alser the pesiodic nature of
the motion. Although the changes in she motton are smali fn any one period, over
a leng interval of time the properties of the motion can accumulate large guansi-
tative changes. The switching on of the time dependence is thus in the nature of a
small perturbation, and we are looking for secalar changes in the maotion.

‘When the parameter ¢ is constant, the system wiil be described by action-angle
variables (Jp, wo} such that the Hamiltonian is # = H{Jp, ¢). It will be useful
to consider these variables as derdved from an original canonical set (g, p) via
an Fy penerating function W*(g, wy, 2). The usual Hamiltop-Jacobi equation of
course leads to an F generating functon of the form Wig, J;, @), but these two
generaling functions are normally connected by a Legendre transformation {cf.
Eg. (9.19))

W*(g, wo, a) = Wi(g, Jo, a) = Jowo. (12.89)
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When 4 is allowed to vary with time, (wg, Jo) of course remain as valid canonical
variables, but the generating fosction is now an explicit function of time through
the time dependence of a. Hence, the appropriate Hamiltonian for the (wg. J) set
is now

aw*
Kiwa, Jo, ay = H{Jy, a) + v
aw*
= H{Jp, a} + & ——. (12.903
3
Since Jp is no longer 2 constant and wg does 50l vary linearly wish time, the

second term in the Hamilionian is a pesrbation, The time dependence of Jy s
governed by the equation of motion

. K . 3 aw+
Jo= g “va%( o ) (12.91)

where of course the derivative in parenthesis is expressed, as is X, in terms of
Jo, wp, and 2. In the spirit of a first-order perturbation theory, we ook for a
secular term, the average of Jp aver the period of the unperturbed motion for the
appropriate a. Since a varies slowly, @ can be taken as constant during this time
interval, and the average can be written as

. H ] W
Jp=—— | 4 di
° 4 faawa(aﬂ)

- -é[ 2 (3“") de + 0%, 7). (1292

rTEv; da

It will be remembered from Bq. (10.17) that W is given by the indefinite integral

Wmfpdq,

In one period of wy, the generating funcrion, W, therefore increases by Jp. At
the same time, Jowp aise increases by Jy, since wy increases by woity, Hence, by
Eg. (12.89), W* is a periodic fanction of wy, and both it and the derivative with
respect to @ can be expressed as a Fourier series:

aw* ;
o= 3o Anldg, @yeie, (12.93)
k

‘The average, Tg. therefore has the fosm

T wff S wrikArlh, ) dr 4 L7,
i)



1.5  Adiabatic tnvariants 351
Sinca the integrand bas no constant serm, the integral vanishes,
To =04 062, &), (12.94

and Jo bas no secular variation to fiest order in d, proving the desired property of
adiabatic invariance.

fer us see how this derivation would werk in detail for the problem of the
harmosic ogcillator:

1
= ﬂ(pl ‘PmZQZQZ),

where @ may be an explicit tunction of time. The equations of the canonical
transformation from the (g, p) set to the {J5, wy) sel are given by Bgs. (10,213
and (10.97), which can be wrilten so as to facilitate the evaluation of W™
aw
Jo = rmag® ose® Drug = oy
Brog

- (12.95)

g

P = meg col 2wy =

To within constaat {and therefore inelevant) terins, W* is found by integration of
Egs. (12.95} to be

2
Wiy, W, @) = e oot 2wy, (12.96)
The derivative with respect 10 wis
N 2
BBW = T“;?.., cot 2rr uy,
(L

or, using Eg, {10.96) as a fanction of wq, J, and e,

W
A e indmug. (1297
B Arw

Thus, jﬁ is given by the one-term Fourier expansion
: @
Jy = —— Jgcos 4wy, {12.98)
@

which, as predicted, has 1o constant terms, 8o far, Bg. (12.98} is rigorous. Similarly
the rigorous connection between wo and time is determined by the wy eqGuation
of motion

o B _BH B W e s 12595
O T T e RN vw ) T Fw  ame S AT g
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In order to caloulate an average of J over 2 period, including at Jeast the first
correction term, we begin to make approximaticns. First we shall assume that over
a particular period of the perturbed motion the ratio

D (12,100}
[
is & constant, and one such that ef < 1. Fguation (12,140) corresposds to 2 vacia-
tien
@ = oige® A gl 4 ef), (12108}

where f is measured from the start of the period interval, a which time & (@) = ay.
Eguaton (12.99} zow looks like

- % + 157; sindr wo. (12,99

The zeroth-order solution is
b2 s wg” = wnpt,

where the constant term bas been set zero by suitable choice of the initial phase.
To fiest ozder in e, Eg. {12.59) becomes

Ly wotler)
e il

€ .
5 -+ i sitt Jagt, (12.302)

with the solution

(12.103)

€ I—cos H
Zﬂwéi} == gt + 3 (rz)g(z + «-----—ﬂ) .

2y

Correspondingly the equation for J; correct to second order in £ can be written
as

d 1 - cos Zwgt
mJo:we €08 § Aeopt + € wg£2+——-fw) .
at 2en

Expanding the cosine, treating the term in ¢ as a smadl quantity to first order, the
derivative reduces to

dlndy
dr

¥ — cos 2ext
Zeo

= g cos 2egl + I (wgtz + )sin 2eont.

To find the secalar behavior, this oguation can be averaged over the period of the
mogion & it is at ¢ == 0, that is, over an interval T = i/, In the averaging,
afmost ali terms on the right drop out, except the first inside the parentheses,
involving 17, The finai result is
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diny  me®  wpd®
PR 12.104
di i dx { )
whete § = ¢, that Is, fractional change in @ over the pericd 7. Correspondingly,
the fractional secutar change i J over the period is
LY
PR
As expected from the more general considerations, the secular change i the ac-
tion variable has no term in first order in €. Only by retaining quantizies of the
order €% = {¢h/w)* do we find any nonvanishing long-term change in J.

The adiabatic fnvariance of the action variables has proven to be especially
useful in applications involving the motion of charged particies in electromag-
netic fields. One of the simplest instances, and one with important practicat con-
sequences, concerns the motion of electrons in a uniform (or nearly uniform}
constant magnetic field. As is well known, the charged particle int such a situation
circles around the magnetic field lines. At the most basic level, this can be shown
from Newton's equations of motion. The Lorentz foree in a constant magnetic
field B is (v x gB); hence, the equation of motion, Eq. (1.43, is

{12.305)

&y B
G =¥ X ol (12.106)

Equation {12.106) says e velecity vecior v rotates, without change of magnitude,
about the direction of the magnetic field. with an angular frequency

e =~ e {12,100
m

The frequency, catled the cyclotron fregaency, has & vaiue twice the Lammor fre-
quency of Bg. (5.104) {cf. Eq. (7.1543).

An equivalent derivation can be formulated in terms of Lagrangian mechanics,
It was shown, in Section 5.9, that the Lagrangian in this case can be written as

2
L %+M.5‘ {32.108)

where M is magnetic moment of the moving particie defined in terms of iis angu-
far momentum L by

M om e, 12,109

5 { )
{1, Ba. {5.198).) In eylindsical coordinates with the 1 axis along the direction of
B, the component of & paratlel to # is

My = , (12110}
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and the Lagrangian is

= %(fl-%rzéZ«t»éZH %Brlé. (12415
Since # is cychic in the Lagrangian, the corresponding csnonical momentum pg,

. gBrt
Po =mr29+g~§-. {12.112)

is a comstant of the motion, Furthes, the radial equation of motion is
mF — rfimé + g B) =0, (12.113)

A sisadyvmotiqn solution to Bqgs, (12.312) and (12,113} corresponds to r and [
coastant, with ¢ having the cyclomon vahie

§ = B e, (12.114)

in agreement with Bg. (12,107). In this case, ps = ~(gBr?/2) and the action
variable corresponding 10 6 18

Ty y{pg 46 = ~nwqBrt. (12115

By (12.110), we can wrile
L

e

qr
{as M, is equal to M for this motion}, and therefore J5 can also be wrilien as

b SEME e (12.116)

@ q

The sdiabatic invariance theorem implies that under sufficiently siow variation of
the rmagnetic field Jy remains constant, Eguation (12.116) says that the magnesic
moment is simiarly invariant adiabatically. An alternative statement, on the basis
of Bg. {12.1153 is that B times the area xr? of the orbis (that is, the number of
tines of force threading through the orbit) remains constant.

An adiabatic variation of B might arise if the magnetic field configuration ce-
mained static but was slightly nonuniform. if then the particle had a smail £ com-
ponent of velocity, the resultant drift would move the particle siowly into regions
of different B values. From Eqgs. (32.114), (12.115), and (12.116}, 1 foliows sismn-
ply that the kinetic enexgy of motion around the lines of B is

242
Tipy == f’f-iﬁ« = MB. (2.4
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Suppose a charged particle drifts in the direction of incressing B; by Eq. (12.117).
the kinetic energy of rotation increases. As the sotal kinetic energy s conserved,
the kinetic energy of longitudinal drife m2%/2 along the lines of force must de-
crease, Eventuadly, the drift velocity 2 goes o zero and the motion reverses in
direction. If it can be arranged that B evensually increases in the other direction,
the charged particle will remain confined, drifting back and forth between the wo
ends-the principle of the so-called mirror confinement, The mirsor principle is
used to contain hot plasmas for thermonuclear energy generation, The complete
stery is of course more complicated, but the significance of the adiabatic itvari-
ance of M is clearly demonstrated.

We: have: seen that almest alt phenemena of small oscillaticns about steady-
state or steady motion can be described in terms of harmonic oscillators. In con-
sequence, there is a good deal of practical Interest in questions of the invariance of
J for a harmonic oscillator under siow, and not so slow, vasiations of a parameter.
Tae study of oscitlations i charged panticle accelerators, for example, has led to
a nurmber of new insights,

It has been possible to sketch here only the highlights of the subject of adia-
batic invariants. The ramifications of the field go into many areas of classical and
quantum physics and of mathematics.

EXERCISES

1. By the method of time-dependent periurbation theory, carty the solution for the Hinear
harmonic osciffator (i which the potential s considered a perturbation on the free
Pparticie motion) cut through third-order terms, assuming the initial condition fg = 0,
Find expressions for beth x and p as functions of time and show that they agree with
the corresponding tesms in the expansion of the ususl harmonic sciutions,

. A mass point m hangs at one end of a vertically hung Hook's-law spring of force
constant k. The other end of the spring is oscillated up and down according (o 7y =
aces et By treating « as a small quantity, obtain o Srst-order solution to the mo-
tion of m in time, using time dependent perturbation theory. What happens as
approaches the unperturbed frequency wg?

3. {a} A lincar harmonic oscillator of force constant & has its mass suddenly increased
by a fractional amount €. Use first-order time-independent perturbation theory, 10
find the resuitant shift in the frequency of the oscillator to first order in ¢ . Compare
your results with: the exact solution and discuss.

{b} Repeat part (a}, for the effect of increasing & by a fractional amount ¢,

4. Carry ot & consistent second-order p ion ion {using whict method
you choose) of the correction to the frequency of a plane peadulim as the resul{ of a
finite amphitade of oscillation. All terms of order A% should be retained in the Hamil-
tonian and in the perturbation treatment.

5. A mass particle is cc ined to move in 2 hord t straight Hae and is attached 10
the ends of two ideal springs of equal force constants, as shown in the diagram, The
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unsireiched length of each spring is b < 4. Use permurbation theory (o first-order 1o
find the lowest order correction 10 the frequercy of oscillation for Snite amplitude of
oscillation. What happens as @ approaches b in magnitude?

X
N
-~

. {a} Show that to lowest order in cosrection terms the relativistic {but noncovariant}

Hamiltonian for the one-di e ic osciflator has the form
1 L gt
2 222 L P
Mo (p* +m w g} el

(b} Use first order pesturbation theory to calcutate the lowest-order relativistic coree-
tion 10 the frequenty of the harmonic oscillator. Express your result as a fractional
change in the frequency.

had

A plane isotropic harmonic oscillator is perturbed by a change in the Hamiltonian of
the form

ety = bplpl

where b is 4 constant. Use time-independent perturbation theory to first order find the
shift in the frequencies.

[

. A model of the atomic Stark effect can be made by taking the Kepler efliptic orbit in
a plane and pestrbing it by a potential AV = — K. Use perturbation theory to first
order to determnine what happens 10 the frequencies of motion. This model can also
be used as & first approximation to the effect of the Hght pressure of solar radiation on
the orbit of an Earth satellite.

9. By considering the work done to alter adiabaticatly the length | of a plane pendulum,
prove by elementary means the adiabatic invariance of J for the plane pendulum in
the limit of vanishing amphtude.

10,

Congider the system described in Exercise {3 of Chapter 10. Suppose the parameter
F is stowly varied from an initial value. What happens o the encegy of the paricie?
The amplitude of oscillation? The period?
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o
-

11 A plane penduburn of small iitude is ied to move on an inclined plane, as
shown in the accompanying figure. How does its amplitude change when the inclina-
tion angle @ of the plane is changed slowly?
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Introduction to the Lagrangian
and Hamiltonian Formulations
for Continuous Systems
and Fields

All the formulations of mechanies discussed thus far bave been devised for treat-
ing systerns wich a finite or at most & denumerably infinite tumber of degrees of
freedom. There are some mechanical problems, however, thai involve continuous
syslerns, as, for example, the problem of & vibrating elastic solid. Here each point
of the continuous solid partakes in the oscillations, and the complete motion can
only be described by specifying the position coordinates of aff points. It is not
difficult to modify the previoss formmlations of mechanics so as to handle such
problems. The concepts of field theory can be developed by approximating the
continuous system with & discrete systen), solving that problem, and taking the
continuous limit.

THE TRANSITHON FROM A DISCRETE TO A CONTINUOUS SYSTEM

We shall apply this procedure to an infinitely long efastic rod that can underge
smafl longitudinal vibrations, that is, oscillatory displacements of the particles of
the rod paralied o the axis of the rod. A system composed of discrete particles that
approximates the continuows rod is an infinite chain of equal mass points spaced
a distance a apart and ¢connected by uniform massless springs having force con-
stants k {of. Fig. 13,3} It will be assumed that the mass points can move only
along the length of the chain. The discrete system will be recognized as an exten-
sion of the linear polyatornic molecule discussed in Sgetion 6.4. We can therefore

o
&

in
equitibrium

;

fi

H

Dispiaced
from
squliibdum

Tt i

=
¥

FIGURE 131 A discrete system of equal mass poirts connected by springs, as an ap-
proximation to a contiuons elastic rod,
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obtain the equaticns describing the motion by the customary techniques for small
oscillations, Denoting the displacement of the ith particie from its equilibrium
pusition by 7, the kinetic energy is

L 2
T”igm”f‘ (3.5

whete m is the mass of each particle, The corresponding potential energy is the
sum. of the potential energies of each spring as the result of being stretched or
compressed from its equilibrium length (cf. Section &.4):

1
Vg iEfc(mH =t (132
Combining Eqs. (£3.1) and (13.2), the Lagrangian for the system is
! ,
LTV o i~ kimigs - m¥'] {133)

7

which can alse be written as

_ 3 M.y RIS _ .
Lwizi:a[an,. ka(————a )}leaL,. (13.4)

where a s the equilibrium separation between the points {cf. Fig. 13.1). The re-
sulting Lagrange equations of motion for the coondinates 7; arg

i — ko ( 2 ”i) +ka (w’" = ;"'W‘) =0, 135)
@ Q a

The particular form of L in Hq. (13.4), and of the corresponding equations of
mation, has been chosen for convenience in going o the limit of a continuous rod
as @ approaches zero. It is clear that m/m reduces to u, the mass per unit length of
the continuous system, but the limiting velue of ka may not be o obvious, For an
elastic rod obeying Hooke’s law, it will be remembered that the extension of the
rod per unit length is directly proportional to the force or tension exerted on the
rod, a relation that can be writien as

E o YE,
where # is the elongation per unit length and ¥ is Young's modulus, Now the

extension of a lengih a of a discrete system, per anit length, wilt be § = (41 ~
)/ 6. Fhe force necessary to streich the spring by this amount is

F o= ki~ m) = ka (Ef“ﬂ&':ﬂ) .
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50 that ka must correspond to the Young's modulus of the continuous sod. In
going from the discrete to the continuous case, the imeger index 7 identifying the
particular mass point becomes the continuous position coordinate x; instead of
the variable 7 we have y{x). Further, the quantity

Tt =M X +ay —x)
a @

occuning ie L; obviousty spproaches the limit

dn

dx
a3 &, playing the role of dx, approaches zero. Finaily, the sumsmation over a dis-
ciete mumber of particles becomes an integral over x, the Jength of the rod, and
the Lagrangian (13.4) appears as

oy (Y
L= 2[[;1?3 fY(E;) :' déx. {13.63

I the Hmit as @ goes to zero, the Iast two terms in the equation of mosion {13.5)

become
Y i/d
in-21(2) ()]
el @ j\dx/, dx j. .,

which clearly defines a second derivative of . Hence, the equation of motion for
the contineous elastic rod is

i dZp
90 0 137
rgE Y=o usn

the familiar wave equation in one ion with the propagation velocity

v - (13.8)

Equation {13.5) is the well-known formuia for the velocity of longitndinal elastic
waves,

This simple example is sufficient to illustrate the salient features of the tran-
sition from a discrete 0 2 continuous system. The most imporiant fact to grasp
is the role played by the position coordinate x. It i not a generalized coordi-
aste: il serves merely as a continuows index replacing the discrete /. Just as each
value of { comresponds to a different one of the generalized coordinates, 7;, of
the systermn. so here for sach value of x there is a generalized coordinate (x}.
Since n depends also upon the continuous variable , we should perhaps write
wre accurately nix, 1), indicating that x, like r, can be considered as » parameter
entering into the Lagrangian. If the continuous system were three-dimensional,
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rathes than one-dimensional as here, the generalized coodinates would be distin-
guished by three continuous indices x, y, z, and would be writien as pix, ¥, 2, 7).
Note that the quantities x, y, 2, and ¢ are compleiely independent of each other,
and appear only as explicit variables in 5. Derivatives of 4 with respect 10 any of
thern can therefore always be written as total derivatives without any ambiguity.
Equation (13,6} also shows that the Lagmnglan appears as an integral over me
contineus index x; in the comesponding three-d fonal case the [

woudd have the form
- fffﬁdxdydz, (139)

where £ is known a8 the Lagrangian densiry. For the longitudinal vibrations of
the continuous od the Lagrangian density is
dy :
=11, 13.19
)] 410

1 fanpy?
L=3 [” (E?) -
corresponding to the contt it of the quantity L;, appearing in Bg. {13.4).

It is the Lagrangian density, rather than the Lagrangian jtself, that will be used o
describe the motion of the system.

13.2 B THE LAGRANGIAN FORMULATION FOR CONTENUOLIS SYSTEMS

Tt will be noted from Eq. (13.9) that £ for the elastic rod, besides being a function
of i = &4/8¢, also involves 2 spatial derivative of n, namely, 80/3x; x and ¢ thas
play a similar role as parametess of the Lagrangian density. If there were local
forces present in addition 1o e nearest neighbor interactions, thes £ would be a
function of 7 itseif as well a8 of the spatia gradient of 1. Of course, in the general
case £ might well be an explicit funcion of ¥ and r also. So the Lagrangian
density for any one-dimensionai continuous system would appear as a function of
the form

dn
L= fl( el el 1) (131D
The total Lagrangian, following Bq. (13.10), is then the integral of £ over the

range of x defining the system, and Hamilton’s principie, Eq, (2.2, in the limit of
the: cominuons system appears as

2
aI:af fﬁdxdr:(). (13.12)
H

1f Hamilton's principle for the continuous system is fo have any usefulness, §
must be possibie to derive the continaous limit of the equation of motien, for ex-
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ample, Bg. (13.7), directly by variation of the double integral of £ in Eq, £13.12).
We: can carry out this varation by inethods thai differ only slightly from those
used in Chapter 2 for a discrete systern. The variation is only on 1 and its dediva-
sives; the parameters x and ¢ are not affected by the variation either directy or in
the ranges of integration. Just as the variation of 5 is taken to be zero at the end
points 7y and £, se the variation of n at the limits x; and x; of the integration in x
is also 10 be zere. As in Section 2.2, a snitable varied path of integeation in the 7
space can be obtained, for ple, by choosing » from a one-parameter family
of possible n functions:

(x4 o) = qlx, £ 0) + af (x, ). {13.13)
Here n{x, r: 0) stands for the comrect function that will satisfy Hamilton's princi-
ple, and ¢ js any well-behaved function that vanishes at the end points in r and x.

I [ is considered as a function of &, to be an extremusm for n{x, #; 0} the derivative
of 7 with respect to & vanishes at o == 0. By straightforward di Hation.

] dldn &L @ fdy 3L 8 fdn
P dxdt | — — 4 e | — . {134
j; fx, * [3naa+g§gaa (dr)+aai8a (dx 314
Because the variation of 7, that is, o, vanishes at the end points, iniegration by
parts in x and ¢ yields the relations

w 9L g fdn\ , [od far\ g
[ s*ga:éz(a?)‘“”ﬁ zf"f(a )aa"‘
2 3L 8 n N e g4 3L 3y
L 4 aa(d:c)dx"" fx, E}(a )E‘b‘

Hamilton's principle can therefore be written as

f:f dxds [ P %(%) s (;i):l (aa) =9, (1315

and by the same arguments as in Section 2.2 the arbitrary nature of the varied path
impiies the vanishing of the expression in the brackets:

d { 8L d {ac L
F(g) a () e

‘The Buler-Lagrange equations (13,162 {cf, Eq. (2.18)) is the appropriate frm of
the eguaticn of motion as derived from Hamilton's principle, Eq. (13.12),
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A system of n discrete degrees of freedom will have »# Lagrange equations of
maotion; for the continuous system with an infinite number of degrees of freedom
we seem to obtain only one Lagrange equation! 1t must be remembered, however,
that the equation of motion for # is a differential equation invelving the time only,
and in that sense Eq, (13,13} fwrnishes & separate equation of metion for cach
vajue of x. The continuous nature of the indices x appears in that Eq. (13.15) isa
partial differential equation in the two variables x and ¢, vielding 7 as g{x, 7).

For the specific instance of longhndinal vibrations e an elaste rod, it is seen
from the form of the Lagrangian density, Bq. {13.10), that

8L dy ac dn AL
9l THI SE T TR W T
3?3 dt aﬂ dx &y

Thus, ag desived, Bg. (1316}, reduces propetly to the equation of motion,
Eq. (13.7).

The Lagrangian formulation developed here for one-dimensional continuons
systems needs obviously o be extended to twe- and three-dimensional situations,
for example, a general elastic solid. Further, instead of one field quantity » there
may be several; for example, displacement from an equilibrium position would
be described by a spatial vector 4 with three components. There is ne difficulty
in camying out the mathematical steps for the more general situation im close
parallelism to the one-component one-dimensionat case. However, the formulas
become leagthy and cumberserme #f written in the same manner, ¢speciaily in
view of the two tiers of derivatives. Considerable gain in notationa} simplicity
can be achieved by noticing that time ¢ and the spatial coordinates x, y, 2 play
the same type of mathematical role in Hamilton's principle. The field quantities
are functions of the coordinates of both time and space that are to be treated as
independent variables. No variation of the field quantities occurs at the Hmits of
integration in Hamilton's principie over both time and space.

ltis mamcmaﬁcaily convcnicm to think in Lerms of a four-dimensional space
with coarginates x¥ = ct, b = x, = ¥, x¥ = 7. No physicat significance is
implied far this space. The ¢ in 2% is the speed of light used only o convert the
units of x® to the same as those used for x'. The entire tensor formalism developed
in Chapter 7 applies. The metrie tensor g wili have a Buclidean metic with the
Galilean transformation group as the allowed coordinate transformations on the
space components of the metric tensor restricted by g0 = gu = (0. A Roman
letter superscript refers only to the three coordinates of the physical space, a Greek
letter superscript or subscript refers o all four conrdinates. Use of the summation
corvention with respect to repeated indices will be resumed for the rest of the
chapter. The various components of the feld guamities will be symbolzed by &
subseript p, which may cover & multitude of forms. At times, it will stand for 2
single index having two, three, four, or more values. Or it may stand for multiple
indices. Thus, if the field quantity is a spatial tensor of second rank, then g really
refers to two subscript indices. Finally, a derivative of the field quantities with
respect to any one of the four coordinates x# wil be denoted by the subscript v
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separated from p by a comma. Where there is only one field quantity the index
dees not appear. Examples are
_dn, dn _ dy
T E G R RT e Gag 3D
Only the derivatives of the field quantities will be symbelized in this manner.
In this notation, the most generaf form of the Lagrangian density to be consid-
ered here is written as

L= L, np‘ux")‘ {13.18)

The total Lagrangian is thes an integral over three-space:
L= f Lidxh, (13.19)

but it tarely ocours explicitly. Hamilton's principle 2ppears as an integral over a
reglon in 4-space;

Sl m§ f L(dx®y = 0, {13.20)

where the variation of the i, vanishes at the bounding surface § of the region of
integration. The derivation of the corresponding Euler-Lagrange equations of me-
tion proceeds symbolically as before. We consider a one-parameter set of varied
functions that reduce to r,(x") as the parameter o goes o zero, As previously, 8
possible suitable st car be constracted, for exarple, by adding to i, the product
g, where £, (x”} are convenient arbitrary functions vanishing on the bounding
surface. The vanishing of the vasiation of 7 i3 equivalent 16 setiiog the derivative
of I with reapact to « equal o zero:®

dal AL a L 8
m;[(m_ﬂ.‘l_g_ hpy (dx™).
A n, da dngy O

Integration by paris yields

I a4 al e 4y
dou -[ [3% T dit (3’7.9,‘1)] wé;(dx )

d &L aqp)
- el
f(dx 3 J” (&rpp_y 5 . £1321)

The second integral vanishes in the limit as o goes to zero, as can be seen
varioas ways, We can examine it term by term: carrving out the integration for the
particular x* of each derivative term, which then vansshes because the derivative
with respect 1o @ 1§ zeto at the end points. Or the integral can be ransformed by

*Unless otherwise noted, the summalion canvention will be used in the rerainder of this chaptet, for
al} types of subscripl-superseript pairs.
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a four-dimensional divergence theorem into an integral over the surface bounding
the region of integratiog in 4-space, The surface integral again vanishes becanse
the variation of n, in the vickity of the correct field functiens is zero on te
sweface. Bquation (13.21) in the Hmit as o goes Lo zero therefore reduces 1o

ac 9
M - —t
(@), Jerlm - o)), o=

Again, the arbittary nature of the variation of sach 7, means that Eq. (13.22) is
satisfied only whes each of the sgiare brackets vanishes:

d ar aL
Pl Dol IESIE Y | ) 1323
dx¥ (3ﬂp.v) an, ¢ !

Eguations (13.23) represent a set of partial differential equations for the field
quantities, with as many equarions as there arg different values of p. It may be
worth repeating that since the space coordinates x° are indices for the field quan-
tities, each of Eqs. (13.23) in effect corresponds to an entire set of Lagrange dif-
{erential equations of motion in the discrete case.

For a one-dimensional continuous systern, where v takes on only the values
0 and I, Eg. (13.23} expands to the same form as Eg. (13.16}. The compacmess
of the notatio is evident even i so simple a2 example. Although we have used
covariam notation, the use of a folir-dimensional space for symbolic copvenience
inno way requizes covariant behavior (in the physicist’s sease of the word) of any
of the quantities in that space.

For discrete systems, the Eagrangian is uncertain to a total time derivative of
an arbitrary fuanction of the geperalized coordinates and time. With euntmuuus
systenss, the corresponding st isthat £ is in {0 any “4-di X
that is, to a term of the form

dFy (g, x*)

- (12.24)

where the K, are any four {differentiatde) functions of the field quaniities #, and
the coordinates x*. That such a term makes ne conwibiztion to the variation of
the action integral is ebvious. Application of the divergence theorem in 4-space
converts the volume integral into an integral over the bounding surface where the
variation of F, is zero, in symbols, the relevant variation can be written

f(d #)% '[Fv(qp,z“)dn“ =0, (1325

where do represents the components of an element of surface (in Buclidean 4-
space) oriented along the direction of the ontward normal.

The Lagrangian formulation for a cominuons set of generalized coordinates
has been developed in order to treat continuous mechanicat systems such as an
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elastic solid in longitudinal oscillation, or a gas vibrating in such 2 manner as to
sef up acoustic waves. As has been implied, the formulation may aise be used,
even in the absence of a mechanical system, to describe the equations governing
2 field. Mashematically, a field is no more than a set of one or more independent
functions of space and time, and the generalized coordinatey fit this definition.
Fhere is ne requirement that te field be related o some underlying mechanical
system. fn thus breaking the connection berween the Lagrangian feld descrip-
tion and purely mechanical motion, we are merely recapitulating the history of
physics. For exampie, the electromagnetic field was long thoughs of in terms of
the elastic vibrations of a mysteriows ether, Only in recent limes was it generafly
tealized that the ether had no other role than being the subjeet of the verb "o
undulate.” We recognize equally wel that the vacdational procedures developed
here also stand independent of the notion of a Contipeons mechanical system, and
that they serve to furnish the equations describing any spacetime field. Hamilton's
principle then becomes in effect 8 convenient and compact description of the field,
one that upon expansion leads to the field equations,

In addition to implying the field equations, the Lagrangian degsity bas more o
tell us about the physical natore of the field. As with systems of a discrete number
of degrees of freedom, the structure of the Lagrangian also contains information
on conserved properties of the system. One such set of conservation theorems is
discussed in the nexs section.®

THE STRESS-ENERGY TENSOR AND CONSERVATION THEOREMS

An analog to the conservation of Jacobi's integral in point mechanics fourd in
Section 2.6, can be derived here, and in much the same manner. All we have to
remember is that the treatment of time must be extended in parallel {ashion o
the x' since they are all independent parsmerers in C. Thus, insiead of the time
derivative of L. we seek to evaluate the total derivative of £ with respect to x#:

4L 8Ll L 4L
e [ s 13.26
I Mo gz R Nppv + Fy { )

By the equations of moton, Eq, (13.23), this becomes (with 2 stight change in
notation),

4L d L ac dnpp, 8L
LN .y

dx# = dx¥ \ a0 npu dx¥ dxt
d 8L aL
R e | e ] 1327
) (aﬂp‘u%#)* pers { ¥

*A more gensead attack on the conservation properties inherent in the Lagrangian will be found in
Seetion 13.7 ob Nocther's theorer,
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Combining iotal derivatives, this can be written
d [ il

:—Z'F 7,0 e

ac

.- .c&,w] =-r (13.28)

Lot us suppose, now, that £ does not depend explicitly upon %, This usually
means that £ represents & free field, that is, containg no external driving sources
o sinks that interact with the Seld ot exphicit space points and with given tme
dependence. In effect, this means o interaction herween the field and point
patticles moving in space and tme throtgh the feld, Under this condition,
Eg. {13.28) takes on the form of & set of divergence conditions,

47,
=Tl =0 1329

on a quantity with the form of a 4-1ensor of the second rank:

8L
T, = o = £8,". (13.309

That these eguations have onty the form of tensor equations in 4-space is em-
phasized because as yet the 4-space has no transformation properties—space and
time are siill distinct-—and there is #to transformation requirement on 7,,*. How-
ever, the space pertions of these guantities do behave like vectors and tensors in
ordinary space; that is, 7}; are the components of a three-dimensional tensor of the
second rank. Before considering the possible sransformations, we wiil determine
the physical meaning of T,,".

The similarity between T,V and Jacobi’s integral, Bg. (2.54), is obvious, It
becomes especially clear for the component To%

CRLCI
= Gt L. (13.35)
in mechanical systegns, the Lagrangian density often has the form £ = 7 ¥, the
difference between 3 kinetic energy density and a potential eergy density. This
i8 the cagse, for example, with the Lagrangian densities for the efassic rod, with
the kinetic energy density having the fors of one-half the mass density times a
square of the displacement velocity:

T = %ﬂﬁpff.ﬁ-
By the same arguments as used in discrete mechanics, Ty can then be identified
as a total energy density.
The corresponding identification tags to be placed on the other elements of T, ¥
can be suggested by writing the set of Eqs, (13.29) as
ar,®  4r,t
oo w1, 13.32
dt + dx ¢ ’
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of
5 S

I &“ &
e e IR SV S B
cdt * dx’ odt + # (13.33)
where ., whose components are T;,", are a setof 4-space vectors. In either form,
Eqgs, (13.32) or {13.33) appear as equations of contimity, which is to say that the
time rate of change of some deasity plos the divergence of some corresponding
flux or cument density vanishes. In turn, the equations of continuity imply the
comservation of some integral quantities providing the field volume is figite; that
i3, the fleld ean be contained within a volume beyond which the feld quantites
are zeto, defined, in such a case, integral guantities R, by

-
T =

R,‘:fn”dv, (13.34)

where the volume integral extends beyond the region containing the Geld. Then,
by Bgs. (13.33),

E“%‘m[V-TﬁdV:f}"ﬂ-d.\ﬁa (13.35)
It is becavse of these conservation theorems, derived from Eg. (13.29. that the
four arrays TV, g = 0, 1. 2, 3 are known as conserved cuments, in analogy with
the conservation gquasions for electromagnetic current.

We should therefore expect Tp 1o play the role of the components of an energy
ciirent density. That this is reasonable can be seen again from considerations of
the longitadinal vibration field in an elastic rod. Imagine the rod divided by an
imaginary cut at point x (cf. Fig. 13.2). From the considerations that led to the
Lagrangian, Eq. (13.6}, the force exerted by the part of the rod on the right to
extend the part that is to the left of the cut is

dn
Yd—-. (13.36}
X
TFension, - Y-g-rﬂ Fore, Y%—;’
| |
| |
i |
| ]
| atss RITEN
| i
! i
] i
[ i
! !
x x+dx

FIGURE 132  Diagram itusmating calculation of energy current density in elastic rod.
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Hence, there is a tension at x in the left-hand portion of equal magnitude but of
opposite direction. Further, the left-hand portion is being stetched by an amaunt
that at x is 17, and the rate at which this extension changes in time is 7, Hence, the
rate of work being done by the tension at the cut is

Yo (1337
which is thus the rate at which energy is being wansferred to the right per unit time.
Comparison shows that this is exactly 75! for the appropriate Lagrangian density
of Bq. (13.10). ¥ T® is an energy density then the quantity, Re, of Bg. (13,34}
can be identified as the total enetgy in the field. The fousth component of the con-
servation equation (13.35) therefore says that the total field energy is conserved if
Tyt vanishes on the bounding surface, shat is, if the system does not radiate epergy
1o the outstde.

Physical meaning for the 7;° components can be suggested similarly by tumning
onee more to the vibrations of the ¢lastic rod. If the particles in the rod move by
the same amount all along the rod, the motion will be that of a rigid body, that
is, a0 escillatory distarbances. The net change of mass in & length dx of the tod
as a resylt of the motion would clearly be zero, since as much mass moves past
x 4 dx ag past x. There would still be a net momentum density s for this case
of rigid-body motion, When wave raotion takes place, a net mass change in the
iength dx exists, amounting at any given dme to (of. Fig. 13.2)

winlay ~ nlx 4 du) = *#%dt (13.38)

The additional momentum ip e nterval resulting from the wave motion is there-
fore

.
Tl X
HIT de
Thuss, an additional momenturs density, above and heyond that of the sready-state
motion, can be identified as the wave or field momentum density:

d
gw',&ﬁ_ (13.39)
X

This guantity is just —T3° for the Lagrangian density given by Eq. (13.10). Thus,
we are fed to identify —1;" as the comp of field mo y density and
-~ Rj, as the total (linear) momentum of the feld, at least in this four-dimensional
convention.

The equations of continuity, Bgs. (13.33), then suggest that — T, must represent
the vector flux density for the Jth component of the field momentam density, We
as¢ribe a vector property to T; because there can be, for example, a flow in the
y-direction of the x-comp of the um density, as d by — Ty,
An alternative interpretation of 7}/ comes from considering the displacement field
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of an glasric sofid. It is well known that in such a solid there are also shear forces
(besides the conpression forees rormal to a surface) along a surface efement. The
entire assemblage of forees can be described by saying that the force dF acting
on an ¢lement of area 44 is expressed {0 terms of a seress rensor T such that

dF = T -dA. (13.40)

Hence, the net force, say in the x-direction, or a rectangular volume element
dx dydz has a coptribution from the Forces on the surfaces in yz planes given by
(of. Fig. 13.3) {(where 1 indicates the x component, 2 the y, ete}

a1y}
[T x4 de) = T () dy dz = Tﬂi” dx dydz, (33.41)

but there is also a contribution from the surfaces in the xz plane;
2 2 dT?
[T +dy) - T 0D} dede = e dy dz, 1342)

and similarly from the xy planes. Newton's equations of motion here correspond

10 saying that the time rate of change of the momentum density in the x direction,

~T19, is equal to the x-componest of the force on & unit volume element:
an® _dn'  dnd  dne

- = | 13.43

cdt dx * &y N dz ¢ )
which is precisely the x-component of Hq. (13.33}. For this particular field T
can be ideniified as the elements of the three-dimensional swress tensor, hence the
erigin of the pame “stress-energy tensor” for 7.

|
2
Ui T
&

i) Tlx+dey
[ e B iy
3 ///
i Tty 3~ 109
Iy = P Rty
-
-~
-~
-~
dx

z

FEGURE 13.3  Force in x direction on a volume slement dx dy 4z of an elastic solid.
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By considerations of a continuous mechanical system, we have thus been able
te attach physical idemtifications, or associations, to each of the components of
the stress-energy tensor, Thus, the components are

° field energy density divided by ¢,

To, with componenis Ty’ field energy current density,

- field momentam density, ith component,

— T}, with components 7;°  curment density for the ith component of the field
momentim density,

T three-dimensional stress ensor

where, as we saw discussed following Eqs. {13.33) and (13.38}, 7 and 7; form
4-space vectors each of which is conserved and thus identified, in analogy with
the charge-cumrent vector of electromagnetic theory as a “d-current™. All such
conserved objects are called currents in field theory.

e almost al} cases the three-dimensional wensor T is symmerwdc. This is pot
only physically desirable, bur almoss pecessarily a characteristic for the spatial
portion of the stress-energy wensor.

Tt must be remembered that zithough the example of mechanical systems gave
birth to the procedures and nomenclawre, the formatism can be applied to any
field irrespective of its nature or otigin. A classicat theory of fields can be con-
structed not only for vibrations of an efastic solid, but algo for the elecrromagnetic
field, for the “field” of the Schrisdinger wave function, or for the refativistic field
describing a “scalar™ meson, among others. We shali examine some of these ex-
amples in more detail larer on.

Recalling the klemtifieation of R, the conservation eguations, Eq. (13.35), say
that for a closed nominteracting system the total linear momentum of the field is
conserved. We would expect no less, But there should be a coresponding con-
servation theorem for the total angular momentam of the field, ¥ is simple 1o
construct & quantity thar should act a8 an angular momentuin density. Since angu-
far momennum 13 an axial vector, We expect that the components of the angalar
momentam density are the clements of an antisymmetric tensor of the second
rank. A switable form for this tensor is

M e g TI0 g2, (1344
with the total angular momentum of the field given by
MY = f MY av. (13.45)

In as mwch as ¢ and &/ are completely independent variables, the time rate of
change of M7 33

ami A gy
= e AR - L N 13.46
dr f (x T d ¢ 4
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or, from the continuity conditons, Eqgs. (13.32),

dni LT it
= I Sy AT 13
= f (x Pt ) dv (1347

Integration by parts converts this expression to

4

am’ _ —f 2 it -l Ty ay +[(Tff' - Ty V. (13.48)
dr dxt

The first integral on the right is in the form of a volume integral of a divergence.

it i3 therefore equal to an integral over the bounding surface, which vanishes for a

cloged nonradiating system. Finally, if T = T, the second integral is also zero.

Thus, the total angular momentum of the feld is conserved if T is symmestic.

If the stress tensor is not symmetric, we can often make use of the ambiguity
ie defiving the stress tensor to restore this symmetry. Just as for the Lagrangian,
the form of the siress-energy tensor, Eq. (13.30), was chosen to satisfy diver-
gence conditions (cf. Eq. (13.29)), Therefore T,V i3 indeterminate by any func-
tion whose d-divergence vanishes. Usually it is possible to find such & guantity io
“symmetrize” the siTess-energy tensor.

HAMILTONIAN FORMULATION

It is possible to obtain a Hamittoniar formulation for systems with a continuous
set of coordinates much as was done in Chapter 8 for discrete systems. To indicate
the method of approach, we return briefiy to the lisear chain of mass points dis-
cussed in Section 13.1. Conjugate to each field component, r;., thers is 2 canonical
momErum
78 aL;
P Foe a p {13.49)

The Hamiltonian for the system is therefore
. aly
H= —L =g~ L,
2] @ 8 f L
or
aL;
Hz=g («-—_—iﬁ, - L.-) . (13.50)
B
it wiil be rememibered that in the limit of the continuous rod, when @ goes 16 zero,
Li = £ and the snmmation in Bg. (13.50) becomes an integral:

H:fa‘x (%‘gﬁ——g), (1355
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The individual canonical momenta p;, as given by Eg. (£3.49), vanish in the con-
tinuous fimit, but we can define a momentum density, 1, that remains finite:
i aL
L e =22 (13.52)
a—0 @ Lol
Hquazion (13.531) is in the form of a space integral ever a Hamiltonlan density, H.
defined by

Hom gL, (13.53)

While a Hamilionian formulation can thiss be introduced in 2 straightforward
manner for classical fields. note that the procedure singles cut the time variable
for special meatment, 1t is therefore in contzast to the development we have given
for the Lagrangias {fermwlation where the independem variables of time and space
were handled symumetricaily. For this reason the Hamiltorian approach, at least as
mtroduced here, tends itself Jess easily (o incorporation in & relativistically covari-
ant description of fields. The Hamiltonian way of looking at fields has therefore
not proved as usefuf as the Lagrangian method, and a rather brief description
should suffice here.

The obvious rome for generalizing to a three-dimensional field described by
field quantities 7, is to define, analogously to Bq, (13.52), the canonical momen-
e densities

Py = EE- (13.54)
il

The guantities ny (', 1), 7P (x', 1) together define the infinit ional phase
space describing the classical field and its time development. A conservation the-
orerst ¢can be found for m, that is roughly similar to that for the canonical momen-
v in diserete systoms. If a given field quantity n, is cyclic in the sense that £
does not contain r, explicitly (a5 in the case of Eq. {13.10}), then the Lagrange
ficid equation looks like an existence statement for & conserved current:

d aL

Y 13.58
dxi dng (135%
or
dr? d L
P e = 0. 13,
o + o [ (13,563

it follows that if n® Is cyclic, there is an integral conserved quantity
117 o /dV:lr“’(x', .

The obvious genersiization of Eq. (13.53) for a Hamiltonian density is

Hin® e, Mo ¥y = 7% = £, (1357
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where it is assumed that functional dependence upon 4, can be eliminated by
inversion of the defining equations {13,49). From shis definition it follows that

P e Y (13.58)

by Hq. (13.51). The other half of the canonical field eguation is more cumbersome.
When expressed in terims of the canonical variables, H is a fanction of i, through
the explicit dependence of £, and through 7. Hence,

BH a0 B8 8L BL (13.59)

, anp S dn, B, 3’?.0.

Using the Lagrange equations, this can be writien

B'hfmmmt“fm ar m..M'.DAd aL
By (anp,u)““ § dx*‘(anp.s)‘ (360

Because of the appearance of £, we stili do sot have 2 useful form. By an exactly
parallel derivation, however, we find that

a . .
Mo Jle  BL O AL AL a36n
M. dmoi BBy Bnpy i
Henge, we can wrile as the second balf of the canonical equations
M d [ @M
e — = —5f, 13.62,
e (o) = a6z

Equations €13.58) and (13.62} can be put iz a notation more closedy approaching
Hamilton's eguations for a discrete systern by introducing the nosion of & fime-
tional derivative defined as

3.8 4.3 (1363}

Since H is not a fanction ofn"’fr-, Eqgs. (13.58) and {13.62) can be written as

&M IH
g = ——, #°=——x, 13.64
o T kL [ { }
Note that in the same symbelism the Lagrange equations, Eqs. (13.23), take the
form
3 E
4 —‘C— ——£=D. (13.65}
dr \ 8, dnp
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About the only advantage of the functional derivative, howeves, is that of the
resultant similarity with discrete system. [t suppresses, on the other hand, the
paraliel weaument of time and space variables.

There is 4 way & teeat classical fields that provides almost all of the Hamilto-
nian f {ation of discrate hanics. The main idea behind this treatment is to
replace e contiftvous space variable or index by a denumerable discrete index,
We can see how to do this by referring again to the longitudinal escijlations of
the elastic rod. Let us suppose the rod is of finite fength L = x* — x!, The re-
quirement that n vanish at the extresnitics is 4 boundary condition that could be
achieved physically by placing the rod between two perfectly rigid walls. Then
the amplitude of oscillation can be represented by a Fourier series:

X | 2mmix —x1)
nlx) = ﬂ;}qn s e, (13.66)

Instead of the continuous index x, we have the discrete index n. We are altowed to
use this representation for g3l x oaly when 5{x) is 3 well-behaved function, which
most physical field guantities are.

For simplicity in illustrating how the scheme may be carried out, it will be as-
sumed that only one real fizid quantity, », can be expanded in a three-dimensionat
Fourier series of the form

{ ~
PET) = e D g, (13.67)
k

Here k is a wave vector that can take on only discrete magnitudes and directions,
such ihat only an integral (or sometimes, hai-integral} nuzmber of wavelengihs fic
into & given Hincar disession, We say that k has a discrere spectram. The scalar
index k stands for some ordering of the set of integer indices used 1 denumer-
ate the discrete values of K, and V is the volume of the system, appearing in a
normalization factor. Because 7 is real, we must have g == g4

The orthogonality of the exponentials over the volume can be stated as the
refation

1 s
v f RN gy s {13.68)

In effect, the aflowed values of k are those for which the condition (13.68) is
satishied (as can be seen by looking at the one-dimensional Fourder series). It
follows that the coefficients of expansion, gy (1), are given by

a) = iz [ et nav. (13.69)

I similar fashion, the canonical momentim density can be expanded as
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1 ‘
T4 = i ?p;‘(:)e""'k", (13.70)

again with pf = p.;. Correspondingly, the expansion cocfficients, py{r), are to
be found from

prlt) = ;-i.ﬁ [e*""z:(r, BdV. (13,711

Tre & sense we have alisost come fill circle. We began this chapter with a dis-
crete system employing a denwroerable nurber of generalized coordinates, By
then going to the Limit of a continnous set of varisbles, we were abie to treat
continezous systems. Finally, we have introduced a description of the continuous
system in terins of & denumerable, disorete set of coordinates that obey the same
type of mechanics as the discrete system we started with. Because of the formal
cosrespondence with the variables of discrete systerns, the g and p; guantities
are the obvious candidates for guantization when we go from classical to quantem
field theory. ndeed, the g, correspond to what are spoken of as the “occupation
nurabers” for the fiadd.

‘We could describe the fied in terms of discrete coordinates becavse the finite
size of the system, and the boundary conditions, permitted a discrete Fourter ex-
pansion. Equivalently, we can say that the expansion is made over a discrete spec~
trum: of plans waves. Since the wave vector K is in quastum mechanics directly
proportional to the momentum of the particle associated with the plane wave, the
expeasions used here are often spoken of as the momentum representation. We

TABLE £3,1 Comparison of Minkowski 4-dimensional spacetime and symplectic
structure {after Misner, Thome & Wheeler, Gravitation, Son Franeisco: Freeman, 1973)

Hamiltonian Minkowski spacetisne
Comparison iem symplectic structure. smetric structure
Canonical coordinates L9t mp o X, 2
b6 o oot @ -t R
Canonicat stracture B s dpy A dg' - dpg A dg? ~dy @ dy - dz @ dz
Nature of “meiric™ aptisyrinetric symmetric
Name for “metric™ canonically (or dynamically)
sirsere conjugate coordinates Lorentz coordinates
Field equations. V@ = O satisfied automatically ~ Kngyps = 0: flat spacetime
4-dirpensional
manifold phase space spicetime

Coordinate free
description V& =0 Riemarn = 0
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#eed not be restricted to plane wave expansions, A denumerable set of coordi~
nates can be found whenever the fieid fancions can be expanded in terms of a
discrate set of orthonormal eigenfunctioss.

One final comment. The Hamiitontan or symplectic stzacture can be expressed
in tensor notation. Table 13.1 compares the metric structure of 4-dimensional
Minkowski spacetime with the symplectic structure of @ Hamilionian with co-
ordinates g, g%, p1, and py.

3.5 W RELATIVISTIC FIELD THEORY

We saw in Chapter 7 that there is considerable difficulty in constructing relativis-
ticaliy covariant Lagrangian and Hamiltonian descriptions of particle mechanics.
Part of the problem can be traced to the separate roles played by space and time
eoordinates. For point particies, the space coordinates ate mechsaical variables
while time is a monotonic parameter. But in classical field theory there is a nat~
ural similarity in handiing space and time coordinates. They are all parameters,
together defining a point in the spacetime continuum at which the field variables
are 16 be ok ined. Whike the four-gi tonal spacetime system has been used
56 far only for reasons of potationa] simplicity, the easy and natural way it its inte
the formulation suggests that a relativistically covasiant description is quite fea-
sible for classical fields. Indeed, ondy refatively migior tinkering has to be dene
to the formulation already presented so that it can handle relativistic fields in a
manner that is manifesdy Lorentz covariant.

Three points reguire specific attention: {1} the nature {and metric) of the four-
dimensional space used; (2) the Lorentz iransformation properties of the field
quantities, Lagrangian densities, and related functions; and (3} the covariant de-
seription of the limits of integration. The simple Cartesian, 4-space with coordi-
nates ¢, x, ¥, 2 that we have implicitly used so far in this chapter is not conve-
nient for exhibiting Lorentz invariance, We will use the sotation and conventions
adopted in Chapeer 7 as well as the results of that chapter. Accordingly, the Greek
ietier indices will still num from 9 to 3, with x° = ¢z, Note that the Lagrange
equations (13.23) are unaffected by this change. Indeed, the term

d 2L )
dx¥ (H’?p‘ ¥
remains unaltered by a scale change of any of the x¥, and the other term in the
Lagrange equation does not involve the coordinates at ali. Farther, the change in
space does not affect the formulation of Hamilton’s principle in Eq. (13.20), since
it only introduces a multiplicative constant.

Al of the quantities related to the field and associated equations must now have
some definite Lorentz covariant properties. The field quantities must therefors
consist of 4-tensors of some given rank---scalar, 4-vector, and so oz. In principle,
7 Nieed tiot be restricted to any one of these categories but may stand for a set of
such, for example, two scalars. The Lagrangian and Hamiltonian densities must
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aisa be covariant. in Hamilton's principle, the volume slement (dx") of 4-space is
invariant under Lorentz transformation. Since we usually think of the action f as a
scalar, this means that the Lagrangian density {and therefore 7) shoutd be scalars.
That is to say, they must be fanctions of the field quantities (possibly along with
external covariant guantities) in sach manner as to form scalars under Loreniz
ransformnations. Tt then foliows that the stress-energy tensor Ty, 48 defined by
Eg. (13.30) is autoratically a 4-tensor of the second rank. The change in the 4+
space however means that the componests of T, may be altered in value,

In tensor notation, the siress-gnergy fensoz, T, is a linear, symmetsic “func-
tional” with stots for twe vectors. It has the following properties:

L. If we insert the 4-velocity x of the cbserver into one of the slots and leave
the other siot empty, the output is

. di
T, . . 3=TL. . )= — (dcnsuy of 4-momentuns, %) (13.72)
The right-hand side is the negative of the 4-momentum per unit throe-
dimensional volume as measured in the observer's frame at the event where

¥ is measured. In component notation,

A
Tpu® = Tpuf = — (E;:“F) (1373)

2. Tf we insert the 4-velocity 4 of the observer into one of the slots and an
erbitrary unit vector n into the other siot, the output is
ap

T(u, w) = LU —{ms — 1374

(i, 1) = Tim, u} (n dV) { )

The right-band side is the negative of the component of the 4-momenmm
desisity along the  direction. In component notation

dpt
TV
. 3 we insert the 4-velocity of the observer into both slots, the oistput is

Tugin® = Taaii®n® = (13.75}

2

T'{u, ) = (mass energy per ynit volume) (13.76)
as measured in the frame with 4-velocity u.
In componest notation,
dp*

Toptt®uf o= TpguPu® = u#wj-;-}-, (13.75)

4. I we pick 2 frame and insert two spacelike basis vectors ¢; and & in that
frame, the output is
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Tie == Ty == Tley, o) = Tlew, @}

= i-component of force acting from side x* — § to side x* + § across
a unit surface area parpendicular to direction ¢

= k-component of force acting from side x* — 3 1o side x' + 8 across
a unit surface area perpendicolar 40 direction ¢ {1397

For example, if we assume the Lorentz wansformations apply and consider a
perfect fluid moving with a 4-velocity «, which may vary in spacetime, we can
describe the flaid in terms of its mass density, 5, and an isotropic pressure, p, both
in the rest frame of the fiuid element. The sivess-energy tensar is given by

T=p+tpm@utpg {(13.78)
or in component form
Tup == (0 + Phiaitp + PBag- (13.79)

Tnsert the 4-velocity into one slot giving

TP = [{p 4 pyuug + p8ghuP = pu®. {13.80)
1z the rest frame of the fluid, this becomes
T%%uf = pe (13.81)
and
i g dpt N
Tlput = Fik momentum density = 0, {I3.82)

where the last equality follows from the cheice of the rest frame. Finally
T = Tlei, ex) = pline. {13.83)
The Lagrangian density is of course unceriain to a multiplicative constant fac-
tor. It is customary to choose the factor such that Yoy (or its symmetrized form)

directly represents the energy density in the field. In the chosen 4-space the quan-
tities R, Eq. (13.34), are now defined as

Ry = frﬂ"dv, {13.84)

Lat us consider a velated set P* defined as
PH ER“. (13.85)

c

It follows tbcn, from Egs. (13.72) to {13.76) and the interpretation given above for
Tio, that P! represents the components of the total linear momentum of the field,
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and PO is B/c, where £ is the wotad eniergy i the freld, This suggests that we can
interpret P as the 4-momentun of the field. However, we still bave 1o show that
R¥ and P* wansform ke 4-vectors under a Lorentz transformation. To prove this
properiy, we shall examine what is meant by an integration over three-space in a
covariant formuiation and indeed how the integration limits are to be treated in
general.

The first instance where the covariance of the limits of integration may be
questioned is in Hamilton’s principte. In £q. {13.20), the integral appears man-
ifestly covariant, bat the limits of integration derived from Eq. (13.12) are not.
The spatial integration is over some fixed volume in three-space followed by an
integration over time between #; and ;. But an integration over V for fixed 1 is
not a covariant concept, for simaltansity {“constant time™} s not preserved under
Lorentz ransformation. A suitable covariant description is to say the integration is
conductzd over a hypersurface of three diensions that is spacelike, By a space-
like surface, we mean one in which all 4-vectors lying io &t are spacelike, The
vectors normal to such a surface are timetike. Now, any vector connecting rwo
points on a surface of constant time is centainly spaceiike, for its x%-component
vanishes, Hetice, & surface at constant time is a particular example of a spacefike
surface. But such a surface retains its character in all Lorentz frames, because the
spacelike or timelike quality of 4 vector is ot affocted by the Lorentz ansfor-
mation. in a stmilar fashion, what is in one frame an integration over ¢ at a fixed
point can be described covarizntly as an integration over 4 timelike surface. With
a system of one dimension (in physical space), the integration in Hamilton's prin-
ciple as given in Eq. (13.12) is over the rectangle shown in Fig. 13.4. A Lorentz
eransformation is a rotation in Minkowski space, and the sides of the rectangle
will ot be parailel to the axes in the transformed space. But we can describe
the integration in all Lorentz frames as being over a region in 4-space containad
berween two spacelike hyperswrfaces and boumded by intersecting timelike sur-
faces.

y »
i
\ i
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\\ ///'
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FIGURE 134 Regions of integration in Hamilton's principle for a systom extending in
only one space dimension,
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‘The appropriate covariant description of integral quantities suchk as ¥ is then
given as

pred f T, d5¥, (13.86)
¢y

where the imtegration is over a region on a spacelike hypersurface for which the
1-form elesnents of surface, in the direction of the surface notmal, are 45" (a gra-
dient), As T js a 4-tensor of the secotid rank, it is obviows that P# 5o defined
{8 2 d-vecior. But sow we can show that the components of P# given by {13.86)
rethice lo a volume integral in ordinary three-space, providing X is divergence-
less, that is, satisfies Bg. (13.29). Imagine a region in 4-space defined by three
surfaces: §; and §; that are spacelike, and §3 that is timelike (cf. Fig, 13.5). By
& four-di ional divergence th a volume integral of a divergence can be
replaced by a surface integral:

v
f 47 (dx®y = f ™ ds,, {£3.87)
¥y dx” 450

where di? is the invariant 4-volume, +/T#lcdrdx dy dz. The mtegration over §3
comresponds to an integration aver  at constant r. By allowing the volume to
expand sufficiently, the integral over this surface will involve r cutside the system,
where all field quantities vanish. B of the i diver tess property
of T#¥, the integral on the left-band side also vanishes. Thesefore, if the nommals
1o the spacelike surfaces are taken in the same sense,

[ T”"dSv=f T#'dS,. {£3.88)
L 52

If Sy is any arbitrary spacelike surface, and §; is a particutar surface for which
%%, err, is constant, then by Eq. (13.88),

f T+ 38, =fT"°dV. {13.89)
$i

¥

X

FIGURE 3.5 Schematic integration volume in 4-space
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The 4-vector wransformation property of the left-hand side is obvious; hence,
the right-band side, ie., R¥ acoording to Eq. {(13.84), also transforms as a 4-
vector. Forther, if botk Sy and Sz ace sarfaces at constant ¢, say 1 and &, respec-
tively, then By, (13.88) is equivalent 1o

R¥(ny) = R (1), (13.90)

which is thus the covariant way proving that R is conserved in time.

With some care, therefore, the conserved integral quantities can still be used
within the framework of a relativistic theory of classical fictds. We shail not ai-
ways carry through the desailed comespondence but will let & suffice in most
instances that the volume integration refers to a pisticular Lorentz frame in whick
the spacelike hypersurface is a vegion in three-space at constant ¢, For the angu-
far momentusn density, note that the covagiant analog of A7, Bg. (13.44), s &
4-tensor of third rank:

1
A Ewr"* — 2V TEhy, (13.54)

which is antisymmetric in g and ». The corresponding giobal or integral quantity
i

MAY = f MU S (1392

where the integration is over a spacelile hypersurface. I the Lorentz frame is
chosen soch that the sarface is one at constant 7, then

My [M‘“’de, (13.93}

which corresponds to the previous defnition. The rest of the argument on the
conservation of M!/ for symmetrical stress-energy tensors then can be carried out
as before by coasidering this particalar Lorentz frame. All of this follows from
Chapeer 7.

As constructed in the previous sectien, the Harsittopian formuadation sharply
distinguishes between the time coordinate and the space coordinates. This is pot
10 say that it is necessarily sonrefativistic, merety that the formuiation is not man-
ifestly covariant. We must imagine the Hamiltonian framework as constructed in
terms of the time as sesn by each particular observer. Providing the field quantities
and derived functions have suitable teansformation properties, this construction
for zach Lorentz frame s not in violation of special relariviry.

One further point needs to be made here. By allowing #, to stand for a set of
covariant field quantities, we allow for the possibility that the system consists of
two or more fields that interact with each other. The complete Lagrangian des-
sity may consist of a sum of Lagrangian densities representing the free fields pius
terms that describe the interactions between the fields. It will be remembered that
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one of the difficulties of relativistic point mechanics was the problem of consid-
ering interactions between particles thar vecessarily implied action-at-s-distance,
However, interacticns between fields can be at 4 point and, therefore, consistent
with special relativity. We can ofters ge farther snd reat the interaction between
a field and a particie at a given point in spacetime. There is thus the possibility
of considering relativistically & system coisisting of a continuous figld, a discrete
particle, and the lteraction between them. How this can be done i a specific case
will be shewn i the next section, which provides illustrations of relativistic field
theories,

13.6 B EXAMPLES OF RELAYIVISHIC HELD THEORIES
We shall consider three exampies, of increasing complexity.

A. Complex scalar field. Any complex field will be described by twe independert
parts, which can be expressed elther as the real and fmaglnary part of the field or
a3 the complex field isself and it complex conjugate. We shall follow the latter al-
wrpative, Accordingly, the Lagrangian densizy and associated fuuctions will bere
b given in terms of two independent field variables, ¢ and ¢*, each of which are
4-scatars.® For this particular example, we choose the Lagraagian density

L= 20 - uicop” (13.94)

where jzg is a constant and ¢,y = %‘%, Pt = g"”‘gf} as given in Bg. (13.17).

Notice, that as required, £ is & world scalar. Expressed in teyms of space and time
variables, £, is written as (where ¢ = 5/9r)

Lo §g* - PV Vot - i ot (13.95)

To ohtain the field equation for which 1, = ¢, note that

3L 2. L 23

m-rq&. ' W——%czﬁ (13.96)

Hence, the Lagrange-Suler ficld equation is
B " G = 0, (1397

or, in equivalent form,
d*e 2

P =0 1398
Z”j Gy (13.98)

*As shall be seen in the next ssction, complex fields lead raturally to an associated charge and curreat
density. and this is the tsin reason for thelr Tatroduction in physical theories,
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and
1d% o :
oy 3 + fgd = 0. (13.97

In termsg of the D' Alembertian (¢f, Section 7.5, the field equation can also be
written covariantly as

-~V +

CF + 1D = (V2 4+ uip = 0, (13.99)
Simnilarly, from the symumetry of £, the Beld equation obrained when 1, = ¢* is
& +ud)d” = (V¥ + uo* = 0. {13.100)

This basic field equation satisfied by both ¢ and $* is known as the Kiein-Gordon
equation and. as given here, représents the relativistic analog of the Schridinger
equation for 4 charged zero-spin pasticle of rest miass energy fo.

‘The stress-energy tensor defined by Bg. (13.30) has components

Te == O 80y 4 Y o+ PP % e g (13,108

and is clearly symmetrical. As the Lagrangian density describes a free field, with-
cut interactions with the outside werld, £ does not contain x explicitly and the
conservation theorem {13.29) holds for Ty, as can be verified directly. To in-
trodace the Hamiltonian formufation, we must distinguish between the time and
space coordinates in some particular Lorentz frame. The conjugate momenta, ac-
cording to Eq. (13.54), are then {cf. Eg. (13.95)
ﬂ:ﬁ:eﬁ‘, = 3:"_', =
3¢ dg*
#t foliows that the Hamiltonian density (which has the same magnitude as Toe)
takes the form

é. (13.102)

Hmrg 4+ atet - L,
=t 4 VG VT pilop”. (13103}

For the mioment, al! that we shail do here is illustrate the transformation te the
mo Ter jon. The expansions (13.67) and (13,70 can be introduced
into the Hamilionian density, Since the field is not real, we do nor have that
g7 = gy In effect, g; and ¢ now stand for two independent sets of discrete
coordinates, one representing ¢ and the other ¢*. The total Hamiltonian is a sam
of velume integrals over the three terms in By, {13.303). As a typical example, et
us consider

2
u%fw‘d" - “fvﬁ zqug;,ei(k"k’)-rdv, (13.104)

Lk
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which by Eq. (13.68) reduces o
st

Fhe only other term requizing any special note at all is thet involving the diver-
gences, which. imroduce a factor {ik) » {~-1k’} in the integrand. The final form for
H can be writien as

H == pepl + o qughs {13.108}
where w; is related o & through the dispersion relation
wf = etk + ud {13.106)

Each term of the summation in Eqg. (13.105} is in the form of a harmonic oscil-
lator of unir mass with frequency wg. This can be seen explicitly by evaluating
Hamilton's equations of motion. In the momentam or plane wave representations,
the fields ¢ and ¢* are thus replaced by discrete systems of harmonic osciliators,
miich in the same manner that the sound field in a solid is looked on as 4 colfection
of “phonons.” The discrete spectrum of “vibrations” of cur scalar charged fieid
3§ given by Bg. (13.106). Quantization of the field (that is, the so-called second
qusmization) is done most simply via the momentum representstion. In effgct, the
motion of each harmonic oscillator is guantized as would be done for an actaal
hartponic oscitlator, But this subject certainly lies cutside cur province.

B. The Sine-Gordon equation and associated field. ¥ the scalar field in the previ-
ous example were taken as real (that is, §* = @) and 1o exist in only one spatial
dimension, then the cbvious corresponding Lagrangian density along the model
of Bg. (13.95) would be

2 i E) 2
g:%{%ﬂm(g) -ugdal] (z.10m

(The factor of % is introduced for convenience; it clearly does not affect the form
of the equations of motion,) The associated feld equation (cf. Eq. (13.16))

¢ 1%
axd ol gt
is the one-dimensional Klein-Ciordon equation. Note that it is linear in the feld

${x, ).
We can lock upon the Lagrangian density of Eg. {13.107) as a small-eid ap-
proximation to a Lagrangian density of the form

e i) 2
L=5 [% - (?f) } ~ 23 (1 - cos ), (13.109)

= el {13.108)

3 ax
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which as the corresponding field equation

F¢ 1 9%

HET AT
Tnevitably, if perbaps frivolousty, Ea. (13.11€) has come to be known as the sine—
Gardon equation. If the Klein-ordon equation, Fq. (13.99), is reminiscent of the
harmonic oscillator, then the “potential” term in the Lagrangian equation (13.109)
recalls the potential term of the Hnear pendutam. Indeed, Eq. {13.110) has also
been called, perhaps maore approgriately, the pendulum equation.

In this one-dimsnsional wotld, the stress-energy tensor has only four compo-
nents. As x and t again do not appear explicitly in £, the elements of the tersor
satisfy conservation eguations, which are here twe in numbes. Details wili be left
to the exercises, but of particular iiterest is the energy density Tog:

= uhsing. {13.110)

Lo 2098y} 33
oo = 5 @7t 0] T+ ugell — cong), (13.:1D

which is of course the same in magritude as the Hamiltonian density
2
i
How b w2 {00 + udcH( —cosd). (13.1123
P4 3x
wherte the conjugate momentum is

X, 1) = fp. (13,113}

The momenturm representazion for the Klein-Gordon field as the sum over har-
monic oscillators means that in the one-dimensionsl case the field can be built up
#% & superposition of plane waves of the form

qrindt = Agryetir-an, (13119

where k and wy are related by the dispersion relation, ¥ {13.106), For the field
obeying the sine-Gordon equation, it is much more difficult (0 apply a momentum
representation, because of the presence of the cosg term in H. But we can stitl
solve the sine~Gordon eqaation by something resembling a traveling wave, A
solution: for ¢ iz Eq. (£3.110) that has the form of a dismurbance traveling with &
speed v, but otherwise keeping its shape, must bg a function only of v = ¢ — x/v.
In that case, Fq. {13,110} reduces to
a2 .

W—Asmcﬁ—ﬂ. {13.115)
where

;.Lgclu2

2oyt

(13.116)
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I terms of the variable 1, the equation of motion is indeed that for a simple
pendalum of finite amplitade. For very small amphinude, we know that ¢ s a
simple harinonic motlon in v with o given by Bg, (13.306) for & wave number
k = w/v independent of the amplitude. With finite amplitude, we also know
from our study of the penduluh, that while ¢ will stili be periodic, the frequency
a will also depend vpon the amplitude. That is to say, the dispersion relation wili
be amplitade dependent. This is a characteristic of cousse of nonlinear equations,
of which the sine~Gordon equation is one example. The Klein-Gordon equation
is linear, but the dispersion equatien, Eq. £13.106), is said to be nentinear; that is,
wy 18 not & linear function of k. It becomes Yinear only when g — &, reducing
the Klein-Gordon eguation the usual Hinear wave equation.

‘We can thus describe the sine-Gordon equation as being nonlinear, with a non-
tinear amplitude-dependent dispersion relation. Further exarnination seveals that
it can have solutions with properties shared by only a few other nonlinear egua-
tions. These solutions are traveling wave disturbances that can interact with each
other--pass through each other-and emerge with unchanged shape except per-
haps for a phase shift. Such sclutions are also found, for example, for the nonlinear
Korteweg-deVries equation,

P Y (13117

where o and v are constants. These sclitary waves that preserve their shape even
through interactions have been termed “solitons” and have found many applica-
tions throughout physics, from elementary particles timough sclid-state physics.
The pendulum sine-Gordon equation, for example, has been used fo describe fam-
ilies of slementary particles, and it also shows up in connection with the theory of
the fosephson junction.

C. The Electromagnetic Field * 'The formatisin and field equations for the electro-
magnetic field were developed in Section 7.5. It remains (o express these ideas in
terms of the Lagrangian formalism. If the components A# of the electromagnetic
potential are treated as the fiekd guantities, then a suitable Lagrangian density for
the electromagnetic field is

B B
ca-Befl (13.418)

To obtain the Euter-Eagrange equations, we note that

9 . 8L R aFw
gAm T GAT T TR BAL,

*Pirt of the difficulty in handling the ciecromagnetic Geld arises from the fact that the componenis A%
are pot entively independent; to be unique, they must be.connected through some gauge condition, such
85 Eq. (7.66). However, it will be sufficient for ow present purposes i we weat the pauge condition as
a “weak” constraint,
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Now, from the defining equations (.71} the derivative of F, vanishes except
when A = i, p = vand h = v, p = . Hence,

el (13.119)

ang the Buler-Lagrange equations are

dFm »
T /;“fﬂ:o (13.320)

Finally, it has atready been noted that £ for an electromagnetic field consists
of u free-field Lagrangian density plus a term describing the interaction of & con-
Gnuous charge and corrést density with the field. It is tempting to see how far
we can go toward introducing field-particle interactions, by localizing the charge
to a point. This is most gasily done by considering the physical situation in some
particular Lorentz frame, that is, as seen by a particular observer. Manifest covari~
ance is thereby abandoned, but the result stilt conforms to special refativity, as it
derives from a clearly selativistic theory. The current density is a measure of the
motion of the charges, and in any given system j is defined in serms of the charge
density p by the relation

i 0y = plr, 1)¥(r, 1)
Here v 15 the velocity “field” of the continuons charge distribution. The localiza-
tion can be carried our through the use of the well-known Dirac §-function. In

three-dimensional form, the 5-function has the property that if F(r} is any func-
tion of space, then

[a‘V s (r —s{1}) = f(8), {13.121)

where s{¢) is the spatial posilion, say, of a particle at time ¢ {so long as § is inside
the volume of integration). Thus, the spatial charge and current density corre-
sponding 10 a particle of charge g &t point s is
p=gd(r—s) (13.122
and
F=qé(r — s)vir), {13.123;

If we write £ of Bq. {13.118) as the sum of a free-field term £ and 4n interaction
term, the Lagrangian as seen in the given Lorentz frame is

L=de,Cg—depqS-é—deAvjxfa'VL'g‘»quﬂnqA-v. (13.124)
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The imteraction terms in Bq. (13.324) are exactdly the same &s those in Bq. (7.141)
for the Lagrangian of a single particle in an electromagnetic field, This suggests
that a single Lagrangian can be formed for the complete system of particle and
field that, analogous to Eg. {7.141), wouid look like

L=—md 1~32_q¢+qv.A+/dva). (13.125)

Considered as a function of the field tensor or potentials, this Lagrangian implies
the field equations; considered as a function of the particle coordinates, L leads to
the particle equations of motian. The mechanical descriptions of the contineons
field and the discrere particle have jn effect been put under one wing, expressed
in a common formalism!

An important branch of modern physics is concerned with the constiuction
of fields to represent various types of elementary particles. Of course, ail such
theories are quantum-mechanical, but many features of quantum field theories
witl have concomitant or nearly corresponding classical anafogs. Thers is Hitle
a priori physical guidance in the constraction of possible Lagrangian densities
and interaction terms for the varlous particles. Some constraint on the form of
these functions comes from covarjance limitations. For example, the erms in £
maust be combinations of Beld and other guantities in such a manner as to pro-
duce 2 d-scalar. Useally, £ is also restricted to the field quantities or their first
derivatives, althongh { agrangian densities with higher derivatives have also been
explored. Additional requirements on the form of the terms are also provided, or
suggested, by conservadon and invaciance properties, implicit in the Lagrangians.
These properties go beyond the conservation conditions contained i the stress-
energy tensor and are usually to de found by the epplication of a powerfal pro-
cedure known as Noether's theorem, which forms the subject of the next and last
section.

13.7 # NOETHER'S THEOREM

A rectrring theme throughout this text has been that symmetry properties of the
Lagrangian for Hamiltonian) imply the existence of conserved guantities, Thus,
if the Lagrangian does not contain explicitly a particular coordinate of displace-
ment, then the corresponding canonicsl momentun is conserved. The absence
of explicit dependence on the coordizate means the Lagrangian is unaffected by
a transformation that alters the value of that coordinate; it is said to be imvari-
anl, or symmetric, under the given transformation. Similarly, invatiance of the
Lagrangian under time displacement implies conservation of energy. The formal
descyiption of the connection between invarianoe or symmelty properties and con-
served quantities is contained in Neether's theoreim, it is i the d-space of classi-
cal field theory that the theorem attains its tost sophisticated and fertile form. For
that reason, explicit discussion of the theosero has been reserved for the treatment
of fields, although a discrete-system vession can also be derived.
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Symmetry under coordinate transformation refers to the effects of an infinites-
imal transformation of the form

xH o g m xt SxF, (13.126}

where the infinitesimal change éx# may be a function of ail the other x?.
Neether's theorem alse considers the effect of a transformation in the field guan-
tities themselves, which may be described by

Na{xEY = 0, (0 = a(x) + bnpixt). {13127

Here 871,(x#) measures the effect of hoth the changes in x* and iz 7, and may
be a function of all the other field quantities 1. Note thar the change in one of the
field variatles at a particular point in x# space is a different quanitity 31,

T x#) = mp(xHy 4 i (13.128)

The description of the transformations in terms of infinitesimal changes from the
antransformed quantitios indicates we are dealing only with continuons transfoi-
mations, Thus, symmeiry under inversion in three dimensions (parity symmetry)
is ot eng of the symmetries for which Noether's theorem can be applied. As a
conseguence of the trangformations of both the coordinates and the field quanti-
ties the Lagrangian appears, in general, as a different function of both the field
variables and the spacetime coordinates:

L(p ) o, (0%, 28 o LG 50w, 70, 253 (13.129)

The vession of Noether's theorem that we shali present here is not the most
general form possible, but is such as to facilitate the derivation withour sigaifi-
cantly restricting the scope of the theorem or the usefulness of the conclusions,
Three conditions will be assumed 1o hold. The frst two are

i, The 4-space is fiar; that is, either it is Euclidean, or in the form of
Eg. (71.171), B¥gye = 0.

2. The Lagrangian density displays the same functional form in terms of the
transformed quantities as it does of the origing] quantities, that is,

L ™, w0, 2%) = L, (0, 1, (), ). (33130)

This type of condition has not previously entered our discussions of con-
served guantities, mainly because i hag been automatically satisfied under the
transformations considered. When cyclic coordinstes are mansformed by dis-
placemient, the functional depend of the 1 jan on the variables is
unakered by the implied shift in origin. But in our present extended types
of tansformation, it becomes a symmetry properiy that needs smdy, Thus,
the free-field version of the Lagrangian density for the eleciomagnetic field,
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Bag. {13.118), retains its functional form whan A¥ is subject to & gauge trans-
formation, while other forms may not. Newe also that Bqo (13.130) ensures
that the equations of motion have the same form: whether expressed in terms
of the oid or the new varizbles (form invariance). The condition of forz-
invariance is not the most general circumstance under which this is true; the
original and transformed Lagrangian densities may aiso differ by a 4-divergence
without modifying the eguations of motion. Indeed, it i3 pessible to carry owr
the derivation of Moether's theorem with such an extended version of form-
nvariance because the volume integral of the 4-divergence term vanishes. But
for simplicity we shall restrict ourselves to Eq. (13.130). The third condition
15

3. The magaitude of the action integral is invariant under the transformation,
that is to say, (cf. Hamilton's principte Eq. {2.1)

I'= Lf(dx")ﬁ'{n;(x’”), rf;,‘v(x'“),x'“)
= f ) L{np et sp 670 25), (13.131)
1o

where dx* is the nvariant volume element is equal 1o /Tg] dx® dx dx® dx®
and /2] = /TABHZ)] is the square root absotute value of the determinant
of g.

Again, Fg. (13,131) represents an extension of, and inclodes, our previous
symmerty properties such as cyclic coordinates. The Lagrangian does not change
mumerically ander wrapstation of a cyclic coerdinate, nor does the value of the ac-
tion integral. Equation (13.131) will be cailed the condition of scale-invariance.
Our second and third conditions thus represemt generalizations of the symmiely of
invariance conditions that led to the existence of conserved guantities for discrete
systems,

Combiming Eqs. (13.130) and (13.131) gives the requirement

L,E(n:,{x"‘}- ), ) mfnﬁ(nﬂx“% Hoelxt), x¥ ) dxt = 0,
(13.133)
In the first integral, x™ now represents merely 4 dummy vatiable of integration
and can therefore be selabeled x#. But of course there remains # change In the
domain of integration, so the condition becomes

js;’ L (=", 1, , (23, 2#) dxt — j;zf,(r;p(x“). oo lx®), x4} dit = 0.
(13,135
The sequence of transformarions of space and of integration region is fllustrated
i Fig. 13.6 for & space of two dimensions. Equation (13.133) says that if in
the action integral over (x*} space we replace the origingt field variables by the
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x? X7 x*

o a2
2
| X 1 xrl H X

FIGURE 136 Schematic illosiration of the transformation of the invariant action inte-
gral.

transformed guantities, and transform the region of integration, then the action
integrai remains unaltered.

Undenhe infinitesimal transformations of Eqs, (13.126) and (13.127}, the firsi-
order between the | Is in Bq. {33.133) thus consists of two parts,
one being an integral over Q and the other an integral over the difference volume

- £2 An example in cne-dimension will show how the terms are to be formed.
Consider the difference of two integrals:

1231 b b
f RGUELIOTS f FOodx= f s#(r)dx
“ a

@b

bpdb
[ e vt
3

atda
- f (Fl0) +5f (x .
£

(13.134)

To first order in small quantities, the last two terms on the right can be written as

L2314 atda
[ f(x)dx—f Flxydx = 8bf(b) — daf(a).
& a

¥o this approximation. Bq. {13,134) becomes
b

bebdl b b H
f (f(x}%(?f(x))dxwf f(x)dx:f df{xydx + fix)bx
atbe @ 4 a

(13.1333

4 d
= f ['Sf(X) + E—{éxf(x})] dx
a X
(13.136}

The multidimenstonal analog of Eg. (13.335) then says that the invariance con-
dition of Hg, (13.133) takes the form
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[ eorasaxt = [ consmat = [ oo - conwnast
2 o o
+ /ﬁ(q)ﬂx“dsu =40, (13137
5

Here, £(, x*} i3 shorthand for the full functional dependence, S is the three-
dimensiopal surface of the region £ {corresponding to the end points ¢ and &
in the one-dimensional case), and 8x# is in effect the difference vector between
polnts on S and corresponding points on the transformed surface § (cf. Fig. 13.7).

Carresponding to Bq. (13.136, the last integral can be transformed by the four-
dimensional divergence theorem, so foy the invarissce condition we bave

9:de4 {{ﬁ(r}'.x“‘j«-—{l{n, x"‘}}+§;(£{n, x)&x"}}‘ (13.138)

Now, by Eq. {13.128), the difference term in the square brackets can be writien 1o
first order as

, , . aL
L{mytxty, o) M, 24) — L0 thp 2, 25) = [
7

- 3L |+
S 4 M.quw.

By

(13.13%9
The important properry of the 3 change 15 that it is a change of 1 at a fixed point
in x* space {unlike the § variation, Eq. (13.127)). Hence, it commutes with the
spatial differentiation operator; that is, the order of the guantities

§ and

d
dzv
can be interchanged. Symbolically,

3L ¢ aL din,
L4, 7Y~ L4, x#y == 8 —_— . 13.140
' ¥ -~ L, 2% pey np+aﬁp.u o { )
o
FIGURE 13.7 Thei ion regioas in two d ions ivolved in the wansformation

of the action integral.
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or, using the Lagrange field equations,

Lo’y 29y — Ly, 2 ye= ( ac 3%). (13.141}

gy

Hence, the invariance condition, Bq. £13.138), appears as

Jumis

which s a conserved current equation (cf. arguments on pg. 571).

£ is helpful however to develop the condition further by specifying the fomn
of the infinitesimal ransformation in ferms of & infinitesimal parameters €,, r =
1,2, ..., R, such that the change in x¥ and n, is lincar in the ¢

877,, 4 L5 ] =1, (13,142

Sx' = e XY, Sy =€ Wy {13,143)

The functions X} and Wy, may depend upon the other coerdinates and field vari-
shles, respectively, 5 the transformation symmetry relates to the coordinates only,
and corresponds 1o a displacement of a single coordinate x¥, then these functions
are simply

X i, WpmO 33.144)
“Thus, the transfermations contained in the form of Eq. {13.143) constitute a far

more extensive test for symmetries than we have uuged thus far. From Egs. {13.127)
and (13,128}, it follows that to first order n and 3y are related by

bnp = 511,, + 2 8x7. {13.145)
Hence,
B = €Wy — np.0 X7)- (13.146)

Substicuting Bqs. {13.343) and {13,146} in the invariance condition, By, (13.128),
we have

4 [ ac N e B0 4
f"?ﬁ[(a% g = LEU) Xz anp‘uq:,,;] =0, (13147

Since the ¢, parameters are arbiirary, there exist in analogy with Eqg. (13.142),
r congerved curremts with differential conservation theorems: (integeal of diver-
gence = ()

d 3L aL
bl — L5 v =0, N
& {(anﬁ,v"““’ “ ) x anﬁ,u‘p"’} 0 (13145
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Equations (13.348) form the main conclusion of Noether’s theorem, which
thus says that if the systein {or the Lagranpian density) has symmetry prop-
erties such that conditions (2} and (3} above hold for transformations of the
type of Eqs. (13.143), then there exist r conserved quantities.

“Fhe conservation of the stress-energy tenser is easily recovered as a special
case of Hq. (13.142). If £ dees not contain any of the x#, then it, and therefors
the action integral, will be invariant under transformations such as Eg. (13.144),
where X takes on all the values p. Equation (13.148) then reduces o

4 [f ac Nl 4 L )
LI L. P A B 13.149
dx¥ [(an,ﬂ,unp‘a £ﬁu) 8"‘] dx¥ (amw’?p,u P ¢ !

whtch is ideatical with Eqs. (13.29) with T, given by Eq. (13.30).

A large number of other symmetrics are covered by transformations of the
form of £q. (13.142}. One of the most interesting is a family of transformations
of the field variables only, catled gauge rransformations of the first kind,* such
that

Sx =0, ity = €Cphp {0 sammation or g}, {13.150)
where the ¢, are constants. If the Lagrangian density, and therefore the action in-

tegral, is nvariant under this transformation, then there is a conservation equation
of the form

da®
o =0, (13150
where
L
Y=o —mnp. (13.152
e !

Equation: {13,151} is in the form of an equation of centinulty with ®" in the rele
of a current density ;. Hence, invariance under a gauge transfermation of the first
kind leads ro the identification of a conserved current that would be appropriate
for an electric charge and current density to be associated with the field.

As an illustration, let us consider the first example of Section 13.6, the complex
scalar field. A transformation of the type

& =g, ¢V = e 13,153

corresponds in infinitesimal form to & gauge mapsformation of the first type,
Eq, (13.150), with

“The familiar gauge fon of the ic field, which adds 3 4-gradient A . © Ay,
is part of a gavge ransformation of the second kind and is not considersd here,
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It is obvious that the Lagrangian density of Bg. (13.94) is invariant under the trans-
formation (13,153). Hence, there 5 an associated current density for the Klein-
Gordon field thar can be given as

d dop*
i =ia( e 075, (13459
whick i¢ in agreement with the conventicnal quantum-mechanical current density.
Note that the entite derivation of the conserved charge current density depends
upon the fact that the field is complex. Thus. as mentioned above, a reat field does
not tead 20 a charge or current densiiy associated with the figld. To describe fields
associated with charged particles, we must use a pair of complex fields such as ¢
and ¢* for the {spin-less} Klein-Gordon particle.

Note that while Noether's theorem proves that a continuous symmetry prop-
erty of the Lagrangian density leads to a conservation condition, the converse
is not troe. There appear to be conservaion conditions that cannot correspond
to any symmetry property. The most prominent examples at the moment aze the
fields that have soliton solutions, for exampie, are described by the sine-Gordon
equation or the Korteweg-deVries equation.

Consider, for example, the Lagrangian density for the sine~Gordon equation,
Bq. (13.107). As x and ¢ do not appear explicitly, the Lagrangian density is invari-
ant under translations of space and time in the marmer fulfilling the conditions of
Noether’s theorem. In addition, there is a symmetry ander & Lorentz transforma-
tion (in x, r space}. No other symmetry is apparent. We would therefore expect no
mare than three conserved quantities from the application of Nosther's theorem.,
Yet it has been demonstrazed, by methods lying outside the Lagrangian descrip-
tion of figlds, that there exists an infinite number of conserved quantities. That is
to say, an infinite number of distinci functions F; and G, that are polynomials of
¢, and derivatives can be found for which

dF;  dbi
3T, 13.155
dt + dx ¢ ’

so that the volume integrals of the F; are constamt in time. 3t appears that the
presence of such an infinite set of conserved quantities is a necessary condition in
order for the field to deseribe solitons.

Finally, we can easity deduce the version of Noether’s theorem that should
apply to discrete systems. Here the four coordinates of spacetime are no longer
parametric variables on equal footing--the space coordinates revert 1 their sta-
tus as mechanical variables {or functions thereof), and only time remaing o fifl
the sole of a parameter. The action integral, instead of being 2 four-dimensional

voluene integral,
I= f Lad*,
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is a one-dimensional integeal in £ 48 in B, (2.1) which is Hamilton’s principle:

f:dez.

Instead of the continuousty indexed feld varables ny{x"), we have the discrete
generatized coordinates gx{f). It is straightforward enough to recapitplae with
these translations the steps that led Lo Noether's theorem. We ¢ould repeat in this
manner the arguments contained in Egs. (13.126) through (13,148) as applied 10
discrete systems. But the effect of the conversion is sufficiently obvious and clear,
that we can readily see the translation need be done directly only on e final
result, By, (13.148).
The rules for the lation can be ized as

L L,
xHtorx¥ -,
Bp > ks
Now = G- (13.156)
Further, al! sums over 4-valued Greek indices reduce to one term, in £, As a result,

the transformations, Eq. (13.143}. under which the Lagrangian is fo exhibit form
and scale invariance become

Bt e Xy, Bgp = €W (13157

Equation {13.148}, the statement of the conservation theorems resulting from the
invariance, now becomes

d 8L al
=L)X g | = 0. 13.158
) [(Bq‘kﬁ ) e rk] ( )

Exquation (13,158) is the t of the tusions of Neether's theorem
for a discrete mechanical system.

‘The expression in the parentheses in £g. (13.158} is our cid friend the Jacobi
integral & of Bg. (2.53), or equivalently in terms of {g, p}, the Hamilionian. In-
deed, we can recover the conservation of A by considering a transformaticn that
involves a displacement of time only:

X, =8, B = 0, {13.15%)

If the Lagrangian is not an explicit function of time, then clearly the form of the
Lagrangian and the value of the action integral are unaffected by this transfor-
mation. But Neether's theorem, Eq, (13.148), then says that as aresult there is a
conservation theorem
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d (aL
i (i) =o
which is identical with the familiar coaclusion of Section 2.6,

Let us suppose further that a particular coordinate g is cyelie, Then the La-
grangian ard the action are invariant under a transformation for which

X, =0, Wy = dgdy (13.160)

and By, {13.158) knmediately implies the single conservation statement
4(2L) -0,
de X Bqy

1 =0,

or

50 the canonical momentus is conserved. Thus, the theorems on the conservation
both of Facobi’s integral and of te g fized uin conjugate to a cyelic
coordinate ar¢ subsumed undes Noether's thecrem as stated in Eq, (13.158).

The connection between symmetry properties of a mechanical system and con-
served quantities has ran as a thread throughout formudations of mechanics as
presented hers. Having come full circle, as it were, and rederived by sophisticated
techniques symmetry theorems found in the first chapters, i seems an sppropriste
point at which to end our discussions.

EXERCISES

L. {a} The uansverse vibrations of a stretched string can be approximated by a discreie
system consisting of equally spaced mass poinss located 05 & weightless string.
Show that if the spacing is atfowed 10 go 1o zero, the Lagrangian approuches the

timit
I 2 5py?
Lﬂéf?:,uq —T(ﬂ dx
for the continuous string, where T is the fixed tension. What is the equation of
motion if the density 4 §s a function of position?

{b) Obtain the Lagrangian for the continuous siing by finding the kinetic and po-
tential energles corresponding to transverse motien. The potential energy cun be
cheained from the work done by the tension force in suetching the string in the
course of the transverse vibration.

2. {a) Describe the field of sound vibrations in a gas in the Hamiltonian formalism and
obtain the comesponding Hamilton eqsations of motion.

) G tizing the ion 0 & vector field, express the HamiTsonian
for the acoustic modes of 4 gas in the momentum represtatation.
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3. Obain Hamilten's equattons of motion for 4 continuous system from the modified
Hamillon's principle, following the procedure of Section 8 5,

4. Show that if ¢ and ¢ are taken as twe independent field variables, the Lagrangian
density

I k , )
PR N | A e { Tl g™
£ i LAME AR A il Al & 0]
leads to the Schridinger eqguation

ik 8;!:
e

und its complex conjugate. What are the canonical smomenta? Obtain the Haniltonian
density comesponding to £,

Show that

W

Qmﬁf ML
poe

is a constant of the motion if the Hamiltonian density is not an explicit function of
position. The quantity G; can be identified as the total linear momentum of the field
along the xf disection. The similarity of this theorem with the usual conservation
theorem for linear momentum of discrete systems should be obyious.

6. () In a4-space that is not Euclidean, the ' Alembertian s defined as
2
22 v 7
O = ¥ g e
& Gaig

Hers ¢"¥ i3 the contravariant metric tensor, which In the flat space of special
rejativizy i5 indeed the same as g, . For the mekic tensor of trace 42 mstead of
-2 used in Bq. (7.33), find the explcit forr of the D' Alembertian so defined.

(b) A suitable Lagrangian for the charged scalar meson field in this mewic is

¢ Ge*
Ly
£‘2G e %W)

Show that one of the corresponding field equations is
(F ~pudyg = (V2 — phig = 0.

Shew also that in Hght of part {a) this equation is acrually ideatical with

Eq. (13.99).
7. To the Lagrengian density for the scalar charged meson, By. (13,94}, add the following
term {a rey the i ion with an el ic Geld:
Py
where

b= 1907 5 dae")
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=

1L,

-

12,

13

What are the field equations for ¢ and ¢*? What bappens to the conserved currents
and associated consesvation theorermns?

Suppose the Lagrangian density in Hamilton’s principle is a function of higher deriva-
tives of the field quantities
L= LUp .03 i 24,

Assuming the vanishing of the variation a2 the eénd points, what is the form of the field
equations corresponding te sech a Lagrangian density?

Consider a scalar 8eld quantity 7 that, for simplicity, is a fenction only of x and 1.
Suppose now that the Hamiltonian density is a function of higher spatial destvatives
of  and &, that is,

Ho= H A 70 B Basde
‘What are the corresponding Hamilton equations of motion?
Show that the Korteweg-deVries equation cormesporids to the field equation for a scalar
field y with Lugrangian density

1 @ v

Lo 5ate b g - 50
where the subscripss indicate derivatives with respect to the varisbles indicated, pro-
vided  is a potential function for the quantity ¢ of Bq. (33.117):

- 0
¢“§;-

Consider &« Hamiltonian density in (2, ¢) space:
M=+ fil o b ady 4 bt

Show that the Hamilton equations of motion correspend (0 a form of the Korteweg-
deVries equation, Bq. {13,117, if

1= g, 1)
oo

x :f &ix’ i dx,
00

Evaluate explicidy TJQ,’(: and T;; for the symmetrized stress-energy tensor of the free
alectromagnetic feld as given by

AgaFh By R,
4 4
What can be said about the physical meening of these compotients?

Tiv gpme = Tips = -+ Loy

In & 4-spice with metric g,y of trace -+2, evaluate explicidy the elements of the
covariant {mathernaticaily speaking) tensor Fyu of the eleciromagnetic field. Also
give the elements of the matrix with one index lifted and with two indices lified:

Fha g B B g0V,



APPENDIX

Euler Angles in Alternate
Conventions and
Cayley-Klein Parameters

The Euler angles as defined in Section 4.4 are specified by an initial rotation about
the eriginal ¢ axis tirough an angle ¢, a second Totation about the intermediate x
axis through an angle §, and a third roation about the final 2 axis through an angle
#. This sequence is here denoted as the “x convention,” refemring to the choice of
the second rotation. For the x conveation the Cayley-Kiein parzmeters in terme
of the Euler angles are

o = S

é .
cos . B = iefth-hH2 sin;

ymietoangn 8 s e o P

5 ,
Other conventions are possible, ard two in particular have foung frequent appli-
cations i particular ficlds. Formulas will be given here for properties of a general

rotation in terins of the Buter angles of thesa two alternate conventions.

¥ CONVENHON

The » convention differs from the x convention only in hat the second rotation
is about the intermediate ¥ axis. Transcription from the x to the ¥ convention
is particularty simple because § retains its meaning in both cofiventicns and the
changes for the other angfes are easily obtained. In the x convention, ¢ is the
angle between the line of nodes and the x axis; in the y convention, it is the same
angle measure to the y axis. Similarly in the x convention,  is the angle between
the line of nodes and the x” axis; while in the y convention, it is the same angle
relative to the y' axis. Temprasily using subscripts to indicate the convention used,
these relations imply the connection (cf. Fig. 4.7)

bemdyr g
Ve = 2 Ay
or
5in gy = o8 by sin ¥y = —cos ¥y
GOS8 gy = ~ sim by €08 Py = sin i, (A2Y)

501
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With this recipe we obtain the following formulas in terms of the Fuler angles in
the v convention:

Rotation matrix.

— 05 sing - cosPcosgsing  cos W oosd —cosBsingsing  sinyrsing

s rsing 4 cosfoosPens e sinyrcosg +cosdsingoesy - cosd sing
sinfcos¢ sind sing cosé

(A3Y)

The same result ¢an be obtained by noting that the exchange of y for x corre-
sponds to & wtation of the reference frames about the z axis through an angle of
~mf2 or 3 /2. We can therefore transiate the A matrix from x convention to y
convention by a simitarity transformation by the erthogonal matsix G:

0 ~1 0
G=(1 00 {A4Y)
o 01

Cayley-Kiein parameters. For this convention the Cayley-Kiein parameters are

again leading to Eq. (A.3y).

e i
m:e'(%—) ccsg ﬁ:e!{ﬂfg) sing
e e [} i [
¥ = — ‘(ﬂ’ﬂ}sini §=e i(w)cos 3 {ASy}
Euler parameters. It immediately follows from the definitions of eg — ¢; it Sec-
fiom. 4.5 and Eq. (A.4y} that in the y convention the Fuler par are given
by
- ]
20 == CO8 :¢ws§ ep_mcoswllﬁs'mg
- 5 8
€] ::---sin‘f!:2 ¢sin5 e3 :sin‘p:‘pwsi‘ {A6y)

Compaonents of angular velocire. Either by dirsct vse of the ansiation equations,
{A.2y), or by following through the physical measings of the component parts of
w, we can cbtain the follewing components of w along the body axes in the y
convention:

e = P snf cos  +Feiny

Wy = quinBsin\(f +dcos

Qg == \ircosf? + 4 (ATy)
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Similarly, the components of @ along the space axes are

@y = P sing + ¥ sinfcosg
oy == 6 o8 + i sind sia (ABy}
@y = cosf + .

Finally, note that

i TR o .
cos(z)_eo_cos 5 eos g (A9y)

which is the same as Eq. (4.63) for the x convention.

xyz CONVENTION

In this convention each yotation is about & differently labeled axis. Obviously, var-
§0us sequences of rotations are still possible. It appears that most U.S. and British
aerodynamicists and pifots prefer the sequence in which the fizst rotation is the
yrw angle ¢ about a ¢ axis, the second is the pirch angle 8 abowt an intesmediary
y axis, and the third is a bank or roll engle ¢ about the final x axis (or figare axis
of the vehicle). Of the three elementary rotation matrices I3 remaing the same as

Eq. (4.43), Cappears as
cosf 0 —sng
C=¢ 0 1 L] s (8. 10xyz)

sin® 0 cos#

and B is the same as Eq. (4.44) (with ¥ in place of 8, of course}. The product
BCD gives the following formulas:

Roration matrix.
( €08 6 cos b cosdsing - 5iné )
A

sinyrsinfcosg —cosyrsing siny sin@sing +cosy cosg  cosfsinyr
cos @ sinf cos g -+ sind sind cos o sindsing — sinyrcosg  cosdeosy

(A.1lxyz)
Capley—Rlein parameters. These parameters have the fonm

o (cos Lcos - isin Lsind Yoot
a-é-(c052c032 :smzsmz I's
Byt = (cos g sin 2 + i sin %cosg)e“'“’fz. (A12xyz)
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Euler parameters. From Section 4.5 and Hgs. (A.I2xyz), if follows that the Euler
pasameters are

¢ -]
ccusa?meummsiéin:osgcovs?i~i~z;i1r1w‘iisinwz;ilrig

272 222

. 8 f
33 x.ﬁnniliccsswc:cosgzm::oslt:sinwsxirlE

2 2 2 2 2772
e;:ms%{singmsgﬁésin%cosgs‘m% (A 13xyz}
N N v 8 ¢
€3 = smzsmzcosz-l-cuszcot.zsmz.

Noze that the cosing of the total angle of rotation now has a different form from
either the x or the y convention.

Components of angular velociry, Clearly wy lies along the body x axis, e, along
the space z axis, and wy zlong the intermediate axis, and therefore in the final vz
plane. The resniting components along body axes are

ay =W - psing
ay = Hcosy + ¢oosfsiny
iy = - Sin ¥ - COS 6 cos . (A F4xyz)

Simdlardy, the components of w along the space axes are
wy == f cos b cosd — Gsing
ay = cosfuing +dcosg
w, = — rsing. (A 155y2)

‘The previous editions of tig work dealt with the Cayley-Kiein paratnesrs in
more depih,



APPENDIX

Groups and Algebras

As we have seen in abmost every chapter of this ext, invariances in the formu-
lation of classical mechanics display themselves as syroemetries in the equations
of aotion. This property is formally disengsed in Section 13.7 ag Noather's theo-
rem, Newtoniar mechanics was formulated with the explicis assumption that e
laws are invagiant under any Galilean wansformation to another inertial frame,
It the special theory of refativity, the laws are formulated to be hyvariant under
Loremz transformations between inertial frames. The general theory of relativity
is formulated to remove the restriction of using inertial frames. These and other in-
vaziances and transformation properties that we have discussed can be understood
it ferms of groups of transformations. In many cases, physicists deat extensively
with representations of groups, rather than the groups themseives. so we will put
SOme stress on representations. For examgle, the set of 3 < 3 rotation matrices
with deiermisant + i, which appear o exensively n the X1, 15 a representation,
of the special orthogonal group in three dimensions {denoted by SO(3)}. Since the
reader’s knowledge of groups may not be extensive, we will begia with basics by
defining a group and give some examples of fizite gronps. We shail then discuss
infinite groups® and representafions.

PROPERTIES OF GROUPS

A group is a set of objects called elements with a product operation and the fol-
lowing defining properties:

1. Closure—the product of twe elements equals a third element in the group.
if a and & are clements i the group, the product @b = c where cis also a
member of the group.

. Multiplication is associative—if a, &, and ¢ are group members, a(bc) =
{ab)ec.

3. The group contains a unif element, [, calied the identity with the property
hat for all elements of the group, @ = af = Ja.

. Each element @ of the group has an inverse element, o~ ! with the property
aa”teataw I

nd

&

*Muathematicians al this poitit will use a different terminology for infinite groups. We shall follow the
physicist's canvention of referring ta both finjte and infinite collections of elements as groups,

603
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TABLE B.1 Multiplication Table for the Four-Flement Cyclic Abelian Group, Cy
£ -1 i —

—1 1 - i
i i —1 ]

il I ~1 i i
! i : i -1

A proup is abelian i the multiptication operation commuies; that is, for 2l
clements @ and b of the group, ab = ba. ¥ any of the group elements fail 1o
commute, then the group 18 nongbelian. An example of a finite abelian groug is
the set of elements {3, ~1, i, —i} where 1 is the identity, and i = /<1 . This
grotp has four elements, 80 it is said to be of order # = 4. We shall use » for the
group order. This group multiplication table is shown in Table B.1.

Each group element appears once and only once in each row and in ¢ach col-
ummn of the muRiplication table. This group can be generated from one element, i,
called the generator, with the propesty

Pa-l, P=al, =1 (B.£)

so it is called 4, the cyclic group of four clements, Any cyclic growp, Cy, of
order b = n el (s has a g or A with the property that the mth
element of the group. Ay, is oflhe form.

Ay == A (B.2)
where
A e ], .3

A dikedral group, D, is a group with & = 2n members and fwo generators A
and F with the properties

A= f and Fl= 1 {B.4)

A subgroup is a collection of some of the elements of a larger group that by
themselves form a smeller growp. For exammple, In Cy as we can see from the
multiplication table, the elements 1 and — 1 form a subgroup. Two elements & and
¢ are conjugate with respect to each other if for some element of the group, a,

abat =c. (B.5)

The collection of il elements “c” conjugate to b as a runs through all the elements
of the group is called a class. Alf classes are disjoint subsets of the group with
each element belonging lo one and enty one class. For sbetian groups, such as the
one shown in Table B.1, all elements are their own ¢lass. The identity element, 1,
always belongs to a class by Hself. The class stmeture is important for nonabelian
FIoups.
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There are two groups with six elements, the cychic group Cg and the dihedral

group . The elements of Dy are usnally denoted by 7, A, B, €, I, and F. The
generator A has the property A% = 1. It generates the efement B

AL = A% = B, (B.6)
and A~ = Boand B! e A, since

AB = RA =1 ®B.7
The clement F, has the propesty #2 = ! and generates the remaining two ele-
ments € and D through multiplications of A and B. The eJements C, D and F
are their own reciprocals since Fu 02 = P2 7 that is,

=, bl= p, and  Flm P (8.8}

This is a nonabelian group since, for example, the glements A and £ do not
CORTMILE

AC=F CA=D. B.9

The group multiplication table is shown in Table B.2.
The subgroups are

subgroup | ~» 1, C
subgroup 2 > [, 2
sgbgroup 3~ I, F
subgroup 4 = I A, B.

The six elements divide into three classes,

class i [
class 2 4, B
class3 C, D, F.

TABLE B.2  The Multiplication Table for the Dihedral Group, Dy

|1 e b F
I} I A 8 | o F
A A B H | F < D
2 B ! A F ¢
C C D Foolt A &
n b F ¢+ B i A
£ F C p o4 B 1
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Note that in Table B.2 class 3 appears oniy in the upper-right and the lower-
left quadrant of the multiplication table, while classes I and 2 appear only in the
upper-feft and lower-right. This shows the representations that aze possible for Dy,

REPRESENTATIONS OF GROLIPS

A representation of a growp i3 a set of matrices that satisfies the mmltplication
table of the group.® By 4 repiesentation we mean what is more precisely called
an inequivalent irreducible representation, Iy, or & set of m x m matrices that
cannot be simultaneously decomposed into lower-order matrices. A theorem in
group theory states that the nember of irreducible representations, £, is equal to
the number of classes and the sumn of the squares of the dimensions, [, of the
irreducible representations, I'; equals the group order, k. That is,

K
S Ean, (B.10)
[£3

where h is the number of elements in the group, £ is the number of imeducible
Tepr ions, and §; is the di ion of the ith rep ion. For the group
D3, k =2 and k = 6, 50 Eq. (B.10) becomes

B4 +1 =6, (B.11)

whose only solution is §; = k4 == 1, {3 == 2. There is, as for all groups, a one-
éi ional identity rep icn, "1 in which we map each element onto +1.
Another one-dimensional representation of Dz is the set Iy = {1, —~1},where the
mapping is {J. A. B} — land {C. D, F} — —1 as can be seen from Table B.2.
The wo-di ional mateix rep ion, I's, can be given int terms of the wnit
matrix and the Pauli matrices:

T g 6 1 0 i 10
?:[0 l]’ ci:[l O:E, G’gﬁ{i O:i, 03;[0 ___1], {B.12)
with

I=1  A=-i{I-io3), B=-1{1+inVi),

c=}{(Vlo+as). D=-}(fo-m). F=o @1

Notice how the group elements in class 3 involve only o5 and o3. Thus, they
are independent of the matrices ! and g9, as is expected from the structure of the

*Mathematicians always ipean matrices when they refer fo representetions. Some Seld theorists ke
a more general mesning,
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multiplication tabte. However, since each tepreseniation has an identity efement,
there is o simple association between classes and representations.

The representation of a group can be faithfid or wnfuithfid. For a faithfal ma-
trix, representation, ¢ach element in the group is represented by & unigue matrix.
in an unfaitbfl matrix representation, more than one element in the group is rep-
resenied by the same matrix. The representations Ty and I'y of D3 are unfaithful,
while I3 is & faithfol representation. A faithful representation is an isomorphism
or 4 one-ie-one mapping of the group el¢ments onto the matrices of the represen-
tation. An unfaithful representation is a A rphism of & -t map-
ping.

We have discussed the dihedral group D3 as an abstract entity, that is, as a
set of clements that satisfy a group muitiplication table, and which has 2 two-
dimensional representation that is a set of matrices also satisfying the same rulti-
plication table. Groups also have mathematical and physical realizations in nature.
For example, the permwtation group of three sumbers {123} is a Dy group. It has
the identity (123), three twofold cycles (213}, (132}, and (321}, which correspond
with the elements C, D, and F, and two threefold cycles, (231} and (312), which
correspend o the elements A and B. A physical realization of this greup is the
symmetry operations of an equilateral triangle. The elements A and B are 120°
and 240° rotations about a centered axis perpendicular to the plane of the triangle,
and the reflection planes my, my, and m3, correspond Lo the elements C, D, and £
of the group. This is sketched in Fig. B.l. We say that the abstract group Ds, the
threefold permutation group and the invariance group of operations on the equi-
lateral triangle are isomorphisms because there is a one-to-one mapping between
their elements.

As a further example, let us consider the quaternion group, (), which is one
of the five groups of order 8 (8 clements). The muitiplication table is normally
written as shown in Tuble B.3. This group has 5 classes

Hhy Ay

kil
FIGURE B.1  Equilateral wiangle showing the three mirror planes m;.
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TABLE B3 The Multiplication Table for the Quaternion Group

I - 2 gy ¢ &7 €3 €3
I I - ey —ey R ) €1 —e3
I ~f I —ey ay —ey & —~£3 &
€} ey —ey -1 1 € ey —ey 3
—ep —ey €y i -1 —€3 €3 €2 ~€%
[ [} ~ey ey 23 -1 i <5 ]
7] gy ) €3 &3 ! -1 g} £1
€3 €3 —3 e —e3 —&3 €1 - I
—~€3 gy 3 —Ey ey ay —€ I -
Clasg § - 1
Class 2 -~ =7
Class 3 — ey
Class 4 - ey
Clasg 5 — ey

From Eg. (B.10), we have
Brdandsn+li=s
which hag the sointion

Lambeheal=1, and =2 (B.14)

For the one-di ional repr ations, afl el can be mapped into -1,
or they can be mapped info the one-dimensional representation I' = {i. ~1}
by {1, ~1 &y, —e;} — +1 and {ez, ~ez, £3, —£3} — — 1. The iwo-dimensicnal
faithful matrix representation has elements (cf. Eq. (B.12))

Fe [, «lem ], dey=ypioy, dep=gFicy, and ez = Fios.
{B.15}
Thus far we have confined our attention 2o finite groups. However, the rotations
in three-space and the Loreniz wansformations are infinite dimensionat groups
since the rofation angles and the boost velocities can take on valwes from the
<comtinoum, The set of all proper (determinant = -+1) 3 » 3 rotation makices
are a faithful representation of the special orthogonat group in three dimensions,
30¢3}. If we add the inversion operation, we include the improper rotations with
deierminant = ~1 and obtain the targer orthogonat group O(3). The group SO3)
is a subgroup of the group O¢3). The set of Lorentz rransformation matrices in
one direction constitutes a group with the O(3} a subgroup, If we allow boosts in
two directions, we have a much lasger group of inhomogeneous Lorentz. tragsfor-
mations,
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TABLE B4 The Characier Table for Dy

Dy I 20, ETa
r 1 t 1
T2 1 H -1
rs 2 -t o

The sum of the diagonat elements of 2 mawix is called the frace of the matrix.
The trace of the matrix in an irreducible representation, 1™, is cadled the character,
% of that mauix. The character of a reatsix in 2 sépresentation s determined by
the clasy; that is, all the raatrices of a representation hai comespond 16 the same
class have the same character. For the dihedral group D3, the relation between the

ciasses (' of the two-di ional rep ion, U3, is given as follows:
Class € Elements Character y;
Class 1 i +2
Clags 2 A B ~1
Chiss 3 CDF 4

For the ene-dimensional representations Iy and 5 of D3, the characters are the
same as the ene-dimensional matrices. This information can be most conveniently
expressed in a character table. For Ds, this is shown in Table B.4.

In Table B.4, the headings nCy, on the col give the number of elements
# in the class £ of that row. The characters in the first row for class 1 also
give the dimensionality of the representation. The rows of the character table are
orthogonal to each other, provided we take into account the nember of elements in
each column. For example, considering 'z and Iy, we have 1 x 24+ 2= {(Ix ~1}+
3% (~1x0) = . As an application, in quantum mechanics the I';'s can represent
energy tevels split from a parent atomic state by an electric field enviromment of
D3 symmetry.

LIE GROUPS AND ALGEBRAS

The terms Lie group ard the associated idea of Lie alpebra are used in several
chapters. A Lie group is & manifold, which is alsc a group, A manifold s a contin-
nous geometric abject; for example, Buclidean space, the spacetime of the special
thgory, and a circte of radivs I in the complex plane are all manifolds. Most of
the magifolds considered in physics are continwous manifolds.* For 2 manifotd
to be a Lie group, there must exist 4 grotp eperation (ermed maliiplication} for

*A continuous manifold is & manifold with the concept of nearmess. That is, for every point, P, in the
mantfold, thers exist other points in the manifold that sre as close 10 P & desired. As the methermati-
cians would say. for evexy point, P, in the munifold and given any & > 0, there exists another point in
the manifold that is closer 1 P than £, ro matter how small ¢,
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al pairs of points in the manifold, which is consistent with the contnnoes nature
of the manifold. Consider foar points in the manifold 4, &, ¢, and d and denote
the group operation of  and ¢ by ac. Consistent means, if « and b are close to
each other and ¢ and ¢ are also close to each other, then ac, ad, be, and bd are
ali close to each other. If we restrict cur attention to the Lie groups that physicists
are likely to encounter, there are only a few. One set of Lie group elements cor-
responds 1 rotadons in odd dimensions, for ple, the three-di icnal ro-
ratton group O(3). A second sef is the rotations in even dimensions, for example,
the Loteniz growp in 4 dimensions. Another set involves the unitary groups, for
example, SU(2), which i3 the set of 2 » 2 unitary matrices with determinant 4 1.
The final set contains the symplectic groups (See Section 9.4}, There ate also five
special finite groups.

Corresponding to the Lie groups are Lie algebras, which are flat vector spaces
with a Lie bracket or commutator defined for a set of vector fields, {r;}, which can
serve as the basis vectors of the space. These vectors satisfy

{5, 7 == 1ty ~ 1m = eyt (summation convention} {B.16)

where she ¢;;* (whick cleatly satisfy ¢,/ = —¢;;*) ae called the structure con-
stans of the algebra. All Lie algebras musst, by symmetry, satisfy the Jacobi iden-
tity

S = i nlit i e ol + (o g, 5l = 0 ®B.17

For exampie, the Pauli metrices satisfy Bgs. {B.16) and £B.17} with the structure
constants c;jk == 2i€;x, Where €5 18 the Levi-Civita density symbeol. They form
a Lie atgebra,

There is a digtinetion between the elemenis of the Lie group and the elements
of the Lie algebra. The manifold of the Lie group is not conceptually identical
with the flat vector space of the Lie algebra. The rejation between the Lie group
and the associated Lie algebra is exponentiat. The Lie algebra is the Jogarithm of
the Lie group, and conversely the Lie group is the exponential of the Lie algebra
in the following sense. Lt g, be a rsember of the Lie group, then

PR VTSN (B.18)

where 7; i a basis vector of the Lie algebra. The equal sign is interpreted as a
one-to-one uniqueness. For infinite dimensionat Lie gronps and algebras, the sum
in Eq. {B.18) is replaced by an integral and m is replaced by a contimions index.
Each quantity 6,," is the kth component (along the basis vector 1) of a vector 8,
of the algebra associated with the mih element of the Lie group. The vecior § is
said to parameterize the Lie group and the Lie sigebm.

An example of the group—algebra relationship is provided by the SU(2) rep-
resentation of the rotation group. The algebra basis vectors are the unitary Pauli
matrices Eq. (B.12) which satisfy Eq. (B.16) (cf. page 412) with the structure con-
stants given above. For a rotation through the angle & about the direction of the
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unit vector 1, we have the rotation matrix {8, n) where n is a unit vector
8
lemSAJrin-a'sing. {B.19)
z 2
‘This can be written in the form of Eq. (B.18)
Q= elt@/2mea] (B.20)

Fhis follows from the expansion of the exponential in & power series. An expan-
sion of the scalar product

B 0= ROy + ROy o+, B.21)

enables us to identify %nkf} with the parameter 8, of Fg. (B.18) and to identify
as 0. The matrices (! are a faithfl representation of SU¢Z). The use of SU{2} was
introduced into classical dynamics long before quantum mechanics was devised.
It was used because SU(Z) notation allows a finite rotation to be described in
terms of a single angle and a single direction vector (ef. Eq. (B.21)). For & more
exiended discussion, see Secion 4.5 of the 2nd edition of this text.

Anpther example of the Lie group-Lie algebra relationship is the Heisenberg
algebra whick. in one dimension, has the three elemenis x, p and I, and the three
CoOramUalors

B, pl={ = ih/2m,
& 1=0 (8.22)
{p,flom

An associated Lie subgroup comprises the infinite set of elements &7 which
transform a wavefunction |x > in the guantum-mechanical coordinate represen-
tatiom as follows:

&Py s w4 x>, (8.23)

where « is a real constant. Another Lie subgroup compnses thc % operators
which trapsform a wavefuncden [p > in the g 1 m
representation in the following manner:

&g =B p >, (B.24)

where § ig real, The overald Heasenberg Lie group is formed by group maultiplica-
tign of e corresponding subgroap el 1P with o5

For most physical thecries, there exists an action that remains unchanged in
value for certain continucus chances in the dynamical varisbles. This is used in
Chapters 1. 7, 8, 10, and 13 to derive dynamical equations of the Lagrange and
Hamiltonizn approaches. We can now see that the set of transformations of the
dynamical variables that leave the action integral unchanged form & representation
of the invariance group (often a Lie group) of that physical theory.
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CLIFFORD ALGEBRAS

‘Fhe three Panki matrices oy, their thees coniterparts iog, the 2 X 2 unit matvix | and
the matrix i together form another type of algebra called a Clifford algebra. The
towest order Clifford algebra contains the two elements ¢ and §. A higher order
Clifford algebra is formed from the 4 x 4 Dirac matrices ¥ and their products.
The ¥ can be expressed as direct products of Pauli matrices and the unit matrix |

a8 follows:
fe o _fo = 0 e
n=la 8] nela 8] »=[n 7]
i 0
e = [0 _"J B.23)

In & Pauli matrix Clifford algebra formalisra the scafar (A - B) and cross (A x B)
products combine into & single operation AB called a gecmettic product; AR =
A-B+A x B, The coordizate vector Is writtes: in the form ¢ = xo7 + you + 207,
80 the Pauli matrices act a8 basis vectors. A guantity {5, VIV, §,) defined in this
algebra, called a multivector, has one scalar component §, three vector compe-
nents Ve, ¥y, ¥, tiwee pseudovecter components from V ,, and one pseudoscalar
componeit Sp. Several examples of multivectors and multivector transformations
are:

enefgy-momentam 4-vector (0, 6p. E/c) {B.26a}
electromagnetic feld tensor 0,EcB, 0 {B.26b)
space sotstion (cos /2, 0lmsing/2, {B.26c)
special Lorentz transformation  ([{y — 117212, ~Biiy + 11727210, 03
(B.26d)
identity sransforrmation, (1,0{0,0) {B.26¢)

The first four expressions constimte various ways of cormbining the nonzer parts
of the four terms 8, V, V,, and S, in pairs. For exampie, the electromagnetic
fields B and E combine together in & multivector in which E is the vector part,
B is the psendovector part. and the scalar and psendoscalar components are 2ero.
Note that Eg. (B.26¢) reduces to (8.26e) in the limit @ = 0. In this formalism the
product of two successive individuat rotations about different axes automatically
provides the axis direction n and angle & of the equivalent single rotation, infor-
mation which carnot be readily obtained from the ustal rotation mateix produce
operation. This convenient successive rotation technique involving the use of half
angles was described in Section 4.5 of the second edition of the present text, and
is omitted in the present third edition to make room for new material. The Clifford
algebra approach was developed by Hestenes in his New Foundations for Classi-
cal Mechanics where he called it geomerric algebra {see selected bibliography).
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GROUP THEORY CLASSIFICATION OF FLEMENTARY PARTICLES

Fhe power of group theory is demonstrated by the simple unitary group SU(n)
classification schemes of elementary particles. We briefly discuss this for baryons.
A small submuitiplet containing N baryons is classified in terms of an SU(2)
representation by is {sospin number [ where

N =2 +1. B2N

For example [ = 1/2 for the neutron, proton pair n and p, and I == 1 for the
sigena triplet £, £% and £, Bach particle is labeled by its »; value, where for
2 given I the my values have integer spacings in the range ~7 < my < 7. When
the next higher unitary group SU(3) is invoked 2 new quantum number catled
strangeness, 5, 15 added, and various SU(2) submultiplets with different s values
group together in the larger irreducible representations Ty of SU(3). Bach baryon
has three quarks called up {#), down (d} and strange (s) for a total of 3 = 27
combiznations {e.g.. a proton has the uud grouping), and the SU(3) group theory
classification divides these 27 mto three irreducible representations £y, I'y and
Iip, with Iy appearing twice, and the respective dimensionalities of I'; add as
follows

Py T+ T+ M= 14+8484+10=27 (B.28)

Figure B.2 presents 2 plot of 5 versus m; for the particles of the ground siate SU(3)
octet Ty which combines four SU(2) submuitiplets: (n, p, I = 1/, (AY, [ = B),
(E, 50 T F = 1), and (87, 2% 7 = 1/2), A higher order classification of
the baryons in terms of the special unitary group STU(4) takes into account a fourth
quark ¢ cafled charm, and groups together $U(3) multiplets in terms of their total
charm values. Now there are four types of quarks, u, d, s, and ¢, corresponding

1y e L
-3 +1
2‘. Al Teo i

= 1

FIGURE B.2  Plot of sizangensss i5} on the ordinate versos isotopic spin (m;) on the
abscissa, The sixangeness ranges from —~2 to O while the isotopic spin ranges from —1 1o
+1. Horizontal lines of constant contain SU{Z) submoltipl
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fay )

FIGURE B3 Two of the 20-fold supermultiplets of the SU(4} classification of baryons.
Charm () is plotted vertically and strangeness {5} ard isotopic spin {# ;) are plotted on te
horizontal plane. (a) has the uncharmed ground-staie actet, g of Fig. B.2 at the bottom. ()
is the piot of another supermultiplet of SU(4), (See Phys. Rev., D54, Part 1, 1996, p. 160.}

10 4% = 64 baryon quark combinations, Figare B.3a shows a plot of the 20-foid
SU{4) supermuitipiet formed by horizontal groupings of SU(3} multiplets, with
each particle labeled by its quark composition. In the lowest level we find the
ground state unchanmed baryons of Fig. B.2, that is baryons which contain onty
combinations of the guarks u, d, and 5. The middie level contains singly charmed
particies, that is baryons with one ¢ and two crdinary guarks, and the upper layer
comams doubly charmed particles such as £27, with the quark content sec. Figure
B.3b shews another of the SU{4) supermultipiets.

These classification schemes are of more than academic interest because they
provide selection rules for predicting et y partiofe § ions, such as the
conservation of strangeness for strong and electremagaetic interactions, bat not
for weak interactions. Mesens, each of which contains a quark phus an antiguark,
also conform to classification schemes by the simple un#tary groups StU(n).
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principal moments, 197
properties, 195
sinlarity wansformation, 196
Inextial
foree, 5
system, definition, 7
Infinitesimal
canomical transformation, 385,
386, 396, 368, 399, 401
rotetion, 163, 166
Infrared spectroscopy, 258
Instability, 205
Integrability breakdown, 502
Integral
invatiants of Poincaré, 394
Jacobl, 61
fine, 35
variation, 44
Integrating factor, 15
Invariable plane, 202
Invariance
adiabatic, 549
condition, 564
group, 613
logistic equation, 484
Lorente, 302
Poisson bracket, 388
totation, 60
seate, 591
transiation, 60
Inversion, 156, 181
Islands
in chaos, 502, 503
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erarchy, 364, 565
varions orders, 504
Isomorphism, 0%

J-matrix, 342, 382-389, 393
Poisson bracket, 388
Fabberwocky, 207
Jacobi
determinant, 394
form of least action principle,
361
identity, 393, 398, 424, 428
integral 61, 566, 597
‘Lagrange brackets, 424
Poisson bracket, 390
matrix of cenonicel
transformation, 426
lTosephson jenction, 265, 271, 618

EAM (Kolmogorov-Acncld-
Maser) theorer, 484,
487492

Kamiltonian, 37¢

Kepler

eguation, 102, 126, 131
second law, 72
third taw, 101,470

Kepler problem, inverse square
law potential, 70--126, 347,
415

action varisbles, 471

action-angle variables, 466

closed erbits, cenditions, 89-92

cyclic coondinate, 445

equations of motion, 72-76

equivalent one body problem,
T6-T1

equivalent one dimensicnal
problem, 76-83

inverse square law, 92-96

Lie algebra, 414

motien iz e, 96

orbit equation, 8689, 96-103

perturbation, 536

Poincars map, 495, 406

seattering, 16121

spherical polar coordinates, 467

symmetry group, 414

virial theorem, 472
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Kinematics
rigid body. {34, |84
tools, 184
Kinetic energy
cilipsoid, 203
rigid body, 184
rotationat, 191
total, 9
Kinetic theory, 85, 112
Kirchiioff junction conditions, 65
Kleln-Gordon
equation, 585
figkd, 585
particle, 596
Kolmogorov-Arncid-Moser
(KAM) theorem, 484,
4R7-492
Korteweg-deVries equation, 596,

06
Kronecker delta (5;,), 138, 181,
196

Labaratory
frame, 302
system, wransformation, 306
time, 279
Lagrange
brackes, 392-364
fundamental, 393
calcules of variations, 36
equations, 16, 21~13
derivation from Hamilton's
pringiple. 44, 45
Euler equation derivation,
200
Nigizen form, 30
perturbation, 533
multipliers, 16, 67
point, 124
soturion of three body problem,
123
endetermined multiplier, 198
Lagrangian
applications, 24-2%
ventral force, 71
comserved quantities, 566
covariant, 318, 321, 322,
352
definition, 21

Subject Index

density, 564, 567, 583
continuous system, 561566
discrete system, 558560

electromagnetic fleld, 350

formulation verstis Newtonisn,

199

from Hamilton's pringiple, 44

heavy symmetrical top, 208

precession of Earth, 227

rehatlvistie, 312

rigid body, 185, 199

separable, 185

Laplace transform, 264
Laplace-RungeLenz vector,

102~-106, 131,429
Larmor

frequency, 231

precession, 38

theorem, 232

L€ circuit, 51
Least action principle, 356, 362

A-variation, 359

facobi form, 361

restrictions, 358

Legendre
polynomizl, 53
polynomial generating function,
224
wwansformation, 334, 335, 375,

Levi-Civita density, te;;) 169,
410

Liapunov exponent, 491, 319
damped pendujum, 519
dingram, 520
dimension, 52}
logistic equation, 514, 519
negative, 497
Sierpinski carpet, 519
solar system, 494

Livration, 452, 455, 460

Lie
abgebra, 171, 412415, 631-613

definition, 412

Kepler probiem, 414

Poisson bracket, 192

STICRIRe constans, 413, 612
bracket, 171

relations, 415

group, 411, 412, 611-613
subgroup, 613
Light cone, 279, 280
Lightlike, 278, 304
Limit cycle, 489
figure, 491
van der Pol equatien, 491
Line of nodes, 150, 473
Linear momentam, |
particle, 1
system of pardcles, &
totat, 6
Licuville theorem, 418421, 428,
483
Lissajous figure, 83, 258, 439,
458, 462
noncommensurate, 464
sketch, 446, 463
Ljapunov, see Liapunoy
Logistic squation, 509, 620
controf parameter, 510
Feigenbaum diagram, 510,
513-518
fourfold cycle, 510
frezations, 510
Liapunov exponent, 512, 514
seif-similarity. 514
wwofold cyele, 310
Longitude of ascending node, 474
Lorente, 282
boost, 284
condition, 207
foree, 22, 131, 237, 350
frame, 580
group, 282, 610
invariance, 302, 577
fen constraints, 282
transformation, 380-265
boost, 282
equations for of’ and ¢,
281
general matrix, 281
homogeneous, 282
izhomogensous, 282, 618
invariance, 302
puire, 284
seattering, 306
Lorenz equations, 323
Lyapunov, see Liapunov



M-matrix, 382-389, 294
MacCullagh formula, 225
Mach's principle, 324
Mugnetic

fiekd

charge particle metion, 23,

317
aniform, 409
moment, 230
rigidity, 318
Manifolé, 576, 611, 618
Mapping, 287
quadratic, 303
Mas
center of, 312
reduced, 71
weighted coordinates, 241
Mamix
addition, 145
antisymmetric, 148, 165
cofacter, 348
determinang, £39
hermitean, 412
infinitesioal element, 164
inverse, 147
J-, 342, 383389
M-, 382389, 394
mukiplication, 144
arthegonal, 147
reciprocal, 147
rectatigular, 147
skew symmetric, 148
transpose, 147
upitary, 412
Maxwell’s equations, 54, 276,
297, 350
covariant form, 298
Mean anomaly. 102
Mechanics, see Classical
mechanics
Merry-go-round, 183
Meson, 331, 616
scalar, 571, 599
Metric
Minkowski space, 287, 580
matrix, 287
tensor, 327
MeV, definition, 32
Microcanonical ensemble, 421

Subject Index

Miltion elesiron voki, definition,

k)
Meitsmum

gravitational coupiing principle,

325
surface of revolution, 48
Minkowski
coordinate, 288
foree, 299, 322
space, 278, 586
two dimensional, 287
Mixing, 516
property of chaos, 491
Mode, normal, 252
Moderator, 120
Maolecule
internal coondinates, 272
Hinear tratomic, 272
peptatomic, 272
polyatomic, 258, 259
rotation and vibration,
180
miatomic, 275
vibsating, 253, 258
Iinear polyatomic, 558
Morment
of ferce, definition, 2
of inertia, 191

about axis of rotation, 182

choice of erigin, 193
coefficients, 187
ellipsoid, 197
integral, 194
operator, 188
prritlel axes, 193, 194
Momentizn
angviar, 187, 344
canopnicsl, 55, 314
center of, 312
conjugate, 33, 335, 351
conservation, 403
densigy, 569, 573, 579
electromagnetic, 35
geveralized, 55
finear, 1, 6. 24, 344
representation, 576, 598
Monochromatic lighe, 259
Menogenic, 34
Monopole, maghenc, 131, 427
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Metion
bounded, 80, 484
chaotic, 491-493
equation, 74
hyperbolic, 313
periodic, 484
Multiplet. 615, 616
Mujtiply penodic, 438, 46}
Muitivector, 614

Mapier's miles, 476
Network, electrical, 264
Neutron scantering, 120
Newzonian
equations of motion, 199
formulation versus Lagrangian,
199
mechanical corpuscles, 132
second law. 1, 209
third baw, 5
Nielsen form of Lagrange’s
equations, 30
Ne-interaction theorem, 324,
353
Node
ascending, 472
lne of, 150,473
Noether's theorem, 344, 566, 589,
594
conditions, 390
conserved current, $94
cotiserved quantities, 418
discrete, 396, 597
staternent of, 594, 595,
397
symmelry properties. 538
Non-Euclidess, 278
Nonabelian group, 606
Noncommenssrate, 464
Norholonomic system, 45
Noninertial systerm, 175
MNormal
behavior i chaos, 513
coordinates, 250, 251
modes, 252, 256
Number theory theorem, 463
Nutation, 213
heavy syminetrical top, 209,
214
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0(3} group, 610
Oblateness
Earth. 229
Moon, 229
Qecupation mimber, 253
One disniensional problem,
eqquivalent, 76
One-form, see I-form
Operational calealus, 275
Oprics
peometric, 112
meteorojogical, 114
Qrbit
bounded. B}
chgotic, 322
cizeular, 80, £1.94
closed, 452
conditions for, 8%
commensurate, 106
degenerate, 106
elhiptic, 94. 95, 484
aquation, 99
of state, 86
integration, 93
hyperbolic, 94, 110
inclination, 474
opan, 452
oseulating, 531
parabolic, 94
phase space, 452
quasi-petiodic, 490
reflection symmetry, 87
regular, 522
satellire, 229
shape, scale, orientation, 105,
473
stable, 9G
unbournded, 79
anstable, 90
Orhiting, 113
Orthogenal.
matix, 147
aansformation, 139
Orthogenality condition, 140
Oscitlation, 238-265
ciganvalue equation, 241-249
forced, 259-265
{free vibration frequencies,
249-253

Subject Index

Josephson junction, 271

normat eoordinates, 249-253

penduhem, damped and driven,
265271

potential expansion, 238-241

principal axis wansformation,
241-249

iriatomnic molecute, 233259

Oscillator

anharmonic, $43

deuble, 486

parametnic, 508

Parabola, 81, 94, 128
Parametric resomance, 505, 508,
509
Parity, 590
Past, 279
Pavli matrices, 412,612, 614
Pendulum
damped driven, 263
double, 14
equation, 267
hysteresls, 270
periodicity, 433
pertarbation, 533
phage angle. 533
plane, 234
spherical, 83, 428
Pantatomic molecule, 272
Periapsis, 99, 108, 540, 541
Periastra, 474
Pericynthien, 99
Perigee, 474
Perthelion, 99, 100, 474, 477,
484
Marcury, 332, 338, 539
Perfod deubling, 316
Peripdic
frequency, 435
mgtion, 452, 484
libration, 432
Totation, 452
muitiply, 438
etbits of penduhum, 454
quasi, 401
Pemutation
group, 509
symbol (¢;;¢), 169, 173, 181

Perturbation, 487
action-angle variables, 541
adisbatic invariance, 349-355
degeneracy, 547, 548
fast variable, 547
first order, 530, 534, 537
Hamnilton-Jacobi equation, 543
Hamiltonian, 326
harmonic osciiiator, 529
Kepler problem, 536
n-th order, 53¢
pendulum, 533
precession
equinexes, 339
Mercury, 5338, 539
satetlite orbits, 539
second order. 534, 544
secnlar, 332, 535
stow variable, 547
sofar system, 532
theory, 229, 338, 483,
526555
quantum, 527
time dependent, 527533
examples, 333-341
time indepandent, 541549
Phase space, 333, 370, 453, 573
ellipse, 98
harmotic oscillater, 380
damped dériven, plot of, 307
uncoupled, 486, 487
Kepler problem, 98
orbits, 454
point transformation, 37¢
regular orhits, Hénon-Heiles,
502
trajectory, 354
Fhotomeson production, 304
Photon, 253
Prch angle, 154, 663
Planck's constant, 380
Poincare
integral invariants, 394
map, {or section). 494, 495
Hénor-Heiles, 499501
Kepler problem, 425
wansformation, 282
Peinsot’s consmuction, 201, 262,
206, 234



Point
inflection, 42
Lagrange, 124
saddle, 124
wansformation, 31, 370, 422
configuration space, 370
phase space, 370
twming, 78
Poisson
equation, 225
theorem, 368
Poisson bracket, 388411
angulez momesntum, 408411
applications, 396
canonically invariant, 390
conservation theorem,
#02-404
correspondence principle, 390,
398
double, 390
equation, of moiion, 396398,
407
fundamental, 389, 431
generating function, 402406
infinitesimal canonicat
transformation (1C.T.),
308405
integral invariants of Poincaré,
394
invariance, 388
Jacobi identity, 390
Jacobian determinant, 394
Lagrange bracket, 392
Lie aigebra, 392
finear and angular momentum,
413
nested, 408
perturhation theory, 532
symumatry groups, 411-418
symplectic, 388, 389
theorem, 411
Polar coondinate, 72
central force Lagrangian, 73
plane, 25
spherical, 32
Polhode, 202
Polyatomic molecule, 258, 259
linear, 358
rotation and vibration, 180

Subject Index

Potential. 4
energy, 4
equilibrium, 239
total, 11
equivalent ene dimensional,
central force, 78
generalized, 22
gradient, 10
Hénen-Yieiles, 497, 498
hole, 82
integrable, 86
Hinear restoring force, &3
power law, 86, 87
scalar, 20
velocity depeadent, 22-24
Power series, 43
Precession, 206
astronomical, 208, 228
average frequency, 217
Earth, 207, 226
equinoxes, 200, 223729
fast and skow, 219
force free motion, 207
free body, 203
heavy symmetrical top, 208
Larmor, 231
magnetic field, 230
Mercury, 332, 538, 539
orhital plane, 540
peeadoregular, 218
rogular, 218
satellie, 228
gystemn of charges, 230
Thomas, 282, 330
Principal anis transfornation,
4
Proper time, 279, 310, 321
Proton-neutron reaction, 304
Pseudoscalar, 614
Pseudotensor, 189
Pseudovector, 168, 614
Ptolemaic system, 129

2 value, 304

LQuadratic
forms, dlagenalization, 252
iterator, 509
mapping, 503

Quadrature, 75, 211
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£Juadrupole motment
gravitational, 226
Sum, 541
Quantization, 54
Quanitum
commutater, 392
corrections, 115
electrodynamics, 34
fiald thevry. 576
Hamilonian, 613
Heisenberg pletare, 408
mechanics, 111
Bohr, 466
perturbation theory, 526
seattering, 120
theory, 200
ransition from clagsical
mechanics, 76
Quark, 613
Quasi-
pericdic, 401, 496
static molion, 268
Cuatermon group, 610

Radms

gyration, 198

veetor, 73
Rainbow scattering, 114
Raman spectroscopy. 258
Randomness, 483
Rayleigh's dissipation fanction,

23

Reactance, 53
Regularity, 488
breakdown, 488
Retativity, 276328, 619
4-vector, 287
angnisr momestum,
300-312
coltisions, 300-309
electromagnetism, 297-300
force, 297-300
general, 324328, 538
Lagrangian, 312-324
metric tensor, 287, 288, 291
reduced mass, 71
spacetime, 275280
special, 265, 276-324
postulates, 277
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Representation
faithfid, 609, 613
group, 608
rreducible, 508
mementam, 576
Repulsive centrifugal barrier, 78
Residue, 469
Resonance, 260, 548
deep, 549
patatnetic, 508
shaliow, 549
trangignts, 260
vibrating system, 260
Resonant frequency of linear
tiatomic molecule, 255
Reversed effective force, 80
Reversible process, 336
Rieonomous, 13
Ricei tegyor, 327
Riemant
surfuce, 469
tensor, 326, 327
Rigid body, 11
angular momentum, 185188
definition, 134-138
degrees of freadom, 134
equations of motion, 184,
198-200
Buler
equations, 198200
theorem, 153, 156
heavy symmetrical top motion,
208-223
Kinematics, 134, 184
Lagmngian, 199
motion, 134, 155174
nutaring, 209, 214
crientation, 169
rotation, 155-~174
finite, 161-163
infinite, 163171
solving problems, 198
torque free motion, 200-223
Rigidity, 318
Roll argle, 154, 663
Rolliag
congtraing, 14
disk, 15
hoop, 30

Subject index

Rimsler equations, 523
Rotation, 141. 452, 455
active sense. 143
clockwise, 162
counterclockwise, 170
finite, 161
formuta, 162, 170
generator, 171
group, 171
infinitesirnat, 162, 163
instantansous axis, 172
kinetic energy, 191
matrix, 142
passive, 169
sense, 143
proper. 138
trace, 160
vector, 59
Routh
Kepler problem, 348
procedure, 56, 347
Routhian, 348
Rutherford
cross section, 110
scattering, 133

Sateltite
antifieial, 229
close, 229
crbiting Earth, 474
orbits, 223, 729
Sealar, 189, 293
curvawre, 327
field, 287
meson, 571
field, 399
potential, 20
product, Minkowski space, 288,
290, 291
gcate invariance, 591
transformation, 370
Scattering, 106, 305
angle, 112, 308, 309
center of inass, 116
cross section 17
deflection angle, 114
differential cross section, 107,
119
clastic, 118, 120, 306

glory, 114
inelastic, 113
laboratory coordinates, 115-121
newtron, 120
raifbow, 112
Rutherford, 111, 131
Schrivdinger equation, 54, 584, 599
Schwarzschild solution of Finsrein
field aquations. 538
Scleronomons, 13, 25
Screening, nuclens, {11
Serew
motion, 161
symmelry axis, 163
Secular
change, 531
equagtion, 157, 244
tinear riatormic molecule, 254
perturbation, 532, 535
Sei-similarity, 305, 314
fractal, §16-319
{ogistic squation, 313-315
Semiciassical approximatien, 115
Semiholonomic, 46, 48, 49
Semimajor axls, 95, 475
Samiminor axis, 101
Sensitivity to initial conditions,
491
Ssparation constant, 445
Sideviat
day, 175
yeat, 538
Sierpinski
carpet, 517519, 522
fractal dimensior, 518
sponge, 522
Sigma elementary particle, 615
Simiarity transformation, 149,
158, 189
trace, 160
Simultaneity, 380
Sine-Gordon
equation, 583
flald, 585
SO(3} group, 413, 418, 610
SO(4) group, 414
SO(n} group, 418
SOHC, 126
Solar day, 175



Soliton. 587. 596
Sound vibrations in gas, 598
Space
configaration, 34, 337
duai, 292
filling, 321
Minkowski, 278, 290
Spacelike, 278, 580
Spacetime, 278
interval, 278
Special relauvity. 276
postulates, 277
Spherical miangle, 181, 476
Spin angular momentim,
i
Spiraling. 113
Seability, 205
marginal, 403
Staeckel conditions, 446, 447
Stationary
path, 37
valoe, 35
Steady state, dynarmic, 267
Stochastic, 483
Stokes® faw, 24, 52
Strange attractor, 489, 492, 500
dimension, 521
fractal dimesnsion, 520
Hénon-Heiles, 500, 501
Strangengss, 615
Strass
energy tensor, 566, 370, 589
conservation, 595
properties, 578
symmetrize, 572, 600
tensor, 570
Strong
Iaw of sctior and reaction, 7
auclear force, 299
Structure
analogy, 54
constant, 412, 413, 612
SU2) greup, 413, 418, 612, 615,
616, 621
SU(3} group, 418,613
5U¢4) greup, 616
SU{n} group, 418, 615, 616
Subgroup, 606
Submultiplet, 615

Subject Index

Summation convention, 138, 169,
186
Superconductivity, 618
Supermultiplet, 615, 616
Susceptance, 53
Symmetry
groups, 411-418
mechanical gysiems, 411-418
properties, 60
spherical, 60, 72
Symplectic, 343, 381
approach, 339, 343
canonical transformation, 381,
382
condition, 384, 387, 422
genenating function, 394
group, 387,612
Hamilton's eguations, 343
matrix, 384
Poisson bracket, 388, 397
System
continuous, 568
discrete, 558
vaetor, 409, 410, 413

‘Tachyon, 278
Tait-Bryan angles, 154
Tardyor, 278
Taylor series, 239
poteatial expansion, 482
Temperature, definition, 35
Tensor, 186-19]
alteraating, 169
Cantesian, 189
definition, 293
first rank, 189
inertia, 191398
isotropic of rank 3, 169
metric, 286
momept of inertia, 95~-198
product. 294
propertes. 188
rank, 293
second rank, (88
slots, 203
unif, 190
wedge product, 295
zero rank. 189
‘Thermodynamics, 336
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Thomas
frequency, 285
precession, 28%, 330
‘Three body problem, 121-126,
617
Eunler solution, 122
Lagzange solution, 123
regtricted, 124, 133
Threshold energy, 302--305
Time dilation, 279
Timelike, 278
Top
Buler equations, 210
fast, 215, 223
heavy symmetrical, 200, 208,
482
with one point fixed, 208
motion, 208, 212
sleeping, 221
symmetric, 618
tippie, 221
uriform, 221
Topological dimensien, 518
Torque, 2
critical. 266
damplag, 266
gravitational, 223
pendulum, 266
“Forus, 487, 482
‘our de force, 407
frace of similarny transformation,
160
Transformation
active sense, 143
canonical, 368-421
infinitesimal, 396
resticted, 371, 382
congraence, 245, 246,
252
equation, 13
extended caponical, 371
format properties, 144
Galitean, 281
pauge, 505
genorating function, 374
identity, 146, 136, 395
improper, 151, 168
infinitesimal, 165
canonical (LT.C.), 336
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Transformation {cont.)
Lagendre, 375, 549
examples, 3715
finear, 187
Lorentz, 280
matrix, f44
alements, 140
operator, 142
omhogonal, 139159, 184
passive sense, 143
point, 31, 370, 422
principal axis, 241
proper, 151
resmricted canonical, 371, 382
rigid body rotation, 139153
scale, 370
similarity, 149, 158, 180, 189,
244
Transient, 260
Translational mode, 272
‘Tristomic molecule, 275
Triple cross product, 186
Tuming angles, 213
Twin paradox, Z8S

Ultzarelativistic, 303
ragion, 308
Undetermined spultipliess of
Eagrange, 46, 363
Unjiory matrix, 412
Unstable moment of inertia axis,
208

van der Pol
equation, 490
fimit cycle, 491

Variabie
canonical, 335

Subject index

fass, 547
slow, 547
Varlation, 334
S-type, 38. 44
A-type, 357, 359
integral, 44
line integral, 33
Vartarional
Hamiltonian, 353
prineiple, 5, 34-43, 51
Vector
dvector
energy, momentum, 295, 300,
301
phototn momentim, 304
table, 287
velocity, 286-288
addition, 163
axial, 168
eonserved, 104
covariant, 289
fisid, table, 287
first rank wensor, 189
Rux density, 569
Minkowski space, 280
polar, 167
radius., 73
raie of change, 171174
system, 469, 414, 413
tzngent, 286, 326
Velocity
additiop faw, 282
angular, 172, 187
critical, 22}
rigid body, 172
areal, 73
critical angular, 221
escape, 31

field, 588

fomr-, 286

generslized, 25, 319
Vibration

ankarmonpic, 255

foreed, 259, 264

ires, 250, 253

modes, 261
linear riztomic molecule,
253
longitudinal mods, 237
number of normal modes,
253

wansverse mode, 257
Virial

Claugius, 84, 128

theoram, §3-86, 94, 472
Virsual

displacement, 16, 20

work principle, 17
Viscosity, 51, 265

Wavefunction, 613

Weak nuclear force, 269

Weber's electrodynamics,
367

Wedge product, 295, 296

Whegtstone bridge, 65

Witten and Sander diffusion
maodel, 524

‘Wobble, Chandier, 208, 228

Work, 9

Yaw angle, 154, 603
Year, snomalistic, 131
Young's modulus, 559, 560

Zeeman effect, 232




