





ERRATA.

. 20, Ex, (ii), for ratio, OQ, kr, read ditference, Of) minus a con-
stant, kr— k.

. 28, Ex. (8), for infinite read finite. v

. 35, Ex. (5), for cosh read sinh.v

. 41, Ex. (5), for +16 read -+16y.~

. 46, Ex. (35), for F(b, t), F(a, t) read F(x, b), F(x, m).l/

. 60, last line, for all values of ¢ read £(=0.v

. 79, Ex. (9), for 4x-3y read 4x-3.y

. 87, equation (3) and previous line, for =0 read =AR. v/

. 113, lines 14, 15, 18 and 21, for 2¢ read a°~L v

pp- 126 and 130, the text assumes, what is easily proved, that a
limit does exist.

. 160, Ex. (20), for non-plane read non-developable. v

. 198, Ex. (45), for ¢® read . v

p- iii, Art. 28, BEx. (16), answer should read

i
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. iii, Art, 29, Ex. (12), jor } rewd 3§ and jor § read 3§.V
v, Ex, (3), for Be*x wread Be™® and for Hy read E. J
v, Ex. (8), for —cos reud -+ cos.V

v, Ex. (15), for Az=3 read AadV

v, Ex. (33), for ze—%% pead wx§t0%. -

. vii, Ex. (18), for +% read —3.V

. x, Bx. (18), for cos read cosh. /

. xiv, Art. 123, Ex. (7), for —tan read -+ tan./

. xv, Ex. (9), for — read +.V

. xvii, Art. 145, Ex. (4), for z reud z+2. v

. xviii, Art. 151, Bx, (5), for ixert® read —e*t2 V.
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PREFACE

“ Tug Theory of Differential Equations,” said Sophus Lie, “is the
most important branch of modern mathematics.” The subject may
be considered to occupy a central position from which different
lines of development extend in many directions. If we travel along
the purely analytical path, we are soon led to discuss Infinite Series,
Existence Theorems and the Theory of Functions. Another leads
us to the Differential Geometry of Curves and Surfaces. Between
the two lies the path first discovered by Lie, leading to continuous
groups of transformation and their geometrical interpretation.
Diverging in another direction, we are led to the study of mechanical
and electrical vibrations of all kinds and the important phenomenon
of resonance. Certain partial differential equations form the start-
ing point for the study of the conduction of heat, the transmission
of electric waves, and many other branches of physics. Physical
Chemistry, with its law of mass-action, is largely concerned with
certain differential equations.

The object of this book is to give an account of the central
parts of the subject in as simple a form as possible, suitable for
those with no previous knowledge of it, and yet at the same time
to point out the different directions in which it may be developed.
The greater part of the text and the examples in the body of it
will be found very easy. The only previous knowledge assumed is
that of the elements of the differential and integral calculus and a
little coordinate geometry. The miscellaneous examples at the end
of the various chapters are slightly harder. They contain several
theorems of minor importance, with hints that should be sufficient
to enable the student to solve them. They also contain geometrical
and physical applications, but great care has been taken to state
the questions in such a way that no knowledge of physics is required.

For instance, one question asks for a solution of a certain partial
v



vi PREFACE

differential equation in terms of certain constants and variables.
This may be regarded as a piece of pure mathematics, but it is
immediately followed by a note pointing out that the work refers
to a well-known experiment in heat, and giving the physical meaning
of the constants and variables concerned. Finally, at the end of
the book are given a set of 115 examples of much greater difficulty,
most of which are taken from university examination papers. [I
have to thank the Universities of London, Sheffield and Wales, and
the Syndics of the Cambridge University Press for their kind per-
mission in allowing me to use these.] The book covers the course
in differential equations required for the London B.Sc. Honours or
Schedule A of the Cambridge Mathematical Tripos, Part II., and
also includes some of the work required for the London M.Sc. or
Schedule B of the Mathematical Tripos. An appendix gives sugges-
tions for further reading. The number of examples, both worked
and unworked, is very large, and the answers to the unworked ones
are given at the end of the book.

A few special points may be mentioned. The graphical method
in Chapter 1. (based on the MS. kindly lent me by Dr. Brodetsky
of a paper he read before the Mathematical Association, and on a
somewhat similar paper by Prof. Takeo Wada) has not appeared
before in any text-book. The chapter dealing with numerical
integration deals with the subject rather more fully than usual.
It is chiefly devoted to the methods of Runge and Picard, but it
also gives an account of a new method due to the present writer.

The chapter on linear differential equations with constant co-
efficients avoids the unsatisfactory proofs involving *infinite con-
stants.” It also points out that the use of the operator D in finding
particular integrals requires more justification than is usually given.
The method here adopted is at first to use the operator boldly and
obtain a result, and then to verify this result by direct differentiation.

This chapter is followed immediately by one on Simple Partial
Differential Equations (based on Riemann’s ¢ Partielle Differential-
gleichungen ”). The methods given are an obvious extension of
those in the previous chapter, and they are of such great physical
importance that it seems a pity to defer them until the later portions
of the book, which is chiefly devoted to much more difficult subjects.

In the sections dealing with Lagrange’s linear partial differential
equations, two examples have been taken from M. J. M. Hill's
recent paper to illustrate his methods of obtaining special integrals.
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In dealing with solution in series, great prominence has been
given to the method of Frobenius. One chapter is devoted to the
use of the method in working actual examples. This is followed
by a much harder chapter, justifying the assumptions made and
dealing with the difficult questions of convergence involved. An
offort has been made to state very clearly and definitely where the
difficulty lies, and what are the general ideas of the somewhat
complicated proofs. It is a common experience that many students
when first faced by a long * epsilon-proof ” are so bewildered by
the details that they have very little idea of the general trend.
[ have to thank Mr. S. Pollard, B.A., of Trinity College, Cambridge,
for his valuable help with this chapter. This is the most advanced
portion of the book, and, unlike the rest of it, requires a little know-
ledge of infinite series. However, references to standard text-books
have been given for every such theorem used.

T have to thank Prof. W. P. Milne, the general editor of Bell’s
Mathematical Series, for his continual encouragement and criticism,
and my colleagues Mr. J. Marshall, M.A., B.Sc., and Miss H. M.
Browning, M.Sc., for their work in verifying the examples and
drawing the diagrams.

1 shall be very grateful for any corrections or suggestions from

those who use the book.
H. T. H. PIAGGIO.

UNIVERSITY COLLEGE, NOTTINGHAM,
February, 1920,
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HISTORICAL INTRODUCTION

TeE study of Differential Equations began very soon after the
invention of the Differential and Integral Calculus, to which it
forms a natural sequel. Newton in 1676 solved a differential
equation by the use of an infinite series, only eleven years after
his discovery of the fluxional form of the differential calculus in
1665. But these results were not published until 1693, the same
year in which a differential equation occurred for the first time in
the work of Leibniz * (whose account of the differential calculus
was published in 1684).

In the next few years progress was rapid. In 1694-97 John
Bernoulli } explained the method of “ Separating the Variables,” and
he showed how to reduce a homogeneous differential equation of
the first order to one in which the variables were separable. He
applied these methods to problems on orthogonal trajectories. He
and his brother Jacob it (after whom “ Bernoulli’s Equation ” is
named) succeeded in reducing a large number of differential equa-
tions to forms they could solve. Integrating Factors were probably
discovered by Euler (1734) and (independently of him) by Fontaine
and Clairaut, though some attribute them to Leibniz. Singular
Solutions, noticed by Leibniz (1694) and Brook Taylor (1715), are
generally associated with the name of Clairaut (1734). The geo-
metrical interpretation was given by Lagrange in 1774, but the
theory in its present form was not given until much later by Cayley
(1872) and M. J. M. Hill (1888).

The first methods of solving differential equations of the second
or higher orders with constant coefficients were due to Euler.
D’Alembert dealt with the case when the auxiliary equation had
equal roots. Some of the symbolical methods of finding the par-
ticular integral were not given until about a hundred years later
by Lobatto (1837) and Boole (1859).

The first partial differential equation to be noticed was that
giving the form of & vibrating string. This equation, which is of
the second order, was discussed by Euler and D’Alembert in 1747.
Lagrange completed the solution of this equation, and he also

* Also spelt Leibnitz. t Also spelt Bernouilli. 11 Also known as James.
v
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dealt, in a series of memoirs from 1772 to 1785, with partial dif-
ferential equations of the first order. He gave the general integral
of the linear equation, and classified the different kinds of integrals
possible when the equation is not linear.

These theories still remain in an unfinished state ; contributions
have been made recently by Chrystal (1892) and Hill (1917). Other
methods for dealing with partial differential equations of the first
order were given by Charpit (1784) and Jacobi (1836). For higher
orders the most important investigations are those of Laplace (1773),
Monge (1784), Ampére (1814), and Darboux (1870).

By about 1800 the subject of differential equations in its original
aspect, namely the solution in a form involving only a finite number
of known functions (or their integrals), was in much the same state
as it is to-day. At first mathematicians had hoped to solve every
differential equation in this way, but their efforts proved as fruitless
as those of mathematicians of an earlier date to solve the general
algebraic equation of the fifth or higher degree. The subject now
became transformed, becoming closely allied to the Theory of
Functions. Cauchy in 1823 proved that the infinite series obtained
from a differential equation was convergent, and so really did
define a function satisfying the equation. Questions of convergency
(for which Cauchy was the first to give tests) are very prominent
in all the investigations of this second period of the study of dif-
ferential equations. Unfortunately this makes the subject very
abstract and difficult for the student to grasp. In the first period
the equations were not only simpler in themselves, but were studied
in close connection with mechanics and physics, which indeed were
often the starting point of the work.

Cauchy’s investigations were continued by Briot and Bouquet
(1856), and a new method, that of “ Successive Approximations,”
was introduced by Picard (1890). Fuchs (1866) and Frobenius
(1873) have studied linear equations of the second and higher
orders with variable coefficients. Lie’s Theory of Continuous
Groups (from 1884) has revealed a unity underlying apparently
disconnected methods. Schwarz, Klein, and Goursat have made
their work easier to grasp by the introduction of graphical con-
siderations, and a recent paper by Wada (1917) has given a graphical
representation of the results of Picard and Poincaré. Runge (1895)
and others have dealt with numerical approximations.

Further historical notes will be found in appropriate places
throughout the book. For more detailed biographies, see Rouse
Ball’s Skort Hustory of Mathematics.



CHAPTER I

INTRODUCTION AND DEFINITIONS. ELIMINATION.
GRAPHICAL REPRESENTATION

1. Equations such as

d
Y By (1)
&y Ay d .
2%{+3%{+d—g»-10g=e—wsm5x, eeeeeeereeeen(2)
dy\? %__ a2y

[1 +<%> ] ——3@, ...............-....-...-..(3)

dy ot
% _ ) et iranes 4
dz ?/%(1 +$§) ( )

9 o
a—:§’=a267?§, .................................. ()

involving differential coefficients, are called Differential Equations.

2. Differential Equations arise from many problems in Algebra,
Geometry, Mechanics, Physics, and Chemistry. In various places
in this book we shall give examples of these, including applications
to elimination, tangency, curvature, envelopes, oscillations of
mechanical systems and of electric currents, bending of beams,
conduction of heat, diffusion of solvents, velocity of chemical
reactions, etc.

3. Definitions. Differential equations which involve only one
independent variable,* like (1), (2), (3), and (4), are called ordinary.

Those which involve two or more independent variables and
partial differential coefficients with respect to them, such as (5), are
called partial.

* Tn equations (1), (2), (3), (4) x is the indcpendent and y the dependent variable.
In (5) # and ¢ are the two independent variables and y the dependent.

P.D,E. A <]



2 DIFFERENTIAL EQUATIONS

An equation like (1), which involves a second differential co-
efficient, but none of higher orders, is said to be of the second order.
(4) is of the first order, (3) and (5) of the second, and (2) of the third.

The degree of an equation is the degree of the highest differential
coefficient when the equation has been made rational and integral
as far as the differential coefficients are concerned. Thus (1), (2),
(4) and (B) are of the first degree.

(3) must be squared to rationalise it. We then see that it is of
the second degree, as %Z occurs squared.

Notice that this definition of degree does not require z or ¥ to
occur rationally or integrally.

Other definitions will be introduced when they are required.

4, Formation of differential equations by elimination. The
problem of elimination will now be considered, chiefly because it
gives us an idea as to what kind of solution a differential equation
may have.

We shall give some examples of the elimination of arbitrary
constants by the formation of ordinary differential equations. Later
(Chap. IV.) we shall see that partial differential equations may be
formed by the elimination of either arbitrary constants or arbitrary
functions.

5. Examples.

(i) Consider =4 cos (pt—a), the equation of simple harmonic
motion. Let us eliminate the arbitrary constants 4 and a.

Differentiating, fl—f = —pA sin (pt — a)
4z
and _dt_a: = — p24 cos (pt — a) = — pZr.
2
Thus %= — p2x is the result required, an equation of the second

order, whose interpretation is that the acceleration varies as the distance
from the origin.
(ii) Eliminate p from the last result.

. L . &3 o0
Differentiating again, 7 it A e .
@B [dx d%x
Hence Blas p2=§t—2 z, (from the last result).
dBr dxr d*

Multiplying up, 2. B@ d?, an equation of the third order.



ELIMINATION 3

(iii) Form the differential equation of all parabolas whose axis is
the axis of .
Such a parabola must have an equation of the form
y2=4a(x—h).
Differentiating twice, we get

dy
2y% =4a,
v.e. yg—‘Z=2a,
2 2
and y;ll—;é+ <Z—Z> =0, which is of the second order.

Examples-for solution.

Eliminate the arbitrary constants from the following equations :
Y (1) y=Ae?* + Be 22, v (2) y=A cos 3z + B sin 3z.
7/ (3) y=Ae™. v (4) y=Aw+ 45

v (5) If 2%+y%=a? prove that %11: —9—0, and interpret the result
geometrically. z Y
v (6) Prove that for any straight line through the origin y =%y, and
interpret this. roa
2
J (7) Prove that for any straight line whatever g—‘Z=O. Interpret
this. z
6. To eliminate n arbitrary constants requires (in general) a differ-
ential equation of the n*® order. The reader will probably have
arrived at this conclusion already, from the examples of Art. 5.
If we differentiate n times-an equation containing » arbitrary con-
stants, we shall obtain (n +1) equations altogether, from which the
n constants can be eliminated. As the result contains an n* differ-
ential coefficient, it is of the ntt order.*

* The argument in the text is that usually given, but the advanced student
will notice some weak points in it. The statement that from any (n +1) equations
n quantities can be eliminated, whatever the nature of those equations, is too sweeping,
An exact statement of the necessary and sufficient conditions would be extremely
complicated.

Sometimes less than (n+1) equations are required. An obvious case is
y=(A + B)x, where the two arbitrary constants occur in such a way as to be
really equivalent to one. <

A less obvious case is y2=2Axy+ Bx2. This represents two straight lines
through the origin, say y=m,z and y=m,r, from each of which we easily get
g:%, of the first instead of the second order. The student should also obtain

this result by differentiating the original equation and eliminating B. This will

gve (y~z%)(y—Aw)=0.



4 DIFFERENTIAL EQUATIONS

¥. The most general solution of an ordinary differential equation of
the nt® order contains n arbitrary constants. This will probably seem
obvious from the converse theorem that in general » arbitrary con-
stants can be eliminated by a differential equation of the n™ order.
But a rigorous proof offers much difficulty.

If, however, we assume * that a differential equation has a solution
expansible in a convergent series of ascending integral powers of
, we can easily see why the arbitrary constants are # in number.
dy
85,
Assume that y =a, +ax +a29iz +.. +0 P o to infinity.
21 "n!

- 3
Consider, for example, g—xys =~ of order three.

Then, substituting in the differential equation, we get
xn3,, x2 xr1,..
@3+ 0% +a52' +.. +an( 3)' =0+ 0T g5yt +a,,(—n:m,
80 A3 =0, |
Ay =0y,
O =03 =0,
Ap=0p_o=0,_z=¢ctec.
2D x? xt 2t
Hence y=ao+a1(x+3,+ >+a2(2,+4'+6,+ )
=ay +a, sinh & +a, (cosh x — 1),
containing three arbitrary constants, @,, a; and a,.
Similar reasoning applies to the equation
dry dy d* dr-ly
et (o v o T T
In Dynamics the differential equations are usually of the second

d2y
order, e.g. T2
To get a solution without arbitrary constants we need two con-
ditions, such as the value of y and dy/d¢ when ¢ =0, giving the initial

displacement and velocity.

+p2% =0, the equation of simple harmonic motion.

8. Complete Primitive, Particular Integral Singular Solution. The
solution of a differential equation containing the full number of
arbitrary constants is called the Complete Primitive.

Any solution derived from the Complete Primitive by giving
particular values to these constants is called a Particular Integral.

* The student will see in later chapters that this assumption is not always
justifiable.
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Thus the Complete Primitive of % = %
is Yy =0, +0, sinh z +a, (cosh © - 1),
or y=c+aysinh & +a, cosh , where c=a,—ay,
or y=c+ae® +be=", where a=1(a,+a,) and b=} (a, ).

This illustrates the fact that the Complete Primitive may often
be written in several different (but really equivalent) ways.

The following are Particular Integrals :

y=4, taking c¢=4, ¢;=0,=03
y=>b5sinh , taking a, =5, ¢=0,=0;
y=6cosh z —4, taking a,=6, a;=0,c= -4
y=2+¢*-3e®, taking ¢=2, a=1,b=-3.

In most equations every solution can be derived from the Com-
plete Primitive by giving suitable values to the arbitrary constants.
However, in some exceptional cases we shall find a solution, called
a Singular Solution, that cannot be derived in this way. These will
be discussed in Chap. VL

Examples for solution.
Solve by the method of Art. 7:
dy

v =
(1) 'd—x =Y.
, a2
/@ = V.
/ (3) Show that the method fails for %= .

[log = cannot be expanded in a Maclaurin series. ]

/ (4) Verify by elimination of ¢ that y =cx +% is the Complete Primitive
ofy =x§—z +1 / %’; . Verify also that y%=4x is a solution of the differential
equation not derivable from the Complete Primitive (i.e. a Singular
Solution). Show that the Singular Solution is the envelope of the
family of lines represented by the Complete Primitive. Ilustrate by
a graph. .

9. Graphical representation. We shall now give some examples
of a method * of sketching rapidly the general form of the family of
curves representing the Complete Primitive of

W _fw, y)

* Due to Dr. S. Brodetsky and Prof. Takeo Wada.
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where f(x, y) is a function of # and y having a perfectly definite
finite value * for every pair of finite values of z and y.

The curves of the family are called the characteristics of the
equation.

. d
Ex. (i) d—z=$(?/“‘1)-
, dy dy
Here (w—y—lﬂtﬁ—(m +1)(y-1).

Now a curve has its concavity upwards when the second differential
coefficient is positive. Hence the characteristics will be concave up
above y=1, and concave down below this line. The maximum or
minimum points lie on =0, since dy/dz=0 there. The characteristics
near y=1, which is a member of the family, are flatter than those
further from it.

These considerations show us that the family is of the general form
. shown in Fig. 1.

y

M
7S RNY T
Fia. 1
Bx. (i) 3—1 =y+e”
2
Here S—Jg=g—i+e”=y+2e”.

We start by tracing the curve of maxima and minima y+e®=0,
and the curve of inflexions y+2e®=0. Consider the characteristic
through the origin. At this point both diflerential coefficients are
positive, 5o as z increases y increases also, and the curve is concave
upwards. This gives us the right-hand portion of the characteristic
marked 3 in Fig. 2. If we move to the left along this we get to the

* Thus excluding a function like y/z, which is indeterminate when =0 and
y=0’
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curve of minima. At the point of intersection the tangent is parallel to
Oz. After this we ascend again, so meeting the curve of inflexions.
After crossing this the characteristic becomes convex upwards. Tt still
ascends. Now the figure shows that if it cut the curve of minima again

/

Fia. 2.

the tangent could not be parallel to Oz, so it cannot cut it at all, but
becomes asymptotic to it. ‘
The other characteristics are of similar nature.

Examples for solution.
Sketch the characteristics of

d
) D=y1-o).
d
@ D =aty.
s d
®) d—gyc —y ot

10. Singular points. In all examples like those in the last
article, we get one characteristic, and only one, through every point

of the plane. By tracing the two curves % =0 and %%=0 we can
easily sketch the system.

If, however, f(x, y) becomes indeterminate for one or more
points (called singular points), it is often very difficult to sketch the
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system in the neighbourhood of these points. But the following
examples can be treated geometrically. In general, a complicated
analytical treatment is required.*

Ex. (i). %:g Here the’ origin is a singular point. The geo- .

metrical meaning of the equation is that the radius vector and the
tangent have the same gradient, which can only be the case for straight

Fro. 8.
lines through the origin. As the number of these is infinite, in this case
an infinite number of characteristics pass through the singular point.

. , dy = .y dy
Ex. (]l). d‘—x——g, t.e. i %— -1.

This means that the radius vector and the tangent have gradients

Fie. 4.

whose product is —1, i.e. that they are perpendicular. The char-
acteristics are therefore circles of any radius with the origin as centre.

* See a paper, “ Graphical Solution,” by Prof. Takeo Wada, Memoirs of the
College of Science, Kyoto Imperial University, Vol. IL. No. 3, July 1917.
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In this case the singular point may be regarded as a circle of zero radius,
the limiting form of the characteristics near it, but no characteristic of
finite size passes through it.

dy y—kex
Ex, (iii). i aihy
Writing dy/dz =tan y, y/z=tan 0, we get
‘ tan 0 -k

Y = ktan 0’

i.e. tany+ktan+ tan@=tan0-£,
tan 0 —tan) %
1+tanQtan,

t.e. tan(0-1)=Fk, a constant.

_The characteristics are therefore equiangular spirals, of which the
singular point (the origin) is the focus.

1.e.

F16. 5.

These three simple examples illustrate three typical cases.
Sometimes a finite number of characteristics pass through a singular

- point, but an example of this would be too complicated to give

here.*
*See Wada’s paper.
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MISCELLANEOUS EXAMPLES ON CHAPTER 1.

Eliminate the arbitrary constants from the following :
v (1) y=Ae*+ Be *+C.
v (2) y=Ae* + Be2® + Ce®,
[To eliminate 4, B, C from the four equations obtained by successive
differentiation a determinant may be used. ]

v (3) y=e*(4 cos z+ Bsin x).
s @) y=c coshi—v, (the catenary).

Find the differential equation of
v (5) All parabolas whose axes are parallel to the axis of y.
v (6) All circles of radius a.
v (7) All circles that pass through the origin.
v (8) All circles (whatever their radii or positions in the plane 20y).
[The result of Ex. 6 may be used.]
Y (9) Skow that the results of eliminating a from

dy
2y=x g T OB v (1)
dy 9
and b from y—x%—bx  teenesessiecesunsosnsiannranans (2)
. 2y, dy
2_ Y _9yp -2 =
are in each case L 2z dx+2y ) PO POPN 3)

[The complete primitive of equation (1) must satisfy equation (3),
gince (3) is derivable from (1).  This primitive will contain a and also
an arbitrary constant. Thus it is a solution of (3) containing two
constants, both of which are arbitrary as far as (3) is concerned, as a
does not occur in that equation. In fact, it must be the complete
primitive of (3). Similarly the complete primitives of (2) and (3) are
the same. Thus (1) and (2) have a common complete primitive. ]

v (10) Apply the method of the last example to prove that

¥+ g‘q—/ =2ae*
and y— g— =92be—®

have a common complete primitive.
J (11) Assuming that the first two equations of Ex. 9 have a common
complete primitive, find it by equating the two values of gZ in terms

of x, y, and the constants. Verify that it satisfies equation (3) of Ex. 9.

J (12) Similarly obtain the common complete primitive of the two
equations of Ex. 10.
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J (13) Prove that all curves satisfying the differential equation
dy _ dy>2 N
El;o =1+z d_x +x c—lx—2
cut the axis of y at 45°.
/ (14) Find the inclination to the axis of = at the point (1, 2) of the
two curves which pass through that point and satisfy
d?/>2_ 2 2
([ﬁ =y2 -2z +2%
4 (15) Prove that the radius of curvature of either of the curves of
Ex. 14 at the point (1, 2) is 4.

v (16) Prove that in general two curves satisfying the differential

equation dy\2  dy
> (d—x> +yg + 1=0

pass through any point, but that these coincide for any point on a
certain parabola, which is the envelope of the curves of the system.
v 17) Find the locus of a point such that the two curves through it
) € p 8

satisfying the differential equation of Ex. (16) cut (i) orthogonally ;
(ii) at 45°.

J (18) Sketch (by Brodetsky and Wada’s method) the characteristics of

dy

'd—“m=$+ey.



CHAPTER II

EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

11. In this chapter we shall consider equations of the form
M+N dy =0,
dx
where M and N are functions of both z and y.
This equation is often written,* more symmetrically, as
Mdzx + N dy =0.

Unfortunately it is not possible to solve the general equation of
this form in terms of a finite number of known functions, but we
shall discuss some special types in which this can be done.

It is usual to classify these types as

() Exact equations ;

(6) Equations solvable by separation of the variables ;
(¢) Homogeneous equations ;

(d) Linear equations of the first order.

The methods of this chapter are chiefly due to John Bernouilli
of Bale (1667-1748), the most inspiring teacher of his time, and to
-his pupil, Leonhard Euler, also of Bile (1707-1783). Euler made
great contributions to algebra, trigonometry, calculus, rigid dynamics,
hydrodynamics, astronomy and other subjects.

12. Exact equations.}
Ex. (i). The expression y dz+x dy is an exact differential.

Thus the equation ydo+xdy=0,
giving d (yx) =0,
i.e. Yr=c,

is called an exact equation.

* For a rigorous justification of the use of the differentials dx and dy see Hardy’s
Pure Mathematics, Art. 136.

T For the necessary and sufficient condition that M dx + Ndy=0 should be exact
see Appendix A.
12

<
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Ex. (ii). Consider the equation tany . dz+tanz . dy=0.
This is not exact as it stands, but if we multiply by cosxcosy it

becomes sin y cos @ d +sin & cos y dy =0,
which is exact.
S v
The solution is sin y sin v =c.

13. Integrating factors. In the last example coszcosy is
called an sntegrating factor, because when the equation is multiplied
by it we get an exact equation which can be at once integrated.

There are several rules which are usually given for determining
integrating factors in particular classes of equations. These will be
found in the miscellaneous examples at the end of the chapter. The
proof of these rules forms an interesting exercise, but it is generally ’
easier to solve examples without them.

14. Variables separate.
Ex. (i). In the equation %?:’oan y . dy, the left-hand side involves

« only and the right-hand side y only, so the variables are separate.
Integrating, we get log z= —log cos y+o,
i.e. log (xcosy)=c,
& cos y=e=a, say.
Ex. (ii). %=2xy.
The variables are not separate at present, but they can easily be
made so. Multiply by dz and divide by y. We get

@ =2z dzx.

Integrating, log y=w%+c.
As c is arbitrary, we may put it equal to log a, where a is another
arbitrary constant. )

Thus, finally, y=ae®,

Examples for solution.
¥ (1) (122 +5y —9) da + (53 + 2y — 4) dy =O0.
V(2) {cos z tan y-+cos (z +¥)} dz +{sin x sec?y +cos (z+¥)} dy =0.
¥(3) (sec x tan z tan y —e®) du +sec x sec? y dy =0,
V(4) (z+y) (dz - dy) =dx +dy.
¥(5) y dz - dy + 3a2y2e®dzr=0.
¥(6) y dx—x dy=0.
Y(7) (sin @+ cos «) dy + (cos & — sin ) dz=0.
® % =2
Y(9) y de —x dy=wy dz. Y(10) tan z dy=cot y dx.



14 DIFFERENTIAL EQUATIONS

15. Homogeneous equations. A homogeneous equation of the
first order and degree is one which can be written in the form

412

To test whether a function of z and y can be written in the form
of the right-hand side, it is convenient to put

)
=9 or y=uvx.
po y

If the result is of the form f(v), ¢.e. if the «’s all cancel, the
test is satisfied.

2 g2 2
Ex. (i). gg=—a%g~ becomes g—y= 1——21 This equation is homo-
geneous. : v o
Ex. (ii). d_y=yj becomes d—y=:m)3. This is not homogeneous,
dx  x? dw

16. Method of solution. Since a homogeneous equation can be
reduced to %=f (v) by putting y=vz on the right-hand side, it is
natural to try the effect of this substitution on the left-hand side
also.” As a matter of fact, it will be found that the equation can
always be solved * by this substitution (see Ex. 10 of the miscel-
laneous set at the end of this chapter).

. dy a%+y?
Ex. (i). = o
Put Y =0z,
. dy dv - . .
le. S =vtw i {for if y is a function of =, so is v).
. dv 1+02
The equation becomes o+z p P
ne. 2xdv=(1+v%-2v)dz.
. . 2dv  dx
Separating the variables, -1 o
. -2
Integrating, P logz+e.
But /v:-_g, SO i:i:ﬁ—&
T v-1 Yy_y Y-z =y

Multiplying by £ ~y, 2z=(x—y) (log z+c).

* By “ solved ” we mean reduced to an ordinary integration. Of course, this
integral may not be expressible in terms of ordinary elementary functions.
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Ex. (ii). (z+y) dy +(z—y) dv=0.

This gives %%—Ig.
Putting y ==, and proceeding as before, we get
dv_v-1
dz v+1’ *
gl v+l
de v+1 v+1
(v+1)dv_dw
v+l oz’
—vodv  dv _dx

v2+1 v+l =z

v+
s.e.
Separating the variables, -

s.e.

Integrating, -} log (v2+1) —tan—v=log z +c,
te. 2logz+log(v?+1)+2tan~lv+2c=0,
log #2 (v2+1) +2 tan~w+a =0, putting 2c=a.

Substituting for v, log (y2+x?) +2 tan—lg +a=0.

17. Equations reducible to the homogeneous form.
dy y-z+1

Ex. (i). The equation d yroth

is not homogeneous.
This example is similar to Ex. (i) of the last article, except that

Y- . y—x+1
P is replaced by yToi5
Now y —2=0 and y +2=0 represent two straight lines through the
origin.

The intersection of y—~x+1=0 and y+x+5=0 is easily found to
be (-2, —3).

Put z=X-2; y=Y -3. This amounts to taking new axes parallel
to the old with (—2, —3) as the new origin.

Then y-2+1=Y-X and g+z+5=Y+X.

Also de=dX and dy=dY.
. Y Y-X
The equation becomes X-VIX

As in the last article, the solution is
log (Y2+X?) +2 tan—1§+a=0,

te. log [(y+3)2+(x+2)2]+2 ta,n-li—:; +a=0.
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. d, —-z+1
Ex. (ii). a—z_z 215"

This equation cannot be treated as the last example, because the
lines y —2+1=0 and y—z+5=0 are parallel.
As the right-hand side is a function of y — =, try putting y -z =2, \
. dy dz |
2.€. 'd—w' —1= (Tw; .
The equation becomes 1 +d_z _2+l

de z+5’

&t

dx z+5
Separating the variables, (z+5) dz= —4du.
Integrating, 322 +b2=—4x+c,

te. 22+102+8z=2c.
Substituting for z, (y —x)2+10(y — &) +8xr=2¢,
t.e. (y—a)2+10y - 2x=a, putting 2c=a.
Examples for solution.
J (1) @z-y)dy=(2y-=)de. [Wales.]

v (2 (w2—y2)d—y=xy. [Sheffield. ]
Ve 2 =—+y . [Math. Tripos. ]

¥ 4) mi/=y+\/(a;2+y3).

dy 2x+9y-20

do~ 60+2y—10°

Y (6) (120+21y—9) dz+ (475 + 40y +7) dy=O0.

dy 3z—4y-2
i de 3z-4y-3°

v (8) (x+2y) (dz —dy) =dw +dy.

v (5)

18. Linear equations.
The equation gy +Py=Q,
where P and Q are functions of 2 (but not of y), is said to be linear
of the first order.
dy

impl le i —+1 =22
A simple example is -+~ y =a%
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It we multiply each side of this by =, it becomes
; iy
T % +Yy=x°,
. d s i
z.e. t—%(xy) =23, ’ v |
Hence, integrating, xy=312t+c.
We have solved this example by the use of the obvious integrating
factor «.

19. Let us try to find an integrating factor in the general case. C
If R is such a factor, then the left-hand side of !

Rd-+RPy=RQ

is the differential coefficient of some product, and the first term
R s shows that the product must be Ry.

dR

Put, therefore, R +RPy——(Ry) R Y iz

This gives RPy=y % ,

iR
R’
jpdz log R,

Isz

te. Pdr=

R=e

This gives the rule : To solve d— +Py Q, multiply each side by

[Pas

e, which will be an mtegmtmg factor

20. Examples,

(i) Take the example considered in Art. 18.
7
d—‘z +.’D LY==

Here P=£, soJPda:=loga;, and elez=g,

Thus the rule gives the same integrating factor that we used before.

. dy Com
(i) Fas 2ay =2¢,

Here P =2z, IP dx=1? and the integrating factor is ¢,

P.D,E. B
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Multiplying by this, &% % +2ze%y =2,

, d,
- 2%) .
e o (ye¥’) =2.
Integrating, ye” =25 +c,
y=(2x+c)e~?,
(iii) % +8y=e%?,

Here the integrating factor is €32,

Multiplying by this e3”§z—/+3c3”y=e5“‘,
piying oy s iz

se. %(yé‘“) ey

Integrating, yetr=1e 4,

y=1e¥ +ce %,

21. Equations reducible to the linear form.

Ex. (i). zy —%:yse‘”’.
Divide by ¢®, so as to free the right-hand side from .
1 1 dy__ o
Weget x.:—q—z—-y—:,'%—e s
1 1dly
.6 x. %/—2 "2— az yz =€

.1 dz .,

Putting 4 =2, 2xz+% =2¢~%,

This is linear and, in fact, is similar to Ex. (ii) of the last article with
z instead of y.
Hence the solution is z2=(2z+c) e,

i.e. Ell—z=(2w+c)e—”’,
el?
== ey
This example is a particular case of “ Bernoulli’s Equation ”
dy _ .
ax +P Y —Qy”,

where P and © are functions of ». Jacob Bernouilli or Bernoulli of
Bale (1654-1705) studied it in 1695,
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Ex. (ii). (22 - 10y®) %er:o,
This is not linear as it stands, but if we multiply by g;, we get

2x—10y3+yg—:=0,

. ode 20,
1.e. dy+ 7 =10y2.
This is linear, considering y as the independent variable. :
Proceeding as before, we find the integrating factor to be y2, and
the solution Y2 =25 +c,
te. o=2y3+cy 2
Examples for solution.

/(1) (x+a)%—3y=(x+a)5. [Wales. ]
J(2) zcos xg—z+y(wsin Z+cosz)=1. [Sheffield.]

dy .- dy
J(3) xlogwd-‘z+y=2logm. ~/(4) xzy—xsd—‘;=y4cos z.

d,

SO yerd-re-n. 6 @Yoy

J (7) de+x dy=ev secy dy.

22. Geometrical Problems. Orthogonal Trajectories. We shall

now consider some geometrical problems leading to differential
equations.
b4

o __— T N x

F16. 6.

Ex. (i). Find the curve whose subtangent is constant.

The subtangent TN = PN cot s~y % .
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Hence —=k,

z+c=klogy,

| y=ac,
putting the arbitrary constant ¢ equal to klog a.

Ex. (ii). Find the curve such that its length between any two
points PQ is proportional to the ratio of the distances of @ and P
from a fixed point O.

If we keep P fixed, the arc QP will vary as 0Q.

Use polar co-ordinates, taking O as pole and OP as initial line.
Then, if @ be (r, 6), we have s=kr.

But, as shown in treatises on the Calculus,

(ds)2=(r d0)2 + (dr)%

Hence, in our problem,

k2(dr)2=(r d0)%+ (dr)?,

ie. dO= q_u\/(kz_n%f

M

=a
giving 7= ce®®, the equiangular spiral.

Ex. (iii). Find the Orthogonal Trajectories of the family of semi-
cubical parabolas ay?=1? where a is a variable parameter.

Two families of curves are said to be orthogonal trajectories when
every member of one family cuts every member of the other at right
angles.

We first obtain the differential equation of the given family by
climinating a.

Differentiating ay? =17,
dy o o
we get 2ay e =3x2,
e 2dy 3
whence, by division, B S 1)
Now %=tan \, where 1/ is the inclination of the tangent to the

axis of z. The value of y for the trajectory, say \J, is given by
Y=y xir,
ie. tanr= —coty’,
dy

i.e. d_x for the given family is to be replaced by _% for the trajectory.
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Making this change in (1), we get

2% dx + 3y dy =0, .
_ 222+ 3y?=c,
a family of similar and similarly situated ellipses.
Ex. (iv). Find the family of curves that cut the family of spirals

r=ab at a constant angle a.
As before, we start by eliminating a.
L rdo
This gives = 0.

Now Cg=tan ¢, Wwhere ¢ is the angle between the tangent and the

radius vector. If ¢’ is the corresponding angle for the second family,
' =pa,
tan p+tana  O+Fk
lxtangptana 1-kO’
putting in the value found for tan ¢ and writing & instead of =+tan a.
Thus, for the second family,
rdo_0+k
dr  1-k0

The solution of this will be left as an exercise for the student.
The result will be found to be

r=c(0+k)¥+le-%o,

tan ¢’ =

Examples for solution.
v (1) Find the curve whose subnormal is constant.

v (2) The tangent at any point P of a curve meets the axis of z in 7.
Find the curve for which OP=PT, O being the origin.

v (3) Find the curve for which the angle between the tangent and
radius vector at any point is twice the vectorial angle.

7 (4) Find the curve for which the projection of the ordinate on the
normal is constant.

Find the orthogonal trajectories of the following families of curves :

v (5) xz—y2=a2. '/(6) x%+y§=a‘§.
v (7) px%+qy?=a? (p and ¢ constant).

afd
/(8) r0=a. V) r=g7g

v (10) Find the family of curves that cut a family of concéntric circles
at a constant angle a.
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MISCELLANEOUS EXAMPLES ON CHAPTER II.

d
V() Gyr-2) =y V(@) 2=y +2y/(y2 -2,
v (3) tan @ cos y dy +sin y dz + 52 dx =0,
{(4) a3 + 3y2=a2y2 [Sheffield.]

1) oY =ypryrv/iy-an.
d ax +hy +
v ; ay_ _aethyrg
(6) Show that - Tt by +f
represents a family of conics.
V (7) Show that y do— 2 dy =
represents a system of parabolas with a common axis and tangent at
the vertex.

v (8) Show that (4o +3y+1) do+(3x+2y+1) dy=0

represents a family of hyperbolas having as asymptotes the lines
z+y=0 and 2z+y+1=0.

' dy .

v (9 I (E+2ytan rx=sin®

and y=0 when &=}, show that the maximum value of y is 3.

[Math. Tripos.]
J (10) Show that the solutlon of the general homogeneous equation

of the first order and degree Y f <y> is

log 2= j——-— +e,
S N DR
where v=y/.

{ (11) Prove that z™* is an integrating factor of
py da + qu dy + 2™y (ry dz + sz dy) =0
. h+1 k+1 h+m+1 k+n+1
if = and = .
P q T s
Use this method to solve )
J 3y da — 2z dy +22y(10y dz - 6z dy) =0.
J (12) By differentiating the equation
flzy) + F (zy) d(zy) _
If(wj) Tlay) oy * 8 y_c
. 1
verify that = o) - ey
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is an integrating factor of -
flzy)y dz+ F (zy)z dy =0. .
v Hence solve (z2%y2+ay+1)y dz— (z%y2—zy+1)z dy=0.
/ (13) Prove that if the equation M dx+ N dy=0 is exact,
: oN oM
. oz = ?y"
[For a proof of the converse see Appendix A.]
v (14) Verify that the condition for an exact equation is satisfied by

(Pdz+Q dy)e-[f(x) -0

it O —sirera

Hence show that an integrating factor can always pe found for
Pdz+Qdy=0

. QLdy o=
is a function of z only. :
Solve by this method
vV (a3 +2yY) dz+2y3dy=0.
v (15) Find the curve/(i) whose polar subtangent is constant ;
Y(ii) whose polar subnormal is constant.

/ (16) Find the curve which passes through the origin and is such
that the area included between the curve, the ordinate, and the axis
. of z is k times the cube of that ordinate.

J (17) The normal P@ to a curve meets the axis of z in G. If the
distance of @ from the origin is twice the abscissa of P, prove that the
curve is a rectangular hyperbola.

v (18) Find the curve which is such that the portion of the axis of
cut off between the origin and the tangent at any point is proportional
to the ordinate of that point.

v (19) Find the orthogonal trajectories of the following families of
curves : V(i) (£-1)%+y2+2az=0,
v {ii) r=ab,
v (iii) r=a+cos n0;
and interpret the first result geometrically.
J  (20) Obtain the differential equation of the system of confocal conics
2 y?
FIATRI Y
and hence show that the system is its own orthogonal trajectory.

Vv (21) Find the family of curves cutting the family of parabolas
y2=4ax at 45°.
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v (22) If w+v=Ff(z+1y), where u, v, z and y are all real, prove that
the families u =constant, v=constant are orthogonal trajectories.
0% 0% —0= 0% 0%
P =0 + oy
[This theorem is of great use in obtaining lines of force and lines of
constant potential in Electrostatics or stream lines in Hydrodynamics.
% and v are called Conjugate Functions. ]

Also prove that

v (23) The rate of decay of radium is proportional to the amount
remaining. Prove that the amount at any time ¢ is given by

A=A4e ",
dv v? .
(24) If =9 (1 —k—2> and v=0 if {=0, prove that

=

v=F tanh —"}C—t

[This gives the velocity of a falling body in air, taking the resistance
of the air as proportional to v2. As ¢ increases, v approaches the limiting
value k. A similar equation gives the ionisation of a gas after being
subjected to an ionising influence for time ¢.]

v (25) Two liquids are boiling in a vessel. It is found that the ratio
of the quantities of each passing off as vapour at any instant is pro-
portional to the ratio of the quantities still in the liquid state. Prove
that these quantities (say  and y) are connected by a relation of the
form y =ca¥.

[From Partington’s Higher Mathematics for Students of Chemistry,
p- 220.] «



CHAPTER III
LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

23. The equations to be discussed in this chapter are of the form
n n—1.
Po Zx,. +P1 Zw.n_?{ +ooe +Pna Zw + Py =f (@) weeeerenne(l)
where f(z) is a function of «, but the p’s are all constant.

These equations are most important in the study of vibrations
of all kinds, mechanical, acoustical, and electrical. This will be
illustrated by the miscellaneous examples at the end of the chapter.
The methods to be given below are chiefly due to Euler and
D’Alembert. *

We shall also discuss systems of simultaneous equations of this
form, and equations reducible to this form bya simple transformation.

24. The simplest case ; equations of the first order. If we take
n=1 and f(z) =0, equation (1) becomes

dy
p"d +py=0,. TP ¢

i.e. pod +p,dx =0,

or Do log y + p,& = constant,
80 log y = — p,%/p, +constant

= —p12/po +1og 4, say,
giving Y = Ae~PIPo,

25. Equations of the second order. If we take n=2 and f(x) =0,
equation (1) becomes
dy

pocz—2+p1%+p2y=0. cererenensenresenesenses(3)

* Jean-le-Rond D’Alembert of Paris (1717-1783) is best known by “ D’Alem-
bert’s Principle ” in Dynamics. The application of this principle to the motion
of fluids led him to partial differential equations.

25
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The solution of equation (2) suggests that y = 4em=, where m is ‘
some constant, may satisfy (3).

With this value of y, equation (3) reduces to ‘

Aem=(pym? + pym + p,) =0. ‘

Thus, if m is a root of l
PR +P+Pp =0, eoriiiiiiiiiiiiienne.n(4)
y=Ae™ is a solution of equation (3), whatever the value of 4.

Let the roots of equation (4) be a and 8. Then, if a and (B are
unequal, we have two solutions of equation (3), namely

y=Ae* and y=DBe.
Now, if we substitute y = 4¢** + B¢ in equation (3), we shall get
e (poa® +pra +p,) + BeP (9o 3% + p, B + p,) =0,

. which is obviously true as a and 3 are the roots of equation (4).

Thus the sum of two solutions gives a third solution (this might
have been seen at once from the fact that equation (3) was linear).
As this third solution contains two arbitrary constants, equal in
number to the order of the equation, we shall regard it as the general
solution.

Equation (4) is known as the “ auxiliary equation.”

Example,
d¥y _dy .
To solve 2 J—+5 Tz +2y=0 put y=Ae™" as a trial solution. This
leads to Ae™=(2m2 + 5m +2) =0,

which is satisfied by m= -2 or —~}.
The general solution is therefore

y=Ae 2% 4 Be-iz,

26. Modification when the auxiliary equation has imaginary or
complex roots. When the auxiliary equation (4) has roots of the
form p +4q, p —1dq, where 2= -1, it is best to modify the solution

Y =Aepti® 4 Bee-ia . .....ocovvunein(B)
so as to present it without imaginary quantities.

To do this we use the theorems (given in any book on Analytical
Trigonometry) €% =cos ¢z +4 sin gz,

e~ =cos gz — ¢ sin ¢z.
Equation (5) becomes
=e?”{4 (cos gz +1 sin qz) + B(cos gz — i sin qx)}
=e?*{F cos gz + F sin gz}, )
writing B for 4 +B and F for i(4-B). E and F are arbitrary
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constants, just as 4 and B are. It looks at first sight as if F must
be imaginary, but this is not necessarily so. ‘Thus, if
‘ A=1+% and B=1-2i;, E=2 and F= -4

Exzample. d?y dy
7o -6 = s 13y=0
leads to the auxiliary equation
m2—6m+13=0,

whose roots are m=32t.
The solution may be written as
y= Ae(8+2z)x + Be(a 21):&‘
or in the preferable form
y=e32(E cos 2z + F sin 27),

or again as y=Ce? cos 2z —a),
where Ccosq=E and Csin g=7F,
so that C=,/(E2+F? and tan a=F/E.

97. Peculiarity of the case of equal roots. When the auxiliary
equation has equal roots a =3, the solution

y=Ae® + Bef*
" reduces to . y=(4 +B)e”.

Now A4 + B, the sum of two arbitrary constants, is really only a
single arbitrary constant. Thus the solution cannot be regarded as
the most general one.

We shall prove later (Art. 34) that the general solution is

y=(4 + Bz)e=”

98. Extension to orders higher than the second. The methods
of Arts. 25 and 26 apply to equation (1) whatever the value of n, as
long as f(z)=0. ; o
. Y _ e
Ex. (i). Fr
The auxiliary equation is

—6m2+11m—6=0,

dy

+11 57 - 6y=0.

giving m=1, 2, or 3.

Thus y = Ae® -+ Be?® + Ce®®,
Ex. (ii). Y _gy=0.

The auxiliary equation is m3—8=0,
ie (m~2)(m?+2m+4)=0,
giving m=2 or —1214/8.
Thus =~ y=Ae?*+e(E cos zv/3+ F sin 2v/3),
or y=Ae?*+Ce% cos (zv/3~a).
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Examples for solution.

Solve |
Y@ %+4%+3y=o. V(@) %-1-4;4/:0.
v (3) %+7%+12y=0. ' v 4) %—4%%?,:0.
v (5) %—2+4%+133=O. v (6) %+4%=0.
v (7) %+23%—Z—Z—2y=0.

V' (8) What does the solution to the last example become if the initial
conditions are dy .
y=1, ===0 when z=0,

and if y is to remain ¥finite (vlvailen ZT=+op ?
Solve
v 9) %‘Z+13 %Jrsey:o.
J (10) %{{—13 %+36y=0.
J %+8y=o. Y (19) %—64y=0.

2
J (13) l(fl—t(:+ge=0, given that §=¢q and Z—?=0 when £=0.

[The approximate equation for small oscillations of a simple pen-

dulum of length 1, starting from rest in a position inclined at o to the
vertical. ]

v (14) Find the condition that trigonometrical terms should appear
in the solution of d2s . ds
m s + k o= 0.

[The equation of motion of a particle of mass m, attracted to a
fixed point in its line of motion by a force of ¢ times its distance from
that point, and damped by a frictional resistance of % times its velocity.
The condition required expresses that the motion should be oscillatory,
e.g. a tuning fork vibrating in air where the elastic force tending to
restore it to the equilibrium position is proportional to the displacement
and the resistance of the air is proportional to the velocity. ]

J  (15) Prove that if % is so small that k%/mc is negligible, the solution
of the equation of Ex. (14) is approximately e~*/2m times what it would
be if k were zero.

[This shows that slight damping leaves the frequency practically
unaltered, but causes the amplitude of successive vibrations to diminish
in a geometric progression. ]
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v (16) Solve L—2Q+RdQ+g=O, given that @=@, and @=O when

dt
t=0, and that CR% << 4L.

[@ is the charge at time ¢ on one of the coatings of a Leyden jar of
capacity C, whose coatings are connected when ¢=0 by a wire of resist-
ance R and coefficient of self-induction L.]

29. The Complementary Function and the Particular Integral. So
far we have dealt only with examples where the f(x) of equation (1)
has been equal to zero. We shall now show the relation between
the solution of the equation when f(z) is not zero and the solution
of the simpler equation derived from it by replacing f(z) by zero.
To start with a simple example, consider the equation

2% +5% +2y-5+2.

Tt is obvious that y == is one solution. Such a solution, con-
taining no arbitrary constants, is called a Particular Integral.

Now if we write y =2 +v, the differential equation becomes

d2 dv
270+5 (1 +9) +2(z+0) =5 +23,
. dv? dv
r.e. 2 C—Ez+ 7o +2v=
giving v=Ae"?* + Be ¥,
so that y=x+A4e2 + Be ¥

The terms containing the arbitrary constants are called the
Complementary Function.
This can easily be generalised.
If y =w is a particular integral of

dry dn-1 d;
p"dx" +P1 g n?{ ---+]9n-1;l?—/+pn?/=f($), ......... (6)
that L S e Uy oo =f (@) o
so tha Po Jom tP1 a1 A+t Pn-1 dg TP =1 (@), e (7
put y =w+v in equation (6) and subtract equation (7). This gives
d™ a1l dv
pom +p; P Feei+Ppa p +P0=0.ccounnnin. ...(8)

If the solution of (8) be v=F(z), containing » arbitrary con-
stants, the general solution of (6) is
y=u+F(2),
and F () is called the Complementary Function.
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Thus the general solution of a linear differential equation with
constant coefficients is the sum of a Particular Integral and the Com-
plementary Function, the latter being the solution of the equation
obtained by substituting zero for the function of @ occurring.

Examples for solution.

Verify that the given functions are particular integrals of the follow-
ing equations, and find the general solutions :
d?y dy -
d—xz—13%+12y—36.

2
v Q) e®; %—2%+2y=e“‘. v (2) 3;

2
J (3) 2sin3z; Z—;;+4y=—108in3x.

For what values of the constants are the given functions particular
integrals of the following equations ?

: d¥y . dy
be. 7 J a2 —
4 (4) aet=; Tz H187 +42y=112¢,
d2s _ . d%y .
{ (5) ae; g T95=60e".  J(6) asin px; m+y=12 sin 2z.
. L Ay dy ol .
J (7) asin pz+b cos px ; ﬁ+4%+3y—8 cos z — 6 sin .
. Py ey e
J(8) a, T$2+56E+6y_12.
Obtain, by trial, particular integrals of the following :
@Y oY oo s 4%y o dy — 30067
Y (9) go2 27, +6y=80¢.  V (10) ot 2, 37y =300e7.
d%y P d?y _dy e
Y (11) 7-5+9y=40 sin 5a. v (12) Zai— 87,799 =40 sin ba.
2
J (13) %+8%+25y=50.

30. The operator D and the fundamental laws of algebra. When
a particular integral is not obvious by inspection, it is convenient
to employ certain methods involving the operator D, which stands

for % This operator is also useful in establishing the f@rm of the

complementary function when the auxiliary equation has equal
roots. '

2 3
D2 will be used for ‘L, D8 for d—, and so on.
dz? dz?
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The expression 2 g_:,;y“a +5 %} +2y may then be written
2D2y + 5Dy +2y,
or 2Dz +5D +2)y.
We shall even write this in the factorised form
(2D +1)(D +2)y,

factorising the expression in D as if it were an ordinary algebraic
quantity. Is this justifiable ? :
The operations performed in ordinary algebra are based upon
three laws :
I. The Distributive Law .
m(a +b)=ma+mb;
II: The Commutative Law
ab=ba;
TII. The Index Law a™ . a® =a™*",
Now D satisfies the first and third of these laws, for
D(u +v) =Du + D,
and D™, Druy=Dmt" . u
(m and m positive integers).
As for the second law, D(cu)=c (Du) is true if ¢ is a constant,
but not if ¢ is a variable.
Also Dm(Dmu) =D (D™u)
(m and n positive integers).
Thus D satisfies the fundamental laws of algebra except in that
it is not commutative with variables. In what follows we shall
write F(D)=poD" +pD" 1+ oo 4+ PpaD + P
where the p’s are constants and n is a positive integer. We are
justified in factorising this or performing any other operations
depending on the fundamental laws of algebra. For an example
of how the commutative law for operators ceases to hold when
negative powers of D occur, see Ex. (iii) of Art. 37.

31, F(D) e?x =¢3*F(a). Since
Des® = qe®s,
D2et® = a2eaz,
and so on,
F(D)e**=(p, D" +p D" + ... + PpaD +p,) e
=(Pe@™ + P10+ e +PpaO + Pn) €
=e**F (a).
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32. F(D){exV} =e3XF (D +a)V, where V is any function of . By
Leibniz’s theorem for the nt* differential coefficient of a product,
D™e*V } =(Dres) V + n(Dn—1¢22)(DV)

+3n(n —~1)(Dr-2%2) (DY) + ... + e*2(DnV)
=a"eV +na"16%DV +in(n —1)a"~2=2D2V + ...+ eaDn}
=e"(a” +na" 1DV +in(n-1)a"—2D? + ... + D)V
=e?*(D +a)"V.

Similarly Dr-1{es2 '} = gaz(D + @)"-1V, and so on.

Therefore
FD){e™V} = (D" +p, D" + ... +p, 4D + p,) =V}

=¢"{po(D +a)" +p,(D +a)1+ ... +p,_,(D +a)+p,}V
=e*F(D +a)V.

33. F(D? cosax=F(-a? cosax. Since

D2 cos ax = — a2 cos az,
DA cos ax =( ~ a2)? cos az,
and so on,
F(D?) cos az = (p,D2n + P2+ 49, D% +p,)cos ax
={Po( =) +p1( =)™+ . 4y (- a%) +p,} cos az
=F(-a? cos ax.

Similarly F(D?) sin az = F( - a?) sin az.

34. Complementary Function when the auxiliary equation has equal
roots. When the auxiliary equation has equal roots a and a, it
may be written m2 —2ma + a2 =0.

The original differential equation will then be
a2y dy +a%y=0,

da? 2% g
t.e. (D?~2aD +a?)y=0,
(D =)y =0. ..oovrrrrrrrrrrrrenenn(9)

We have already found that y=A4e** is one solution. To find
& more general one put y =e**V, where V is a function of g,

By Art. 32, :

(D - a)*{e2V} =e*=(D — g +a)2V =e==D2V.,
Thus equation (9) becomes
D2y =0,
t.e. V=A+Bu,

so that y=e"*(4 + Bz).
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Similarly the equation (D —a)?y =0

reduces to D?V =0,
giving V=(4,+4w+ 422+ ... + Ap_j2*-1),
and y=e®(4; + Az + A2? + ... + dp_y2P1).
‘When there are several repeated roots, as in
(D-a)?(D—-BY(D -yyy=0, .......ccvve........(10)

we note that as the operators are commutative we may rewrite the
equation in the form

(D -BY(D ~yy{(D - a)?y} =0,
which is therefore satisfied by any solution of the simpler equation

(D —~@)?y=0. wooreveeereererreerennena(11)
Similarly equation (10) is satisfied by any solution of
(D =B)YY=0, weeoeveerrerrerrerennnn(12)
or of (D—y)yy=0. ceorvriiiiniiiniiinninnn o (13)

The general solution of (10) is the sum of the general solutions.
of (11), (12), and (13), containing together (p+g¢+7) arbitrary
constants.

Ex. (i). Solve (D*-8D%+16)y =0,

s.e. (D%-4)%y=0.
The auxiliary equation is (m?—4)2=0,
m=2 (twice) or -2 (twice).
Thus by the rule the solution is
y=(4 + Bx) e2*+(E + Fz) e 22,

Ex. (ii). Solve (D2 +1)%y=0.
The auxiliary equation is (m2+1)2=0,
m=1 (twice) or -1 (twice).
Thus y=(4+ Bz) ¢+ (E + Fz) e,
or better y=(P +Qx) cos + (R + Sz) sin x.

Examples for solution.
v (1) (D*+2D3%+ D?) y=0. J(2) (D8 +3D*+3D2+1) y=0.
v (3) (DA=2D3+2D2-2D+1) y=0. V(4) (4D5~3D3 - D2) y=0.
v (5) Show that
F (D?)(P cosh ax +Q sinh az) = F (a?) (P cosh az + @ sinh az).
J (6) Show that (D —a)¥(e?? sin pz) = p*"e?® sin pa.

35. Symbolical methods of finding the Particular Integral when
f(x) =e3%, The following methods are a development of the idea

of treating the operator D as if it were an ordinary algebraic quan-
P.D.E. C
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tity. 'We shall proceed tentatively, at first performing any opera-
tions that seem plausible, and then, when a result has been obtained
in this manner, verifying it by direct differentiation. We shall use

the notation F(lﬁ) JS(x) to denote a particular integral of the equation
F(D)y=f(z).
(i) If f(z) =€, the result of Art. 31,
F (D) e** =e2*F (a)

suggests that, as long as ¥ (a)+-0, I{—% e?®may be a value of F(ID) o
This suggestion is easily verified, for
I .l _€“F(a)
F(D){F(a)e } G by Ast. 3L
=ete,
(ii) If F(a)=0, (D - a) must be a factor of F(D).
Suppose that F(D)=(D - a)?¢ (D), where ¢ (a)=O0.
Then the result of Art. 32,
F(D){e**V}=eF(D+a)V,
suggests that the following may be true, if V is 1, :
1 ‘ 1 1 {e“” . 1} e 1
e = e = =——=.1
F (D) (D -a)?¢ (D) (D -a)2\ ¢(a)

¢(a) D2’
_ &t

$(@) pV
adopting the very natural suggestion that }17 is the operator inverse
to D, that is the operator that integrates with respect to x, while
&) integrates p times. Again the result obtained in this tentative

manner is easily verified, for

FD ){;(a)p,,} D “"”(D){ e

o el
=¢ (D) [Ee(—a) D 27!], by Art. 32,

=¢(D) [ﬁ 1]
=%, by Art. 31.
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In working numerical examples it will not be necessary to repeat
the verification of our tentative methods.

Ex. (i). (D + 8)%y =50e2%,
The particular integral is )
1 50e%®
— 20 .~~~ —92%
DTk . 50¢ PEBE 2e2,

Adding the complementary function, we get

y=2¢2%+(4 + Bx) e732, |
Ex. (ii). - (D- 2)2y =50e?2?. |
Tf we substitute 2 for D in —~——5 50e2%, we get infinity.

(D- 2)2
But using the other method,

(7}2? . 50e2% =50e2® 11) 1=50e% . Jo2 =25x2%%%,
Adding the complementary function, we get
. y=25x%3 + (4 + Bz) €**.

Examples for solution.

Solve .
V(1) (D2+6D+25)y=104. V (2) (D2+2pD+p*+q?) y=eo=.
v (8) (D?-9) y=>54¢e= v (4) (DP-D)y=e®+e "

/B) (D2-p)y—abeslips.  V (6) (DP+4D*+4D)y=8c72

36. Particular Integral when f (%) =cos ax. From Art. 33,
¢ (D?) cos ax = ¢ ( —a?) cos ax.
This suggests that we may obtain the particular integral by
writing —a? for D? wherever it occurs.

Ex. (i). (D?+3D +2) y=cos 2.

S OV IR NN, PR
Diy3D+2 T Ti3p+2 “* T TsD-2
To get D? in the denominator, try the effect of writing
1 3D+2 |
3D-2 9D*-¢
suggested by the usual method of dealing with surds.
‘ This gives

. cos 2.

3D+2
‘ —-36-4

cos 20= — 7%(3D cos 22+ 2 cos 27)

= — 15(—6 sin 242 cos 27)
= 7% (3 sin 2z — cos 2z).
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Ex. (ii). (D?*+6D2+11D+6) y=2 sin 3z.
<1 . 1 .
TreDi41iD76 2 2 ¥ =2 Tgppiriinse "
' 1.
=m31n3m
D+24
=P 576:sm3az:

= —51-(3 cos 3x +24 sin 3z)
= —y15(cos 3z +8 sin 3x).

We may now show, by direct differentiation, that the results
obtained are correct.

If this method is applied to
{9 (D?) + Dy (D*)]y=P cos ax +¢) sin azx,
where P, @) and @ are constants, we obtain
¢ (—a? . (P cos ax +@ sin azx) + oy (—a?) . (P sin azx — @ cos ax)
{p (—a®)P+a*{yr (- a?)}>
It is quite easy to show that this is really a particular integral,

provided that the denominator does not vanish. This exceptional case
is treated later (Art. 38).

Examples for solution.
Solve
v (1) (D+1)y=10sin 2z. vV {2) (D?-5D+6) y=100sin 42.
v (3) (D2+8D+25)y=48 cos z—16 sin x.
v (4) (D2+2D +401) y =sin 20z +40 cos 20z.
v (5) Prove that the particular integral of
Zt:+2kfil +p2s=a cos gt
may be written in the form b cos (gt — €),
where  b=af{(p?—¢*)?%+4k? 2}1’ and tan e=2kg/(p? - ¢2).

/ Hence prove that if ¢ is a variable and %, p and a constants, b is
greatest when g=+/(p?—2k?) =p approx. if k is very small, and then
e=m/2 approx. and b=a[2kp approx.

[This differential equation refers to a vibrating system damped
by a force proportional to the velocity and acted upon by an external
periodic force. The particular integral gives the forced vibrations
and the complementary function the free vibrations, which are soon
damped out (see Ex. 15 following Art. 28). The forced vibrations
have the greatest amplitude if the period 27/q of the external force
is very nearly equal to that of the free vibrations (which is
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27 [+/(p? - k?) =27/p approx.), and then e the difference in phase
between the external force and the response is approx. 7/2. This
is the important phenomenon of Resonance, which has important
applications to Acoustics, Engineering and Wireless Telegraphy.]

87. Particular integral when f(x) =x® , where m is a positive integer.

In this case the tentative method is to expand L in a series of
. F(D)
ascending powers of D.

. 1
Ex. (i). prra @t =1 +3D%)
=1(1-1D%+15D1...) a?
~1a*-3).
Hence, adding the complementary function, the solution suggested
for (DY d)y=a?
is y=% (22— 1) +4 cos 2z + Bsin 2.
Ex. (ii).
L =} (i -5op)7 by pastial fracti
DEoan+3Y —2\1-p 3_p/%> DY paruiallractions,
D D D* Dt
=1 2. B _1 D D* D D
2{(1+D+D + D3+ DA+...) F(1+3 +3 +27+81+"')}x3

={1+4D+18D2+ 403+ 2121 D4+, . } a3

=103+ 422+ 200+ §9.

Adding the complementary function, the solution suggested for
(D?-4D+3)y=a3 :

is y=2310%+ 422 + 220+ 89 + de® + B,
1 1 1
EX. (111)- mgfhﬁz =96. ﬁ{m .’.1)2}
1 1 1 .
=96 . SR Z(xz —§>, from Ex. (i),
1/22 22
-96.3(55-%)
=221 — 622,

Hence the solution of D?(D?+4) y=96x2 should be
y=22*—6x2+ 4 cos 2z + Bsin 22+ E + Fu.

Alternative method.

1 1 96
5‘2 (m . 96x2=ﬁz . —1—(1 —%D2+TIB-D4—...) x2
—(24D-2—6+3D%..) 0

=222~ 622+ 3.
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This gives an extra term 3, which is, however, included in the
complementary function. '

* The method adopted in Exs. (i) and (ii), where F(D) does not
contain D as a factor, may be justified as follows. Suppose the expan-
sions have been obtained by ordinary long division. This is always
possible, although the use of partial fractions may be more convenient
in practice. If the division is continued until the quotient contains D™,
the remainder will have D™+l ag g factor. Call it ¢(D). D™+, Then

1 o ¢ (D). Dm+
m —CO+GID +02D F.ae +CmDm+ —F,‘(—D)— . .........(1)
This is an algebraical identity, leading to
1=F(D){co+c,D+cyD?*+...+¢, D™ + ¢ (D) . DL, ... (2)

Now equation (2), which is true when D is an algebraical quantity,
is of the simple form depending only on the elementary laws of algebra,
which have been shown to apply to the operator D, and it does not
involve the difficulties which arise when division by functions of D is
concerned. Therefore equation (2) is also true when each side of the
equation is regarded as an operator. Operating on 2™ we get, since
Dmtigm =, :

am=F(D){(co+ec,D+cyD%+... +¢,, D™y 2™}, vvvurnneen. (3)
which proves that the expansion obtained in (1), disregarding the
remasnder, supplies a particular integral of F(D)y=z™.

It is interesting to note that this method holds good even 1f the
expansion would be divergent for algebraical values of D.

To verify the first method in cases like Ex. (iii), we have to prove
that

Di" Aleg+e D+ey D2+ .. +¢,, D™) 2™,
te. (cgD"+e D+, D24+, D-T4m) g™,
is a particular integral of {F(D). D} y=a™, '
i.e. that {F(D). D'}{{c;tD"+¢; D~ +¢, D2

FovetCp DT g =g, e 4)
Now {F(D).D}u=F(D).{Du},
also Dr{(c,D-"+%) &} = (c,D*) 2™ ;

hence the expression on the left-hand side of (4) becomes
F(D){(co+c,D+cyD?+... +¢, D™) x™} =a™, by (3),
which is what was to be proved.
) In the alternative method we get 7 extra terms in the particular
integral, say (Cmp1 D™+ L+ ey e D™) ™. |
These give terms involving the (r—1)"® and lower powers of .

But these all occur in the complementary function. Hencé the first
method is preferable.

* The rest of this article should be omitted on a first reading.
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Note that if D denotes the simplest form of the integral of u,
without any arbitrary constant,

DD .1)=D?.0=0,
while D(D1.1)=D.z=1,
so that D(D1.1)s=D*.(D.Y).

Similarly Dm (D . a™)==D-™(D™ . a"), if m is greater than =.

So when megative powers of D are concerned, the laws of algebra
are not always obeyed. This explains why the two different methods
adopted in Ex. (iii) give different results.

. Examples for solution.
Solve |
J Q) (D+1)y=2% Y (2) (D*+2D)y=24c.
/(3) (D*~6D+9)y=54z+18. ¥ (4) (D*-6D°+9D*y=bls+18.
v (B) (D?- D-2)y=44-T6x— 482>
J(6) (D® - D2 -2D)y=44 —T6x - 482%.

38. Particular integrals in other simple cases. -We shall now
give some typical examples of the evaluation of particular integrals
in simple cases which have not been dealt with in the preceding
articles. The work is tentative, as before. For the sake of brevity,
the verification is omitted, as it is very similar to the verifications
already given.

Ex. (i)- (D2 +4) y=sin 2z.

Wé cannot evaluate

1

. e o8 . .
Higgsin 2z by writing —22 for D% as in
Art. 36, for this gives zero in the denominator.

But 4 sin 2z is the imaginary part of €2, and

1 .
24T — g2

) 1 .
DIid ‘ w'(—D—'m . 1, as in Art. 35,

.1 - D D?
— p2ix . N I
s {(l FERER >1} TR ¢ §

1 T

= g2z L] =e%iz =,

4:D 44
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hence, picking out the imaginary part,
1 .
ey tin 2= -}z cos 2z.

Adding the complement’ary function, we get
y=4 cos 2z + B sin 2z — }x cos 2z.

Ex. (ii). (D?—-5D +6) y =23,
1 2 3_( 1 _ 1 ) 22,
(D*-5D+6) ¢ * ~\a=p 3-p) ¢
11
—p2 - . ]
jf”( D T=D)"

=62a:(__21)_1_D_DZ—D3—D4—...)$3

=e2( — 1ot — a3 - 3% — 62— 6).
Adding the complementary function, we get
y=A46" - e2%(1at + a3+ 322 + 62 — B),
including the term — 6e2¢ in Be2e,

Ex. (iii). (D%—-6D +13) y—8¢3% gin 2z.
1 3 ot 1 . .
m . 8e3% gin 2w_883m{(D+3)2—6(D+3)+13} . 8in 2%
= Se3xﬁ sin 2z
=8¢%*( -}z cos 2z) (see Ex. (i)
= — 22¢%% cos 2.

Adding the complementary function, we get
y=¢€**(4 cos 2z + B sin 2z — 2z cos 2z).

These methods are sufficient to evaluate nearly all the particular
integrals that the student is likely to meet. All other cases may
be dealt with on the lines indicated in (33) and (34) of the miscel-
laneous examples at the end of this chapter.

Examples for solution.
Solve
V(1) (D2+1)y=4cos . V(2) (D-1) y=(x+3) e22.
Vv (3) (D3-3D-2) y=5402%¢=. v(4) (D2+2D + 2) y=2¢ " sin z.
v (B) (D2+1)2y=24% cos z. V (6) (D5~ D)y=12¢*+8 sin 2 — 2.
v (7) (D%-6D+25) y=263% cos 4o -+ 8¢%(1 — 2z) sin 4.
89. The Homogeneous Linear Equation. This is the name given

to the form  (pgznDr + par-1Dn14 . 4 Pa) Yy =f ().
It reduces to the type considered before if we put z=¢.
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Ex. ’ («3D3 + 322 D2 + & D) y = 24a®.
Put r=¢,
dr
‘%=e =x,
d dtd 14d
so that D=%=@d_t=a_git,
14 1d 1.d 1/ d a
2= —————— _=
b D<wdt> w2 dt oz dt ac2< 7l dtz)

D3=Dxl2<_§t g;) ~%< oclit $Z>+1D(_%+g_;>
(-

_ 2 d d2) 2 d3)
=\ atmt taB

1/7.d d2
=a73<23t"3%2+%3>’

thus the given differential equation reduces to %—24&‘

giving y=A4 + Bt + Ct? +3¢*
=A+ Blog z+C (log )2 + 32

Another method is indicated in (28)-(30) of the miscellaneous
examples at the end of this chapter.
The equation

Pol@ +bx)" Dy +py(a +ba)* 1D 1y +... +p,y =f(x)
can be reduced to the homogeneous linear form by putting
z=a+bz, giving Dy__d?/_d_yd_z_ dy
dzde “dz’

Examples for solution.

vy wz_-zxdymy 4a3. ) w2_+9xfl—y+25y =50.
vV 3) ® y+3ngﬁ+wg—+8y 65 cos (log z).

By L&y d
J (&) 2 +2xsdx?§ dZ dy+y=logx.

J ) (1 +2x)2 ~6(1 +2x) +16}=8(1 +22)2

J ®) @ +w)2gx%+(1 +x)d—z+y=4cos log (1 +2).
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40. Simultaneous linear equations with constant coefficients. The
method will be illustrated by an example. We have two de-
pendent variables, ¥ and 2z, and one independent variable .

D stands for —— d

iz before.
Consider BD+4)y—(2D+1)z=€"% .ceecriirririinnnes (1)
D+8)y— 32 =D ciriiiiiiiiie (2)

Eliminate 2, as in simultaneous linear equations of elementary
algebra. To do this we multiply equatlon (1) by 3 and operate on
equation (2) by (2D +1).

Subtracting the results, we get )

36D +4)-(2D+1)(D+8)}y= 3e=-(2D+1)be%
ve. (-2D2-2D+4)y= 8e7,
or (D2+D-2)y= —4e=
Solving this in the usual way, we get
y=2¢% + Ae® + Be?*.

The easiest way to get z in thi§ particular example is to use
equation (2), which does not involve any differential coefficients of 2.
Substituting for y in (2), we get

" 146 +9A4e® +6Be 2 — 32 =be %,
so that 2=3¢""+34e¢° +2Be7?.

However, when the equations do not permit of such a simple
method of finding z, we may eliminate y.

In our case this gives

{-(D+8)(2D +1) +3(6D +4)}y =(D +8)e™® — (5D +4)5e~2,
ie. (-2D%*-2D+4)z=12",
giving z=3¢%+ Ee® + Fe %,

To find the relation between the four constants 4, B E, and F,

substitute in either of the orlglnal equations, say (2). This gives
(D +8)(2e= + Ae® + Be=2%) — 3 (3¢~ + Ee™ + Fe**) =be ™%,
ie. (94 -3E)e® +(6B-3F)e* =0,

whence E=34 and F=2B,
80 2 =8¢ + Ee® + Fe—2* =3¢~ +34e® +2Be~2%, as before.
Exampies for solution. :
v (1) Dy-z =0, v (2) (D-17)y+(2D-8)z=0,
(D—-1)y—(D+1)2=0. (13D -53)y - 22=0.

{3 @D*-D+9)y—(D*+D+3)2=0,
@D2+ D +T)y—(D*— D+5)z=0.
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J (4) (D+1)y=z+ee, V (5) (D2+5)y—42= — 36 cos Tz,
(D+1)z=y+e" y+ D% =99 cos Tz.
v (6) (2D +1)y+ (D +32)z=91e~%+147 sin 2z +135 cos 2z,
y— (D —8)2=29¢ % +47 sin 2z +23 cos 2.

MISCELLANEOUS EXAMPLES ON CHAPTER III
Solve
J(1) (D-1)3y=16é=. ‘/(2) (4D2+12D+9) y=144xe'%”.;
v (3) (D*+6D?+11D2+6D) y=20e2 sin =.
v (4) (D?— D2 +4D—4) y=068¢”sin 2.
v (b) (D*—6D%*-8D~-3)y=256 (z+1) & ‘
v (6) (D4—8D?—9) y=>50 sinh 2z. v (T) (DA- 2D2+1) y= 40 cosh z.
v (8) (D—2)%y=8 (2% +e2®+sin 2z). Y(9) (D- 2)2y = 82e2% sin 2.
J(10) (D2+1)y=3 cos?x+2sin’x
v (11) (D*+10D?%+9) y=96 sin 2z cds z.
v (12) (D - a)%y=a®, where a is a positive integer.
dJ ldy 12logz d2y 2d

vV(18) TH4 = J(14) At 3’ =10.

J(15)‘ly %. J (16) (a;+1)2 +(x+1) —(20+3)(25 +4).

dx
v (17) 87—47(, +4x=y,

ary  dy
dt2 43 dt

v (18) 3;=2y;

+4y =25z +16¢".

dy dz
¥ @
2
y (20) ¢ d—w+t0‘ll—f+2y—7-0,
dy Ay

2 e +t i 2z —- 0.

v (21) Show that the solution of (D?*+1—1) y=0 consists of 4e® and
n pairs of terms of the form

e® (B, cos sz + 0, sin sx),

—on. V(9 ¢% = +9=0; t%+x=0.

2mr . 2%r
where c=cos 5 7 and s=sin Imil’
r taking the values 1, 2, 3 ... n successively.
(22) If (D—~a)u=0,
(D--a)v=1u,
and (D-a)y=0,

find successively u, v, and y, and hence solve (D-a)y=0.
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Y (23) Show that the solution of
(D-a)(D—a-h)(D-a—2h)y=0
e — Qeh% 4 1)

hx _
can be written 4% - Bes® (¢ 7 1) +Ce az ¢ 7

{ Hence deduce the solution of (D — a)3y=0.

[This method is due to D’Alembert. The advanced student will
notice that it is not quite satisfactory without further discussion. It
is obvious that the second differential equation is the limit of the first,
but it is not obvious that the solution of the second is the limit of the
| solution of the first.]

0%

v (24) If (D-a)®em= is denoted by z, prove that z, aa , and P all
vanish when m=a.
v Hence prove that e??, z¢®®, and 22® are all solutions of (D — a)®y=0.

[Note that the operators (D —a)® and 9 are commutative. ]

om
J cos ax—cos (a+h)z
(25) Show that @il —a2
is a solution of (D?+a?)y=cos (a+1)z.

4 Hence deduce the Particular Integral of (D2 +a?)y=cos az.
[This is open to the same objection as Example 23.]
(26) Prove that if V is a function of # and F(D) has its usual
meaning, .
v (i) D*[xV] =xD*V+nDr1V ;
v (ii) F(D) [2V] =xF(D)V + F'(D)V ;
1 F'(D)
/) 5y ) =2 5V gy
V(iv) ¢(D)[a"V]=a"¢p (D)V +na"1g'(D)V +... +"C,anr¢"(D)V
+... to (n+1) terms,

where ¢ (D) stands for —=- D)

V¥ (27) Obtain the Particular Integrals of (i) (D—1)y=uwe2e, Y
(i) (D+1)y=a2cosx, vV
by using the results (iii) and (iv) of the last example.

v (28) Prove, by induction or otherwise, that if 6 stands for w%,
=0(0-1)(0—-2)... (0—n+1)y.

J (29) Prove that
v (i) F(@)am  =amF(m);

v (i) ?%9590"‘ = —ﬁ—f?—), provided F(m)=£0;

J (i) F( [amV 1= o, F(61+m) v,

where V is a function of .
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v (30) By using the results of the last question, prove that the solu-
tion of dgy d 5
2_ J _ 5 1 .
S 4ccd +6y=2a® is }ab+ 4x2+ Bab,
where @ and b are the roots of m(m—1)~4m +6=0,

7.e. 2 and 3.
V (31) Given that (D-1)y=e22,
prove that (D-1)(D-2)y=0.

J By writing down the general solution of the second differential
equation (involving two unknown constants) and substituting in the
first, obtain the value of one of these constants, hence obtaining the
solution of the ﬁrst equation.

v (32) Solve d—x2+ P2y =sin az by the method of the last question.

J (33) If u; denotes ez‘“”jue—"“c dz,

4, denotes eb® "- u,e~ du,

ete.,
prove the solution of F(D)y=wu, where F(D) is the product of n
factors.
(D-a)(D-D)...

may be written Y=1u,.
This is true even if the factors of F (D) are not all different.
v Hence solve (D-a)(D-b)y=e**log x.

Vv (34) By putting T%D) into partial fractio:fs, prove the solution of
F(D)y=wu may be expressed in the form

= Fla )e““j ue=o%® dz,

provided the factors of F(D) are all different.

[If the factors of F(D) are not all different, we get repeated inte-
grations. ]

Theoretically the methods of thxs example and the last enable us to
solve any linear equation with constant coefficients. Unfortunately,
unless % is one of the simple functions (products of exponentials, sines
and cosines, and polynomials) discussed in the text, we are generally
left with an indefinite integration which cannot be performed.

If u=f(x), we can rewrite eamj. we—a% da

in the form r f(®erE-0dy,
k

where the lower limit % is an arbitrary constant.
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v (85) (i) Verify that
=lj f(t)sin p(z - ¢t) de
Pk
is a Particular Integral of
T+ vy =f2)
dx? reYy= .
[Remember that if o and b are funstions of z,

a [ 5bdp _ wme gy rfw(m, ?)
‘lﬁLF(x,t)dt_F(b,t)d—w-F(a,t)d—w+ R dt.]

{ (ii) Obtain this Particular Integral by using the result of the last
example.

J (iii) Hence solve (D%+1)y=cosec .
J (iv) Show that this method will also give the solution of
(D*+1)y=f(z)

(in a form free from signs of integration), if f(z) is any one of the func-
tions tan 2, cot 2, sec z).

2
vV (36) Show that the Particular Integral of é—‘7—/+ P2y =k cos pt repre-
g di2 P!

sents an oscillation with an indefinitely intreasing amplitude.

[This is the phenomenon of RESONANCE, which we have mentioned
before (see Ex. 5 following Art. 36). Of course the physical equations
of this type are only approximate, so it must not be assumed that the
oscillation really becomes infinite. Still it may become too large
for safety. It is for this reason that soldiers break step on crossing a
bridge, in case their steps might be in tune with the natural oscillation
of the structure. ]

v (37) Show that the Particular Integral of

&y
e

represents an oscillation with a variable amplitu&e 2—];&3"“.

+2k% + (A2 +p2y=ke Mcos pr

V' PFind the maximum value of this amplitude, and show that it is very
large if % is very small. | What is the value of the amplitude after an
infinite time ?

[This represents the forced vibration of a system which is in reson-
ance with the forcing agency, when both are damped by friction. The
result shows that if this friction is small the forced vibrations soon
become large, though not infinite as in the last example. This is an
advantage in some cases. If the Teceiving instruments of wireless
“telegraphy were not in resonance with the Hertzian waves, the effects
would be too faint to be detected. ]
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J (38) Solve - — 1ty =0,

[This equation gives the lateral displacement % of any portion of a
thin vertical shaft in rapid rotation, # being the vertical height of the
portion considered. ]

v (89) If, in the last example,

dy

dxyOwhena;Oandxl
prove that  y=E(cos nx — cosh nz) + F (sin nz — sinh na)
and cos nl cosh nl=1.

[This means that the shaft is supported at two points, one a height
I above the other, and is compelled to be vertical at these points. The
last equation gives #n when [ is known. ] :

v/ (40) Prove that the Complementary Function of
By 0% Ay
¥ +3 55 7 +4= 7 +2y =40
becomes negligible when ¢ increases sufficiently, while that of
' &y _d%y
B de®
oscillates with indefinitely increasing amplitude.
[An equation of this type holds approximately for the angular
‘velocity of the governor of a steam turbine. The first equation corre-

sponds to a stable motion of revolution, the second to unstable motion
or ““ hunting.” See the Appendix to Perry’s Steam Engine.]

+2y =40

J (41) Prove that the general solution of the simultaneous equations :

d2 dy
mW=Ve Hedt
m %Y

™ iz Hed

where m, V, H, and e are constants, is
z=A + B cos (0t - a),

y=771+C+ Bsin (o~ a),

H
where w=me and 4, B, C, a are arbitrary constants. /

. dx d ’
Given that Efw = fl_?tl =z =y =0 when ¢{=0, show that these reduce to

ac- Z— (1 —co8 wt),

=7 (wt—sin wt), the equations of a cycloid.
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[These equations give the path of a corpuscle of mass m and charge
e repelled from a negatively-charged sheet of zinc illuminated with
ultra-violet light, under a magnetic field H parallel to the surface. Vis
the electric intensity due to the charged surface. By finding ex-
perimentally the greatest value of z, Sir J. J. Thomson determined
2V

ol from which the important ratio %" is calculated when V and H are
known. See Phil. Mag. Vol. 48, p. 547, 1899.]

v (42) Given the simultaneous equations,

a1, a1, I,
L,—= dt2 M—dt—z = Ep cos pt,
a2l a1, I
LzTit—zg-i-M dtz =0

where L,, Ly, M, ¢, ¢,, E and p are constants, prove that I is of the
form a, cos pt+A, cos (mt—a) + By cos (nt— 3),
and I, of the form

@y cos pt+ 4, cos (mt—a) + B, cos (ni - B3),

where a,= %Zwl(l —p2c,L,),

EM
Gy = Tpsclc2,
k denoting the expression
(LyLg— M?)cycop* — (Lyey + Loc,) p2+14

m and n are certain definite constants; A,, By, a and B are arbitrary
constants ; and 4, is expressible in terms of 4, and B, in terms
of 4,.

Prove further that m and # are real if L, L, M, ¢;, and ¢, are real
and positive,

[These equations give the primary and secondary currents I, and
I, in a transformer when the circuits contain condensers of capacities
¢, and ¢,. L, and L, are the coefficients of self-induction and M that
of mutual induction. The resistances (which are usually very small)
have been neglected. Z sin pt is the impressed E.M.F. of the primary.]



CHAPTER 1V
SIMPLE PARTIAL DIFFERENTIAL EQUATIONS

41. In this chapter we shall consider some of the ways in which
partial differential equations arise, the construction of simple par-
ticular solutions, and the formation of more complex solutions from
infinite series of the particular solutions. We shall also explain the
application of Fourier’s Series, by which we can make these complex
solutions satisfy given conditions.

The equations considered include those that occur in problems
on the conduction of heat, the vibrations of strings, electrostatics
and gravitation, telephones, electro-magnetic waves, and the
diffusion of solvents.

The methods of this chapter are chiefly due to Euler, D’ Alembert,
and Lagrange.*

42. Elimination of arbitrary functions. In Chapter I. we showed
how to form ordinary differential equations by the elimination of
‘arbitrary constants. Partial differential equations can often be
formed by the elimination of arbitrary functions.

Ex. (i). Eliminate the arbitrary'functions fand F from
y=f@—-aty+ F@+at). .coevrrernrrnenrnennn.(1)

We get S—Z =f'"(x—at) + F'(x +at)

d 0% _ fr(w—at) + F'(w+at 2
an 27:0_2_/' (x —at) ZHA). i 2)

Similarly %= —af'(x—at) +aF'(z +at)
0% _ opn ”
and ét—2=a2f (x—at) +a?F"(x+at). covrereennnenn ()

* Joseph Louis Lagrange of Turin (1736-1813), the greatest mathematician of
the eighteenth century, contributed largely to every branch of Mathematics. He
created the Calculus of Variations and much of the subject of Partial Differential
gquabions, and he greatly developed Theoretical Mechanics and Infinitesimal

alculus.

P.D.E, 49 ) 13
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0% 10%
From (2) and (3), 52202 22 eerereivrencnrssnesesnanensees(4)
a partial differential equation of the second order.*

Ex. (ii). Eliminate the arbitrary function f from

1()
- -2r()
We get or G
5 ()
and a_y—wf z)
8 | T 9z + % =0
° o Yy
Examples for solution.
Eliminate the arbitrary functions from the following equations :

v (1) z=f(z+ay). V(2) 2=f (x+y) + F(z—1y), where i2= —1.
¥(3) z=f(x cos a+ysin a—at)+ F(x cos a+y sin a +al).
c () z=f(z2-y?). Vv (B) z=e?*tW f(aw — by).

! (6) z=x"f<%).

43. Elimination of arbitrary constants. We have seen in
Chapter I. how to eliminate arbitrary constants by ordinary
differential equations. This can also be effected by partials.

Ex. (i). Eliminate 4 and p from z=Ae? sin pa.

0% 9 4.0t
We get 5= P Ae? sin pz,
2,
and g_t_g = p2AePtsin px;
2, 2,
therefore % + g?z -0.

Ex. (ii). Eliminate a, b, and ¢ from
z=a(@+y)+b(x—y)+abt+c.

We get 5~x=a+b,

, ot

# This equation holds for the transverse vibrations of a stretched string.
The most general solution of it is equation (1), which represents two waves
travelling with speed a, one to the right and the other to the left,
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But (a+b)2—(a-b)2=4ab.

02\2 32)2 0z
Therefore 871:) —-(@ —455.

Examples for solution.

Eliminate the arbitrary constants from the following equations :
"(1) z=Ae " cos pz. Y(2) z=Ae P cos gx sin 1y, where p?=g2+7%
Y(8) z=az+(1—-a)y+b. v (4) z=ax+by+a+b2
V(B) z=(z-a)2+(y-b)% J(6) az+b=a%z+y.

44. Special difficulties of partial differential equations. As we have
already stated in Chapter 1., every ordinary differential equation
of the n* order may be regarded as derived from a solution con-
taining » arbitrary constants.* It might be supposed that every
partial differential equation of the n™ order was similarly derivable
from a solution containing n arbitrary functions. However, this is
- not true. In general it is impossible to express the eliminant of
n arbitrary functions as a partial differential equation of order .
An equation of a higher order is required, and the result is not
unique.t ,

In this chapter we shall content ourselves with finding particular
solutions. By means of these we can solve such problems as most
commonly arise from physical considerations.] We may console
ourselves for our inability to find the most general solutions by the
reflection that in those cases when they have been found it is often
extremely difficult to apply them to any particular problem.§

* It will be shown later (Chap. VI.) that in certain exceptional cases an
ordinary differential equation admits of Singular Solutions in addition to the
solution with arbitrary constants. These Singular Solutions are not derivable
from the ordinary solution by giving the constants particular values, but are of
quite a different form.

+ See Edwards’ Differential Calculus, Arts. 512 and 513, or Williamson’s
Differential Calculus, Art. 317.

+ The physicist will take it as obvious that every such problem has a solution,

and moreover that this solution is unique. From the point of view of pure

“ mathematics, it is a matter of great difficulty to prove the first of these facts:

this proof has only been given quite recently by the aid of the Theory of Integral

Equations (see Heywood and Fréchet’s L’ Equation de Fredholm et ses applications

& la Physique Mathématique). The second fact is easily proved by the aid of
Green’s Theorem (see Carslaw’s Fourier’s Series and Integrals, p. 206).

§ For example, Whittaker has proved that the most general solution of

Laplace’s equation DV BV PV
o T a0
27
is V:L- S(xcost+ysint+iz, £) df,

but if we wish to find a solution satisfying certain given conditions on a given
surface, we generally use a solution in the form of an infinite series.
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45, Simple particular solutions. |

Ex. . . 0% 10z, ,. .
x. (i). Consider the equation a3 (which gives the con-

duction of heat in one dimension). This equation is linear. Now, in
the treatment of ordinary linear equations we found exponentials very ‘
useful. This suggests z=€™**" as a trial solution. Substituting in
the differential equation, we get |

1
m2ematnt — 55 mmz+m’ I

which is true if n=m2a.
Thus e™*+m% jg 3 solution.
Changing the sign of m, e ™*+™%" jg also a solution.

Ex. (ii). Find a solution of the same equation that vanishes when
t= 400,

In the previous solutions ¢ occurs in ¢”***. This increases with ¢,
gince m2a? is positive if m and @ are real. To make it decrease, pub
m=1p, so that m2a2= — pZa2

This gives e?*~7" ag a solution.

Similarly e~®%-#%% ig a solution.

Hence, as the differential equation is linear, e~ A¢?* + Be~#%) is
a solution, which we replace, as usual, by

e~ E cos pz+ F sin pz).
AT . 0% 0% . .

Ex. (iii). Find a solution of 5._2+§_§=0 which shall vanish when
Y=+, and also when z=0. vy

Putting z=em*t, we get (m2+n?)em>¥ =0, so m2+n2=0.

The condition whén y= + oo demands that n should be real and
negative, say n= —p.

Then m=xip. ,

Hence e PY(A4er* + Be='%) is a solution,

t.e. ePYE cos pr+ Fsin px) is a solution.
But 2=0 if =0, so E=0.
The solution required is therefore Fe=¥sin pz.

Examples for solution.

oy 9y
J O =g

0% 1 0%
v (2 R ak oy
@ or y), and that z=0 when z=0 or y=0.

given that y=0 when 2= + 00 and also when{=+ .

given that z is never infinite (for any real values of

0z 0z . . o 0z
% e fi %z _
v 3 22T 3 0, given tha? # is never infinite, and that 5 0 when

z=y=0
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RV o0V oV

@ it apt o
y= — 0, and also when z=0.

=0, given that V=0 when z=+wo, when

o2V oV . . Y ..
| \/ (5) e —@_a—z’ given that V is never infinite, a‘nd that V=C and
av ov oV
%-=—a§=—a—z—=0 when 2=y=2=0.

2 2
v (6) %4_86_;_2:%’, given that V=0 when ¢= + 0, when #=0 or

I, and when y=0 or I

46. More complicated initial and boundary conditions.* In Ex. (iii)
of Art. 45, we found Fe?Y sin pz as a solution of
0%z 0%
o
satisfying the conditions that z=0 if y =+ or if z=0.
Suppose that we impose two extra conditions,{ say z=0 if =1
‘and z=Ilz —a? if y=0 for all values of z between 0 and .
‘ The first condition gives sin pl=0,
i.e. pl=nm, where n is any integer.
‘ For simplicity we will at first take I =, giving p =n, any integer.
 The second condition gives F sin pz =z —a? for all values of z
‘between 0 and 7. This is impossible.

However, instead of the solution consisting of a single term, we

may take

F.e v sin z+ Foe % sin 22 + Fye¥ sin 32 + ...,
since the equation is linear (if this is not clear, cf. Chap. TIIL. Art. 25),
giving p the values 1, 2, 3, ... and adding the results.

By putting ¥ =0 and equating to 7z —2? we get

F, sin z + F, sin 22 + F, sin 3x +...
=7z —a? for all values of z between 0 and 7.

The student will possibly think this equation as impossible to
satisfy as the other, but it is a remarkable fact that we can choose
values of the F’s that make this true.

This is a particular case of a more general theorem, which we
now enunciate.

* Ag ¢ usually denotes time and x and y rectangular coordinates, a condition
such as z=0 when ¢=0 is called an initial condition, while one such as z=0 if
2=0, or if x=1, or if y=u=, is called a boundary condition.

4 This is the problem of finding the steady distribution of temperature in a
semi-infinite rectangular strip of metal of breadth 7, when the infinite sides are
kept at 0° and the base at (ix - %),
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47. Fourier’s Half-Range Series. Every function of # which
satisfies certain conditions can be expanded in a convergent series
of the form

.
f (@) =a, sin z +a, sin 22 + a3 sin 3% +... to inf.

for all values of 2 between 0 and = (but not necessarily for the
extreme values =0 and z=). ,

This is called Fourier’s * half-range sine series.

The conditions alluded to are satisfied in practically every
physical problem.}

Similarly, under the same conditions f(x) may be expanded in
a half-range cosine series

lo+1, cos z +1, cos 2z + 13 cos 3z +... to inf.

These are called half-range series as against the series valid
between 0 and 27, which contains both sine and cosine terms.

The proofs of these theorems are very long and difficult.; How-
ever, if it be assumed that these expansions are possible, it is easy to
find the values of the coefficients.

Multiply the sine series by sin nz, and integrate term by term, §
giving

T T o
-‘-f(w) sinnxdw=a1j sinxsinmcdx+a2j §in 2z sin nx dx +... .
0 0 0

The term with @, as a factor is

ap .r sin? nx dx
0 B
Oy (T _%n - 1 1 y i
ok L (1 - cos 2na) duw = [x g, S0 2nw]0
=a,m.

* Jean Baptiste Joseph Fourier of Auxerre (1768-1830) is best known as the
author of La Théorie analytique de la chalewr. His series arose in the solution of
problems on the conduction of heat.

¥ It is sufficient for f(x) to be single-valued, finite, and continuous, and have
only a limited number of maxima and minima between x=0 and x=w. However,
these conditions are not necessary. The necessary and sufficient set of conditions
has not yet been discovered.

+ For a full discussion of Fourier’s Series, see Carslaw’s Fourier’s Series and
Integrals and Hobson’s Theory of Functions.

§ The assumption that thiz is legitimate is another point that requires
justification.
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The term involving any other coefficient, say @, is

T
a,.j sin 7% sin nx dx
. 0

2

_o,[sin(n-1r2z _ sin (n +7)2 7" ~0
] n—r n+r b

=a”r {cos (n —7)z —cos (n +7)x} dz

So all the terms on the right vanish except one.
Thus r f(@) sin nx de =}a,m,
0

2 (" .
or a,,=—j [f() sin nz da.
mJo

Similarly, it is easy to prove that if
f(x) =by +by cos & +by cos 2 + ...
for values of z between 0 and -, then

b =—j f(a;) dz

and b,= ;r.j f(@) cos nz dz
0
for values of n other than 0.

48. Examples of Fourier’s Series.
(i) Expand 7z —2? in a half-range sine series, valid between z=0

and x=".
Tt is better not to quote the formula established in the last article.

Let TL— 22 =0, Sin T+ 0, sin 20+ a5 sin 3T+
Multiply by sin nz and integrate from O to , giving

T
. . a
j (72 — %2) sin nx do= a,,r sin2 ne dz = 5 0n 88 before.
0 0

Now, integrating by parts,
j (7z — 2?) sin new do= [——('n'av x2) cos mc] r(ﬂr —21) cos nw dx
0

. 2 (™.
=0+l_—§(7r—-2w) sin mc] +n—2j0s1n nw dz
=0 ——[cos m::l = if nis odd or 0 if » is even.
Thus a, =—7% if n is odd or O if » is even, giving finally

8, . . .
ww—x2=;(sm % + 4 sin 3% + 135 sin 5z +...).
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(ii) Expand f(z)ina half-range series valid from z=0 to ¢ = 7, where

Jf(@)=mz between =0 and w:%"

.

and S (@) =m(7r —z) between x=;~r and r=.

In this case f(z) is given by different analytical expressions in
different parts of the range.* The only novelty lies in the evaluation
of the integrals.

In this case

J.ﬂf(w) sin nx dx:jgf(w) sin nx cla:+.rf(x) sin ne dz
0 0 _'25

=r mz sin nx dx +J' m(7 — z) sin nx dz.

0 z .

We leave the rest of the work to the student. The result is
4m . . . . ’

—;’:—z(sm Z— 4 8in 3z + 5% sin bz ~ 7 sin Tz +...).

The student should draw the graph of the given function, and
compare it with the graph of the first term and of the sum of the first -
two terms of this expansion.} )

Examples for solution.

Expand the following functions in half-range sine series, valid
between z=0 and x=1: ‘

WL J@e (@ V@ ess Y ) e

‘/ (6) f(x)=0 from z=0 to x=%, and from x=§£—r to m,

f(2)=(4z— 7)(37 - 4z) from m=?zr to x;_?%r.

v (7) Which of these expansions hold good (a) for #=0 ?
(b) for = ?

49. Application of Fourier’s series to satisfy boundary conditions,
We can now complete the solution of the problem of Art. 46,
We found in Art. 46 that
Fiev sin  + Foe~2 sin 2z +Fye~3 sin 3 + ...
satisfied all the conditions, if
Fysinz+F,sin 22+ F, sin 3z +... =7z — 2
for all values of & between 0 and .
* Fourier’s theorem applies even if f(x) is given by a graph with no analytical
expression at all, if the conditions given in the footnote to Art. 47 are satisfied.

For a function given graphically, these integrals are determined by arith-
metical approximation or by an instrument known as a Harmonic Analyser.

t Several of the graphs will be found in Carslaw’s Fourier's Series and Integrals,
Art. 59. More elaborate ones are given in the Phil. Mag., Vol. 45 (1898).
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In Ex. (i) of Art. 48 we found that, between 0 and r,
?{—_(sin Z +5& 8in 3z + 35 sin b +...)=7w -2
Thus the solution required is

8 .
- (e—y sin z + & e 3% 8in 32 + 11z~ sin bz +...).

50. In the case when the boundary condition involved ! instead

of 7, we found Fe-7 sin pz as a solution of the differential equation,
and the conditions showed that p, instead of being a positive integer

n, must be of the form nw/l.

Thus Fev sin 7zl + Fye~?9 sin 27afl + ...

satisfies all the-conditions if
F, sin 7/l + Fy sin 27zfl + ... =lx — 2?
for all values of o between 0 and I.
.
Put wz/l=2. Then lw—x2=j_—2(7rz—z2). The F’s are thus l:z
™
times as much as before. The solution is therefore

82 (e—"ll/‘ sin wzfl + e~/ sin 3wafl + Exe~ ™ sin Srafl +...).

MISCELLANEOUS EXAMPLES ON CHAPTER IV.

a? .
v (1) Verify that V=%te_4_1ﬂ is a solution of

0V 10V
922 Kot
J (2) Eliminate 4 and p from V=A4e?? sin (2p2Kt - pz).
ov_ 0%V
v (8) Transform - =K Ere vV
ow  _ o*W
to e

by putting V=¢""W.
[The first equation gives the temperature of a conducting rod whose

surface is allowed to radiate heat into air at temperature zero. The
given transformation reduces the problem to one without radiation.]
\f (4) Transform
Vv K a< 4 to aw _ K_aﬁ’ )
o 2or\ or ot or?
by putting W =7V.
[The first equation gives the temperature of a sphere, when heat

flows radially.]
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v (5) Eliminate the arbitrary functions from
V=2 [fr—at)+ Flr-+ay)].

v (6) d(i) Show that if em#+int ig g solution of
oV oW

Eaer =l

where # and % are real, then m must be complex.

Y (ii) Hence, putting m= —g—if, show that V,e—%sin (nt—f2) is a
solution that reduces to V,sin #¢ for =0, provided K(g%2—f2)=h and
n=2Kfy.

V(i) If V=0 when z= 400, show that if K and n are positive so
are g and f.

[In Angstriims method of measuring K (the “ diffusivity ”), one
end of a very long bar is subjected to a periodic change of temperature
V, sin nf.  This causes heat waves to travel along the bar. By measur-
ing their velocity and rate of decay #/f and g are found. K is then
calculated from K =n/2fy.]

2y
v (7) Find a solution of a—V =K g 1 reducing to Vysinnt for =0
and to zero for x= +0. :

[This is the problem of the last question when no radiation takes .
place. The bar may be replaced by a semi-infinite solid bounded by
a plane face, if the flow is always perpendicular to that face. Kelvin
found K for the earth by this method.]

v (8) Prove that the simultaneous equations

24 ol
o~ R+l
ST _kveo?,
ox
are satisfied by V= Voe—(g+zf)x+mz,
1= I eo+inasint,
if g% —f2=RK - n2LC,
9fy=n(RC + LK),
and I2(R+iLn)=V,2(K +1iCn).

[These are Heaviside’s equations for a telephone cable with resist-
ance R, capacity O, inductance L, and leakance K, all measured per
unit length. I is the current and ¥ the electromotive force.]

y (9) Show that in the last question g is independent of » if RC'=KL.

[The attenuation of the wave depends upon ¢, which in general
depends upon n. Thus, if a sound is composed of harmonic waves of
different frequencies, these waves are transmitted with different degrees
of attenuation. The sound received at the other end is therefore
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distorted. Heaviside’s device of increasing L and K to make RC=KL
prevents this distortion.]
V. (10) Tn question (8), if L=K=0, show that both ¥ and I are
propagated with velocity 4/ (2n/RC). :
[The velocity is given by n/f.]
J (11) Show that the simultaneous equations
koP oy 08 wodo OR 9Q,

cw oy 0 cw ay 0
k3Q oa 0y pdB_0P OR.

o9t o9z ox’ ¢ ot o0z ox’

are satisfied by P=0; a=0;
Q=0; -+ B=R,ysin p(z—2t);
R=R,sinp(z-ot); y=0;
provided that v=c/Vku and By=—+/(k/u) Ro.
[These are Maxwell’s electromagnetic equations for a dielectric of
specific inductive capacity & and permeability u. P, @, R are the

components of the electric intensity and a, B, vy those of the magnetic
intensity. ¢ is the ratio of the electromagnetic to the electrostatic
units (which is equal to the velocity of light in free ether). The solution
shows that plane electromagnetic waves travel with the velocity ¢/Vku,
and that the electric and magnetic intensities are perpendicular to the.
direction of propagation and to each other.]
2
4 (12) Find a solution of %=K g—wg such that
Voo if t=+00;
V=0 if =0 or , for all values of ¢;
V=az—a? if t=0, for values of = between O and 7.
[N.B. Before attempting this question read again Arts. 46 and 49.
V is the temperature of a non-radiating rod of length 7 whose ends are
kept at 0°, the temperature of the rod being initially (72 —2?%)° at a
distance « from an end.] .
v (13) What does the solution of the last question become if the
length of the rod is I instead of 7 ¢
[N.B. Proceed as in Art. 50.]
J (14) Solve question (12) if the condition V=0 for =0 or 7 is

replaced by %%=0 for £=0 or =.
[Instead of the ends being at a constant temperature, they are here
treated so that no heat can pass through them.]

J (18) Solve question (12) if the expression 72 — x? is replaced by 100.
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'/ (16) Find a solution of %%7 =K g—g such that
Voo if t=+o0;
V=100 if z=0 or = for all values of ¢;
. V=0 if t=0 for all values of z between 0 and 7.
[Here the initially ice-cold rod has its ends in boiling water.]

v (17) Solve question (15) if the length is 7 instead of 7. If I increases
indefinitely, show that the infinite series becomes the integral -

@I -l-e‘K"”‘sin azx da.
™ 0 Q

[N.B. This is called a Fourier’s Integral. To obtain this result
put (2r+1)7wfl=a and 27fl=da.

Kelvin used an integral in his celebrated estimate of the age of the
earth from the observed rate of increase of temperature underground.
(See example (107) of the miscellancous set at the end of the book.)
Strutt’s recent discovery that heat is continually generated within the
earth by radio-active processes shows that Kelvin’s estimate was too
small.]

- e ov._ oV
v (18) Find a solution of §=K Fr such that
V is finite when t= + o0
ov
oz =0 when w-O,} for all values of ¢
V=0 when z=I,
V=V, when =0, for all values of z between O and L.

[If a small test-tube containing a solution of salt is completely
submerged in a very large vessel full of water, the salt diffuses up out
of the test-tube into the water of the large vessel. If V, is the initial
concentration of the salt and ! the length of test-tube it fills, V gives
the concentration at any time at a height 2 above the bottom of the
test-tube. The condition %g=0 when =0 means that no diffusion
takes place at the closed end. ¥V =0 when #=1I means that at the top
of the test-tube we have nearly pure water.]

. L % 0%
J (19) Find a solution of 52 =" 58 such that
y involves z trigonometrically ;
y¥=0 when =0 or 7, for all values of ¢;

%’co when =0, for all values of z;
y=mz between z=0 and =, b r=0.

2

y=m(% —x) between x=7§r and =,

ferall valuos-ef-.
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[N.B. See the second worked example of Art. 48.

y is the transverse displacement of a string stretched between two
points a distance 7 apart. The string is plucked aside a distance
m[2 at its middle point and then released.]

2,
vV *(20) Writing the solution of (—iw—Z=D2y, where D is a constant, in

the form d
y=e"PA +e 0B,

2, 2
deduce the solution of g;%=gt—g in the form v
y=f(t+x)+ F(t—2z)

by substituting _8% for D, f(t) and F(t) for 4 and B respectively, and

using Taylor’s theorem in its symbolical form
Sl +2)=e2f(0).

[The results obtained by these symbolical methods should be
regarded merely as probably correct. Unless they can be verified by
other means, a very careful examination of the argument is necessary
to see if it can be taken backwards from the result to the differential
equation. A

Heaviside has used symbolical methods to solve some otherwise
insoluble problems. See his Electromagnetic Theory.]

\/ *(21) From the solution of %=D2y, where D is a constant, deduce

2
that of a_y=_6_y in the form
aﬁ ot? 2 2
y=f(t)+xa——f+w— 94j+
oz "2t T

[This is not a selution unless the series is convergent. ]

Use this form to obtain a solution which is rational, integral, and
algebraic of the second degree in .

92 2

v/ *(22) Transform the equation gt—;ZI:az% by changing the inde-

pendent variables # and ¢ to X and T, where
X=z—at; T=z+at
Hence solve the original equation.

*To be omitted on a first reading.



CHAPTER V

EQUATIONS OF THE FIRST ORDER BUT NOT OF THE
FIRST DEGREE

51. In this chapter we shall deal with some special types of
equations of the first order and of degree higher than the first for
which the solution can sometimes be obtained without the use of
infinite series.

These special types are :

(@) Those solvable for p.
(b) Those solvable for y.
(¢) Those solvable for .

52. Equations solvable for p. If we can solve for P, the equation
of the n degree is reduced to n equations of the first degree, to
which we apply the methods of Chap. II.

Ex. (i). The equation p?+pz+ py+zy=0 gives

pP=-2z or p=-y;

from which 2y=-a2%+c; or x=-logy+cy;
or, expressed as one equation,
(2y+a2—c)(@+log ¥ =) =0. wrvvvverevrernnnnn.. (1)

At this point we meet with a difficulty ; the complete primitive
apparently contains two arbitrary constants, whereas we expect only
one, as the equation is of the first order.

But consider the solution '

(2y+a2—c)(m+log y~c)=0. .orvrrvrneennnnn.... (2)

If we are considering only one value of each of the constants ¢ ¢,
and c,, these equations each represent a pair of curves, and of course
not the same pair (unless c=c¢;=c,). But if we consider the infinite
set of pairs of curves obtained by giving the constants all possible
values from — oo to + o0, we shall get the same infinite set when taken
altogether, though possibly in a different order. Thus (2) can be taken
as the complete primitive.

62
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Ex. (ii). p2+p-2=0.
Here p=1 or p=-2,
giving y=x+c¢; Or y=—2x+c,

As before, we take the complete primitive as
(y -z —c)(y+2x—c)=0,
not (y—=z—ec,)(y+2x-cy) =0.
Each of these equations represents all lines parallel either to
y=2 or to y= —2z.
Examples for solufion.
V(1) p2+p-6=0. V(2) p?+2zp=322 ‘/(3) pP=25.
V4) z+yp?=p(+ay). V(B) P*—p@2+ay+y?) +ay(@+y)=0.
J/ (6) p2—2pcosh z+1=0.
53. Equations solvable for y. If the equation is solvable for y,
we differentiate the solved form with respect to .

Ex. (i). p2_py +2=0. .
Solving for y, y=p +;—i.
. o e _(Lp 1 ﬁ‘@
Differentiating, p= dw+g_;—p2 o
i.e (p_l>d_x+£=1
- p/dp p*

This is a linear equation of the first order, considering p as the
independent variable. Proceeding as in Art. 19, the student will obtain

x=p(c+cosh™1p)(p%— 1)_1".
Hence, as y=p +§, y=p+(c+cosh™p)(p? - 1)'5.

These two equations for z and y in terms of p give the parametric
equations of the solution of the differential equation. For any given
value of ¢, to each value of p correspond one definite value of z and
one of y, defining a point. As p varies, the point moves, tracing out
a curve. In this example we can eliminate p and get the equation con-
necting # and y, but for tracing the curve the parametric forms are as
good, if not better.

Ex. (ii). 3p® —py +1=0.
Solving for y, y=3pt+pt.
. s s dp _,dp
Differentiating, p= 12p3% —p2 o
te. dr=(12p2—p=3)dp.
Integrating, =43 +3p~2 +c,
and from above, y=3pt+pL }

The student should trace the graph of this for some particular valno
of ¢, say ¢=0.,
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54. Equations solvable for x. If the equation is solvable for z,

we differentiate the solved form with respect to y, and rewrite g—;

in the form 1
p

Ex. p?—py+2=0. This was solved in the last article by solving
for y.
Solving for z, x=py—p
Differentiating with respect to ¥,
) 1 dp dp
—=p+y-—2p=-,
p Py Py

e (p 1) dy +y=2p
€. ap A
which is a linear equation of the first order, considering p as the inde-

pendent and y as the dependent variable. This may be solved as in
Art. 19. The student will obtain the result found in the last article.

Examples for solution.

V(1) z=4p+4p®. /(9) p?—20p+1=0.

«(3) y=p%+p. V(4) y=z+pt

v(5) pP+p=e. . V(6) 2y +p2+2p=2x(p+1).
v (1) pPP—p (y+3)+2=0. V(8) y=psin p+cos p.

J(9) y=ptan p+logcos p.  J(10) eP¥=p2-1,

L) petan (o 1 F5)

(11) p=tan i+pe)

J (12) Prove that all curves of the family given by the solution of
Ex. 1 cut the axis of y at right angles. Find the value of ¢ for that
curve of the family that goes through the point (0, 1).

Trace this curve on squared paper.

v (13) Trace the curve given by the solution of Ex. 9 with ¢=0.
Draw the tangents at the points given by p=0, p=1, p=2 and p=3,
and verify, by measurement, that the gradients of these tangents are
respectively 0, 1, 2 and 3.




CHAPTER VI

SINGULAR SOLUTIONS *
55. We know from coordinate geometry that the straight line

Y =mx +% touches the parabola y?=4ax, whatever the value of m.

Consider the point of contact P of any particular tangent. At
P the tangent and parabola have the same direction, so they have

a common value of %’ as well as of z and .

F1a. 7.

But for the tangent m =§-Z =p say, so the tangent satisfies the

differential equation y =pz +—.

Hence the equation holds also for the parabola at P, where z,
¥, and p are the same as for the tangent. As P may be any point
on the parabola, the equation of the parabola »%=4a2 must be a
solution of the differential equation, as the student will easily verify,

*The arguments of this chapter will be based upon geometrical intuition. The
results therefore cannot be considered to be proved, but merely suggested as
probably true in certain cases. The analytical theory presents grave difficulties
(see M. J. M. Hill, Proc. Lond. Math. Soc., 1918).

P.D.E. 65 E
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In general, if we have any singly infinite system of curves which
all touch a fixed curve, which we will call their envelope,* and if this
family represents the complete primitive of a certain differential
equation of the first order, then the envelope represents a solution
of the differential equation. For at every point of the envelope
7, y, and p have the same value for the envelope and the curve of
the family that touches it there. ,

Such a solution is called a Singular Solution. It does not
contain any arbitrary constant, and is not deducible from the

_Complete Primitive by giving a particular value to the arbitrary
constant in it.

J Example for solution.

Prove that the straight line y== is the envelope of the family of
parabolas y=z+3(z—c)2% Prove that the point of contact is (¢, ¢),
and that p=1 for the parabola and envelope at this point. Obtain
the differential equation of the family of parabolas in the form
y=2+(p—1)2 and verify that the equation of the envelope satisfies this.

Trace the envelope and a few parabolas of the family, taking ¢ as
0,1, 2, ete.

56. We shall now consider how to obtain singular solutions. It
has been shown that the envelope of the curves represented by the
complete primitive gives a singular solution, so we shall commence
by examining the method of finding envelopes.

The general method t is to eliminate the parameter ¢ between
f(x, y, ¢) =0, the equation of the family of curves, and

o _
3 =0.
Eg. if f(z,y, )=0 is y—cx—% =0, cerriiririn 1)
of -
a~0—0 18 - $+—2—0, ..................... (2)
giving c=+1[+/x.

#*In Lamb’s Infinitesimal Colculus, 2nd ed., Art, 155, the envelope of a
family is defined as the locus of ultimate intersection of consecutive curves of
the family. As thus defined it may include node- or cusp-loci in addition to or
instead of what we have called envelopes. (We shall give a geometrical reason for
this in Art. 56 ; see Lamb for an analytical proof.)

+See Lamb’s Infinitesimal Calculus, 2nd ed., Art. 155. If f(x, y, c) is of
the form Lc2+ Mc+ N, the result comes to M2=4LN. Thus, for

y—ca:—-i-:O,

te. ce-cy+1=0,
the result is yi=4x.
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Substituting in (1), y==x24/7,

or y? =4a.
This method is equivalent to finding the locus of intersection of
f(:l), Y c)=0,’
and : [z, y, c+h)=0,

two curves of the family with parameters that differ by a small
quantity h, and proceeding to the limit when % approaches zero.
The result is called the c-discriminant of f(z, y, ¢) =0.

57. Now consider the diagrams 8, 9, 10, 11. ~
Fig. 8 shows the case where the curves of the family have
no special singularity. The locus of the ultimate intersections

Fia. 8,

PQRSTUY is a curve which has two points in common with each
of the curves of the family (e.g. @ and R lie on the locus and also
on the curve marked 2). In the limit the locus PQRSTUYV there-
fore touches each curve of the family, and is what we have defined
as the envelope.

In Fig. 9 each curve of the family has a node. Two con-
secutive curves intersect in three points (e.g. curves 2 and 3 in the
points P, @, and R).

The locus of such points consists of three distinct parts EE',
AA', and BB'.

When we proceed to the limit, taking the consecutive curves
ever closer and closer, 44’ and BB’ will move up to coincidence
with the node-locus NN', while EE’ will become an envelope. So
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in this case we expect the c-discriminant to contain the square of
the equation of the node-locus, as well as the equation of the envelope.

As Fig. 10 shows, the direction of the node-locus NN’ at any
point P on it is in general not the same as that of either branch of
the curve with the node at P. The node-locus has # and y in common
with the curve at P, but not p, so the node-locus is not a solution of
the differential equation of the curves of the famaly.

E

Fie. 10.

1f the node shrinks into a cusp, the loci EE’ and NN’ of Fig. 10
move up to coincidence, forming the cusp-locus CC” of Fig. 11.
Now NN’ was shown to be the coincidence of the two loci 44" and
BB’ of Fig. 9, so CC’ is really the coincidence of three loci, and
its equation must be expected to oceur cubed in the c-discriminant.

Fig. 11 shows that the cusp-locus, like the node-locus, is not
(in general) a solution of the differential equation.

AL

Fia. 11,

To sum up, we may expect the c-discriminant to. contain :
(i) the envelope, ‘
(ii) the node-locus squared,
(i) the cusp-locus cubed.
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The envelope is a singular solution, but the node- and cusp-
loci are not (in general *). solutions at all.

58. The following examples will illustrate the preceding results :

Ex. (i). y=p.

The complete primitive is easily found to be 4y=(z—c)?

j.e. ¢%—2cx+u?—4y=0.

As this is a quadratic in ¢, We can write down the discriminant ab
once as (21)2=4(a? - 49), ‘
i.e. y=0, representing the envelope of the family of equal parabolas

given by the complete primitive, and occurring to the first degree only,
as an envelope should.

J
(o] x
‘ Fie. 12,
- p?
Ex. (ii). 3y=2pr—-2 "

Proceeding as in the last chapter, we get
_9p+2® ( - 2) dp
3p=2p+2 s 22 4:13 iz’
te. px?—2p%={(22%—4pz) %,

dp

1.e. x2-2p=0 or p=2% Ggr e (a)
do_yip,
® p

* We say in general, because it is conceivable that in some special example a
node- or cusp-locus may coincide with an envelope or with a curve of the family.

L]
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log x=2log p—log e,
cx=p?
whence 3y = 2cha® — 2,
t.e. (3y+2c)2—4cx3 a family of semi-cubical parabolas with thelr cusps
on the axis of y.
The c-discriminant is  (3y —2%)2=9y2,
i.e. @3(6y—ad)=0,
The cusp-locus appears cubed, and the other factor represents the
envelope
It is easily verified that 6y=2® is a solution of the differential
equation, while =0 (giving p=o00 ) is not.
If we take the first alternative of the equations (A),
z.e. -2p=0,
we get by substitution for p in the differential equatlon

3y =1,
1.e. the envelope.
This illustrates another method of finding singular solutions,

4

Fi1a. 18, ~

Examples for solution.

Find the complete primitives* *and singular solutions (if any) of the
following differential equations. Trace the graphs for Examples 1-4:

V(1) 4p2-92=0. ) 4p2(w 2)=1.
v(3) zp®-2yp+4w=0. Y(4) p2+y2—1=0.
Y (8) p* + 2ap ~y =0. v (6) op®-2yp+1=0.

J(7) 4wp2+4yp-1=0.
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59. The p-discriminant. We shall now consider how to obtain
the singular solutions of & differential equation directly from the
equation itself, without having to find the complete primitive.

Consider the equation a?p? —yp +1=0.

Tf we give « and y any definite numerical values, we get a quad-
ratic for p. For example, if

z=42, y=3, 2p*-3p+1 =0,
p=% or 1.

Thus there are two curves of the family satisfying this equation
through every point. These two curves will have the same tangent
at all points where the equation has equal roots in p, .. where
the discriminant y2 — 4% =0.

Qimilar conclusions hold for the quadratic Lp*+Mp+N =0,
where L, M, N are any functions of 2 and y. There are two curves
through every point in the plane, but these curves have the same
direction at all points on the locus M2~ 4LN =0.

More generally, the differential equation

f@, y, p)=Lop™ +Lyp™ +Lyp"2+...+L, =0,
where the L’s are functions of z and y, gives n values of p for a
given pair of values of z and g, corresponding to » curves through
any point. Two of these n curves have the same tangent at all
points on the locus given by eliminating p from

{f(.’l), ¥, p) =0,
of
»

for this is the condition given in books on theory of equations for
the existence of a repeated root.

We are thus led to the p-discriminant, and we must now in-
vestigate the properties of the loci represented by it.

60. The Envelope. The p-discriminant of the equation

?/‘Px‘*l
g
or px—py+1=0
is y? =4z,

We have already found that the complete primitive consists of
the tangents to the parabola, which is the singular solution. Two
of these tangents pass through every point P in the plane, and
these tangents coincide for points on the envelope.
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This is an example of the p-discriminant representing an envelope.
Fig. 15 shows a more general case of this.

F16. 14.

Consider the curve SQP as moving up to coincidence with the
curve PRT, always remaining in contact with the envelope QRU.
The point P will move up towards R, and the tangents to the two
curves through P will finally coincide with each other and with the
tangent at the envelope at B. Thus R is a point for which the p’s
of the two curves of the system through the point coincide, and
consequently the p-discriminant vanishes.

u

Fi6. 15.

Thus the p-discriminant may be an envelope of the curves of
the system, and if so, as shown in Art. 55, is a singular solution.

61. The tac-locus. The envelope is thus the locus of points
where two consecutive curves of the family have the same value
of p. But it is quite possible for two non-consecutive curves to
touch.

Consider a family of circles, all-of equal radius, whose centres
lie on a straight line.
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Fig. 16 shows that the line of centres is the locus of the point
of contact of pairs of circles. This is called a tac-locus. Fig. 17

E

T~~~ Y
NN

F1a. 16.

shows circles which do not quite touch, but cut in pairs of neigh-
bouring points, lying on two neighbouring loci AA’, BB'. When
we proceed to the limiting case of contact these two loci coincide
in the tac-locus TT". Thus the p-discriminant may be expected to
contain the equation of the tac-locus squared.

[ / A 0 N\ \
Fra. 17.

Tt is obvious that at the point P in Fig. 16 the direction of
the tac-locus is not the direction of the two circles. Thus the
relation between z, y, and p satisfied by the circles will not be
satisfied by the tac-locus, which has the same 2 and y but a different
p at P. In general, the tac-locus does not furnish a solution of the
differential equation.

w - >
L BN

62. The circles of the last article are represented by
(@ +c)+y*=1%
if the line of centres is Ox.

This gives z+e=Vri-y?,
or = —ypIVrE =y,
i.e. Y2 +y2—-r2=0.

The p-discriminant of this is y?(y* - 7%)=0.

The line =0 (occurring squared, as we expected) is the tac-
locus, y = =7 are the envelopes EE’ and FF' of Fig. 16; y==r,
giving p =0, are singular solutions of the differential equation, but
y =0 does not satisfy it.

63. The cusp-locus. The contact that gives rise to the equal
roots in p may be between two branches of the same curve instead
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of between two different curves, 7.e. the p-discriminant vanishes ab
a cusp.

As shown in Fig. 18, the direction of the cusp-locus at any
point P on it is in general not the same as that of the tangent to
the cusp, so the cusp-locus is not a solution of the differential equation.

’

Cc

F1a. 18.

Tt is natural to enquire if the equation of the cusp-locus will
appear cubed in the p-discriminant, as in the c-discriminant. To
decide this, consider the locus of points for which the two p’s are
nearly but not quite equal, when the curves have very flat nodes.
This will be the locus NN’ of Fig. 19.  In the limit, when the nodes

NI

L

F16. 19,

contract into cusps, we get the cusp-locus, and as in this case there
is no question. of two or more loci coinciding, we expect the p-
discriminant to contain the equation of the cusp-locus to the first
power only.

64. Summary of results. The p-discriminant therefore may be

expected to contain
(i) the envelope,

(i1) the tac-locus squared,
(iil) the cusp-locus,
and the c-discriminant to contain
(1) the envelope,
(i) the node-locus squared,
(iii) the cusp-locus cubed.
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Of these only the envelope is a solution of the differential
equation.

. 65. Examples.

Ex. (i). P22 - 39)2=4(1-9).
Writing this in the form
dw 2 -3y

_— i—_—_—-
&y~ T2v/-y)

we easily find the complete primitive in the form
(z-c)2=y*(1-9)

The c-discriminant and p-discriminant are respectively

y*(1-y)=0 and (2-3y)*(1-9)=0.

1 -y =0, which occurs in both to the first degree, gives an envelope ;
y=0, which occurs squared in the ¢c-discriminant and not at all in
the p-discriminant, gives a node-locus; 2 -3y =0, which occurs squared
in the p-discriminant and not at all in the ¢-discriminant, gives a

tac-locus.
Tt is easily verified that of these three loci only the equation of the

envelope satisfies the differential equation.

Y

1 Envelope

Y\ Tac-locus

2.
5]
/\/\ /7N ode-locus

BN “

Fr1a. 20.

Ex. (ii). Consider the family of circles
%2 +y2+2cx +2¢2-1=0.
By eliminating ¢ (by the methods of Chap. 1.), we obtain the differ-
ential equation - :
2y2p? + 2zyp + 22 +y* - 1=0.
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The ¢- and p-discriminants are respectively
#2-2(x2+y2-1)=0 and x%y— 2y2(x2"\y2\— 1)=0,
te. 224+2y2-2=0 and y3(22+2y2>-2) =0,
22+2y2 - 2=0 gives an envelope as it occurs to the first degree in
both discriminants, while y=0 gives a tac-locus, as it occurs squared
in the p-discriminant and not at all in the c-discriminant.

a
AN

Fia. 21,

I Tac-locus

Examples for solution.

In the following examples find the complete primitive if the differ-
ential equation is given or the differential equation if the complete
primitive is given. Find the singular solutions (if any). Trace the
graphs. =

v (1) 4a(z-1)(z-2)p? - (3e2 - 62 +2)2=0. V (2) dap®— (3z—1)2=0.
v(3) yp?—2zp+y=0. v (4) 3zp?—6yp+x+2y=0.

J () p?+2pa® — 432y =0. V(6) p®—4ayp +8y2=0.

v (1) #?+y2—-20x+c2cos? a=0. J(8) c2+2cy—2z2+1=0.

(9 E+@ty)e+l-2y=0.  /10) 2®+y2+ 2wy +c2~1=0.

66. Clairaut’s Form.* We commenced this chapter by con-
sidering the equation a
y =px +I—).

* Alexis Claude Clairant, of Paris (1713-1765), although best known in con-
nection with differential equations, wrote chiefly on astronomy.
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This is a particular case of Clairaut’s Form

Y=PT (D). crrrrreremrmnninniiiennannaens n
To solve, differentiate with respect to y.

pep+lo+/ DL

d .
therefore Elg =0, P=Cb ceerrererrnecnnssiiriiiiiineeean (2)
or 0=+ (P).  cevreerrmerernarereniriiaieneninan 3)
Using (1) and (2) we get the complete primitive, the family of
straight lines, YD HF(0).  rrrrreerereeenrenens eeenr(d)

If we eliminate p from (1) and (3) we shall simply get the p-dis-
criminant. ‘

To find the ¢-discriminant we eliminate ¢ from (4) and the result
of differentiating (4) partially with respect to c, v.e.

0=Z+f(€). +eurerrrrnrrermnmmrruiasceansens (5)

Equations (4) and (5) differ from (1) and (3) only in having ¢
instead of p. The eliminants are therefore the same. Thus both
discriminants must represent the envelope.

Of course it is obvious that a family of straight lines cannot

have node-, cusp-, or tac-loci.

Equation (4) gives the important result that the complete primi-
tive of a differential equation of Clairaut’s Form may be writien down
immediately by simply writing ¢ on place of p.

67. Example.

Find the curve such that OT varies as tan \», where T is-the point
in which the tangent at any point cuts the axis of @, Yrisits inclination
to this axis, and O is the origin.

- J

O T N x
Fia. 22,
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From the figure, OT=0N-TN
=& -y cot \fr
=7 — ‘-?i,

p
since tan Jr=p;
therefore ’ oY= kp,

p

te. y=pz-kp:
This is of Clairaut’s Form, so the complete primitive is
y=cx — kc?,
and the singular solution is the discriminant of this,
te. x2=4ky.

The curve required is the parabola represented by this singular
solution. The complete primitive represents the family of straight
lines tangent to this parabola.

Examples for solution.

Find the complete primitive and singular solutions of the following
differential equations. Trace the graphs for Examples (1), (2), (4), (7),
(8) and (9).

V(1) y=px+p2 Y(2) Y =pz+p3.
v (8) y=pz+cos p. Y(4) y=pz++/(a2p?+b2).
/(5) p=log (px—y). v (6) sin pz cos y=cos pz sin y+p.

v (7) Find the differential equation of the curve such that the tangent
makes with the co-ordinate axes a triangle of constant area k2, and
hence find the equation of the curve in integral form.

v (8) Find the curve such that the tangent cuts off intercepts from
the axes whose sum is constant.

v (9) Find the curve such that the part of the tangent intercepted
between the axes is of constant length.

MISCELLANEOUS EXAMPLES ON CHAPTER VI.

v Illustrate the solutions by a graph whenever possible.
/(1) Examine for singular solutions %4 2zp=3x2.
1) g p*+2zp
J (2) Reduce zyp?— (x%+y2 - 1) p+ay=0
to Clairaut’s form by the substitution X =#%; ¥=y2
Hence show that the equation represents a family of conics touching
the four sides of a square.
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\/ (3) Show that wyp? + (2 — y? — k%) p—2y=0
represents a family of confocal conics, with the foci at (==&, 0), touching
the four imaginary lines joining the foci to the circular points at infinity.

v (4) Show by geometrical reasoning or otherwise that the sub-
stitution r=aX +bY, y=a'X+V'Y, -
converts any differential equation of Clairaut’s form to another equation
of Clairaut’s form.

J. (5) Show that the complete primitive of 8p*z=y(12p®-9) is

P .

(x+c)®=3y2%, the p-discriminant y2(92%—4y?) =0, and the c-dis-
criminant y#(92%—4y?%) =0. Interpret these discriminants.

J. (6) Reduce the differential equation

x2p? +yp(2x+y) +y2?=0, where p=%—z

to Clairaut’s form by the substitution £=y, n=y.
Hence, or otherwise, solve the equation.
Prove that y+4x=0 is a singular solution ; and that y=0 is both

part of the envelope and part of an ordinary solution. [London. ]
2

V. (7) Solve y2 (y '“’%) =gzt (%) , which can be transformed to

Clairaut’s form by suitable substitutions. [Londen.]

v (8) Integrate the differential equations :
v (i) 3(p+a)®=(p-2)>
V(i) y2(1+4p?)=2pxy—1=0.
YIn (ii) find the singular solution and explain the significance of any
factors that occur. [London. ]
7 (9) Show that the curves of the family
y? — 2%y + % (0t - 73) =0
all have a cusp at the origin, touching the axis of .
By eliminating ¢ obtain the differential equation of the family in
the form
4p22%(x - 1) — dpwy (42— 3¢) + (162 - 9)y*=0.
Show that both discriminants take the form #?y?=0, but that x=0
is not a solution, while y =0 is a particular integral as well as an envelope.
[This example shows that our theory does not apply without modi-
fication to families of curves with a cusp at a fixed point.]

J (10) Show that the complete primitive of

rt+7r? <%%>2=a4

represents the family of equal lemniscates of Bernoulli

) r2=02 cos 2(0 - a),
inscribed in the circle r=a, which is the singular solution, with the
point =0 as a node-locus.
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J (11) Obtain and interpret the complete primitive and singular

solution of dr\2
cl 2_ 9pg —
( 7 0) +72—2ra=0.
v (12) Show that 7=c@ - c? is the complete primitive and 4r=0?2 the
singular solution of dr  /dr\2
r=075- ()

Verify that the singular solution touches the complete primitive at
the point (¢?, 2c), the common tangent there making an angle tan—¢
with the radius vector.




CHAPTER VII

MISCELLANEOUS METHODS FOR EQUATIONS OF THE
SECOND AND HIGHER ORDERS

68. In this chapter we shall be concerned chiefly with the
reduction of equations of the second order to those of the first
order. We shall show that the order ean always be so reduced if
the equation

(1) does not contain y explicitly ;
or (i) does not contain x explicitly ;
or (iii) is homogeneous.

A special form of equation, of some importance in Dynamics,
may be reduced by using an integrating factor.

The remainder of the chapter will be devoted to the linear
equation, excluding the simple case, already fully discussed in
Chapter III., where the coefficients are merely constants. It will
be found that the linear equation of the second order can be reduced
to one of the first order if

(i) the operator can be factorised,

or (ii) any one integral belonging to the complementary function
is known.

If the complete complementary function is known, the equation
may be solved by the method of Variation of Parameters. This
elegant method (due to Lagrange) is applicable to linear equations
of any order.

Further information on linear equations, such as the condltlon
for exact equations, the normal form, the invariantive condition of
equivalence, and the Schwarzian derivative, will be found in the
form of problems among the miscellaneous examples at the end

of the chapter, with hints suﬂiment to enable the student to work
them out for himself.
P.D.E, 81 F
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We shall use suffixes to denote differentiations with respect to
z, e.g. y, for %ﬁ, but when the independent variable is any other
than z the differential coefficients will be written in full.

69. y absent. If y does not occur explicitly in an equation of

the second order, write p for y, and Z—g for y,.

We obtain an equation containing only %ﬂ, p, and «, and so of
the first order. “

Consider, for example, zy, +y;, =4z.

This transforms into  « Z—ﬁ +p =4z,

which can be integrated at once
xp =22% +a,
. _op i
ve. p=2o+_. |
By integrating, y=a2+a log z +b,
where o and b are arbitrary constants.

This method may be used to reduce an equation of the n** order
not containing y explicitly to one of the (n —1)".

70. x absent. If z is the absent letter, we may still write p for

. dp . dp dydp dp
41, but for y, we now write p@ , since p dy “dsdy " do =y,. The
procedure reduces an equation of the second order without # to one
of the first order in the variables p and y.

For example, Yo =12
transforms into yp% =72,

from which the student will easily obtain
p=by and y=ae"®.
Examples for solution.
V(1) ypeostz=1.  V(2) yptyt=yr V() yyatl=y,®
J (4) Reduce to the previous example, and hence solve
Y1Ys + Y17 =2y,%

V() ays+y,=12s. V(6) Y= 2yn-=c".

J (7) Integrate and interpret geometrically
(1+ ?/12)% -k
Y2
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v (8) The radius of curvature of a certain curve is equal to the length
of the normal between the curve and the axis of z. Prove that the
curve is a catenary or a circle, according as it is convex or concave to
the axis of .

v (9) Find and solve the differential equation of the curve the length
of whose arc, measured from a fixed point 4 to a variable point P, is
proportlonal to the tangent of the angle between the tangent at P and
the axis of z.

*71. Homogeneous equations. If x and y are regarded as of

dimension 1,
#, is of dimension 0,
- 9y is of dimension -1,
Y3 is of dimension -2,
and so on.

We define a homogeneous equation as one in which all the terms
are of the same dimensions. We have already in Chap. II. dealt
with homogeneous equations of the first order and degree, and in
Chap. III. with the homogeneous linear equation

™y, + Aa" 1y, +Ba" 2y, ,+... +Hay, + Ky =0
(where 4, B, ... H, K are merely constants), for which we used the
substitution = =¢’ or t =log .
Let us make the same substitution in the homogeneous equation

TYYo T TY 2 =YY verrvirirnierinrinrnnennen(l)
_ditdy ldy
“dedt " zdt’

oly1 _ld_y 1ddy
Tdx T 2*dt  zdrdt
1dy 1ldt d

w2 dt " xdxd

1dy 1 dy
Todt Tdr
Substituting in (1) and multiplying by z, we get

v (- Z?)+(Zi’) -3 3?

.e. ydt2 ( > 4y
This is an equation, with ¢ absent, similar to those in the last
article with z absent.

Now

* Arts, 71-73 may be omitted on a first reading.
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By putting %/ _g, the student will easily obtain
y putting 57 =g y

Y9=2 (y*+),
giving t+c=%log (42 +b).
Hence 42+b=ett+9 _
=az*, replacing e* by another arbitrary constant a.

72. The example of Art. 71 came out easily because it had no
superfluous @’s left after associating 22 with Y. and z with y,. In
fact, it could have been written

Y (@) + (2y,)? =3y (2y,).

But @+ (Y —2yy) + 222 =0 e -.{(2)
cannot be so written. To reduce this to a form similar to that of
the last example, put y =vx, a substitution used for homogeneous
equations in Chap. IL.

(2) becomes

(2® +220?) (v2 — 0,22 - vz) +x%? (2w, +20,) =0,

ve.  —(1+v%)v, +0%(zd, +2v,) =0,
which may be written v, =(1 “O)BV i (3)
We now proceed as before and put z =¢, giving
dv
xvl =d’—t,
d? dv
20 =
and Py =g
d*  dv o AV
(3) becomes 02 (31:—2 - {ﬁ) =(1-v?) i’
. d® dv
2.e. "”2@:%’ RN (3 |

an equation with ¢ absent.
dv d» dq

As before, put a=T =95,

. dq
2q -1 =
(4) becomes v =0
. 1 ..
t.e. % = (unlgss g="0, giving y=czx),
dv_ 11
& 170 v
clt=avdv=<a+ @ dv,
- v-a

t=av+a?log (v-a)+b,
and finally  log z =ay/x +a?log (y — az) — a2 log x +b.
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v3. By pfoceeding as in the last article, we can reduce any
homogeneous equation of the second order.
Any such equation can be brought to the form

f(?//ﬂ’f', y1; wy2) =0.
For example, the equation of Art. 71 when divided by « becomes

e

while that of Art. 72 divided by 2® becomes

(1+5) (=) + () o

The substitutions ¥ =vz and z =¢’ transform
Sf@lz, yi, zy2) =0 to f(v, 20, +0, 2P0, +200,) =0,
‘ dv a2 dv>
‘ and then to f(v, gt Ety =0,
~ an equation with ¢ absent, and therefore reducible to the first order.

Examples for solution.
V(1) a2y, oy, +y=0. V(2) a%y,—ay; +5y=0.
V(3) 207y, +y? =12y, .
v (4) Make homogeneous by the substitution y=22 and hence solve
- 22y, +4y?=x%, 2 + 2wyy,. ‘

74. An equation occurring in Dynamics. The form z,=f(y)
occurs frequently in Dynamics, especially in problems on motion
under a force directed to a fixed point and of magnitude depending
gsolely on the distance from that fixed point.

Multiply each side of the equation by 2y;. We get

29192 =2 ()
. d
Integrating,  y,* =2jf () 5. do =2J f@y)dy
This is really the equation of ‘energy.

Applying the method to %§—= - p*x, (the equation of simple
harmonic motion), we get
dx d*x dx

2qaE= "

Integrating with respect to ¢,

<dx\2 2.2 2(q2 — 72
5) =P +const. =p2(a? - x?), say.
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d 1 1
dz”p /(@ -2

1. .2
t == sin—1= +const.,
P a

Hence

2 =a sin (pt +e).

Examples for solution.
V(1) y,=9*—y, given that ;=0 when y=1.
vV (2) y,=e%, given that y=0 and y,=1 when 2z=0.
v (3) y,=sec?ytany, given that y=0 and y,=1 when z=0.

d®z  ga® . dz
J @ TR g given that z=h and EZ=0 when ¢=0.

[k - is the distance fallen from rest under gravity varying inversely
as the square of the distance « from the centre of the earth, neglecting
air resistance, ete.] -

d2u P
J‘ (5) d—é—é+u=m, in the two cases
() P=pu?; (i) P=pe®;
given that 6=3—g=0 when u=%, where u, b, and ¢ are constants.

[These give the path described by a particle attracted to a fixed
point with a force varying inversely as the square and cube respectively
of the distance r.  is the reciprocal of r, 0 has its ordinary meaning
in polar co-ordinates, w is the acceleration at unit distance, and % is,
twice the areal velocity.]

v5. Factorisation of the operator. The linear equation
(@ +2)yy—~ 2z +5)y; +2y=(x+1)e®
may be written as
{@+2)D? - 2z +5)D +2}y =(z +1)e%
where D stands for c%;’ as in Chapter IIL.

Now the operator in this particular example can be factorised,

giving {(z+2)D-1}(D-2)y =(z +1)e

Put (D -2)y=v.

Then {(x+2)D -1}v=(z+1)e"

This is a linear equation of the first order. Solving as in Art. 20,
we get v=c(z+2)+€%,

te. (D-2)y=c(x+2)+e”
another linear equation, giving finally
y =a(2% +5) +be* — e, replacing — 1c by a.
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Of course it is only in special cases that the operator can be
factorised. Tt is important to notice that these factors must be
written in the right order, as they are not commutative. Thus, on
reversing the order in this example, we get

(D-2){(z+2)D -1}y ={(x +2)D2 — 2z +4)D +2}y.

Examples for solution.
/) @+ yat(@-Dy-2y=0. V(@) aya+(@=1)y1-y=0.
v (3) wy2+(w—1)y1—y=m2.
/(&) @y, +(@?+1)y, +22y=2w, given that y=2 and y,=0 when
z=0.
v/ (5) (#2—1)y,—(42? — 32— B)y, +(4a? - 62— 5)y =€, given that y=1
and 3, =2 when z=0. )
%6. One integral belonging to the complementary function * known.
When one integral of the equation

Yo+ Py, +Qy =0 SRUUUTUURIUTUTURRPRRRRRRPIN | §)
is known, say y =2, then the more general equation of the second
order Yot P+ QY =B, cooerevrrieneeniinnen(2)
where P, Q, R are functions of z, can be reduced to one of the first
order by the substitution y =z

Differentiating, Y1 =032 + 02y,
Yy =052 + 2012 + V2.
Hence (2) becomes
vz + 03 (22, + P2) +0(2 + P2y + Q2) =9,k
1.6 % %+v1(2z1+Pz) =N, K(3)
gince by hypothesis 25+ P2z + Q2 =0.
(3) is a linear equation of the first order in ;.
Similarly a linear equation of the n order can be reduced to

one of the (n—1)* if one integral belonging to the complementary
function is known,

7?. Example.
Consider again the equation

(5+2)ys — QT +5)ys +2Y=(BF1)e% worrrrrmnninnes )

*The proof of Art. 29 that the general solution of a linear differential equation is
the sum of a Particular Integral and the Complementary Function holds good when
the coefficients are functions of  as well as in the case when they are constants.
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If we notice that y=e2* makes the left-hand side of the equation

zero, we can put 1 =ve?,
giving Y1=(v1+20)e2%,
and Yo = (v, +4v, +40) 22,

Substitution in (4) gives
(#+2)vy%2 +{4(z+2) — (2% + 5)}v,e2e
+{4(2+2) - 2(22+5) + 2 ve?* = (2 +1)e?,

t.e. (w+2)%%1+(2x+3) vy=(x+1)e?,

Solving this in the usual way (by finding the integrating factor)

we obtain vy=e""+c(r+2)e 22
Integrating, v=—e"—{c(2r+5)e2® 1+ p,
whence Y=ve®= —e®— 1c(2% +5) + be22,

Examples for solution.

(1) Show that y,+ Py, +Qy=0 is satisfied by y=e*if 1 +P+Q=0,
and by y=z if P+Qz=0.

v (2) 2%, + 2y, —y=8a3.

V (8) 2%, — (22 +20)y, + (2 +2) y =29,

V1) 2y;-2 (@+1)y, +(0+2) y=(2-2) e

v (5) 2%y, +xy, — 9y =0, given that y =23 is a solution.

v (6) ay,(x cos z—2 sin ) + (22 +2)y, sin © - 2y (z sin @ + cos z) =0,
given that y =22 is a solution. - '

78. Variation of Parameters. We shall now explain an elegant
but somewhat artificial method for finding the complete primitive
of a linear equation whose complementary function is known.

Let us illustrate the method by applying it to the example
already solved in two different ways, namely,

(@+2)y, — (22 +5)y; +2y =(x +1) %...or....... (1)
of which the complementary function is Y =a(2x +5) +be=,
Assume that Y=Cz+5)4d +e¥B, ...........coeueeennnnn ()

where 4 and B are functions of z.
This assumption is similar to, but more symmetrical than, that
of Art. 77, viz. : y:/vg?ﬂﬂ
Differentiating (2),
Y1=2x+5) A4, +€*B, +24 +2¢%B. ............ weenn(3)
Now so far the two functions (or parameters) A and B are only
connected by the single equation (1). We can make them satisfy
the additional equation
(22 +5)A4; +€%B; =0. w.covvveereennea . «..(4)
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(3) will then reduce to
91=24 +2e¥B. ....covvieiiinieninnnnnnnnnne(5)
Differentiating (5),

Yo=462B +24, +2¢¥By. ...oceeeveeeiinnnenee..(6)
Substitute these values of y, y;, and y, from equations (2), (5),
and (6) respectively in (1). The co-factors of 4 and B come to
zero, leaving
2@+2) 4, +2(x +2)e2B, =z +1)e® ..ceveneren(T)
(4) and (7) are two simultaneous equations which we can solve
for 4, and B, giving ‘
4, B (x+1)e” (= +l)e—“’.
@~ —(Qw+b) 2= (@+2)(1 -22-b)  4(@+2)2
z+1)e® e’ 1 1
Hence 4, = —Ei(a:'+' )2)2= “z{m @ +2)2}’
T3 (;:_2) +a, where a is a constant.

and, by integration, 4 = -

Slmllarly,
B - 2z +5)(x+1)e® i”{z__}_'_ 1 }
1T w122 4 Y Tz+2 @RS
and B=?:f{—1— —2} +b.
4 \z+2
Substituting in (2),

' er e[ 1 2
y=(2$+5) —4—(w+—2)+a +Zlm—2 +be
=a (22 +5) +be* — e®.
79. Applying these processes to the general linear equation of
the second order, Yo+ Py, +Qy =R, ceerreeeeenenenn(1)

of which the complementary function au +bv is supposed known,
a and b being arbitrary constants and « and v known functions of z,

we assume that Y=UA+0B, ceriiiiririieeriernieeeenn(2)
giving ’ Y= A+vB, .. (3)
provided that ud; +vB;=0. .iriiiiieriiieenn(4)

Differentiating (3),
Yo=uA +v,B+ud, +v, By, oieeveiieennn.e. . (B)

Substitute for y,, ; and  in (1).
The terms involving 4 will be 4 (u, + Py, +Qu), i.e. zero, as by
hypothesis, Uy + Puy +Qu =0,
Similarly the terms involving B vanish, and (1) reduces to
A+ By =R. .cccoooiiiiiiiiiiii e (6)
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4, B, R
Solving (4) and (6), =2 —_ﬁ oty — o,
We then get 4 and B by integration, say
A=f(z)+a,
B=F (2)+b,
where f(z) and F (z) are known functions of #, and @ and b are
arbitrary constants.
Substituting in (2), we get finally
=uf (z) +vF (z) +au +bv.

*80. This method can be extended to linear equations of any
order. For that of the third order,
Ys+ Py +Quy + Ry =8, .ccovvvvvinniiinnnnn (1)
of which the complementary function y=au +bv +cw is supposed
known, the student will easily obtain the equations

y=ud +vB+wC, ...cc.ooviiiiiiiiiniinf(2)

= d +o,B+w,C, .o (3)

provided that O=ud; +vB  +wC;; cooovvviininiiiinannn. 4)

hence Yo=uA +0,B+w,C, ...ooiiiiiii(B)

provided that 0=ud; +0 By +w,Cr 5 vviviiviniiiiiini(6)
then Ys=usd +v3B +wC

Fugdy 0By +0,C1 5 e (7)

by substitution in (1), S=wd; +0,B; +w,C1.  weevveieeniiieennn e (8)

4,, B,, and C, are then found from the three equatlons (4), (6)
and (8).

Examples for solufion. 4
v (1) yp+y=cosec 2. v (2) y,+4y=4tan 2z.

VO pa-y=17m

v (4) a2y, + xy, — y =2x2%, given the complementary function az +bz~1.

v (B) y5— 6y, +11y, — 6y =e*=

81. Comparison of the different methods for solving linear equations.

If it is required to solve a linear equation of the second order and
no special method is indicated, it is generally best to try to guess
a particular integral belonging to the complementary function and
proceed as in Art. 76. This method may be used to reduce a linear
equation of the n'* order to one of the (n —1)*.

*To be omitted on a first reading.




EQUATIONS OF SECOND AND HIGHER ORDERS 91

The method of factorisation of the operator gives a neat solution
in a few cases, but these are usually examples specially constructed
for this purpose. In general the operator cannot be factorised.

The method of variation of parameters is inferior in practical
value to that of Art. 76, as it requires a complete knowledge of the
complementary function instead of only one part of it. Moreover,
if applied to equations of the third or higher order, it requires too
much labour to solve the simultaneous equations for 4,, B,, C,, etec.,
and to perform the integrations.

MISCELLANEQOUS EXAMPLES ON CHAPTER VIL

V(1) yys~ 912 +y1=0 V(2) @y, +ay,®—y,=0.

V' (3) Yu2=4Ypn-r- V' (4) Yp+Yns=8 cos 3z.

V' (5) (x2log z— 22y, —2y; +y=0.

v (8) (2422 —1)y,— (322 +8x— 1)y, +(22% + 62)y =O0.

J@ Verify that cos nx and sin nz are integrating factors of

Yo+ iy =f(x).
Hence obtain two first integrals of
Y4+ n3y=sec nx,

and by elimination of y, deduce the complete primitive.

Vv (8) Show that the linear equation

Ay+ By, +Cy,+... +8y,=T,

where 4, B, O, ... T are functions of #, is ewact, i.e. derivable imme-

diately by differentiation from an equation of the next lower order, if
the successive differential coefficients of 4, B, C, ... satisfy the relation

A-B +Cy—...+(-1)"8,=0.
[N.B.—By successive integration by parts,
“.S?/ndx =’Syn—1 - Slyn—z + Szyn—3 +ot ( - l)n_l‘gn—l?/ +_‘. ( - 1)”Sn?l d:l}]

v/ Verify that this condition is satisfied by the following equation, and
hence solve it :
V(202 +32) Y, + (62 +3)y, + 2y =(x+1)e?.

v/ (9) Verify that the following non-linear equations are exact, and
solve them : v () yys+y.2=0.
V(i) 2yys+ay,® +yy,=0.
\/ (10) Show that the substitution y=’ve_;kI P4 ¢ransforms
?/2+Py1+Q?/=R,
where P, @, and R are functions of , into the Normal Form
vy +Iv=_,
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where I=Q-1P,-1P?,
and S= Reﬂ Pae v
Put into its Normal Form, and hence solve
4 Ya—day, + (422 ~ 1)y = — 3¢** sin 2z.

\/ (11) Show that if the two equations

Ya+ Py, +Qy=0
and 2o+ p2, +¢2=0
reduce to the same Normal Form, they may be transformed into
each other by the relation

yeéjP dzx _ zg%fp d:c,
w.e. the condition of equivalence is that the Invariant I should be the
same.
/ (12) Show that the equations

22y +2(2® — )y, + (1 - 222y =0
and %y +2(0% +x)2; — (1 - 202 2=0
have the same invariant, and find the relation that transforms one into
* the other. Verify by actually carrying-out this transformation.

V' (13) If u and su are any two solubions of ‘

Vot I0=0, covrriiirirrrerinriiinnrenncennnn(1)
8 u
t 2 2 e
prove tha P 2 ) (2)
s5 3 /s,\2
and hence that ==\ ) =21 e (3)
sy 2\s

v From (2) show that if s is any solution of (3), sl_!5 and ssl_’} are
solutions of (1).

[The function of the differential coefficients of s on the left-hand
side of (3) is called the Schwarzian Derivative (after H. A. Schwarz of
Berlin) and written {s,x}. It is of importance in the theory of the
Hypergeometric Series.]

‘/‘ (14) Calculate the Invariant I of the equation
@2y, — (22 +22)y; + (2 +2)y =0.
Taking s as the quotient of the two solutions ze® and =, verify that
{s, x} =21,

and that sl'!r and ssl_% are solutions of the Normal Form of the original
equation.

J (15) If u and v are two solutions of
Y2+ Py, +Qy=0,
prove that UV, — VUy + P(uv, —vu,) =0,
and hence that UV — VU, =ae ] Pa
Verify this for the equation of the last example.
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{/ (16) Show that yy, =const. is a first integral of the equation formed
by omitting the last term of

1
?/2"'?”/?/12"'?/:0-

By putting yy,=C, where C is now a function of @ (in fact, varying
the parameter C), show that if y is a solution of the full equation, then

C'1 =- yz’
and hence 2 =const. — 414,
giving finally y2=asin (/2 +D).

[This method applies to any equation of the form
Ya+y2f (y) + F(y)=0.]
4 (17) Solve the following equations by changing the independent

variable :

2
/) m%—%—m%:%?' sin 223

s a2y dy
22> J 2, %Y -
Vo) (L+a )Zdw2+2w(1 + )dx+4y—0'

| /  (18) Transform the differential equation

2,
‘ %cos w+%sin z—2y cos® =2 cos®
 into one having z as independent variable, where
z=gin x,
~ and solve the equation. [London.]
| /  (19) Show that if # satisfies
\
d% dz

by changing the independent variable from @ to z, we shall transform
@y, p¥ o,
d2y

into 72t Sy=T.

' d? 1\d ‘
Hence solve Ex_yZ + (1 - ;) ?‘Z—Z +4aye2? =4(x? +2%)e 37,



CHAPTER VIII

NUMERICAL APPROXIMATIONS TO THE SOLUTION OF
DIFFERENTIAL EQUATIONS

82. The student will have noticed that the methods given in the
preceding chapters for obtaining solutions in finite form only apply
to certain special types of differential equations. If an equation
does not belong to one of these special types, we have to use approxi-
mate methods. The graphical method of Dr. Brodetsky, given in
Chapter I., gives a good general idea of the nature of the solution,
but it cannot be relied upon for numerical values.

In this chapter we shall first give Picard’s * method for getting
successive algebraic approximations. By putting numbers in these,
we generally get excellent numerical results. Unfortunately the
method can only be applied to a limited class of equations, in which
the successive integrations can be easily performed.

The second method, which is entirely numerical and of much
more general application, is due to Runge.f With proper pre-
cautions it gives good results in most cases, although occasionally
it may involve a very large amount of arithmetical calculation. We
shall treat several examples by both methods to enable their merits
to be compared.

Variations of Runge’s method have been given by Heun, Kutta,
and the present writer.

83. Picard’s method of integrating successive approximations. The

differential equation dy
ax =f (@, ¥);

* B. Picard, Professor at the University of Paris, is one of the most distinguished
mathematicians of to-day. He is well known for his researches on the Theory of
Functions, and his Cours d’analyse is a standard text-book.

+C. Runge, Professor at the University of Gottingen, is an authority on
graphical methods.

94
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where y =b when 2 =a, can be written
y=>b +j [, y)da.

“For a first approximation we replace the y in f(z, ) by b; for
a second we replace it by the first approximation, for a third by the

second, and so on.
. dy
Ex. (i). - =x+%2 where y=0 when z=0.
X
Here y=j (z+y?) dx.
0 .
First approzimation. Put y=0in z+y2, giving
3
y=\| xdx=1%22
Second approximation. Put y=3?in z +y?2, giving
y=\ (z+3at)dr="1a2+ F5ab.
Jo
Put y =42+ 7%2°% in z +y?, giving

Third approximation.
o
(% + 12t + 2" + rioat0) do

y= .
=322+ 252 + 14528 + 0t
and so on indefinitely.
Ex. (ii).
d—z=a:3( +2)
dx Y2
where y=1 and z=4% when £=0.
X 4
zdr and z—%+j 23(y +2)d.
0

Here y=1 +I
0

First approximation.
'z
y=1 +j 1dr=1+1a,
0

z=%+rx3(1+%) do =13+ 3.
0

Second approximation.
'z
y=1 +j (3 + 32t de =1+ 1z + 3525,
: 0

e
z=%+j PG+ 3o+ 5at) =} + ot + Jga® +a®.
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Third approwimation.
y=1+ r (% + 20t + 95 + 2a®) da
=1+ &+ 3505 + 5o’ + 11520,
=1+ j:ws(% +3% + Lot + foa® + 3a8) da

=3 + 3§t + 12505 + 208 + 5552 + 5 10t
and so on.

2
Ex. (iii). %=x3<%+y>, where y=1 and %:% when z=0.

By puttin d—y=z, we reduce this to Ex. (ii).
p 8 7w

It may be remarked that Picard’s method converts the differential
equation into an equation involving integrals, which is called an Integral
Equation.

Examples for solution.

Find the third approximation in the following cases. For examples
(1) and (2) obtain also the exact solution by the usual methods.

- (1) %=2y—2z2—3, where y=2 when z=0.

dx
dy_qo ¥y
(2) =2 where y=2 when z=1.
%=2w+z,
3) &
- =3xy + %
dx ?
where y=2 and z=0 when z=0.
4) i
— =% + 2%y
dx ?
where y 5 and z=1 when z=0.
dy dy
(5) xzd +aty, where y=>5 and cT_I when z=0.

84. Determination of numerical values from these approximations.
Suppose that in Ex. (i) of the last article we desire the value of ,
correct to seven places of decimals, when z=0-3.

Substituting  =0-3, we get 1 (0-3)2=0-045 from the first approxi-
mation.

The second adds  2;(0-3)5 =0-0001215,
while the third adds 14(0-3)8 + 5(0-3)1* =0-00000041..
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Noticing the rapid way in which these successive increments
decrease, we conclude that the next one will not affect the first
seven decimal places, so the required value is 0-0451219... .

Of course for larger values of x we should have to take more
than three approximations to get the result to the required degree
of accuracy.

~ We shall prove in Chap. X. that under certain conditions the
approximations obtained really do tend to a limit, and that this limit
gives the solution. This is called an Existence Theorem.

Example for solution.

(i) Show that in Ex. (ii) of Art. 83, 2=05 gives y=1-252... and
2 =0526... , while x=0-2 gives y=1-100025... and 2=0-500632... .

85. Numerical approximation direct from the differential equation.
The method of integrating successive approximations breaks down
if, as is often the case, the integrations are impracticable. But
there are other methods which can always be applied. Consider
the problem geometrically. The differential equation

Y_foy)

determines a family of curves (the “ characteristics ) which do not
intersect each other and of which one passes through every point

J
Q/
A\
9.
S
P/ L
O M N x

F16. 23,

in the 'plane.* Given a point P (a, b), we know that the gradient
of the characteristic through P is f (a, b), and we want to determine

* This is on the assumption that f (z, y) has a perfectly definite value for every
point in the plane. If, however, f(z, y) becomes indeterminate for one or more
points, these points are called singular points of the equation, and the behaviour
of the characteristics near such points calls for special investigation. See Art. 10,

P.D.E, G
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the y =NQ of any other point on the same characteristic, given that

x=0ON=a+h, say. A first approximation is given by taking the

tangent PR instead of the characteristic PQ), 7.e. taking
y=NL+LR=NL+PL tan / RPL=b+1f (a, b) =b +If,, say.

But unless A is vety small indeed, the error RQ is far from
negligible.

A more reasonable approximation is to take the chord PQ as
parallel to the tangent to the characteristic through S, the middle
point of PR.

Since R is (a +31h, b +1hf,), this gives

y=NL+LQ=NL +PL tan /QPL=b+hf (a +%h, b +}hf,).

This simple formula gives good results in some cases, as will be

seen from the following examples :

Ex. (i) %=x+y2; given that y=0 when =0, required y when
x=0-3.
Here a=b=0, k=03, f(x, y)=x+y2

Therefore
.ﬁ):f(a: b)=0: a+;2Lh=0'15, b-l—%hﬁ,’:O’

giving  b+Af (1+3h, b+3hf)) =0+0-3 xf(0-15, 0) =0-045.

The value found in Art. 84 was 0:0451219..., so the error is
0-00012... , about } per cent.

Ex. (ii). %=2— g ; given that y=2 when z=1, find y when z=1-2.

Here a=1, b=2, k=02, f,=2-2=0.

Therefore b+xf (a+3h, b+3hf)=2+0-2xf(1-1, 2)

)
=2+40-2x (2—1—_1 =2-036... .
Now the differential equation is easily integrable, giving y=a+-,

so when =12 the value of y is 2:033.... The error is 0-003... , which
is rather large compared with the increment of y, namely 0-036... .

d

Ex. (ii). D =2=f(x, y, 7), say,
dz . .
%_w (y+2)=g(z, y, 2), say ;

given that y=1 and 2=0-5 when =0, find ¥ and 2z when x=0-5.(
Here. =0, b=1, c(the initial value of 2) =05, £ =0-5.
Hence fo=f(0,1,05)=05; g,=g(0, 1, 0-5)=0.
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By an obvious extension of the method for two variables, we take
y=b+hf (a+1h, b+3hfy, c+3Lhgy) =1+05 xf(0-25, 1-125, 0-5) =1-2500,
and z=c+hg(a+%h, b+Lhfy, c+Lhg,)

=0-5+0-5 x ¢(0-25, 1-125, 0-5) =0-5127.
The accurate values, found as in Art. 84, are
y=1-2562.,. and 2=0-526....

Thus we have obtained a fairly good result for y, but a very bad
one for z. -

The uncertainty about the degree of accuracy of the result deprives
the method of most of its value. However, it forms an introduction to
the more elaborate method of Runge, to be explained in the nexi
article.

Examples for solution.
1) %= (22 - y)% —1; given that y=4 when =23, obtain the value

y=4-122 when £=2-7. [Runge’s method gives 4:118.]
(2) %: %{y% —1+log,(+¥)}; given that y=2 when = —1, obtain
the value y=2-194 when z=1. [Runge’s method gives 2:192.]

3) %= 2% — g ; given that y=2 when =1, obtain the value y =2-076

when #=1-2. Also show that y=§w2+§£, so that when z=1-2, y is -
really 2-071... . ©

86. Runge’s method. Suppose that the function of y defined * by
dy - -
7y =S @ 9), y=b when z=a,

is denoted by y = F(z).
If this can be expanded by Taylor’s theorem,
7 kz L4 ha 117
Fla+h)=F(a)+hF (a) +§!F (@) +§F (@) +....
Now F'(z)= Z—‘Z =f(z, y) =/, say.

We shall now take the total differential coefficient with respect
to @ (that is, taking the ¥ in f to vary in consequence of the variation

of z). Let us denote partial differential coefficients by
o o o % _Pf.
p"‘%’ q—@y ’r_‘a'zg, S"'a%@; t—a‘yz’

and their values when z=a and y=>b by p,, ¢,, etc.

_ *The conditions under which the differential equation and the initial con-
dition really do define a function are discussed in Chap. X. The graphical treat-
ment of the last article assumes that these conditions are satisfied.
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” d 0 dy 0
Then @)= (5 +a ) =Pt
L 1 0 d d
Similarly, F"'(z)= <6oc dg ay> (p+fg)
=r+pq+fs+f(s+q2+ft).
Thus

F(a+h)-F(a)
=hfo + 33 (po+fodo) +8H%(T0 +2foSo +1o%o + Do +fod?) + -+ - (1)

The first term represents the first approximation mentioned and
rejected in Art. 85.

The second approximation of Art. 85, .e.

y —b="hf (a+31h, b+3}hfy) =k,, say,

may now be expanded and compared with (1).

Now, by Taylor’s theorem for two independent variables,

f(a+3h, b+3hfy)

=fo+8hpo + 3 ogo + 91 (Ihzro + 3R oso + 1h%fo%0) +

giving k= hfy +302(po +fogo) + 5B (1o +2f6So Hlo) oo weiiiens 2)
It is obvious that k, is at fault in the coefficient of hs.
Our next step is suggested by the usual methods* for the
numerical integration of the simpler differential equation

dy
dx =f (@).
Our second approximation in this case reduces to the Trapezoidal
Rule y —b=hf(a+3}h).

Now the next approximation discussed is generally Simpson’s

Rule, which may be written
=§h{f (@) +4f (a +3h) +f (a +R)}-
If we expand the corresponding formula in two variables, namely
3h{fo+4f (@ +3h, b+3ho) +f (a+h, b+ hfo)},
we easily obtain
hfo +3R2(po +fodo) + 803 (1o +2foS0 Ho) Fve s weeiieiinnn (3)

which is a better approximation than %, but even now has not the
coefficient of %3 quite in agreement with (1).

To obtain the extra terms in %3, Runge } replaces

Wf(a+h, b+hfy)

* See the text-books on Calculus by Gibson or Lamb.
4 Mathematische Annalen, Vol. XLVI. pp. 167-178.
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by k" =hf(a+h, b+k"), where k" =hf(a +h, b+hfo). The modified
formula may be briefly written {k' +4k, +%"'}, where &’ =hf,, or
2k, +3ky =k, +3(ky — ky), where k=3 (k' +£").

The student will easily verify that the expansion of Runge’s
formula agrees with the right-hand side of (1) as far as the terms
in 2, %2, and %2 are concerned.

Of course this method will give bad results if the series (1) con-
verges slowly.

If f,>1 numerically, we rewrite our equation

dx 1 -
W Fm ) F(x, y), say,

and now F,<1 numerically, and we take y as the independent
variable. ‘

87. Method of solving examples by Runge’s rule. To avoid
confusion, the calculations should be formed in some definite order,
such as the following :

Calculate successively &' =hf,,

E'=hf (@ +h, b+E),
E'=hf(a+h, b+Ek"),
ky=hf (@ +3h, b+1E),
ky=%(K +£"),
and finally b=k +1(k,—Fk).

Moreover, as k, is itself an approximation to the value required,
it is clear that if the difference between k and %, namely % (k, - k),
is small compared with %, and %, the error in % is likely to be even
smaller.

o .
Ex. (i). £=x+y2 ; given that y=0 when z=0, find y when =0-3.

Here a=0, b=0, k=03, flz,y)=x+y% f;=0;
k'=hfo=0;

E'=hf(a+h, b+k)=0-3xf(0-3,0)=0-3x0-3 =0-0900 ;
k" =hf (@+h, b+E")=0-3xf(0-3, 0:09)=0-3 x (0-3 +0-0081) =0-0924 ;
ky=kf(a+3h, b+3k)=0-3 xf(0-15, 0)=0-3 x0-15 =0-0450 ;
ky=3(K +k")=%%x0-0924 =0-0462 ;
and
k=F, +1(k;, - k,) =0-0450 +0-0004 . =0-0454.

As the difference between k=0-0454 and k,=0-0450 is fairly small
compared with either, it is highly probable that the error in k is less
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than this difference 0-0004. That is to say, we conclude that the value
is 0-045, correct to the third place of decimals.

We can test this conclusion by comparing the result obtained in
Art. 84, viz. 0-0451219... .

Ex. (ii). 3—1:%;—2; given that y=1 when =0, find y when z=1.

This is an example given in Runge’s original paper. Divide the
range into three parts, O to 0-2, 0-2 to 0-5, 05 to 1. We take a small
increment for the first step because f (#, ) is largest at the beginning.

First step. a=0, b=1, k=02, fi=1;
¥ =1, . =0-200 ;
B =hf(a+h b+k)=02xf(02,1:2) =0143;
B =hf (a+h, b+E") =02 x£(02, 1-143)=0-140 ;
ky=hf(a+3h, b+3F)=0-3xf(0-1,11) =0-167;

ky=3(k +%"")=%%x0-340 =0-170;
and k=ky+3(ky—%;)=0-167+0-001 =0-168;
giving y=1-168 when 2=0-2.

Second step.
a=02, b=1168, £=03, f,=f(0-2,1-168)=0-708.

Proceeding as before we get k,=0-170, k;=0-173 and so £=0-171,
giving y=1-168+0-171=1-339 when z=0'5.

Third step. =05, b=1-339, h=05.

We find k,=k,=%k=0-160, giving y=1-499 when z=1.

Considering the % and k&, the error in this result should be less than
0-001 on each of the first and second steps and negligible (to 3 decimal
places) on the third, that is, less than 0-002 altogether.

As a matter of fact, the true value of y is between 1-498 and 1499,
so the error is less than 0:001. This value of y is found by integrating
the equation, leading to .

7 — 2 tan™! ‘Z =log,(z2 +y2).

Examples for solution.

Give numerical results to the following examples to as many places
of decimals as are likely to be accurate :

(1) %=ll0{y%— 1+log,(x+y)}; given that y=2 when 2= -1, find
9 when z=1, taking h=2 (as fis very small).

(2) Obtain a closer approximation to the preceding question by
taking two steps.

(3) %=(x2—y)%—l; given that y=4 when #=2-3, find y when

2=2-7 (a) in one step, {b) in two stepa.
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1
(4) Show that if 3—1:2—% and y=2 when x=1, then y=z+-.

Hence find the errors in the result given by Runge’s method, taking
(@) h=0-4, (b) h=0-2, (¢) k=0-1 (a single step in each case), and compare
these errors with their estimated upper limits.

(5) If E(h) is the error of the result of solving a differential equation
of the first order by Runge’s method, prove that

EMh) 1
Bl

Hence show that the error in a two-step solution should be about
1 of that given by one step; that is to say, we get the answer correct
to an extra place of decimals (roughly) by doubling the number of steps.

88. Extension * to simultaneous equations. The method is easily
extended to simultaneous equations. As the proof is very similar
to the work in Art. 86, though rather lengthy, we shall merely give
an example. This example and those given for solution are taken,
with slight modifications, from Runge’s paper.

y_o, _Y_
Ex. %—2z—%—f(x, Y, 2), 82y,
dz y

%:————\/(1 - =g(z, ¥, z.), say 3
given that y=0-2027 and z=1-0202 when #=0-2, find y and z when
z=0-4.
Here
=02, b=0-2027, ¢=1-0202, f,=f(0-2,0-2027, 1-0202)=1-027,
96=0-2070, ~h=0-2;
k' =hfy=0-2x1-027 =0-2054 ;
U =hgy=0-2 x0-2070 =0-0414 ;
E'=hf(a+h, b+F, c+1)=0-2xf(0-4, 0-4081, 1-0616) = =0-2206;
U"=hgla+h, b+k, c+1')=0-2xg(0-4, 0-4081, 1-0616)  =0-0894;
B =hf(a+h, b+E’, c+1")=02 xf(0-4, 0-4233, 1-1096) =0-2322;
U =hg(a+h, b+ k', c+1") =02 x g(0-4, 0-4233, 11096) =0-0934 ;
ky=hf (a+3%h, b+3E, c+31')=0-2 x f(0-3, 0-3054, 1-0409)=0-2128 ;
Li=hf(a+%5h, b+3k, c+41) =02 % g(0-3, 0-3054, 1-0409) =0-0641 ;

k=3 +K")  —0-2188;
=3 +1") —=0-0674 ;
=1y +3 (%, — q) =0-2128 +0-0020 =0-2148 ;
=1, +1(ly— ;) =0-0641 +0-0011 _ =0-0652;
giving y=0-2027 +0-2148 =0-4175
and 2=1-0202 +0-0652 = 10854,

probably correct to the third place of decimals.
*The rest of this chapter may be omitted on a first reading.
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Examples for solution.

(1) With the equation of Art. 88, show that if y=0-4175 and
2=1-0854 when £=0-4, then y=0-6614 and z=1-2145 (probably correct
to the third place of decimals) when 2=0-6.

dw 1-w? dr w .

(2) e —2z+V( . ); d_z=\/(1 e ; given that w=0-7500
and r=0-6 when z=1-2145, obtain the values w=0-5163 and »=0-7348
when z (which is to be taken as the independent variable)=1-3745.
Show that the value of r is probably correct to four decimal places, but
that the third place in the value of % may be in error.

(3) By putting w=cos ¢ in the last example and y=sin ¢, z=r in
the example of Art. 88, obtain in each case the equations

dz . _sing d¢
El;—tanqs, 2= . +cos¢5,
which give the form of a drop of water resting on a horizontal plane.

89. Methods* of Heun and Kutta. These methods are very
similar to those of Runge, so we shall state them very briefly. The

problem is: given that g—‘;/:=f(x, y) and y=b when z=qa, to find

the increment % of y when the increment of « is .
Heun calculates successively
& =hf (a, b),
k" =hf(a +%h, b+1E'),
4 B =hf (a+2h, b+2E"),
and then takes 1 (%’ +3%"’) as the approximate value of .
Kutta calculates successively,
k =hf (a, b),
k' =hf(a +3h, b+1E),
E" =hf (a+3h, b+k" -3k,
" =hf(a+h, b+ k" k" +F),
and then takes 1 (%' +3k" +3%" +%"""") as the approximate value
of %.
The approximations can be verified by expansion in a Taylor’s
series, as in Runge’s case.

Example for solution.

Given that %=Z—;ﬁ and y=1 when =0, find the value of ¥ (to 8
significant figures) when z=1-2 by the methods of Runge, Heun, and
Kutta, and compare them with the accurate value 1-1678417. [From

Kutta’s paper. ]
* Zeitschrift fir Mathematik und Physik, Vols. 45 and 46.
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90. Another method, with limits for the error. The present writer
has found * four formulae which give four numbers, between the
greatest and least of which the required increment of y must lie.
A new approximate formula can be derived from these. When
applied to Runge’s example, this new formula gives more accurate
results than any previous method.

The method is an extension of the following well-known results
concerning definite integrals.

91. Limits between which the value of a definite integral lies. Let
F(z) be a function which, together with its first and second
differential coefficients, is continuous (and therefore finite) between
z=a and z=a+h. Let F’(z) be of constant sign in the interval.
In the figure this sign is taken as positive, making the curve concave
upwards. LP, M@, NR are parallel to the axis of y, M is the
middle point of LN, and SQT is the tangent at . OL=a, LN =h.

¥
P
s&a R
-
o L M N E

F16. 24,

Then the area PLNE lies between that of the trapezium SLNT
and the sum of the areas of the trapezia PLMQ, QMNR.

a-+h
That is, I F (x)dx lies between
hF (a +3h) =4, say,
and 1h{F(a) +2F (a +%h) + F(a +h)} =B, say.

In the figure F'(z) is positive and A4 is the lower limit, B the

upper. If F"(x) were negative, 4 would be the upper limit and B
the lower.

* Phil. Mag., June 1919. Most of this paper is reproduced here.
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As an approximation to the value of the integral it is best to
take, not the arithmetic mean of 4 and B, but 3B +14, which is
exact when PQR is an arc of a parabola with its axis parallel to the
axis of z. It is also exact for the more general case when

F(x)=0a+bx + cx? +ex?,
as is proved in most treatises on the Calculus in their discussion of
Simpson’s Rule.

92. Extension of preceding results to functions defined by differential
equations. Consider the function defined by

dy _ —a:
%=f(x, y), y=bwhenz=0;

where f(z, y) is subject to the following limitations in the range of
values a to a +-h for x and b—h to b+h for y. It will be seen from
what follows below that the increment of ¥ is numerically less than &,
so that all values of y will fall in the above range. The limitations
are

(1) f(x, y) is finite and continuous, as are also its first and second
partial differential coefficients.

(2) It never numerically exceeds unity. If this condition is not
satisfied, we can generally get a new equation in which it is satisfied
by taking y instead of z as the independent variable.

(3) Neither d?y/dx® nor 9f/0y changes sign.

Let m and M be any two numbers, such that

“lEm<f<M=1.

Then if the values of y when z is ¢ +3h and a + are denoted by
.b+4 and b +£ respectively,*

W EImh<<j<IMRh=1h, rviiiinnnin (1)
and b= mh<k <Mh=h. eovveiiiiinei2)

‘We shall now apply the formulae of the last article, taking y to
be the same function as that defined by

y=b +r+xlf’(x)dx,

a+h
8o that k =.‘. F(z)dz.
We have to express the formulae in terms of f instead of F.
Now, F(a)=the value of dy/dx when x=a,
so that F(a)=f(a, b).

*The following inequalities hold only if & is positive. If k is negative, they
must be modified, but the final result stated at the end of this article is still true.
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Similarly, Fla+3h)=f(a+1h, b+7),
and Fla+h)y=f(a+h, b+k).
Now, if 9f/dy is positive, so that f increases with y, the inequalities
(1) and (2) lead to
fla+1h, b+3mh)<f(a+3h, b+j)<f(a+3h, b+5MA), .....(3)
and fla+h, b+mh)<f(a+h, b+k)<f(a+h, b+Mh); ........... 4)
while if 9f/dy is negative,
fla+3h, b+imh)>f(a+3h, b+7)>f(a+%h, b+3MP), ...(B)
and  f(a+h, b+mh)>fla+h, b+k)>fla+h, b+Mb). ....... (6)
Thus if F"(z) =d*y/ds? is positive and 9f/dy is also positive, the
result of Art. 91,

A<k< B,
may be replaced by P<E<Q, o e (T)
where p=nhf(a+1h, b+imh)

and  Q=1A{f(a, b)+2f(a+1h, b+1MR) +f(a+h, b+ Mh)};
while if F”(x) is positive, and 9f/dy is negative,
P<k<<q, cocovviviviniiiniieaiennn o (8)
where P=hf(a+%h, b+1iMh)
and  g=%1h{f(a, b) +2f(a+3h, b+imh) +f(a+h, b+mh)}.
Similarly, if #”(x) and 9f/dy are both negative,

P>E>Q, i (9)
while if F”(x) is negative and 9f/dy positive,
P>k>q i (10)

These results may be summed up by saying that in every case
(subject to the limitations on f stated at the beginning of this article)
k lies between the greatest and least of the four numbers p, P, q, and Q.

As an approximate formula we use k= 2B +14, replacing B by
Qor ¢, and 4 by p or P.

»

93. Application to a numerical example. Consider the example
selected by Runge and Kutta to illustrate their methods,

-2 =Y—"1 y=1 when z=0.

It is required to find the increment % of y when « increases by
0-2. Here f(2, ¥)=(y —2)/(y +). This function satisfies the con-
ditions laid down in the last article.*

We take M =1, m =(1 -0-2)/(1:2 +0-2) =4/7.

*As f (z, y) is positive, y lies between 1 and 1-2. When finding M and m we
always take the smallest range for y that we can find
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Then p=0-1654321,
P =0-1666667,
g =0-1674987,
Q =0-1690476.

Thus & lies between p and Q. Errors,
3Q +3p=0-1678424, 0-0000007
Kutta’s value 0-1678449, 0-0000032
Runge’s value 0-1678487, 0-0000070
Heun’s value 0-1680250, 0-0001833

The second, third, and fourth of these were calculated by Kutta.
Now this particular example admits of integration in finite terms,
giving

log (#* +4?) — 2 tan~! (zfy) =0.
Hence we may find the accurate value of k.
Accurate value =0-1678417.

Thus in this example our result is the nearest to the accurate
value, the errors being as stated above.

We may also test the method by taking a larger interval A =1.
Of course a more accurate way of obtaining the result would be to
take several steps, say £=0-2, 0-3, and finally 0-5, as Runge does.

Still, it is interesting to see how far wrong the results come’ for
the larger interval.

We take M=1, m=01-1)/2+1)=0.
Then £Q +1p =0-50000.
True value =0-49828, Errors.
Kutta’s value =0-49914, 0-00086
Our value =0-50000, 0-00172
Heun’s value =0-51613, 0-01785
Runge’s value =0-52381, 0-02553

This time Kutta’s value is the nearest, and ours is second.



CHAPTER IX

SOLUTION IN SERIES. METHOD OF FROBENIUS

94. In Chapter VII. we obtained the solution of several equations

of the form
% +P % +Qy =0,
where P and @ were functions of 2.

In every case the solution was of the form

 y=af(s) +bF (@),
where a and b were arbitrary constants.

The functions f(x) and F (z) were generally made up of integral
or fractional powers of w, sines and cosines, exponentials, and
logarithms, such as )

LA +log, e

The first and second of these functions can be expanded by
Maclaurin’s theorem in ascending integral powers of z ; the others
cannot, though the last can be expanded in terms of 1/x.

In the present chapter, following F. G. Frobenius,* of Berlin, we
shall assume as a trial solution

Y =2°(@y + % +asz% + ... to inf.),
where the a’s are constants.t

The index ¢ will be determined by a quadratic equation called
the Indicial Equation. The roots of this equation may be equal,
different and differing by an integer, or different and differing by a
quantity not an integer. These cases will have to be discussed
separately.

The special merit of the form of trial solution used by Frobenius
is that it leads at once to another form of solution, involving log z,
when the differential equation has this second form of solution.

* Crelle, Vol. LXXVI., 1873, pp. 214-224.

t In this chapter suffixes will ot be used to denote differentiation,
109

(1+2%)e®, sinz+wcosz, @ +a
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1

As such a function as ? cannot be expanded in ascending powers
of z, we must expect the method to fail for differential equations
having solutions of this nature. A method will be pointed out by
which can be determined at once which equations have solutions of
Frobenius’ forms (regular integrals) and for what range of values
of 2 these solutions will be convergent.

The object of the present chapter is to indicate how to deal
with examples. The formal proofs of the theorems suggested will
be given in the next chapter.

Among the examples will be found the important equations of
Bessel,* Legendre, and Riccati. A sketch is also given of the Hyper-
geometric or Gaussian equation and its twenty-four solutions.

95. Case I. Roots of Indicial Equation unequal and differing by a
quantity not an integer. Consider the equation

dty _dy
(2x+x3)d—x2—d—x—6xy=0. TR ¢
Put 2=a"(ay +ax +a2? + ...), where ay=~0, giving T

dz
o =aeer’t +ay(c+1)a° +ax(c+2) et + ...,

2
and %=aoc(c—1)xﬂ—2 +ay(c+1)ear +ayc+2)(c+1)at +....

Substitute in (1), and equate the coefficients of the successive
powers of z to zero.
The lowest power of zis z°-1. Tts coefficient equated to zero gives

ap{2¢(c—1) — ¢} =0,

te. ¢(2c-3)=0, ...ccccvniiiiiinninneennnn(2)
as ay=+0.

* Friedrich Wilhelm Bessel, of Minden (1784-1846), was director of the obser-
vatory at Konigsberg. He is best known by “ Bessel’s Functions.”

Adrian Marie Legendre, of Toulouse (1752-1833), is best known by his < Zonal
Harmonics ”” or  Legendre’s Coefficients.” He also did a great deal of work on
Elliptic Integrals and the Theory of Numbers.

Jacopo Francesco, Count Riccati, of Venice (1676-1754), wrote on “ Riccati’s
Equation,” and also on the possibility of lowering the order of a given differential
equation.

1 Karl Friedrich Gauss, of Brunswick (1777-1856), ‘the Archimedes of the
nineteenth century,” published researches on an extraordinarily wide range of
subjects, including Theory of Numbers, Determinants, Infinite Series, Theory of
Errors, Astronomy, Geodesy, and Electricity and Magnetism. .

1 Tt is legitimate to differentiate a series of ascending powers of « term by term
in this manner, within the region of convergence. See Bromwich, Infinite Series,
Art. 52.
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(2) is called the Indicial Equation.
The coeflicient of 2° equated to zero gives

@{2(c+1)c—~(c+1)} =0, e a;=0. ...cc.ooen..... 3)
The coefficient of z°*! has more terms in it, giving
@ {2(c+2)(c+1) = (c+2)} +ay{c(c-1) -6} =0,
G ay(c+2)(2+1)+ay(c+2)(c—3)=0,

te. ay(2c+1)+ag(c—3)=0. .ccoiiiiiiinnni(4)
Similarly, as(2¢+3) +ay(c—2)=0, ......eceeeeiieee . (B)
ay(2¢ +5) +ay(c—~1)=0, .ccvveviiniriernnne(6)
and so on.
From (3), (5), ete., 0 =a, =a3=a5="... =ay,,.
From (4), (6), ete.,
a ¢c-3 a, c-1
%" T3+ % 275
ag c+1 Ao c+2n-5
a, 2c+9 Uons  20+4n -3

But from (2), ¢=0 or £.
Thus, if ¢=0,

— 2 § 4 l ] ]_
z—a{1+3x g% -Ewﬁ+%xg...j—tm, say,

replacing ¢, by ¢ ; and if ¢=3,
Z=b“”%{1 rge —81..136 # +8{ ig : 24 v-g .1i63.'2i..932 ’”8}
=bv say, replacing a, (which is arbitrary) by b this time.
Thus y =au -+bv is a solution which contains two arbitrary con-
stants, and so may be considered the complete primitive.
In general, if the Indicial Equation has two unequal roots a and (3

differing by o quantity not an integer, we gel two independent solutions
by substituting these values of ¢ in the series for z.

Examples for solution.

Py o, %y Y, a0 _
(1) 4wdx2+2%+y—0. (2) 2x(1—x)dx2+(l—x)%+3y—0.
Py oW 40

(3) 9a(1 -2) 75 -12 2 +4y=0.
(4) Bessel’s equation of order =, taking 2n as non-integral,

dy by

2" J =4 2 _ 12y =—
z dx2+wdw+(x n2)y=0.
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96. Convergence of the series obtained in the last article. It is
proved in nearly every treatise on Higher Algebra or Analysis that
the infinite series w, +u, +ug + ... is convergent if

Un41

Lt

n—>w0

<L

n

Now in the series we obtained u, =a,, ,2°t?"2, 1.e.

YUnir_ Pon oo

un azn—z
__¢+2n-5 2
2¢+4n -3’

and the limit when n—>o is —1?, independent of the value of c.
Hence both series obtained are convergent for | x | << 4/2.
It is interesting to notice that if the differential equation is
reduced to the form

d d
z2 d—;z +zp(x) ;Z% +q(x)y =0,
C -1
giving in our example () =g
— 62
and 7 q (W) = my

p(z) and ¢(x) are expansible in power series which are convergent
for values of & whose modulus | z | << 4/2.
That is, the region of convergence is identical in this example
with the region for which p(z) and ¢(x) are expansible in convergent
“power series. We shall show in Chap. X. that this theorem is true
in general. '

Examples for solution.

Find the region of convergence for the solutions of the last set of
examples. Verify in each case that the region of convergence is identical
with the region for which p(z) and ¢(x) are expansible in convergent
power series.

g7. Case II. Roots of Indicial Equation equal. Consider the
equation

d d
(029 24+ (1 -50) % 4y =0.

Put 2 =2 (@g + X + Ax? +...),

and after substituting in the differential equation, equate coefficients
of successive powers of z to zero just as in Art. 95.

e

w~
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We get ap{c (c-1)+¢} =0,
2. =0, cvrrrieirirniieeeenninenn(1)
a{(c+1)c+c+1} —apfc(c— 1)+5c+4} =0,
ie. a(c+1)2—ay(c+2)2=0, .....ccoiviiiiinninn(2)
(e +2)2—a;(c+3)2=0, ...ccooevviiiiinninn(3)
Ag(c+3)2 —ay(c+4)2=0, .oooevrnviniiiniini(4)
and so on. :
Hence

z2=ayr’ {1 +<ci§) w+<2—§)2x2+<2—__§)2x3 + }

is a solution if ¢=0.

This gives only one series instead of two.

But if we substitute the series in the left-hand side of the dif-
ferential equation (without putting c¢=0), we get the single term
a,c?x’>' As this involves the square of ¢, its partial differential
coefficient with respect to ¢, 7.e. 2a402°* ay®z’ log z will also vanish
when ¢=0.

That is,

0 a2 d . -
% [(x —a?) Pl (1 -5z) o 4] 2 =200 a2 {og x.

As the differential operators are commutative, this may be

written

2
- KA o ] %2 _ 9 uiear anPatog o.

Hence g% is a second solution of the differential equation, if ¢ is

put equal to zero after differentiation.
Differentiating,

0z _ c+2 -1 c+3 -2 .,
%‘zlog“+“°”{2 (c+1> ' (c+1)2‘”+2<m> NCES N

c+4 -3 }
+2<—c+1>~mx + ..

Putting ¢=0 and a,=a and b respectively in the two series,
z=a{1%2+2% + 3% + 423 + 5%* + ...} = au, say,

-

and %zsbu log @ —2b{1 .2z +2.322+3 . 423 + ...} =bv, say.

The complete primitive is au +bv.
P.D.E. H
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In general, if the Indicial Equation has two equal roots c=a,

we get two independent solutions by substituting this value of ¢ in z and

g—'z. The second solution will always consist of the product of the

first solution (or a numerical multiple of it) and log z, added to
another series.

Reverting to our particular example, consideration of p(w)
and ¢(z), as in Art. 96, suggests that the series will be convergent
for |z|<1. Tt may be easily shown that this is correct.

Examples for sblution.

(1) (= xz)d 2+(1 x) —y=0.

(2) Bessel’s equation of order Zero

=% dy
Tt is

+ay=0.
. .
3 xc—l—y+(l +w)g—y+2y=0.

() 422 xz)ﬁ+8x3dy y=0.

98. Case ITII. Roots of Indicial Equation differing by an integer,
making a coefficient of z infinite. Consider Bessel’s equation of order
unity, 2

Y 3‘Z+x:§ +(22 - 1)y =0.

If we proceed as in Art. 95, we find
apfc(c-1)+c -1} =0, :
06 =120, .eervvverererieennnan(l)

af(e+1) -1} =0,
60 Gy =0, cereereeres e, @)
B (6 +2)2 1} +8g=0, eoprererrrerrrirenrrne(3)
and a{(c+ 0P =1} + @y =0, eovrrrreerirrerinnen(d)

giving
1 1
z=“°”{1 “eiDEe)” T DE e s

1 6
T+ e+ 3R+ }
The roots of the indicial equation (1) are ¢c=1 or —1.
But if we put c= —1 in this series for z, the coefficients becorne
infinite, owing to the factor (¢ +1) in the denominator.

i
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To obviate this difficulty replace * a, by (c+1)k, giving
1 1

o=kt {(c V-3 T ererern
. 1 1
| T EEET ™ o )
and xszczz, +wg§ +(@® - 1)z =ka*(c +1)(c® - 1) =ka*(c +1)%(c - 1).

Just as in Case II. the occurrence of the squared factor (c+1)2
shows that g% » as well as 2, satisfies the differential equation when

-¢=—1. Also putting ¢=1 in z gives a solution. So apparently we
have found three solutions to this differential equation of only the
second order.

On working them out, we get respectively

1 1 1.
—1J _ — 2 —_ =
kax { 3% +22.4x4 22.42.61;6"_"'} ku, say,
1 1 /2 1
-1 _ —_—— T4 4
ku log z + kx {1+22w2 22.4<2+4>w
1 2.2 1\ ¢ }_
+—~22.42.6<§+‘1+6>x +... —kv, say,

and M{2—1x2+—1—w4—*1—w6+ }=lc'w say
47 42,67 42.62.8 ?

It is obvious that w = —4u, so we have only found two linearly
independent solutions after all, and the complete primitive is aw + bv.
The series are easily proved to be convergent for all values of #.

The identity (except for a constant multiple) of the series obtained
by substituting ¢= —1 and ¢=1 respectively in the expression for z
1s not an accident. It could have been seen at once from relation 4),

ap{(c+n)2 -1} +a,_,=0.

If c=1, this gives @, {(1 +n)2 -1} 4@y y=0. .eeecvrrvrrrrreeno (6)
Ife=-1, a,{(-1+n)2-1}+a, ,=0;
hence replacing n by n +2,
Cnia{(1+n)2 =1} +a,=0. ...ooccoiiene i (7)
Th T Pl I
. a’n c=-1 [an—z c=1 (8)

As [2),-_; has 2! as a factor outside the bracket, while [2],_; has
z, relation (8) really means that the coefficients of corresponding

* Of course the condition a, 0 is thus violated ; we assume in its place that

k%0



116 DIFFERENTIAL EQUATIONS

powers of & in the two series are in a constant ratio. The first series
apparently has an extra term, namely that involving z~1, but this
conveniently vanishes owing to the factor (¢ +1).

In general, if the Indicial Equation has two roots a and B (say
a>3) differing by an integer, and if some of the coefficients of z become
wnfinite when c =3, we modify the form of z by replacing a, by k(c - f3).
We then get two independent solutions by putting c = in the modified
form of z and g—z The result of putting c=a tn z merely gives o
numerical multeple of that obtained by putting ¢ = .

Examples for solution.
(1) Bessel’s equation of order 2,

xzzy

d%y dy
d23d -y=0.

+(av2 4)y=0,
(2) 2(1-2)
(3) =(1- w) —(1+3x ) —-y=0.

(4) (z+x2+ w3)ﬁ+3w2 —2y=0.

d

99, Case IV. Roots of Indicial Equation differing by an integer,
making a coefficient of z indeterminate. Consider the equation

(1—x2)3Z+2xdy+y 0.
Proceeding as usual, we get
clc—-1)=0, ccocerenii. (1)
a,(c+1)ec=0, (2)
ay(c+2)(c+1) +ag{ —clc—1)+2¢+1} =0, oervvrnneenn(3)
as(c+3)(c+2)+a{—(c+1)c+2(c+1)+1}=0, cooernernienii(4)

and so on.
(1) Gives ¢=0 or 1.
The coefficient of @, in (2) vanishes when ¢ =0, but as there is no
other term in the equation this makes a, tndeterminate instead of

wnfinite.
It c=1, a,=0.
Thus, if ¢=0, from equations (3), (4), etc.
2a, +ay=0,
6ay +3a, =0,

12a, +3a,=0,
ete.,
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giving - [2le=o —ao{l . 522 +1 zt +% ad.. }

+a1{ ;x +o x5+5§0 7. }

This contains two arbitrary constants, so it may be taken as the
complete primitive. The series may be proved convergent for
|z} <1 )

But we have the other solution given by c=1. Working out
the coefficients,

_ 1., 1, 3 }
[z]c=1—aow{1 LR ITE: +56—0w6"' ,

that is, a constant multiple of the second series in the first solution.

This could have been foreseen from reasonmg similar to that in
Case III.

In general, if the Indicial Equation has two rools a and (3 (say
a> ) differing by an integer, and if one of the coefficients of z becomes
indeterminate when c=3, the complete primitive is given by pulting
c=L8 in 2z, which then contains two arbitrary constants. The result of

pulting ¢ =a in z merely gives a numerical multiple of one of the series
contained in the first solution.

Examples for solution.

(1) Legendre’s equation of order unity,

a- ) 295(% +2y=0.

(2) Legendre’s equation of order n,

2,
(l—xz)d—y~2xd—y+n(n+1)y=0.
3y @Y, o 2
(3) Tt y=0. @) (2+a¢)ﬂ+x +(1+x)y 0.

100. Some cases where the method fajls. As ez cannot be expanded
in ascending powers of z, we must expect the method to fail in
some way when the differential equation has such a solution. To
construct an example, take the equation 32 -y =0, of which e
and e~ are solutions, and transform it by putting z =

dy dx dy_- ldy dy
We have & & dr” 2de T dp

d* dx d/dy d Ay A%y dy
and d2 " dz dx(dz) - %( dw) Tt 22 3dac'
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Hence the new equation is
x“ 21/ 5+ 2903 ;i A =0.

If we try to apply the usual method, we get for the indicial
equation, —a,=0, which has no roots,* as by hypothesis ao=+0.
Such a differential equation is said to have no regular integrals
1

1 1 .

in ascending powers of x. Of course ¢® and e © can be expanded in
1

powers of >

The examples given below illustrate other possibilities, such as
the indicial equation having one root, which may or may not give
a convergent series. )

It will be noticed that, writing the equation in the form

| 2P 1 ap@) P +q@)y =0,
in every case where the method has succeeded p(z) and q(z) have
been finite for =0, while in all cases of failure this condition is
violated.

For instance, in the above example,

p@)= -2,

4(2) = ~ 5, which s infinite if 2 =0,

Examples for solution.

(1) Transform Bessel’s equation by the substitution z=1/z.

Hence show that it has no integrals that are regular in descending
powers of .

(2) Show that the following equation has only one integral that is
regular in ascending powers of z, and de‘oermine it:
d 2+ac(1 290) -2y =0.

(8) By putting y=v22(1 +2x) determine the complete primitive of
the previous example. .

(4) Show that the following equation has no integral that is regular
in ascending powers of z, as the one series obtainable diverges for all

values of z:
d—y—(l 3x)d +y=0.

(5) Obtain two integrals of the last example regular in descending
powers of .

* Or we may say that it has two infinite roots.
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(6) Show that the following equation has no integrals that are
regular in either ascending or descending powers of z :

(1 - x2) +2x3dy (1 -22)3y =0.

[This is the equation whose primitive is ae®+*™" +be=2=%"".]

MISCELLANEOUS EXAMPLES ON CHAPTER IX.
(1) Obtain three independent solutions of

N dz2 dy
9022 1270 L +8 5 -y =o0.
(2) Obtain three independent solutions, of the form
0z 02z
% 3y and F’"
of the equation f—% +3z gag +(1- g;) - y=0.

1 dv
B— e reduces Riccati’s equatwn

Y 4 by = cam
@+by‘—cw

(3) Show that the transformation y =

to the linear form i‘lﬁz - bevz™ =0,
. dx

(4) Show that if  is neither zero nor an integer, the Hypergeometric
Equation %y &y ’
o1 -2) 5 +{y —(a+B+1)7} 7 - aBy=0
has the solutions (convergent if |z|<C1)
- Fla, B, v, 2) and 2'-vFla—y+1, B-y+1,2-4,2),

where F(a, B, vy, x) denotes the Hypergeometric Series

+—0—t’£ix+ ala+1)B(B+1) o2+ ala+1)(a+2)B(B+1)(B+2) e
1.y 1.2.y(y+1) 1.2.3.y(y+1)(y+2)

(5) Show that the substitutions £=1-2z and z=1/z transform the
hypergeometric equation into

dz '
z(l—z)gfg+{a+ﬁ+l—y-(a+ﬁ+1)z}fl—z—a,8y=0

“e o

and zz(l—z)g—:z+z{(1—a—B)—(Q—y)z}%+aﬁy=O

respectively, of which the first is also of hypergeometric form.
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Hence, from the last example, deduce that the original equation has
the additional four solutions :

Fla, B, a+B+1-1y,1-1),
(1-x)v-2-EF(y-p, vy-a,l+y-a-B,1-2a),
v F(a, a+l-vy, a+1-0, ),
and o BF(B, B+1-7, B+1—-q, z ).
(6) Show that the substitution y=(1 - z)*Y transforms the hyper-
geometric equation into another hypergeometric equation if

n=y-a-p.
Hence show that the original equation has the additional two
solutions : (I-2)r=2=FF(y—a, y=B: v, )
and V(1 -2)r 2 FF(1-q,1-8,2~y, z).

[Note.—Ex. 5 showed how from the original two solutions of the
hypergeometric equation two others could be deduced by each of the
transformations z=1-2z and =1/ Similarly each of the three

. -1 . .
transformations x = ii_f r= %1-, x= ZT, gives two more, thus making
twelve. By proceeding as in Ex. 6 the number can be doubled, giving
a total of twenty-four. These five transformations, together with the
udentical transformation z =2, form a group ; that is, by performing two
such transformations in succession we shall always get a transformation
of the original set.]

(7) Show that, unless 2x is an odd integer (positive or negative),
Legendre’s equation
2
(1 —wz)gﬁ—z—2x%+n(n+l)y=0
has the solutions, regular in descending powers of #,
AR (Gn+4, dn+1, n+3, 22,
w"F(—%’ﬂ, %_%n: %——7’&, m-Z)‘
[The solution for the case 2n= -1 can be got by changing  into
27! in the result of Ex. 4 of the set following Art. 97.]
(8) Show that the form of the solution of Bessel’s equation of
order » depends upon whether # is zero, integral, or non-integral,

although the difference of the roots of the indicial equation is not n
but 2n.



*OHAPTER X

EXISTENCE THEOREMS OF PICARD, CAUCHY,} AND
FROBENIUS

101. Nature of the problem. In the preceding chapters we have
studied a great many devices for obtaining solutions of differential
equations of certain special forms. At one time mathematicians
hoped that they would discover a method for expressing the solution .
of any differential equation in terms of a finite number of known
functions or their integrals. When it was realised that this was
impossible, the question arose as to whether a differential equation
in general had a solution at all, and, if it had, of what kind.

There are two distinct methods of discussing this question.
One, due to Picard, has already been illustrated by examples
(Arts. 83 and 84). We obtained successive approximations,
which apparently tended to a limit. We shall now prove that
these approximations really do tend to a limit and that
this limit gives the solution. Thus we shall prove the exist-
ence of a solution of a differential equation of a fairly general
type. A theorem of this kind is called an Existence Theorem.
Picard’s method is not difficult, so we will proceed to it at once
before saying anything about the second method. It must be
borne in mind that the object of the present chapter is not to
obtain practically useful solutions of particular equations. Our
aim now is to prove that the assumptions made in obtaining
these solutions were correct, and to state exactly the conditions
that are sufficient to ensure correctness in equations similar to
those treated before, but generalised as far as possible.

* This chapter should be omitted on a first reading.

+ Augustin Louis Cauchy, of Paris (1789-1857), may be looked upon as the
creator of the Theory of Functions and of the modern Theory of Differential Equa-
tions. He devised the method of determining definite integrals by Contour

Integration.
121
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102. Picard’s method of successive approximation. If % =f(x, y)

and y=b when z=a, the successive approximations for the value
of y as a function of z are

b+ r f(z, bydz =1y,, say,
b+[ f(@ yda=y, say,

b +rf (, y,)dx =y, say, and so on.
a

We have already (Arts. 83 and 84) explained the application of
this method to examples. We took the case where f(x, y) =% + 4%
b=a=0, and found

Y= %1}2,
Y2 =%x2 + ?1‘0'“’5 s
Y3 =322 +5%572° + 1852 + oot

These functions appear to be tending to a limit, at any rate for
sufficiently small values of z. It is the purpose of the present
article to prove that this is the case, not merely in this particular
example; but whenever f(z, y) obeys certain conditions to be
specified..

These conditions are that, after suitable choice of the positive
pumbers % and k, we can assert that, for all values of 2 between
a—h and a+h, and for all values of y between b—k and b+%, we
can find positive numbers M and 4 so that

() 1f@ pl< M,

(i) |f@ 9)-f= y)|<Aly-y'|, y and y' being any two
values of y in the range considered.

In our example f(z, y) =z +¥2, condition (i) is obviously satisfied,
taking for M any positive number greater than (h +&2).

Also |@+y?)-(@+y?)|=ly+y'|ly-y | <2%kly-y'|
so condition (ii) is also satisfied, taking 4 =2k.

Returning to the general case, we consider the differences between
the successive approximations.

Y1-b =r f(@, b)dz, by definition,
a
but | f(z, b)| < M, by condition (i),
5o b1 <|| Mz

, te <M|z-a|<Mh. .......(1)
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Also -9, =b + j F(@, y)dw—b - j ” f(a, b)dw, by definition,
a a

=[[vre w -t s
but |f(, 41) —f(x, b) |< A |y, —b]|, by condition (it),
<AM |z -al, from (1),

50 | 42— <H AM(z-a)dal, ie. <3AM(@-aR<3iAMIE. ...Q)

Similarly, Y= nca| < oy MATI e (3)
Now the infinite series
b+ M+ AMAR & .-+ MArTn.. =2 (e 1) 4D

is convergent for all values of %, 4, and M.
Therefore the infinite series

bty —0) + @~y + o+ Yn—Yna) +-oes
each term of which is equal or less in absolute value than the corre-

sponding term of the preceding, is still more convergent.
That is to say that the sequence

y1=b+(y,-b),

Y2=b+(-6) + (¥~ %),
and so on, tends to a definite limit, say Y (z), which is what we

-wanted to prove.

We must now prove that ¥ satisfies the differential equation.
At first sight this seems obvious, but it is not so really, for we
must not assume without proof that

Lt jwf(x: yn—l) dw:_‘.xf(w’ Lt yn—l) dz.

The student who understands the idea of uniform convergence
will notice that the inequalities (1), (2), (3) that we have used to
prove the convergence of our series really prove its uniform con-
vergence also. If, then, f(z, y) is continuous, ¥, ¥, etc., are
continuous also, and Y is a uniformly convergent series of con-
tinuous functions; that is, Y is itself continuous,* and Y -y, 4
tends uniformly to zero as n increases.

Hence, from condition (ii), f(z, Y)-f(®, ¥n—,) tends uniformly
to zero.
* See Bromwich’s Infinite Series, Art. 45.
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From this we deduce that

I {f(z, Y) ~f(x, yn_)} tends to zero.
a
Thus the limit of the relation

I=b+[ 10, yua)ie
is Y <b +r f(@ V)de;

therefore * %i—’;f(x, Y), and Y =b when z=a.
This completes the proof.

103. Cauchy’s method. Theorems on infinite series required.
Cauchy’s method is to obtain an infinite series from the differential
equation, and then prove it convergent by comparing it with another
infinite series. The second infinite series is nof a solution of the
equation, but the relation between its coefficients is simpler than
that between those of the original series. Our first example of this
method will be for the simple case of the linear equation of the first
order dy
2 =P®)-9.

Of course this equation can be solved at once by separation of
the variables, giving

logy=c+Ip(x)dx.

However, we give the discussion by infinite series because it is
almost exactly similar to the slightly more difficult discussion of

d d
Ta=p@). Y +q@).y,
and other equations of higher order.

We shall need the following theorems relating to power series.
The variable z is supposed to be complex. For brevity we shall
denote absolute values by capital letters, e.g. 4,, for [@n]-

(4) A power series > a@,a" is absolutely convergent at all
0
points within its circle of convergence | z | =R.
(B) The radius R of this circle is given by

1 _ An+l
R4,
provided that this limit exists.

* When differentiating the integral, the student should remember that the
integral varies solely in consequence of the variation of its upper limit.
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O (S) S vitin |21 -
' 0 .0

(D) If we have two power series, then for points within the
circle that is common to their circles of convergence,

(E:; a,gc") (2:: bnw”> = 2:_: (@b + pyby + v + DR )"

(E) If i a,gz;":i b,a" for all values of z within the circle
0 0

|z| = R, then a, =b,.

(F) A, < MR-", where M exceeds the absolute value of the
sum of the series at points on a circle [x| =R on which the series
is convergent.

Proofs of these theorems will be found in Bromwich’s Infinite
Series :

A in Art. 82,

"B is an obvious deduction from D’Alembert’s ratio test, Art. 12,

C in Art. 52,

D ”» 54’

E , 52

F , 82

Two theorems on uniform convergence will be required later on,
but we will defer these until they are needed. '

104. * Convergence of the solution in series of d—)y:=yp(x). Let

d

p(x) be capable of expansion in a power series ipnx” which is

[
convergent everywhere within and on the circle |z |=R. We shall
prove that a solution y=>)aa" can be obtained which is
0 .

cohvergent within this circle.
Substituting in the differential equation, we obtain

it;: N = 2 @ x" 2 P ‘ (Theorem C)

=7 (@nPo + AnaPr + TngPp + -+ apn) . (Theorem D)
0

Equating the coefficients of 2", (Theorem E)
Ny = U1 Po + OpgPy + CngPaF oo+ CPpge woveeneenn(l)

* Revise Art. 7 before reading the following.
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Hence for the absolute values of the a’s and JS’s, denoted by the
corresponding capital letters, we get

nd, < A, Po+A, P+ A4, P+ .. +AgPy 4. e (2)
Let M be a positive number exceeding the absolute value of
P (%) on the circle |z | =R,
then P, <MR—; ... 3) (Theorem F)
therefore, from (1) and (3),
4, < % (Apy+A4, R 1+A4, R2+.. + ARy, .. (4)

Define B, (n> 0) as the right-hand side of (4), and define
B, as any positive number greater than A,; then 4, <B,.

But %’4 (Apy+ Ay o R+ Ay (R 4.+ A, B-n41)

M n-1M \
=%— An—l +7R—7%——~1 (An—z +An_3R—1 +... +A0R—n+2)'
Hence, defining B, as above,
= M (n - 1) Bn—l
Bo=y Auat
. M 1 ‘
e < (W +I—%> B, ,,as 4, , <B,,;
B, M 1
therefore B <, tp

B 1

2.e. n_]-;tw ‘B_n_: < R.
Therefore the series i B,z" is convergent within the circle
|z|=R. 0 (Theorem B.)

Still more therefore is the series > ay@™ convergent within the
0

same circle, since 4,< B,.
The coefficients @,, a,, ... can all be found from (1) in terms of
the p’s, which are supposed known, and the arbitrary constant a,.

105. Remarks on this proof. The student will probably have
found the last article very difficult to follow. It is important not
to get confused by the details of the work. The main point is this.

~ We should like to prove that It Zﬁl( R. Unfortunately the

n—>w LAy
relation defining the A’s is rather complicated. We first simplify
it by getting rid of the n quantities P,, P, ... P, ,. Still the
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relation is too complicated, as it involves n A’s. We need a simple
relation involving only two. By taking a suitable definition
of B, we get such a relation between B, and B,_,, leading to

It 2m<R.

. n—>w B n—1 )
We repeat that the object of giving such a complicated dis-
cussion of a very simple equation is to provide a model which the
student can imitate in other cases.

Examples for solution.

(1) Prove that, if p(z) and g(z) can be expanded in power series
convergent at all points within and on the circle X =R, then a power
series convergent within the same circle can be found in terms of the
first two coefficients (the arbitrary constants) to satisfy ‘

d2 d
#ﬁ=p(w) . d—Z+q(x)y.
[Here n(n—1)a,=(n—1)a, 1P+ (1 ~2)Gn D1+ + 0Py
+ Oy _oGot Cp391 t .. T AGn_s

Hence, if M is any number exceeding the absolute values of both
p(x) and g(z) at all points on the circle X =R,

An < (ot Ay o R+ AL
+(ApgtAp_sB1+... + AgR7H2)}
M
< 7(1 +R)(dyq+ Ay o R +... + AyR-"H),

Define the right-hand side of this inequality as B, and then proceed
as before. ]
(2) Prove similar results for the equation
3, 2,
g/—g=p(a}) . 37‘2+q(x) . {dl—i+r(w) .Y
106. Frobenius’ method. Preliminary discussion. When the
student has mastered the last article, he will be ready for
the more difficult problem of investigating the convergence of
the series given by the method of Frobenius. In the preceding
chapter (which should be thoroughly’ known before proceeding
further), we saw that in some cases we obtained two series
involving only powers of =, while in others logarithms were
present. '
The procedure in the first case is very similar to that of the last
article. But in the second case a new difficulty arises. The series
with logarithms were obtained by differentiating series with
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respect to a parameter c. Now differentiation is a process of taking
a limit and the summation of an infinite series is another process
of taking a limit. It is by no means obvious that the result will
be the same whichever of these two processes is performed first,
even if the series of differential coefficients be convergent.

However, we shall prove that in our case the differentiation is
legitimate, but this proof that our series satisfy conditions sufficient
to justify term-by-term differentiation is rather long and bewildering.

To appreciate the following work the student should at first
ignore all the details of the algebra, concentrating his attention on
the general trend of the argument. When this has been grasped,
he can go back and verify the less important steps taken for granted
on a first reading.

107. Obtaining the coefficients in Frobenius’ series when the roots
of the indicial equation do not differ by an integer or zero. Consider
the expression

d d dy d*
xzc%z—xp(x).c—lg—q(x).y=¢<x, Y, d_oyc’ ﬁ), say,
where p(x) and ¢ (z) are both expansible in power series i Pa®

@ 0
and > ¢,z" which are convergent within and on the circle |z | =R.
= .

We are trying to obtain a solution of the differential equation

¢ (2 9, % ;j;_@:a v (1)

) 2
If y is replaced by 2> ana” (with @y==0), <;S<w, Y, gg, g—gg)
becomes v

Sia,a (o) (c+n~1) - (c+n) p () - g (2)}

o0
=] 9.2+, say,
0

where gy =a, {c(c—1) —poc ~ g0}

and In=20y {(C+n)(0+%—1)—]’70(0+”)—90}
Oy {Pre+n—1)+q} ~an {Po(c+n-2) +¢,}
. =g (Prc +¢0)

For brevity, denote
¢(e=1) = pec =40 by f (c),
so that (c+m)(c+n—1)—po(c+n) —gy=f (c +n).



EXISTENCE THEOREMS 129

Then g, =0 if
Gnf(C+n)=an s {Py(c+n=1) + @1} +ap o {pa(c+n - 2) +¢2}

+ oo+ G (PaC + ) weeene(2)
If we can choose the a’s so that all the g’s vanish, and if the

series i a,a" o obtained is convergent, a solution of (1) will have

been olgtained.
Now as a,+0, go=0 gives
e(e—=1) =P = Qo =0. cereerrrerriainnenniieeen(3)
This is & quadratic equation in ¢, and is called the Indicial
Equation.
Let its roots be a and B.
If either of these values is substituted for ¢ in the equations
¢:=0, 9,=0, g5=0, ..., values for @, a,, as, ... are found in the form
O =0ha ([ fc+n)flc+n—1) ... fle+1)], cooverinnnnn(4)
where £, (c) is a polynomial in ¢. The student should work out the
values of @, and g, in full if he finds any difficulty at this point.
The process by which a, is obtained from (2) involves division
by f (¢ +n). This is legitimate only when f (c +n)+0.

Now as fley=(c—a) (c-P),
' fle+n)=(c+n—-a)(c+n-p0),
80 flasn)y=n(a+n—-0B), .o (5)
and FB+n)=n(B+N=a) .eeererriinriniciiiniceinnni(6)

Thus, if @ and B8 do not differ by an integer or zero, the divisors
cannot vanish, s0 the above process for obtaining the a’s is satis-
factory.

108. Convergence of the series so obtained. Let M be a positive
number exceeding the absolute values of p(z) and g(x) at all points
on the circle jz| =

* Then P, < MR-
and Qs< MR_S’
so that [ps(c+n—8) +q;| < M(C +mn—~s+1)B

From these inequalities and from (2),

A, <M{4, ,(C+n)R1+..+A4y(C+1)R™}/F(c+n), ..(7)
say A,< B,, denoting the right-hand side of (7) by B,. This
defines B, if n>0. Define B, as any positive number greater
than 4,. This definition of B, gives

B, Flc+n+1)-B,F(c+n)R1=4,M(C +n+1)R1

< B,M(C +n+1)R-,

P.D.E. I
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Flc+n)+M(C+n+1)
RF(c+n+1) ’

|(c+n)(c+n 1) - polc+n) - q0]+M(C+n+1)
Rl(c+n+1)(c+n)—polc+n +1) —qq]

so that IZ‘“ <

7.e.

Now for large values of » the expression on the right approaches

the value n 1
Bn*" R’
Thus Lt B "+1 S 1
N—>w R

Therefore the series Z‘an" and still more the series ianw”
0 0

converges within the circle |z| =
Thus, when ¢ and 8 do not differ by an integer, we get two
convergent infinite series satisfying the differential equation.

109. Modification required when the roots of the indicial equation
differ by zero or an integer. When a and 3 are equal, we get one
series by this method.

When a and B differ by an integer, this method holds good
for the larger one, but not for the smaller, for if « — 8 =7 (a positive
. integer), then from (5) and (6)

fla+n)=n(a+n-B)=n(n+r),
but f(B+n)=n(B+n-a)=n(n-7),
which vanishes when n =7, giving a zero factor in the denominator
of @, when c=. As exemplified in Arts. 98 and 99 of the preceding
chapter, this may give either an infinite or indeterminate value for
some of the a’s. This difficulty is removed by modifying the form
assumed for y, replacing @, by k(c—3). This will make a, gy, ...,
a@,_y all zero and a,, @,,,, ... all finite when ¢ is put equal to 3. This
change in the form assumed for ¥ will not alter the relation between
the a’s, and so will not affect the above investigation of convergence.

110. Differenfiation of an infinite series with respect to a parameter
¢, the roots of the indicial equation differing by an integer. In Art. 107

we obtained an infinite series #° >’ a,z", where the o’s are functions
0
of ¢. As in the preceding chapter, we have to consider the

differentiation of this series with respect to c, ¢ being put equal to
the smaller root 3 after the differentiation.
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Now while this differentiation is being performed we may con-
sider z as a constant. The series can then be considered as a series

of functions of the variable c, sayz r,(c), where
[}

Yalc) =2"*"a,

=xetnagh, ()] f (c+n) f(c+n-1) ... f(c +1)], from (4),
* where a,=Kk(c— ) and the factor (¢c—3) is to be divided out if it
occurs in the denominator.

Now Goursat (Cours d’Analyse, Vol. IL. 2nd ed. p. 98) proves
that if (i) all the y/’s are functions which are analytic and holo-
morphic within a certain region bounded by a closed contour and
" continuous on this contour, and if (ii) the series of y/’s is uniformly
convergent on this contour, then the differentiation term by term
gives a convergent series whose sum is the differential coefficient
of the sum of the original series.

For the definitions of holomorphic and analytic, see the beginning
of Vol. II. of Goursat. It will be seen that the y’s satisfy these
definitions and are continuous as long as we keep away from values
of ¢ that make them infinite. These values are a -1, 8-1, a -2,
B~2, etc. To avoid these take the region inside a circle of centre
¢=3 and of any radius less than unity. .

We shall now prove that the series is uniformly convergent
everywhere inside this region. This will prove it is uniformly
convergent on the contour of a similar but slightly smaller region
inside the first.

Let s be a positive integer exceeding the largest value of C within
the larger region.

Then for all values of ¢ within this region, for values of n exceed-
ing s,

F(c+n)=|(c+n)(c+n—1) - py(c+n)—go|, by definition of F,
= (C+n)2—(Py+1)(C+n)-Qy, as |u-v|[=]u|-]|v],
>m-s2-(M+1)(s+n)-M, asPo<M and Q,<M,
> n?+In+J, say, where I and J are independent of
N, &, O C. SO ()

For sufficiently great values of n, say n >m, the last expression
is always positive.

Let H denote the maximum value of

M{ A4y y(C+m)B2+ A, o(C+m—1)B2+ ... + 4,(C +1)B-™] (9)
for all the values of ¢ in the region. -
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Then if E,, be any positive number greater than B,, and, if,

for values of n > m, E,, be defined by
E - M{E, s(s+n)R'+... B, (s +m+1)R-7+m}  R-n+m
" n2+In+J

ME, (s +m+1)R1 + HR!

(m+12+I(m+1)+J °
which has a numerator greater than and a denominator less than
those of B,,,, from (8), (9), and the definition of B, as the right-
hand side of (7), we see that
: Ep1> By,
Similarly E, > B, for all values of n>m.
From (10) we prove Lt EE",‘+1= Il?, This piece of work is so

n—>o n

similar to the corresponding work at the end of Art. 108 that we
leave it as an exercise for the student.

Hence i E, R is convergeut if R, < R,

»(10)

so that E, .=

Therefore within the circle |#|=R, and within the region

specified for ¢,
|a,27t"| < A RBp+"< B,Ry¢+" < E Ry,

This shows that Sa,z°+" satisfies Weierstrass’s M-test for uniform
convergence (Bromwich, Art. 44), as R,, s, and the E’s are all inde-
pendent of ¢.

This completes the proof that i, =a,z°+" satisfies all the
conditions specified, so the differentiation with respect to ¢ is now
justified. This holds within the circle || =R,. We can take R,
great enough to include any point within the circle |z| =R.

If the roots of the indicial equation are equal instead of differing
by an integer, the only difference in the above work is that a, is
not to be replaced by k(c-p), as no (c—/) can now occur in the
denominator of a,,.



CHAPTER XI

ORDINARY DIFFERENTIAL EQUATIONS WITH THREE
VARIABLES, AND THE CORRESPONDING CURVES AND
SURFACES

111. We shall now consider some simple differential equations
expressing properties of curves in space and of surfaces on which
these curves lie, or which they cut orthogonally (as in Electro-
statics the Equipotential Surfaces cut the Lines of Force ortho-
gonally). The ordinary * differential equations of this chapter are
closely connected with the partial differential equations of the
next. ‘

Before proceeding further the student should revise his solid
geometry. We need in particular the fact that the direction-cosines
of the tangent to a curve are

(& @ &)
ds’ ds’ ds/’
i.e. are in the ratio dz : dy : dz.

Simultaneous linear equations with constant coefficients have

already been discussed in Chapter III.

112. The simultaneous equations (1;:6:

express that the tangent to a certain curve at any point (z, ¥, 2)
has direction-cosines proportional to (P, @, R). If P, Q, and R are
constants, we thus get a straight line, or rather a doubly infinite
system of straight lines, as one such line goes through any point of
space. If, however, P, @, and R are functions of z,y, and z, we get
a similar system of curves, any one of which may be considered as
generated by a moving point which continuously alters its direction

d %z These equations

* 4.¢. not involving partial differential cofficients.
133
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of motion. The Lines of Force of Electrostatics form such a
system.*

. dz dy dz
Ex. (1). T—T—T. ..............-..................(1)
Obvious integrals are B=Z=0, eirvrrrerreeininnrrnrenrninrennnnn(2)
Y=2=0, cecerrrriirieiiieieeeeeri s (3)
the equations of two planes, intersecting in the line :
e-a_y-b_z
T= = e (4)

which by suitable choice of the arbitrary constants @ and b can be made
to go through any given point, eg. through (f, g, h) if a=f—h and
b=g-h.

Instead of picking out the single line of the system that goes through
one given point, we may take the infinity of such lines that intersect
a given curve, e.g. the circle 22 + y2=4, z=0.

The equations of this circle, taken together with (2) and (3), give

z=a,
y="b,
and hence a2 +b%=4, .....ceeen.. veerenne(B)

This is the relation that holds between @ and b if the hne is to inter-

sect the circle. Eliminating ¢ and b from (2), (3), and (5), we get

(z=2)*+(y—2)%=
the elliptic cylinder formed by those lines of the system which meet

the circle.
Similarly the lines of the system which meet the curve

(2 9)=0, 2=0

form the surface (-2, y—2)=0.
s de dy dz
Ex. (ll). ?—6—3. ................n..-..;-.......-(6)
Obvious integrals are TEH22=0, cennceinniinneviieennniieeneneennd(T)

a right circular cylinder and a plane that cuts it in a circle.

The differential equations therefore represent a system of circles,
whose centres all lie on the axis of y and whose planes are all perpen-
dicular to this axis.

One such circle goes through any pomt of space. That through
(fi9, 1) is 22 +22=f21 02, y=g.

A surface is formed by the circles of the system that intersect a
given curve.

* The equations of the lines of force are dx / al:dy / a—V=dz / %—V, where
V is the potential function. oz %y %
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If the given curve is the hyperbola
@ 4R
4B
(7) and (8) give, for a circle intersecting this hyperbola,

1, 2=0,

z?=a, y=b:

2
' and hence Za-z—%—z=l. rrieneesernensnnnsasesaneseens(9)
Eliminating @ and b from (7), (8), and (9), we get the hyperboloid
of one sheet, 22 +22  y?
b

formed by those circles of the system that intersect the hyperbola.
Similarly, starting from the curve ¢(x? y)=0, z=0, we gel the
surface of revolution ¢ (x%-+22% y)=0.

113. Solution of such equations by multipliers. If
do_dy _dz
P Q R
each of these fractions is equal to
ldz+mdy +ndz
IP+m@Q+nR ~
This method may be used with advantage in some examples to

obtain a zero denominator and a numerator that is an exact
differential.

dx dy dz
Ex. z(w+y)_z(x—y)—x2+y2' . ceeeee(1)
BEach of these fractions
_ zdr—ydy—zde
T az(z+y) —yzlz—y) —2(a®+y?)
wdr—ydy—zdz ,
=———T————— ’
therefore wdw—ydy—-zdz=0,
s.e. wz—yz—z2=a..................................(2)
Similarly, each fraction =gﬂlmg_y—_zgi_z 5
therefore yde+zdy—2dz=0,
e 2uy—22=b. erererrenrennns (3

Thus the solution of equations (1) is formed by the system of quartic
curves in space arising from the intersection of the conicoids (2) and
(8), where a and b are arbitrary.
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Examples for solution.

Obtain the system of curves, defined by two equations with an
arbitrary constant in each, satisfying the following simultaneous dif-
ferential equations. Interpret geometrically whenever possible.

doe_dy de doe_ dy  dz
(1) z y 2z : @) mz—ny nz—lz ly—mz
dx B dy _ dz ] dx_dy_dz
@) Y2 +22-22 2oy -2z 4 v w ay
(o) oy _ & © ol Oy &

(7) Find the radius of the circle of Ex. 2 that goes through the
point (0, —n, m).

(8) Find the surface geﬁerated by the curves of Ex. 4 that intersect
the circle y2+22=1, z=0.

(9) Find the surface generated by the lines of Ex. 1 that intersect

the helix #2+y2=r2, z:ktan—lg.

(10) Find the curve which passes through the point (1, 2, —1) and
is such that at any point the direction-cosines of its tangent are in the
ratio of the squares of the co-ordinates of that point.

114. A second integral found by the help of the first. Consider the

equations @: dy _ dz )
T2 Safsm(gada) o
An obvious integral is ¥ +22=0a. ....cocciiiiiniiiin e (2)
Using this relation, we get
dv _ dz
1 7~ 322sind’
giving z—z3sina=b.
Substituting for @, z-a%sin (y +22)=b. ......c.ccc0eeeennnn. (8)

Is (3) really an integral of (1) ?
Differentiating (3),
{dz —3z*dx sin (y +2x)} - 2% cos (y +2x) . {dy +2 dx} =0,
which is true in virtue of (1). So (3) 4s an integral.

Examples for solution.

de_dy dz dz_dy dz
& 1~ 3 bz+tan(y-32) @) z -z 224+(y+m)?
dx - dy dz 4 dz_dy dz

(3) w2(tay) -y tay) b xy y® zay-—2x*
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115. General and special integrals of simultaneous equations. If
u=a and v=>b are two independent integrals of the simultaneous
equations de dy de

P QR
then ¢ (u, v) =0 represents a surface passing through the curves of
the system, and should therefore give another solution, whatever
the form of the function ¢.

An analytical proof of this is reserved for the next chapter, as
its importance belongs chiefly to partial differential equations.

¢ (u, v) =0 is called the General Integral. Some simultaneous
equations possess integrals called Special, which are not included in
the General Integral.

Examples for solution.

(1) In the Ex. of Art. 113 u=22—y2-22 and v=2xy—2? so the
General Integral is ¢(x®—y2—22, 2xy—22)=0. The student should
verify this in the simple cases where

. P(u, v)=u—-v or ¢(u, 'U)=::-_|:12

(2) Verify that for the equation
dx dy
1+\/(z—w—y)=T
the General Integral may be taken as
${2y -2 y+2¢/(2-2-y)} =0,
while z=x+ is a Special Integral.

_&
-Z,

116. Geometrical interpretation of the equation
Pdx+Qdy +R dz=0.

This differential equation expresses that the tangent to a curve
is perpendicular to a certain line, the direction-cosines of this tangent -
and line being proportional to (dz, dy, dz) and (P, @, R) respectively.

But we saw that the simultaneous equations

de _dy dz

P Q R
expressed that the tangent to a curve was parallel to the line (P, Q, R).
We thus get two sets of curves. If two curves, one of each set,
intersect, they must intersect at right angles.

Now two cases arise. It may happen that the equation

Pdx+Qdy+Rdz=0
is integrable. This means that a family of surfaces can be found,
all curves on which are perpendicular to the curves represented by
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the simultaneous equations at all points where these curves cut the
surface. In fact, this is the case where an infinite number of surfaces
can be drawn to cut orthogonally a doubly infinite set of curves,
as equipotential surfaces cut lines of force in electrostatics. On the
other hand, the curves represented by the simultaneous equations
may not admit of such a family of orthogonal surfaces. In this
case the single equation is non-integrable.

Ex. (i). The equation dx+dy+dz=0
integrates to z+y+z=c,
a family of parallel planes.
We saw in Ex. (i) of Art. 112 that the simultaneous equations

do _dy dz
1 1 1
represented the family of parallel lines
z-a_y-b_2
1 1 1
The planes are the orthogonal trajectories of the lines.
Ex. (ii). zdz -z dz=0,
e d—;c - 0—? =0
integrates to z=c%,

a family of planes passing through the axis of y. .
We saw in Ex. (i) of Art. 112 that the corresponding simultaneous

equations de dy dz

represented a system of circles whose axes all lie along the axis of y,
so the planes are the orthogonal trajectories of the circles.
Examples for solution. ’

Integrate the following equations, and whenever possible interpret
the results geometrically and verify that the surfaces are the orthogonal
trajectories of the curves represented by the corresponding simultaneous
equations :

(1) zdz+ydy+2zdz=0.
(2) (y%+22 -2 dx —2xy dy — 2wz dz=0. [Divide by x2.]
(8) yzdx+zxdy+zydz=0. (4) (y+2)dz+(2+7) dy + (¢ +y) dz=0.
(5) z(y dx—=z dy)=y2dz. (6) zdz+zdy+(y+22)dz=0.
117. Method of integration when the solution is not obvious. When
an integrable equation of the form
Pdz+Qdy+Rdz=0
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cannot be solved by inspection, we seek for a solution by considering
first the simpler case where 2 is constant and so dz =

For example, yzdx +2zx dy —3xy dz =0 becomes, if 2 is constant,

ydx +2z dy =0,

giving zy®=a.

As this was obtained by supposing the variable z to be constant,
it is probable that the solution of the original equation can be
obtained by replacing the constant @ by some function of z, giving

2y =12
leading to y2dx + 2y dy f
This is identical with the original equatlon if
_Y
y?_ 2zy _ " dz

yz 2zx —3wy

df 3ay? _3f(2)
dz~ =z 2 °

df 3dz
2
f (z) = cza:
giving the final solution zy2 =cz%.
For & proof that this method holds good for all integrable

equations, see Art. 119.

7.e.

Examples for solution.
(1) yzlog z dx—2x log z dy +xy dz2=0
(2) 2yz dx+2x dy —xy (1 +2) dz=0.

(3) (2x%+2xy + 222 +1)dx +dy +22dz=0. [N.B.—Assume z con-
stant at first. |

(4) (y2+yzide+ (2w +22) dy + (y? —wy)dz=

(5) (2% —y®—y%)dx + (zy?— 2% — 2% dy + (zy® + 2%y) dz=0

(6) Show that the integral of the following equation represents a
family of planes with a common line of intersection, and that these

planes are the orthogonal trajectories of the circles of Ex. 2 -of the set
following Art. 113 :

(mz — ny)dz + (nz - lz) dy + (ly — mz) dz =0,

118. Condition necessary for an equation fo be integrable. If
Pdz+Qdy+Rdz=0 .......ccccoouvennnennn (1)
has an integral ¢(x, y, 2) =c¢, which on differentiation gives

d¢ 0¢ ¢ .
F dx+aydy+-az dz =0,
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9% _\p. % _po. 9% _y\
then ax-kP, aﬁ—kQ, az_ R.
? e
Hence 5 (\B)=5. 3, = azay az( Q)
. 2Q oR e
ie. “(az ) Qaz )
Similarly N R P2 0, (3)
P 9Q\ o
A(a—y—a—x P—y—Q%=O....................(4)

Multiply equations (2), (3), and (4) by P, @, and B respectively,
and add. We get
0Q OR oR oP oP 0@
P(5 %) +0(% %) +R(@ ~52) =0
If the equation (1) is integrable, this condition must be satisfied.

The student familiar with vector analysis will see that if P, @, B
are the components of a vector A, the condition may be written

A curl A=0.
Ex. In the worked example of the last article,
yz dx + 222 dy — 3xy dz =
P=yz, Q=2zr, R=-3xy.
The condition gives
y2 (2 + 3x) + 22 ( — 3y —y) — 3zy (2 — 22) =0,
i.e. bryz—8xyz+3ryz=0,
which is true.
Examples for solution.

(1) Show that the equations in the last two sets of examples
satisfy this condition.

(2) Show that there is no set of surfaces orthogonal to the curves
given by doe dy dz

*119, The condition of integrability is sufficient as well as necessary.
We shall prove that the condition is sufficient by showing that
when it is satisfied the method of Art. 117 will always be successful
in giving a solution.

We require as a lemma the fact that if P, @, R satisfy the con-
dition, so also do P, =AP, @, =\Q, R, =\R, where \ is any function
of z, y, and z. We leave this as an exercise to the student.

* To be omitted on a first reading.
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In Art. 117 we supposed a solution of
Pdz+Qdy=0

obtained by considering z as constant.
Let this solution be F(z, y, 2)=a,

which gives d +aFd =0,

or
) %/P=@/Q=)\, say.

Pllt 7\P=P1, >\Q=Q1, AR=R1.
The next step was to replace a by f(2), giving

F(z, y, 2)=f(2), (1)

F oF or df\,
and thence d +—— dy + {az —ﬁ}dz =0,

i.e. Pdx+@Qdy +{aaf—g—£}dz
This is identical with
Pdz+Qdy+Rdz=0,
. oF df .,
i % & EE
df oF
dJ; “Rye e ans(3)

In the example of Art. 117 we got
df 3y? ?_)j(_z)

dz = z

9

ceenr(2)

t.e. if

the z and y being got rid of by virtue of the equation z% =f(z).
What we have to prove is that the z and y can always be got rid
of from the right-hand side of equation (3) in virtue of equation (1).

In other words, we must show that or - R, involves z and y

only as a function of F. %

Now this will be the case if *
oF 8 (OF oF o
% 3y { % B % { % } =0 identically. ...... (4)

Now, by the lemma, the relation between P, @, E leads to the
similar relation

P, {aa% LAWY {az\z1 o), p (P a@l} 0;

ox oz oy Oz

* Edwards’ Differential Calculus, Art. 510.
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also, since equation (2) is integrable,

g i) velan (e -2)-%)
(ap df) {aP agl}

0z dz/\oy  Ox
By subtraction of these last two equations we get

o (0F _if oF _df }
Plég}(% Tdz ) U 6x{az p g

_{?E_‘ilf-zzl} {a_g_ —QQI} 0. ......(5)

0z dz oy Ox
oF , oF 2 (df df
Bub  Pi=7, @i=p,» and i) ay<dz> =0,

as f is a function of z alone.
Hence (5) reduces to (4).

- That is, %—1: — R, can be expressed as a function of F and z, say

V- (F, z). Hence from (1) and (3),

d
Tyt 2.
If the solution of this is f=yx(z), then F (z, y, 2)=x(2) is a
solution of Pdx+Qdy+Rdz=

which is thus proved to be integrable whenever P, @, R satisfy the
condition of Art. 118.

120. The non-integrable single equation. When the condition of
mtegrablhty is not satisfied, the equatlon :
Pdr+Qdy+Rdz= cereeeraeennnnnen(1)
represents a family of curves orthogonal to the family represented
by the simultaneous equations
dac _dy _dz
QR
but in this case there is no famlly of surfaces orthogonal to the
second family of curves.
However, we can find an infinite number of curves that lie on
any given surface and satisfy (1), whether that equation is integrable
or not.

Ex. TFind the curves represented by the solution of
ydr+@-y) dy+xdz=0, covererrrinienniennenn (1)
which lie in the plane 2~y —2=L1. ciiiiririiiniiiinienneneneena(2)

(It is easily verified that the condition of integrability is not satisfied.)
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The method of procedure is to eliminate one of the variables and
its differential, say 2z and dz, from these two equatwns and the differ-
ential of the second of them.

Differentiating (2), 2dx —dy — dz=0
Multiplying by & and adding to (1),
(y +2z) dz+ (2 — 2 — y) dy =0,
or using (2), (y+2z)de+(x—2y—1)dy =0,
which gives 2Y+a?—yi—y=c% ...oneuee veeeenen(3)

Thus the curves of the family that lie in the plane (2) are the sections
by that plane of the infinite set of rectangular hyperbolic cylinders (3).

The result of this example could have been expressed by saying
that the projections on the plane of xy of curves which lie in the plane
(2) and satisfy equation (1) are a family of concentirie, similar and
similarly situated rectangular hyperbolas.

Examples for solution.

(1) Show that there is no single integra,lvof dz=2y dz +x dy.
Prove that curves of this equation that lie in the plane z=z +y lie
also on surfaces of the family (z —1)%2(2y—1)=c.

(2) Show that the curves of '

z?
mdx+ydy+c\/(1 ——a—2~b—2> dz=0
that lie on the ellipsoid
22 y? 22
—t b—z + 5= 1
lie also on the family of concentric spheres
22 +y+22=k2
(3) Find the orthogonal projection on the plane of zz of curves
which lie on the paraboloid 3z=a2+y2 and satisfy the equation
2dz=(x+2) de +y dy.
{(4) Find the equation of the cylinder, with generators parallel to
the axis of y, passing through the point (2, 1, —1), and also through a
curve that lies on the sphere #2+y2+22=4 and satisfies the equation

(zy +2a2) dz + y2dy + (@ + y2) de =

MISCELLANEQUS EXAMPLES ON CHAPTER XI.

§)) @_@_@ k 2 dz _ d?/ _ dz
@ yz oy Pz—22¢ 2yti—aPy 92 (P~ )
dy dz
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. dx dy dz
2 w Y p2 %
(B) (2 +y?+2xz) dt+2xy TR 1.

(6) Find f (y) if f (y) dz — 2x dy — vy log y dz=0 is integrable.

Find the corresponding integral.

(7) Show that the following equation is not integrable :

3y dw +(2—3y) dy +x dz=0.

Prove that the projection on the plane of zy of the curves that
satisfy the equation and lie in the plane 2z +y —2=a are the rectangular
hyperbolas a? + 3wy — y? — ay =b.

(8) Find the differential equations of the family of twisted cubic
curves y=ax?; y2=>bzw. Show that all these curves cut orthogonally
the family of ellipsoids

x2+2y2 + 328 =c2.

(9) Find the equations of the curve that passes through the point
(3, 2, 1) and cuts orthogonally the family of surfaces x+yz=c.

(10) Solve the following homogeneous equations by putting x=wuz,
y=uvz:

(i) (22 -y?—22+ 2y +2x2) dw+(y? — 22 —x®+ 22 + 2yx) dy

+ (22 — 2% — 42 + 22z +22y) d2=0;

(i) (222 —1y2) do+(2yz —az) dy — (z* -2y + y2) dz=0;

(iii) 22dx + (22 — 2y2) dy + (2y® — yz — w2) dz=0.

(11) Prove that if the equation

P.dx, + Pydz, + Pydas + Pydzy=0

is integrable, then

oP, 0P opP, 0P, oP, 0P,

P'<8—Jr,_6_x:>+P“<6707—5Z +P”(2_9—x_s_5oa =0,
where 7, s, ¢ are any three of the four suffixes 1, 2, 3, 4.
Denoting this relation by C,,=0, vetify that
P,Cyay— P304+ P3Caq— PyC153=0 identically,

showing that only three of these four relations are independent.

Verify that these conditions are satisfied for the equation

(@, — Taay) Ay + (252 — 2,25T4) ATy
+ (@52 — 1,794) Ay + (4% — B,85T5) dwg =0.

(12) Integrate the equation of Ex. 11 by the following process :

(i) Suppose @3 and @, constant, and thus obtain

@, + Bt — 42, X% 5T, =0
(ii) Replace a by f (23, #,): By differentiation and comparison with

the original equation obtain 30s e and hence f and the golution
3 074

@2+ @t + @5t + 1t — 40X 5T =0
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(13) Integrate the equation of Ex. 11 by putting z, =ux,, &,="2v2,,
T3 =w,.

(14) Show that the following equation satisfies the conditions of
integrability and obtain its integral :
y sin w dx + % sin w dy — xy sin w dz — oy cos w dw =0.
(15) Show that the equation
adx®+b dy?+c dz2 + 2f dy dz + 29 dz da +2h dz dy =0
reduces to two equations of the form
Pdz+Qdy+ R dz=0
if abe +2fgh— af? - bg?—ch?*=0. (Cf. a result in Conics.)
Hence show that the solution of _
zyz (dz?+dy? + de?) + @ (y2 +22) dy dz +y (22 +22) dz do
+2z (22 +y?) do dy=0
is (2 +y2+22~¢) (wyz—c)=0. (Cf. Art. 52.)
(16) Show that the condition of integrability of
Pde+Qdy+Rdz=0.ccceeeveenveniinnnannnnn. (1)

implies the orthogonality of any pair of intersecting curves of the
families

dzfP=dy[Q=dz[R ....coeeeereervenaacnnnaee(2)

and dxl(%%—%g =dy!(aa—f—%§>=dz/<%)—g—§>.., .......... (3) -

Hence show that the curves of (3) all lie on the surfaces of (1).

Verify this conclusion for P=ny—mz, Q@=1Il—nz, R=mx-1ly.

(For the solutions of the corresponding equations, see earlier examples
in this chapter.) ‘

(17) The preceding example suggests that if a=const., B=const.
are two integrals of equations (3), the integral of equation (1) should
be expressible in the form f(a, B) =const., and hence that

Pdz+Qdy+Rdz

should be expressible as 4 da+ B df3, where 4 and B are functions of
a and 8.

Verify that for the case
P=yzlogz, Q= -zzlogz, R=uay,
azyzé, B:wz’}logz, A=-8, and B=a.
Hence obtain an integral of (1) in the form a=c¢f,

i.e. y=cxlogz.



CHAPTER XII

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST
ORDER. PARTICULAR METHODS

121. We have already (in Chap. IV.) discussed the formation of
partial differential equations by elimination of arbitrary functions
or of arbitrary constants. We also showed how in certain equations,
of great importance in mathematical physics, simple particular
solutions could be found by the aid of which more complex solutions
could be built up to satisfy such initial and boundary conditions as
usually occur in physical problems.

In the present chapter we shall be concerned chiefly with equa-
tions of geometrical interest, and seek for integrals of various forms,
“ general,”  complete,” and “singular,” and their geometrical
interpretations. Exceptional equations will be found to possess
integrals of another form called “ special.”

199. Geometrical theorems required. The student should revise
the following theorems in any treatise on solid geometry :

(i) The direction-cosines of the normal to a surface f (z, ¥, 2) =0
at the point (z, ¥, 2) are in the ratio

of .of . of
0z 0y’ 02"
Since
of 1of 9z _ of jof 0z _
az/ o o D5 and “oyloz oy ~% "y,

this ratio can also be written p:gq: —1.

The symbols p and g are to be understood as here defined all
through this chapter.

(ii) The envelope of the system of surfaces

f(x: Y, 2, a, b) =0’
146
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where o and b are variable parameters, is found by eliminating
@ and b from the given equation and

f o Y_

6=% = =0,
The result may contain other loci besides the envelope (cf.

Chap. VL.).

123. Lagrange’s linear equation and its geometrical interpretation.
This is the name applied to the equation

Pp+Qq=R, .cocevvvrrnvivrnanieannnenni(l)

where P, @, R are functions of z, ¥, 2.

The geometrical interpretation is that the normal to a certain
surface is perpendicular to a line whose direction-cosines are in the
ratio P : Q@ : R. Butin the last chapter we saw that the simultaneous
equations Qo _dY G2 oeeeeeeenn2)

P Q@ R
represented a family of curves such that the tangent at any point
had direction-cosines in the ratio P:Q:R, and that ¢ (u, v)=0
(where w=const. and v=const. were two particular integrals of
the simultaneous equations) represented a surface through such
curves.

Through every point of such a surface passes a curve of the

- family, lying wholly on the surface. Hence the normal to the

surface must be perpendicular to the tangent to this curve, d.e.

perpendicular to a line whose direction-cosines are in the ratio

P:Q:R. This is just what is required by the partial differential
equation.

Thus equations (1) and (2) are equivalent, for they define the
same set of surfaces. When equation (1) is given, equations (2) are
called the subsidiary equations.

Thus ¢ (#, v) =0 is an integral of (1), if u =const. and v =const.
are any two independent solutions of the subsidiary equations (2)
and ¢ is any arbitrary function. This is called the General Integral
of Lagrange’s Linear Equation.

Ex. (i). p+g=1.
The subsidiary equations are those discussed in Ex. (i) of Art. 112,
viz. dz_dy _dz
1 1 1
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Two independent integrals are
z-2=a,
y—2z=b,
representing two families of planes containing these straight lines.
The general integral is ¢(z—z, y—2)=0, representing the surface
formed by lines of the family passing through the curve
¢ (x, y)=0, 2=0.
If we are given a definite curve, such as the circle
x2+y2=4, 2=0,
we can construct a corresponding particular integral
(@-2)2+(y—2)? =14,
the elliptic cylinder formed by lines of the family meeting the given
circle.

Ex. (ii). zp=—=. [Cf. Ex. (ii) of Art. 112.]
The subsidiary equations are

of which two integrals are 22+2%2=a, y=b.

The general integral ¢ (z2+22, y)=0 represents the surface of
revolution formed by curves (circles in this case) of the family inter-
secting the curve ¢ (22, 4)=0, 2=0.

Ex. (iii). Find the surfaces whose tangent planes cut off an intercept
‘of constant length % from the axis of 2.
The tangent plane at (z, y, 2) i3
Z-z=p(X-2)+q9(Y -y).
Putting X=Y =0, Z=z—pr—qy=£k.
The subsidiary equations are

of which y =ax, z—k=>0bz, are integrals.
The general integral ¢ (%’ z_;_k) =0 represents any cone with its
vertex at (0, 0, k), and these surfaces clearly possess the desired property.

Examples for solution.
Obtain general integrals of the following equations. [Cf. the first
set of examples in Chap. XI.] '
(1) zp+yg=2.
(2) (mz—ny)p+(nx—12)q=1ly—me.
(3) (y%2+22—x2)p—2xyq+2x2=0.
(4) yzp +zxq="1y.
(5) (y+2)p+(z+a)g=2+y.
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(6) (22-2yz—y*)p+(zy +a2) q=2y —22.
(7) p+3q=>bz+tan(y—3x).
() zp—2g=2"+(y+a)*
(9) Find a solution of Ex. (1) representing a surface meeting the
parabola y2=4w, z=1.
(10) Find the most general solution of Ex. (4) representmg a conicoid.

03] Show that if the solution of Ex. (6) represents a sphere, the
centre is at the origin.

(12) Find the surfaces all of whose normals intersect the axis of 2.

124. Analytical verification of the general integral. We shall now
eliminate the arbitrary function ¢ from ¢ (u, v)=0, and thus
verify analytically that this satisfies Pp +Qq =R, provided # =a and
v=>b are two independent * integrals of the subsidiary equations

dr_dy _dz
P Q R

Differentiate ¢ (u, v) =0 partially with respect to z, keeping y

constant ; z will vary in consequence of the variation of #z. Hence

we get ¢ (du _ du az) L az>
ou\oz ' 0z 0w ax t oo ?
. Op(0u  Ou a¢ ov ov\
ie. 3 (Geeng) ot (Ga+p)=0-
.. dp (0w du\ 0 (v v
Similarly 3, (ag“l %) o (a;,*qaz =0.

Eliminating the ratio ¢ ¢ from these last two equations,

%Zw%)(%‘éw%ﬁ)=(Z%+p%%>(§~;+fz%i>’

o, (00 _duEn), (oud0_du

o ooy PN\ wa/ !
oudv oudv
=‘—“5an —@Sx seersevennennen ...(1)
But from u =a, au dac + ydy +— dz =0,
and hence from the submdlary equations, of which « =a is an integral,
ou  0u ou
*If 4 and v are not independent, %’;’g—”_@@f and the other two similar

expressions all vanish identically (Edwards’ Differential Calculus, Art. 510), which
reduces equation (1) to 0=0
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. . ov . Ov 0V
Similarly - P 5+ Q 3 +R % =0.
Hence
n.p (Qudv Budv\ (Judv Qudv\, (0udv Judv),
P-Q-R“%ga@ 5zay> () -(%a—y“ay’aa)’

so (1) becomes Pp +Qg =R, the equation required.

125. Special integrals. It is sometimes stated that all integrals
of Lagrange’s linear equation are included in the general integral
¢ (u, v)=0. But this is not so.

For instance, the equation

P-9=2v2
has as subsidiary equations
do_dy _ dz_
17 -1 242

Thus we may take u =& +y, v =% — 4/2, and the general integral as

¢ (€ +y, z—+/2)=0.

But 2 =0 satisfies the partial differential equation, though it is
obviously impossible to express it as a function of v and v.

Such an integral is called special. It will be noticed that in all
the examples given below the special integrals occur in equations
involving a term which cannot be expanded in series of positive
integral powers. :

In a recent paper M. J. M. Hill* has shown that in every case
where special integrals exist they can be obtained by applying a
suitable method of integration to the Lagrangian system of sub-
sidiary equations (see Examples 5 and 6 below). He also under-
takes the re-classification of the integrals, the necessity of which
task had been pointed out by Forsyth.{

Examples for solufion,

Show that the following equations possess the given general and
special integrals :

(1) p+2gz§=3z§; ¢(x—z§,y—z§)=0; 2=0.
@) p+g{l+—yh=1; ¢{o—-2 2+3E-9%; 2=v.

©B) {1+ (z-z-y)}p+e=2; ¢{2y~2 y+2¢/(z-2-y)}=0;
z2=%+Y. [Chrystal.]

* Proc. London Math. Soc. 1917.
1 Proc. London Math. Soc. 1905-6.
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(4) By putting (-2 — )é —w in Chrystal’s equation (Ex. 3), obtain
Y Y

ow 0w ]
w[2(1+w)5i+25§+1 =0.
This shows that z—z—y=0 is a solution of the original equation.

[Hill.]
(5) Show that the Lagrangian subsidiary equations of Chrystal’s
equation (Ex. 3) may be written

dx 3. dz
@*-l'i'(z‘f”'y) H dy"27

and deduce that o%/ (z—z—-y)=—-(2—2— y)i,

of which z—z —y=0 is a particular solution. [Hill.]
(6) Obtain the general and special integrals of the equation
~ p-9=2v2
by imitating Hill’s methods as given in Exs. 4 and 5.
126. The linear equation with n independent variables. The
general integral of the equation
Pypy + Pypy + Pyps + oo + PP =R,
where p1=§i, p2=%, ... etc., and the P’s and R are functions
2y 0%y
of the 2’s and z, is ¢ (g, Ugy Uss - u,) =0,
where u, = const., 1y =const., ... etc., are any % independent integrals
of the subsidiary equations
doy_dmy_dos_ 2
P, P, P B
This may be verified as in Art. 124. The student should write
out the proof for the case of three independent variables.

Besides this general integral, special integrals exist for ‘excep-
tional equations, just as in the case of two independent variables.

Examples for solution.
(1) pe+ps=1+p1
(2) Zypy+22aPs+3T5Ps +424Ps =0.
(3) (wg3— o) Py +T2P2~ L3Pz = T2 (0 +25) — o™
(4) o3Py +T3Ty P+ T1%ePs T L1025 =0.
(5) py+a1pet TP T1% T3V 2
(6) py+patpafl+ /(2 =2y — %y —wg)}=3.
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127. The equation P g—i +Q% +R g =0. If P, @, R are functions
of z, y, 2 but not of f, the equation can be viewed from two different
aspects.

Consider, for example,

of _of o _
‘a—x*‘a?}'l'z'\/Z‘a—-z —-0, ........................... (1)
We may regard this as equivalent to the three-dimensional
equation DP=G=242s werrerrerirrrrreererrreenen(2)

of which ¢(z+y, z-4/2)=0 is the general integral and 2=0 a
special integral.
On the other hand, regarding (1) as an equation in four variables,
we get the general integral
¢(f: z +y, T - '\/z) =0,
which is equivalent to f=+/(z +v, z - 1/2), where i is an arbitrary
function, but if

fez, %—%+%ﬂ%=%&=%¢

Thus f=z is not an integral of (1), although f=2z=0 certainly
gives a solution.

In general it may be proved that

) ) 9
pY +Q§§+Ral:=0,

regarded as four-dimensional, where P, Q, R do not contain f, has
no special integrals.* A similar theorem is true for any number of
independent variables.

Examples for solution. ’
(1) Verify that if f=a, f=0 is a surface satisfying

vaZivy Ty Zao,

and hence that this differential equation, interpreted three-dimension-
ally, admits the three special integrals =0, y=0, 2=0 and the general
integral ¢(v/z—+/, v/z2~+/y)=0.

(2) Show that the general integral of the last example represents
surfaces through curves which, if they do not go through the origin,
either touch the co-ordinate planes or lie wholly in one of them.

[Hint. Prove that = \/ (—’”—) and that dz/ds=0 if 2=0,

ds T+y+z
unless z, y, z are all zero. ]

* See Appendix B.
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(3) Show that 4/ % +4/Yy g—; =0, regarded two-dimensionally, repre-

sents a family of parabolas +/y=+/x+c, and their envelope, the
co-ordinate axes #=0, y=0; while regarded three-dimensionally it
3

represents the surfaces z2=¢(y

128. Non-linear equations. We shall now consider equations in
which p and ¢ occur other than in the first degree. Before giving
the general method we shall discuss four simple standard forms, for
which a  complete integral” (i.e. one involving two arbitrary
constants) can be obtained by inspection or by other simple means.
In Arts. 133-135 we shall show how to deduce general and singular
integrals from the complete integrals.

129. Standard I. Only p and q present. Consider, for example,
this equation ¢ =3p2

The most obvious solution is to take p and g as constants satisfying
the equation, say p=a, ¢ =3a>

Then, since  dz=pdz+qdy=adz+3a®dy,

z=ax +3a% +c.

This is the complete integral, containing two arbitrary constants
a and c.

In general, the complete integral of f (p, g)=0 is

z=az +by +c,

where @ and b are connected by the relation f(a, b) =0.

Examples for solution. ’

Find complete integrals of the following : -

—z?).

(1) p=2¢%+1. (2) p2+¢2=1.

@) p=et. 4 pe=1

(5) p*—¢*=4. (6) pg=p+g¢.

130. Standard II. Only D, q, and z present.: Consider the equation
2P+ =1 (1)

As a trial solution assume that z is a function of z+ay
(=u, say), where a is an arbitrary constant.

Then p=§§=d—z.§%=é§' q:a—z=%.aku=a§.z_.

or du oz du’ oy du Oy “du

2
Substituting in (1), =2? (%) (22 +a?) =1,

1.e. Z—Z = :i-:z’z2 + az)%,

te. u+b=xL(2? +a?)t,
ie. 9(z+ay+b)?=(22+a??
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In general, this method reduces f(z, p, ¢)=0 to the ordinary
differential equation

dz dz) _
f (Z, d—u, a J’;& =0.
Examples for solution.
Find complete integrals of the following :

(1) 4z=1pq. (2) 22=1+p2+q2

(3) ¢*=22p*(1 - p?). () PP+¢*=2Tz.

(6) p(z+p)+9=0. (6) p*=2g.

131, Standard III. f(x, p)=F(y, ¢). Consider the equation
p-322=¢*-y.

As a trial solution put each side of this equation equal to an
arbitrary constant a, giving

p=3xt+a; qg=+/(y+a).

But dz=pdz+qdy
=(3x%+a)dx++/(y +a)dy;
therefore z=a3 +ax +3(y +a)* +,

which is the complete integral required.

Examples for solution.
Find complete integrals of the following :

(1) pP=g+u. (2) pg=ay.
(3) yp=2yz+logy. (4) g==yp*
(5) pe?=ge®. (6) q(p—cosx)=cosy.

182. Standard IV. Partial differential equations analogous to Clair-
aut’s form. In Chap. VI. we showed that the complete primitive of
y=pe+f(p)

was y =cz +f(c), a family of straight lines.
Similarly the complete integral of the partial differential equation
z=po+qy +f (P, 9)
is z=ax +by +f(a, b), a family of planes.
For example, the complete integral of
2=px +qy +p? +q>
is z=ax +by +a%+ b2
Corresponding to the singular solution of Clairaut’s form, giving
the envelope of the family of straight lines, we shall find in the next
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article a “singular integral” of the partial differential equation,

giving the envelope of the family of planes.

Examples for solution.

(1) Prove that the complete integral of z=pz+qy—2p—3q repre-
sents all possible planes through the point (2, 3, 0).

(2) Prove that the complete integral of z=pz+qy++/(p2+¢2+1)
represents all planes at unit distance from the origin.

(3) Prove that the complete integral of z=px+qy+pg/(pg—p-q)
represents all planes such that the algebraic sum of the intercepts on
the three co-ordinate axes is unity.

133. Singular Integrals. In Chap. VI. we showed that if the
family of curves represented by the complete primitive of an ordinary
differential equation of the first order had an envelope, the equation
of this envelope was a singular solution of the differential equation.
A similar theorem is true eoncerning the family of surfaces repre-
sented by the complete integral of a partial differential equation of
the first order. If they have an envelope, its equation is called a
“singular integral.” To see that this is really an integral we have
merely to notice that at any point of the envelope there is a surface
of the family touching it. Therefore the normals to the envelope
and this surface coincide, so the values of p and ¢ at any point of
the envelope are the same as that of some surface of the family, and
therefore satisfy the same equation.

We gave two methods of finding singular solutions, namely from
the c-discriminant and from the p-discriminant, and we showed that
these methods gave also node-loci, cusp-loci, and tac-loci, whose
equations did not satisfy the differential equations. The geometrical
reasoning of Chap. VI. can be extended to surfaces, but the dis-
cussion of the extraneous loci which do not furnish singular integrals
is more complicated.* As far as the envelope is concerned, the
student who has understood Chap. VI. will have no difficulty in
understanding that this surface is included among those found by
eliminating @ and & from the complete integral and the two derived

equations f @, y, 2, a, b)=0,
of -
oa =0;
of .
ab =0

* See a paper by M. J. M. Hill, Phil. Trans. (A), 1892.
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or by eliminating p and ¢ from the differential equation and the
two derived equations
' F(xs Y 2, P Q) =0,

oF
ap =0,
oF
9 =0

In any actual example one should test whether what is apparently
a singular integral really satisfies the differential equation.

Ex. (i). The complete integral of the equation of Art. 132 was
o z=ar+by+a%+0b%

Differentiating with respect to @, 0= +2a.

Similarly 0= y  +2b.

Eliminating @ and b, dz=— (22 +y?).

It is easily verified that this satisfies the differential equation

z=pr+qy+p%+q?

and represents a paraboloid of revolution, the envelope of all the planes
represented by the complete integral.

Ex. (ii). The complete integral of the equation of Art. 130 was

Iz +ay +8)2=(22-+a2)3 weverenirierrennnanna(l)

Differentiating with respect to a,
18y(z+ay+b)=06a(22+a2)2. ...cooovviinnnennn2)
Similarly I8(Z+ay+58)=0. ceoreirieinriinieeneeireeieeenene(3)
Hence from (2), B=0. ceviiiriniriniiieiiincaennenea.(4)

Substituting from (3) and (4) in (1), 2=0.
But 2=0 gives p=¢=0, and these values do not satisfy the differ-
ential equation 22(p22+¢2) =1.

Hence z=0 is not a singular integral.

Ex. (iii). Consider the equation p2=zg.

Differentiating with respect to p, 2p=0.

Similarly 0=z

Eliminating p and ¢ from these three equations, we get.

z2=0.

This satisfies the differential equation, so it really is a singular
integral.

But it is derivable by putting =0 in

2= be®*+aY,

which is easily found to be a complete primitive.

So z=0 is both a singular integral and a particular case of the
complete integral.
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Examples for solution.
Find the singular integrals of the following :

(1) z=px+qy +log pg. (2) z=pz+qy+p2+pg+q>
(3) z=pz+qy+3p2g2. (4) z=px+qy+p[q.
) 42=pq. 6) 22=1+p2+ge  (T) pP+g* =27z

(8) Show that no equation belonging to Standard I. or III. has a
singular integral. [The usual process leads to the equation 0=1.]

(9) Show that z=0 is both a singular integral and a particular case
of a complete integral of g2=22p*(1 - p?).

134. General Integrals. We have seen, in Ex. (i) of the last
article, that oll the planes represented by the complete integral

z=0x +by+a?+b% ...oiin(1)
touch the paraboloid of revolution represented by the singular
integral 42= —(Z2+Y2). cerrerrerreneereereereeneenn(2)

Now consider, not all these planes, but merely those perpendicular
to the plane y =0. These are found by putting =0 in (1), giving
z2=az +a?,

of which the envelope is the parabolic cylinder
d2= =% e ..(3)
~Take another set, those which pass through the pomt (0 0 1).
From (1), 1=a2+0%
80 (1) becomes z2=arxty\/(1 —a?) +1,
of which the envelope is easily found to be the right circular cone
(-12=22+92 e (4)
In general, we may put b=f(a), where f is any function of a,
giving 2=az +yf (@) + @+ {f (@)% rerrrerrrerreerennn(5)
The envelope of (5) is found by eliminating a between it and
- the equation found by differentiating it partially with respect to a,
A te. 0=z +yf (a) +2a +2f (@) f' (@). ereerreerneenn(B)

If f is left as a perfectly arbitrary function, the eliminant is
called the “ general integral ” of the original differential equation.
Equations (3) and (4) are particular integrals derived from the
general integral.

We may define the general integral of a partial differential
equation of the first order as the equation representing the aggregate
of the envelopes of every possible singly-infinite set of surfaces that
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can be chosen out of the doubly-infinite set represented by the
complete integral. These sets are defined by putting b=f(a) is
the complete integral.

It is usually impossible to actually perform the elimination of
a between the two equations giving the envelope, on account of the
arbitrary function f and its differential coefficient. The geometrical
interest lies chiefly in particular cases formed by taking f as some
definite (and preferably simple) function of a.

185. Characteristics. The curve of intersection of two con-
secutive surfaces belonging to any singly-infinite set chosen from
those represented by the complete integral is called a characteristic.

Now such & curve is found from the equation of the family of
surfaces by the same two equations that give the envelope. For
instance, equations (5) and (6) of the last article, for any definite
numerical values of a, f(a), and f’(a), define a straight line (as the
intersection of two planes), and this straight line is a characteristic.
The characteristics in this example consist of the triply-infinite set
of straight lines that touch the paraboloid of revolution (2).

The parabolic cylinder (3) is generated by one singly-infinite set
of characteristics, namely those perpendicular to the plane y =0,
while the cone (4) is generated by another set, namely those that
pass through the fixed point (0, 0, 1). Thus we see that the general
integral represents the aggregate of all such surfaces generated by the
characteristics.

If a singular integral exists, it must be touched by all the char-
acteristics, and therefore by the surfaces generated by particular
sets of them represented by the general integral. It is easily verified
that the parabolic cylinder and right circular cone of the last article
touch the paraboloid of revolution.

136. Peculiarities of the linear equation. To discuss the linear

equation Pp+Qg=R .euveeeeeaeeeneeaene (1)
on these lines, suppose that «=const.
and v =const.

are two independent integrals of the subsidiary equations.*
Then it is easily verified that an integral of (1) is

U+ +b=0. ceooeviiiiii(2)

* Since  and v are independent, at least one of them must contain z. Let
this one be . We make this stipulation to prevent u +av+b being a function of
z and y alone, in which case % +av +b=0 would make terms in (1) indeterminate,
instead of definitely satisfying it in the ordinary way.




PARTICULAR METHODS 159

This may be taken as the complete integral. The general
integral is found from
U@+ (@) =0, cerrnrinneiieenienend(3)
VA (@) =01 e (4)
From (4), a is a function of v alone,
say a=F (v).
Substituting in (3), % =a function of v,

say u = (v),
which is equivalent to the general integral ¢ (u, v) =0 found at the
beginning of the chapter.

The linear equation is exceptional in that its complete integral
(2) is a particular case of the general integral. Another peculiarity
is that the characteristics, which are here the curves represented by
the subsidiary equations, are only doubly-infinite in number instead
of triply-infinite. . Only one passes through a given point (in general),
whereas in the non-linear case, exemplified in the last article, an
infinite number may do so, forming a surface.

Examples for solution.
(1) Find the surface generated by characteristics of
z=pz+qy+p*+pg+g
that are parallel to the axis of #. Verify that it really satisfies the

differential equation and touches the surface represented by the singular
integral.

(2) Prove that 22 =4wy is an integral of
z=px+qy +log pg

representing the envelope of planes included in the complete integral
and passing through the origin.
(8) Prove that the characteristics of ¢=3p? that pass through the
point (—1, 0, 0) generate the cone (z+1)2+12yz=0.
(4) What is the nature of the integral (y + 1)+ 42z =0 of the equation
e=pe+gy+plqt
(5) Show that either of the equations
z=(x+y)%+ax+by,
ma? + ny?
z=(x+y)*+ Tyy—

may be taken as the complete integral of a certain differential equation,
and that the other may be deduced from it as a particular case of the
general integral. [London.]
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(6) Show that z=(z+a)%" is a complete integral of the differential
“equation p?=4ze®k.

T 2y
Show that yzz=4(2xTyy) is part of the general integral of the

same equation, and deduce it from the above given complete integral.

[London.]
MISCELLANEOUS EXAMPLES ON CHAPTER XII
(1) z=px+9y-p*4. (2) O=pz+qy - (pr+2)%.
(3) #(e +ay) (pw—qy) =t (4) p*-q*=3w-2y. |
(5) P1®+2wypy +25%p3=0. (6) @5py+aypy+3,p3=0.
(7) P*+¢°-3pgz=0. (8) Pi®+po%+ps? =4z
(9) pr+py+py=42. (10) p?+6p+29+4=0.
(11) 22pPy + 6epwy +22qw% + 4a%y=0.  (12) zpy®=wx(y®+2%?). \
(13) p*2+¢*=p%. (14) (2= pz - qy) 2®y* = g%a® — 3p°2%".

(15) Find the particular case of the general integral of p+q=pq
that represents the envelope of planes included in the complete integral
and passing through the point (1, 1, 1).

(16) Prove that if the equation P dz +Q dy + R dz =0 is integrable, it
represents a family of surfaces orthogonal to the family represented by

Pp+Qq=R. |

Hence find the family orthogonal to : |

p{z(z+y)?, 2% -y} =0.

(17) Find the surfaces whose tangent planes all pass through the
origin.

(18) Find the surfaces whose normals all intersect the circle
22+y%?=1, 2z=0.
(19) Find the surfaces whose tangent planes form with the co-
ordinate planes a tetrahedron of constant volume.

(20) Prove that there is no non- surface such that every
tangent plane cuts off intercepts from the axes whose algebraic sum is
Zero.

(21) Show that if two surfaces are polar reciprocals with respect to
the quadric #2+y%2=2z, and (, y, 2), (X, Y, Z) are two corresponding
points (one on each surface) such that the tangent plane at either point
is the polar plane of the other, then

X=p; Y=¢; Z=pu+qy-z; z=P; y=0.

Hence show that if one surface satisfies

f(w: Y, 2, D, Q)Zoa
the other satisfies f(P, Q, PX+QY -Z, X, Y)=0.

(These equations are said to be derived from each other by the
" Principle of Duality.)
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(22) Show that the equation dual to

z=pr-+qy+pq
is } 0=Z+XY,
.. 74
giving m=P=67f='_ Y, y=0@=-X,

2=PX+QY-Z=-XY.
Hence derive (as an integral of the first equation) 2= —zy.

" B.D.E. b



* CHAPTER XIII1

PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST
ORDER. GENERAL METHODS

187. We shall now explain Charpit’s method of dealing with
equations with two independent variables and Jacobi’s method for
equations with any number of independent variables. Jacobi’s
method leads naturally to the discussion of simultaneous partial
differential equations.

The methods of this.chapter are considerably more complicated
than those of the last. We shall therefore present them in their
simplest form, and pass lightly over several points which might be
considerably elaborated.

138. Charpit’s T method. In Art. 131 we solved the equation

P=3T2=¢ Y rerirerrre 48]
by using an additional differential equation
P=322=0, ceeiirieeriiiiniieeen(2)
solving for p and ¢ in terms of # and y, and substituting in
de=pdx+qdy, «coeveneianinciinineniieie i (3)

which then becomes integrable, considered as an ordinary differential
equation in the three variables z, ¥, 2.

We shall now apply a somewhat similar method to the general
partial differential equation of the first order with two independent

variables F(z,y, 2P0, 9)=0. coreerieriiiiiniinnn(4)
‘We must find another equation, say
J@ y, 2, 0,¢)=0, wererrviiiiiieneenn(B)

* T'o be omitted on a first reading.

+ This method was partly due to Lagrange, but was perfected by Charpit.
Charpit’s memoir was presented to the Paris Academy of Sciences in 1784, but
the author died soon afterwards and the memoir was never printed.

162
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such that p and ¢ can be found from (4) and (5) as functions of
z, y, z which make (3) integrable.
The necessary and sufficient condition that (3) should be in-
tegrable is that
9Q ©oR oR oP oP 9Q
P (a—g —5&> +Q (% ——82) +R <5§ am> =0 (identically),
where P=p, Q=¢q, R=-1,

i.e. pa—q—qa——p—?ﬁ+@= PR ()

0z 190z dy Ox

By differentiating (4) partially with respect to @, keeping y and
z constant, but regarding p and ¢ as denoting the functions of z,
Y, 2 obtained by solving (4) and (5), we get

0F o0Fop oFoq _ -0

a%+apam+agaw TR |

Similarly SJ;J’g{ogg gggg 20, e eeseeeend(8)

From (7) and (8), Jgg-—g%-%% e enr(9)
where-J stands for gf; SJT; - g—f a@;

Similarly g 90y oFy (10)

0z 0z20p 0po

dp_ _OFof dFof
Jay % a{,*aqay BN N B
g _ _FY FY o (12)

Substituting in (6) and dividing out * J, we get
<6F of oF af> <3F of oFof )

32 ¢ 3q 9

JOFY_OFY Py OFY_

Yoyaq dqoy Tmap opon
LRy IFY_(,OF OF\Y

dpow oqoy \Pop 93g)0z

oF O\ @F O
+< az>ap kay 0z/0q
* J cannot vanish identically, for this would imply that F and f, regarded as

functions of p and ¢, were not independent. This is contrary to our hypothesis
that equations (4) and (5) can be solved for p and g.

P 0z 0p Opdz +e

...(13)



164 DIFFERENTIAL EQUATIONS

This is a linear equation of the form considered in Art. 126,
with z, y, z, p, ¢ as mdependent variables and f as the dependent
variable.

The corresponding subsidiary equations are

dx dy dz dp _dg _df
aFW—aF—aTaF oF oF _oF 0’
“op o Pop i% W Pa ay o

If any integral of these equations can be found involving p or
g or both, the integral may be taken as the additional differential
equation (5), which in conjunction with (4) will give values of p
and ¢ to make (3) integrable. This will give & complete integral of
(4), from which general and singular integrals can be deduced in
the usual way.

(14)

189. As an example of the use of this method, consider the
equation 2z — pa’ — 2qzy +pg =0. SSUPRRRRRINR ¢ §)

Taking the left-hand s1de of this equation as F and substltutmg
in the simultaneous equations (14) of the last article, we get

dx dy dz dp _dg_df
?—q 2ay-p ~ pa? + 2ayq - 2pq %-2qy 0 0’
of which an integral is R UPPUUUOUPNPRRRN () |
From (1) and (2), J2le-ay)

2x(z — ay)dx
o=

Hence dz=pdz+qdy= +ady,

dz—ady 2zdx
2—ay @*-a
1.e. z=ay+b(x?-a).

This is the complete integral. It is easy to deduce the Singular

Integral 2 =a%.
The form of the complete integral shows that (1) could have
been reduced to 2=PX +qy - Py,
which is a particular case of a standard form, by the transformation
9z 1 0z
2'=X; P= 0X % oz’

Equations that can be solved by Charpit’s method are often
solved more easily by some such transformation.
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Examples for solution.

Apply Charpit’s method to find complete integrals of the following :
(1) 22+ p%+qy+2y2=0. (2) yzp?=y.
(3) pry+pg+gy=ye. (4) 22(2%¢*+1) =pe.
(5) g=3p% (Cf. Art. 129.)  (6) 22(p%2+¢%)=1. (Cf. Art. 130.)
(7) p—3x2=g2—y. (Cf. Art. 131.)
(8) z=pr+qy+p2+q¢% (Cf. Art. 132.)
(9) Solve Ex. 2 by putting y2=Y, 22=Z. :

(10) Solve Ex. 4 by a suitable transformation of the variables.

140. Three or more independent variables. Jacobi’s* method.
Consider the equation

F(zy, 23 T3y D1y Pay P3) =0, ecvvvniiicinne (1)

where the dependent variable z does not occur except by its partial
differential coefficients p,, p,, p; with respect to the three independent
variables @, #,, ;. The fundamental idea of Jacobi’s method is
very similar to that of Charpit’s.

We try to find two additional equations

Fl(aql, Tgy Tzy Py Pos P3) =gy veeveerernrenennnnnnnns 2)

Fy (1, @5 T3, D1y Poy Pa) =0y vvvvevvvceeneaenn(3)

(where o, and a, are arbitrary constants), such that p,, p,, p, can
be found from (1), (2), (3) as functions of ,, 2,, #; that make

dz = pida, + pody +Paivg covevevvennernneeennn(4)
integrable, for which the conditions are
ope_ 02 O, Ops Oy O 0Py (5)

oz, O0x,0z, Ox," Ox, 0Ox, Oz, O,

Now, by differentiating (1) partially with respect to ,, keeping

@, and x; constant, but regarding p,, p,, p; as denoting the functions
of @, @, @3 obtained by solving (1), (2), (3), we get

OF OF dp,  oF dp, oF dp,
Ao i 22 TP OF Oy 6
0%, 0p; 0x, Op, Ox, Op, Ox, < (©)

OF, | OF, 9p,  OF, 3p, OFy0p; _,

Similarly 52, gy 0wy Oy 0wy T Ay 3, ~On

A7)

* Carl Gustav Jacob Jacobi of Potsdam (1804-1851) may be considered as one
of the creators of the Theory of Elliptic Functions. The “ Jacobian ” or  Func-
tional Determinant ” reminds us of the large part he played in bringing deter-
minants into general use. i
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From (6) and (7),

oF, F,)  o(F, F)) op, O(F, Fy) op,
0@y, p1)  0(pa p1) 0x;  O(ps, py) 02y

=0, +eeerreeeeens(8)

o(F, Fy) « . _,, 0FoF, oFoF,
where 3@ p) denotes the ““ Jacobian o, 5@ —a—pl 876—1
Similarly
OF, F,) O(F, Fy) op, 0B, Fy)Ops_ . (9
0(xz, Po) O(py P2) 0%y O(Py, D) axz ’
and o(F, F) +6(F, F,) op,  o(F, F) a—pz=0. veeeeneneenn(10)

0(z3, ps)  0(pa, P3) 05 O (P, Py) 05
Add equations (8), (9), (10).
Two terms are
O, Fy) op, O(F, F\) 0p, % {3(F Fy)  O(F, Fl)}
9(py P1) 91 3(py, P2) 0%, ~ 0w, 0z 9(pe P1) 0Py, P2)
Similarly two other pairs of terms vanish, leaving
o(F, F,) o(F, F,) o(F, F)_
3@ 7 +a(w2, 7) +a(w3, 7 =0, ceveeerrn(11)
oF oOF, OF oF, ,oF 0F, oF oF, oF oF, OF oF,

0%, 09, Op: 02, 0, Op, Op Omy 0w, Opy 0py By 0 O

This equation is generally written as (¥, F,)=0.

Similarly (F, Fo)=0 and (F,, F,)=0.

But these are linear equations of the form of Art. 126. Hence
we have the following rule :

Try to find two independent integrals, Fy=a, and Fy=a,, of the
subsidiary equations
S _dp_ de, _dpy  do, _dp,
OF 0F  _oF 0F ~_0F oF
“Op, Om  Op, Omy, Op, 0%
I f these satisfy the condition

oF, oF, OF, 3F> 0,

(B, F)=2] 5;5@—3—% o,

and if the p’s can be found as functions of the s from
F=F -a,=F,—a,=0,

tntegrate the equation® formed by substituting these functions in
dz = pdzx, + pAdx, + pyda,.

* For a proof that this equation will always be integrable, see Appendix C.
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141. Examples on Jacobi’s method.
Ex. (i). 20,81@3 +3PaB3® + Pa2P3=0. errreerereenrniinnnnnn(l)
The subsidiary equations are

dw, dp, _ dz, _dpy deg dpg
2wy 2pi@y ~3a52—2pypy O —pst 2pymy +6pgTs]
of which integrals are Fi=pi@1=01, ceverveivinnnnnnncneccnnnnenn(2)
and Fo=py =0y covcreinrrrienianiencenecenennn(3)

Now with these values (F,, F) is obviously zero, so (2) and (3) can
be taken as the two additional equations required.
Pr=yTyY, Py=0y  Ps= — Gy (20,75 +30,75%).
Hence dz=a,2,7 4w, +a,d%, — ay~2 (20,05 + 3a,2,7) du;
or 2=0a,10g ; + AyTs — @y~ 2(a %52 + agzs®) +ag,
the complete integral. .

Ex. (ii). (@ +23) (Pa+P3)2+2P1=0. teverniiiiiiiiiiins 4)

This equation is not of the form considered in Art. 140, as it involves
z. But put

per. o2 0 Ou [Ou
= 1T 5p Tow, 0w,/ omy
where % =0 is an integral of (4).

Similarly Pe=—Py/Py; p3=—Py/P,

(4) becomes (Tg+@5) (Py+ Pg)2 —2yP1Py=0, ..covennennennennnnn(B)
an equation in four independent variables, not involving the dependent
variable u.

The subsidiary equations are

dzy _dPy _ dz, dpP, . dzg
x4P4__ 0

= - P,/P,, say,

T O (wyt @g) (Py+ Py)  (Pat Pyt —2(xy+y) (Pyt Py
__ Py dz, 4P,
T (Py+Py)? P, -PP/

of which integrals are Fi =P ;=0 cciernverrrrricreresiecenennnnnsn..(6)
Fo=Py—Py=0y, .ceverrrrervnnneaeneenenennna(7)
Fo=z,Py=0a5 cevorerrrirrninnennieaaeeneeeen(8)

‘We have to make sure that (F,, F)=0, where 7 and s are any two
of the indices 1, 2, 8. This is easily seen to be true.
Solving (5), (6), (7), (8), we get
Py=ay; Py=agzt; 2Py=a,++/{0,05/(z+25)} 5 Py=Py-a,;
80 du=a,dx, +asxy dey + day (dzy — dag)
+ 3§05/ (x5 +75)} (dzy+das),
ie  u=a,x, +azlog T4+ 1ay(@y — 23) = 4/{0,05(2, +73)} +
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So =0 gives, replacing
2, by 2, ajfay by Ay, 3asas by A, ayfas by As,
log 2+ Az, + A y(zy — x5) £4/{4 (x2+x3)}+A3
the complete integral of (4).

Examples for solution.
Apply Jacobi’s method to find complete integrals of the following :

(1) pP+p2+ps=1. (2) #32p,2p52ps? + Py ?po? — ps®=0.
(3) piy+PaTy=ps> (4) P1pops+ Pa012757,% =0.
(5) P1P2ps=2°%17525. (6) paws(py+pg) +%y+22=0.

(7) p1®+pops—2(P2+Ps) =0.
(8) (py+xy) 2+ (Py+T)% + (p3+@3) 2 =3(2; + T, +g).

142. Simultaneous partial differential equations. The following
examples illustrate some typical cases :

Ex. (i). F=p 2+ pops®s232 =0, .covvrevrrnnrrrrniennan(l)

Fi=p,+983=0. cervrirriririrnrinninnnniininneeno(2)
Here
_ oF o0F, OF 8F1>_ 9 —

(F, F )_E 3z, Op,  Opy Ozy = (P2ps75?) %3 — (Pa¥45?) P2 =0-

Thus the problem may be considered as the solution of the equation
(1), with part of the work (the finding of F,) already done.

The next step is to find F, such that

(F, F))=0=(F,, Fy).
The subsidiary equations derived by Jacobi’s process from F are

doy _dpy _ do,  dpy,  dzg  dps
—2p; 0 —peTaTs® PaPsTs®  —Pataly®  2PaPste®s
An integral is P1=a. ... FOTOROPRN (- )|

We may take F, as p,, since this satlsﬁes ( F F ) O (Fy, Fy).
Solving (1), (2), (3) and substituting in dz=p, dz, + p, dz, + ps dzs,

dz=a dz, — a2 dzy + axs~2 dug,

80 z=a(z,—log x4 —25371) +b.
Ex. (ii). F=p,2;+PsZs— P32 =0, ceerirririiinruercncnnennnn(4)
Fi=p,- po+Ps—1=0. .iiiiiriininnninnennn(B)

Here (F, F)=pi+ Py —1)=p1~ P

This must vanish if the expression for dz is to be integrable.
Hence we have the additional equation

P1=P2=0. v (6)
Solving (4), (5), (6) and substituting,

dxy +dx
do=—2""2tdx,,
Ty + Ty

z=log (x; +,) + x5+ a.
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In examples of this type we do not have to use the subsidiary
equations. The result has only one arbitrary constant, whereas in
Ex. (i) we got two.

Ex. (iii}. FP=52422+03=0, crvrrevrerreenvrnvenennans(7)
Fi=p, +p3+22=0. cererrvrrvernniininnnnn «(8)
Here (F, Fy) =2z, + 2w, — 2%,.

As %, ,, 2, are independent variables, this cannot be always zero.

Hence we cannot find an integrable expression for dz from these

equations, which have no common integral.

Ex. (iv). F=p,+py+ps2—38,— 30, —4252=0, ..ccvernennenn(9)
Fy=x.p, — %05~ 2x12+2w22=0, ...(10)
Fo=p3—2253=0. ..ccuvuuuenen ...(11)

Solving (9), (10), (11) and substltutmg in the expression for dz,

dz = (22, +x,) dz; + (z, + 22,) do, + 224dzs,

80 2=22 + 0,2, + 3,2 + 252 +a.
This time there is no need to work out (F, Fy), (F, Fy), (Fy, Fy).
Ex. (v). F=p+p,—-1-2,=0, cecevrrrirrivinrinnninn.(12)
Fi=p;+P3—2—L3=0, ceererrrrrrirreernrinennnns (13)

Fo=p,+p5—1—=2,=0. creerreiiiiiiininicrnnnn(14)
These give dz=w,dz, + dz, +2,d2,.
As this cannot be integrated, the simultaneous equatlons have no
ommon integral.
Ex. (vi). F=10, — 2,05+ D3 —04=0; sevevrerrvirererrnann. (15)
Fi=p,+pa—21—23=0. coverrereetcrrrerrecrcicrenn..(16)
Here (F, F,\)=p,-x,(—1)—pg+2y(—1)=p, — Py+2; —,.
As in Ex. (ii), this gives us a new equation
Fo=p, —pa+ &, —23=0. wererivinrniiininnannn (17)
Now (F, Fo)=py— 1~ ps(~1) +@5( 1) =F, =0,
and (Fy, F)=(-1)-1+4+(-1)(-1)-(-1)=0,
80 we cannot get any more equations by this method.
The subsidiary equations derived from F are
_w1=;;=x—2‘t;;?rv‘T“ﬁ
A suitable integral is Fy=p3=0, cccunrnenrrnrnirenencnenen .. (18)
for this satisfies (F, Fj)=(F;, Fz)=(F,, F,)= 0
We have now four equations (15), (16), (17), (18). These give
P1=%y; Poe=T1; P3=0q; Py=0;
80 2=xxy+a(x;+2,) +b.
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But in this example we can obtain a more general integral. The
two given equations (15) and (16) and the derived ome (17) are
equivalent to the simpler set :

P1=Lgy corererererisennieierioniacnennnsess(19)
Pa =15 ervereeenneernirnnssnenensesnnneess(20)

_ [ T (RO (] § ]

From (19) and (20), z=x,2,+any function of x; and ;.

(21) is a linear equation of Lagrange’s type, of which the general
integral is ¢ (2, @3 +7,) =0,
t.e. z is any function of (z3+x,), and may of course also involve z,
and ,. ‘

Hfzznce a general integral of all three equations, or of the two given
equations, is 2=2,Ty + Y (T +2,),
involving an arbitrary function. The complete integral obtained by
the other method is included as a particular case. The general integral
could have been obtained from the complete, as in Art. 134.

Exzamples for solution.
Obtain common complete integrals (if possible) of the following
simultaneous equations :
1) p®+p% - 8(@; +2,)?=0,
(P1 = P2) (®1—%p) + P33 —1=0.
(2) @,2paps==2opypy =3°p1p2=1.

(3) P1pops—Bryws23=0, (4) 2w5p,ps5— Z4ps=0,
Po+Pg— 22y —2w5=0. 2p, — p,=0.

(8) p1#s® +p3=0, (6) po®+ps®+xy+23y+325=0,
Pa®s® +pgy? =0 P11+ Py —1=0.

(7) 2p; +ps+ps+2p,=0,
P1P3— P2Pa=0.

(8) Find the general integral of Ex. (5).
(9) Find the general integral of Ex. (7).

MISCELLANEQUS EXAMPLES ON CHAPTER XIIL

(1) 22,232p1 P+ 2393 =0.  (2) @pP3+B1Py=P1Ps— PaPa+s®=0.
(3) 92124py (po+Ps) — 4ps*=0, (4) 92,2p(pa+ps) —4=0,
P1%y + Py —P3=0. P11+ P2~ P3=0.

(5) @1Papy=22PsP) =TsP1Pa=2"01%o%s

(6) py2®—2y2=pg2? — @y =pg2® - 2,2 =0.

(7) Find a singular integral of z2=p,%; + Pay + P33 + P1% + Po + ps%
representing the envelope of all the hyper-surfaces (in this case hyper-
planes) included in the complete integral.

(8) Show that no equation of the form F(x,, =5, %3, p3, P2 P3) =0
has a singular integral.
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(9) Show that if 2 is absent from the equation F(x, y, 2, p, 9)=0,
Charpit’s method coincides with Jacobi’s.

(10) Show that if a system of partial differential equations is linear
and homogeneous in the p’s and has a common integral
2=ayuy +0yUy+... ,
where the u’s are functions of the #’s, then a more general integral is
2=¢p(uy, Uy, ...).
Find a general integral of the simultaneous equations
T1P1 — ToPa + ZeP3=0,
TyPs — TyPy+25ps=0.
(11) If p, and p, are functions of the independent variables z,, =,
satisfying the simultaneous equations
F(xl’ Ta P1 Pz) =0= Fl(xlf Ty, P1> Po)s

ap, ap2> o(F, Fy
a =) =),
prove that (F, Fy+ (awz 52) 5t =
Hence show that if the simultaneous equations, taken as partial
differential equations, have a common integral, (¥, F,)=0 is a necessary
but not a sufficient condition.
Examine the following pairs of simultaneous equations :

(i) F=p,+2p,-2=0,
Fy=(p; +2p,)2-1=0.
o(F, Fy

[Here -;——=<=0 identically, and the equations cannot be solved
9(py, P2)

for p, and p,.] ‘
(i) F=p,-p,*=0,
Fy=p, +2ps@, +2,*=0.
o(F, Fy)
[Here (F, Fy) and m
when the p’s are replaced by their values in terms of #, and z,. There
is no common integral. ] ,
(i) F=p,—p,*+z,=0,
Fy=p,+2ps2, + 2,2 +2,=0..
o(F, Fy)

. . 9(p1, Ps)
function that vanishes when the p’s are replaced by their values.)

both come to functions which vanish

[These have a common integral, although comes to a



CHAPTER XIV

PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND
AND HIGHER ORDERS

143. We shall first give some simple examples that can be
integrated by inspection. After this we shall deal with linear
partial differential equations with constant coefficients; these are
treated by methods similar to those used for ordinary linear equations
with constant coefficients. The rest of the chapter will be devoted
to the more difficult subject of Monge’s* methods. It is hoped that
the treatment will be full enough to enable the student to solve
examples and to make him believe in the correctness of the method,
but a discussion of the theory will not be attempted.}

Several examples will deal with the determination of the arbitrary
functions involved in the solutions by geometrical conditions.

The miscellaneous examples at the end of the chapter contain
several important differential equations occurring in the theory of
vibrations of strings, bars, membranes, etc.

02 0% %

a—wz, —aw ay, aiyz Wll].

The second partial differential coefficients
be denoted by 7, s, ¢ respectively.

144. Equations that can be integrated by inspection.

Ex. (i). s=2x+2y.

Integrating with respect to = (keeping y constant),
q=a%+2zy + P (y).

Similarly, integrating with respect to ¥,

s=styrayi+ [ $) dy + f(0),
say z=22y +zy? +f (z) + F(y).
* Gaspard Monge, of Beaune (1746-1818), Professor at Paris, created Descriptive
Geometry. He applied differential equations to questions in solid geometry.

+ The student who desires this should consult Goursat, Sur lintégration des
équations aux dérivées partielles du second ordre.

I Frost’s Solid Geometry, Chap. XXV., may be read with advantage.
172
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Ex. (ii). Find a surface passing through the parabolas

2=0, y?=4ax and z=1, y?= —4az,
and satisfying r+2p=0.
The differential equation is
op
T P +2p =0,

giving z*p=1(y),

1

p=_3f )

'

2=~ (1) + F(y).

The functions f and F are to be determined from the geometrical
conditions.
Putting 2=0 and z=y?/4a,

0= —%f(y)+F(y)-

Similarly 1 =%‘f (y) + F(y).
1 2
Hence F(?/)=§, f(y =g—5
2
| and s Z=r%— 8%5’

t.e. 8axz=4ax—y? a conicoid.

Examples for solution.

(1) r=6z. (2) zys=1.
(3) t=sinzy. (4) zr+p=92%2
(5) ys+p=cos (z+y) -y sin (x+y). (6) t—wg=a2.

(7) Find a surface satisfying s=8xy and passing through the circle
2=0=x24y2-1,
(8) Find the most general conicoid satisfying xs+q=4x+2y+2.
(9) Find a surface of revolution that touches z=0 and satisfies
r=1222%+4y>
(10) Find a surface satisfying ¢=6z3y, containing the two lines
y=0=2, y=1l==z
145. Homogeneous linear equations with constant coefficients. In
Chap. III. we dealt at some length with the equation
(D +a, D1 + @, D2 + ... +a,)Y =f(Z), ererererenenn(l)

. d
where D=%.
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We shall now deal briefly with the corresponding equation in
two independent variables,

(D" +a, DD +a,D"2D" + ... +a, D)2 =f(z, §), ... @)

where DE%, D’Ea%.
The simplest case is (D -mD’)z=0,
n.e. p-—mg=0,
of which the solution is ¢ (2, y +mz) =0,
ve. z=F(y +mz).
This suggests, what is easily verified, that the solution of (2)
if f(z, y)=0is
z2="F,(y +mx) + Fy(y +mgx) + ... + F,(y +m,z),
where the m,, m,, ... m, are the roots (supposed all different) of
m® +a,m"t +am™? + ... +a, =0.
0% 0%z 0%z
5 S5y Lm0
t.e. (D*-3D2D'+2DD’2)z=0.
The roots of m® —3m2+2m =0 are 0, 1, 2.
Hence z=F,(y) + Fyly + ) + Fy(y +22).

Ex.

Examples for solution.

(1) (D3-6D2D'+11DD'2—6D'3)z=0.
(2) 2r+5s+2t=0 (3) a£—22—z=0
e ox® oy?

(4) Find a surface satisfying r+s5=0 and touching the elliptic
paraboloid z =42 + y2 along its section by the plane y=2z+1. [N.B.—
The values of p (and also of g) for the two surfaces must be equal for
any point on y=2z+1.]

146. Case when the auxiliary equation has equal roots. Consider

the equation (D =mD'V22=0. .coveeoenirnrrearrrrrnnan(1)
Put D -mD) z=u.
(1) becomes (D -mD") u=0,
giving u=F(y +mx);
therefore (D -mD')z=F (y + mx),
or p —mgq =F(y +mz).
The subsidiary equations are
dr dy dz

1~ —m F(y+ma)
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giving y+mr=a,
and dz ~ F(a)dx =0,
te. z—xF (y +mx)="b,
8o the general integral is
¢p{z—aF (y +mz), y +mz}=0 or z=zF(y+mz)+Fy(y+me).
Similarly we can prove that the integral of
(D —mD')nz =0
is z2=2"1F (y +maz) + "2F(y + mz) + ... + F,_,(y + mx).
Examples for solution.
(1) (4D*+12DD’ +9D'2)z=0. (2) 257 —40s+16t=0.
(3) (D®—4D2D' +4DD'?)z=0.
(4) Find a surface passing through the two lines z=z=0,
2—1=z-y=0, satisfying » — 4s +4¢=0.
147. The Particular Infegral. We now return to equation (2) of
Art. 145, and write it for brevity as
F(D, D')z=f(=, y).
We can prove, following Chap. III. step by step, that the most
general value of z is the sum of a particular integral and the

complementary function (which is the value of z when the differ-
ential equation has f(z, y) replaced by zero).

. . . 1
The particular integral may be written 70, D)’ f(, y), and

we may treat the symbolic function of D and D’ as we did that of
D alone, factorlsmg it, resolving into partial fractions, or expanding
in an infinite series.

1 1/, 8D\-2
By prgpprrope(2t +362y) = 53(1-°07) (1222 + 36ay)
’ 9
(1 s a0 L) (202 + 36ay)

53 - (1222 + 36zy) +— 36z

= m“ + 623y + 924 =102 + 623y,
so the solution of (D2 -6DD’ +9D'2) 2 =1242 + 362y
is 2=10z" +62% + ¢(y +32) +a ) (y + 3x).

Examples for solution.
(1) (D2-2DD’ + D'?)z=12xy.
(2) (2D*-5DD’ +2D'?)2=24 (y - z).
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(3) Find a real function V of # and y, reducing to zero when y=0

and sa.tisfying 2V a2V
5a7 T oy*

148, Short methods. When f(x, y) is a function of az +by,
shorter methods may be used.

Now D¢ (ax +by)=a¢’(ax +by); D'¢(ax+by)=bg’ (az +by).

Hence F (D, D')¢(ax+by)=F (a, b)¢p™ (az +by),
where ¢ is the n'™ derived function of ¢, n being the degree of
F(D, D).

Conversely

]‘_(_Dl,-p—') ¢ (az + by) =7"70176) plaz+by), oo (A)

provided F (a, b)#O, e.g.
1 _ —sin (2w +3y)
DFiDD +ADDR S B2 T3 =55 —q 92 314 9.5

= —d7 (@t +y?).

1 .
= —gg8in (22 +3y),

since ¢ (2z +3y) may be taken as —sin (2z +3y) if
¢'" (2z +3y) =cos (2 + 3y).
To deal with the case when F(a, b) =0, we consider the equation
(D -mD') 2= p ~mg =y +ma),
of which the solution is easily found to be
r+1
z=% Y (y +max) + ¢ (y +ma),

50 we may take

1 7+
DomD " & (y + mx) =731 Y (y +ma).

Hence 1
1
D—mDy ¥ ¥ +m0) = pryema - 2V (@ +ma) = ..

=%~!\/;(y+mx), ervererreeeerennenneeens(B)
1
eg. DFoDD + D% tan (y +) =%w2 tan (Z/ +),
while

1 (4 )—; —Lsin(4w+ )
D:_5DD +aD " Y =5 4y DD Y

1
D-4D""
= —1xcos (4z +y) by (B).

~1cos (4z +y) by (A)
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Examples for solution.

(1) (D2-2DD’ + D'?)z=e*+t%,

(2) (D2-6DD" +9D'%)z=6x+2y.

(3) (D3-4D2D’ +4DD'?)z=4sin (22 +y).

(4) 2r—s—3t=>5e[e¥. - (b) g;l;+g—z—g=12(x+y)
(6) 4r—4s+t=16log (z+2y).

149. General method. To find a general method of getting a
particular integral, consider
“(D-mD')z=p-mg=f(z, y).
The subsidiary equations are

do_dy __dz_
I~ =m f@y)’
of which one integral is Y +mz=c.

Using this integral to find another,
dz=f(z, ¢ — mz)dz,
z =j f (z, ¢ —mx) dx + constant,

where c is to be replaced by y —ma after integration.

Hence we may take D—:lfnf’ Sz, y) as j [ (x, ¢ —mx) dz, where
¢ 13 replaced by y +mx after integration.

Ex. (D—-2D')(D+D)z=(y—1)ex

Here jf(w, ¢ —2x) dx='[ (¢e-2z-1)e*dz=(c—2x+1)e®.

‘Therefore D_—1—27)—’ . (y—-1)e*=(y+1)e* replacing ¢ by y + 2.

Similarly D—:—ﬁ; .(y+1)e® is found from j- (c+z+1) e”dx%(c +x)e®
by replacing ¢ by y—=, giving ye®, which is the particular integral

required.
Hence z=ye®+ ¢ (y +22) + (y — ).

Examples for solution.
(1) (D2+2DD'+D'?)z=2cos y—~xsiny.
(2) (D2-2DD'-15D"%)z=12xy. (3) (r+s—6t)z=ycos x.

0 2 .
(4) 67%2_%“{/—26_3/2:(29024-%_3/2) sin &y — cos Y.

(5) r—¢=tan®z tan y—tan x tan®y.
o 0 _do_t

©) W—dtaﬁ T g

P.D.E. M
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150. Non-homogeneous linear equations. The simplest case is |
(D -mD' -a)2=0, |

1.e. P-—mg=az,
giving ¢ (ze7%*, y + mx) =0,
or z =€\ (y +mzx).

Similarly we can show that the integral of
(D-mD’ -a)(D-nD" -b)2=0

is z=e%f (y +mx) +e**F (y +nz), !
while that of (D ~mD’" -a)*2 =0 |
is 2 =e%f (y + mz) +ze**F (y +mz).

But the equations where the symbolical operator cannot be
resolved into factors linear in D and D’ cannot be integrated in this |
manner. |

Consider for example (D% - D')2z=0.

As a trial solution put z =€+, giving

' (D2 -D')z=(h? k) etv,

So z=¢€"®tM) ig g particular integral, and a more general one is
S A=) where the 4 and A in each term are perfectly arbitrary,
and any number of terms may be taken.

This form of integral is best suited to physical problems, as was
explained at some length in Chap. IV. Of course the integral of
any linear partial differential equation with constant coefficients
may be expressed in this manner, but the shorter forms involving
arbitrary functions are generally to be preferred.

Examples for solution.

(1) DD'(D-2D' -3)z=0. (2) r+2s+t+2p+2¢+1=0.
2V v s Trae T v
® =7 (4) (D2-D'?+D-D')z=0.

(5) (2D*—-3D2D’ + D'?)z=0. (6) g Z gyf =n2V.

(7) (D-2D' -1)(D-2D'%-1)2=0.

* (8) Find a solution of Ex. (4) reducing to 1 when z=+ and to
y? when =0.

151. Particular Integrals. The methods of obtaining particular
integrals of non-homogeneous equations are very similar to those in
Chap. IIL., so we shall merely give a few examples.

Ex. (i). (D3~ 3DD' + D+1)z =2+,

1 e2z+3y

o213y — = — 1p2243Y,
P—3DD +D+1" ¢ $¥_3.2.3+2+1
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Hence 2= —Je2®H3Y 1. 3 ehathy,
where B -3hk+h+1=0.
Ex. (). (D+D'—-1)(D+2D -3)z=4+30+6y.
1 1 . _D+2D’}-1
DiD 1 Prap—3- s (D+ D) 1-—3

=3{1 + D+ D’ +terms of higher degree}

X .{1 + D —;21) +terms of higher degree}

=1 {1 +4~:D—+352 +terms of higher degree}-

Acting on 4+ 3z + 6y, this operator gives
L{4+3246y+4+10}=6+2+2y.
Hence , 2z=6-+z+2y+e*f(y—x)+eF(y—2a).
Ex. (iii). (D2~ DD’ —-2D)z=sin (3z + 4y).
1 . 1
DD oD B = —m T3 52D
1
3-2D
8+2D sin (3z +4y) = 3ein (B 24_‘1/2&? §§)S (ot 45)
=35 sin (32 +4y) ++% cos (3z + 4y).
Hence 2z=%sin (3z+4y) ++% cos (3z +4y) + Zde"=t4y, '
where h2—hk—2h=0.

Examples for solufion.
(1) (D-D'-1)(D-D' —2)z=¢2Y.

.8in (3z +4y)

. sin(3z +4y)

T 9-4Dp2°

(2) s+tp—qg=z+azy. (3) (D - D'?)z=cos (x—3y).
4) r-s+p=1 5 0y _OY_y 4 gors
p== )5:6_2_622_?/ e

(6) (D—3D’ —2)%=2¢2" tan (y+3z). \

152. Examples in elimination. We shall now consider the result
of eliminating an arbitrary function from a partial differential
equation of the first order.

Ex. (i). 2px — qy = ¢ (x%y).
Differentiating partially, first with respect to z and then to y, we get
| 7 2ro—sy+2p=2ayg (a%),
and 2sx — ty — g=a2¢' (x%y),

whence Z(2rz — sy + 2p) =2y (25w —ty — q)
or 2x%r — brys + 2y% + 2(px + qy) =0,

which is of the first degree in 7, s, .
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The same equation results from eliminating \» from
P2 =29y = (247).

Ex. (ii). P2 +g=¢ (2w +y).

This gives 2pr +s=2¢'(2z +y),
and Ips+t=¢'(2x+y),
whence 2pr +s=4ps+2t,
again of the first degree in 7, s, L.

Ex. (iii). y-p=¢(x-q).

This gives —r=(1-s)¢'(x—9q),
and 1-s=—-t¢'(x~q),
whence rt=(1-s)2
or 2s +(rt —s%) =1.

This example differs from the other two in that p and ¢ occur in |
the arbitrary function as well as elsewhere. The result contains a
term in (rt—s?)

Examples for solution.

Eliminate the arbitrary function from the following

(1) py—q+3y2=p(2z+y). @) x———wz)
(8) prz—y=¢(g-2z+y). 4) pw+qy P (P2 +47).
) p*-z=9(¢*>~2y) (6) p+zg=o(2).

153. Generalisation of the preceding results. If » and » are
known functions of z, ¥, 2, p, ¢, and we treat the equation u =¢ (v)
as before, we get

au ou ou Ou ov v 81) ov ,
"o 5 NETAR =<76p+ q tout p?@) - ¢'(0)s

and sau+t%z; gz+qau g;+tg—z+%+qgi;>.¢'(v).

Eliminating ¢’ (v) we find that the terms in rs and st cancel out,
leaving a result of the form

Rr+8Ss+Tt+U(rt-s*)=V,

where R, 8, T, U and V involve p, ¢, and the partial differential
coefficients of » and v with respect to z, ¥, 2, p, .

The coefficient U= oudv v ou

dpdq op oq’
which vanishes if v is a function of z, y, z only and not of p or q.
“These results will show us what to expect when we start with
the equations of the second order and try to obtain equations of the
first order from them.
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154. Monge’s method of integrating Rr+8s+Tt=V. We shall
now consider equations of the first degreeinr, s, ¢, whose coefficients
R, S, T,V are functions of p, ¢, 2,9, 2, and try to reverse the process
of Arts. 152 and 153.

Since dp=%z—€dx +g§dy=rdx+sdy

and © dg=sdz+tdy,
Rr+8s+Tt-V =0

becomes R <Jp s dy) +8s+T (dq ngj dx) -V =0,

dx
ie. Rdpdy+Tdgdz-Vdydr—s(R dy® - S dy dz + T dx?) =0.
The chief feature of Monge’s method is obtaining one or two

relations between p, g, &, ¥, z (each relation involving an arbitrary
function) to satisfy the simultaneous equations

Rdy? -8 dydz +T dx*=0,
Rdpdy +T dgdx -V dy dz=0.
These relations are called Intermediate Integrals.

The method of procedure will be best understood by studying
worked examples.

Ex. (i). % — 5ays +2y% +2 (pxr + 9y) =0.
Proceeding as above, we obtain the simultaneous equations
222 dy? + by dy do+2y2 a2 =0, .eeereerenneiininnennnn(1)
and 222 dp dy +2y2 dg dz +2(pr +qy) dy do=0. c00eveeennnncenns. (2)
(1) gives (= dy + 2y da) (2% dy +y da) =0,

) te. xty=a or zy*=b.
Tf we take 22y =a and divide each term of (2) by zdy or its equivalent
—2y da, we get %z dp —y dg+2p dw — q dy =0,
1.e. 2pr—qy=c.
This, in conjunction with #%y=a, suggests the intermediate integral
2p% — @Y =Pp(B2Y), cevreeeriiiniininniiiii 3)

where ¢ is an arbitrary function. [Cf. Ex. (i) of Art. 152.]
Similarly #y2=>0 and equation (2) leads to

PL—20Y =Y (TY2). ererrrrrinernneieeincnnnnnn()
Solving (3) and (4),
3pa=2¢(z?y) — Y (zy),
3qy = p(z%y) — 2y (29%),
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2z d dz 2d
80 dz=pdz+qdy=>}¢p(a’y). (?+;‘y)—-§x!f(wy2) . <;+—yg>,

.e. z=%j $(x%y) . dlog (x%y) — 3| Y (2y?) . d log (zy?),
or  z=f(x2%)+ F(axy?).

Ex. (ii). y2r—2ys+t=1p+6y.

. Eliminating 7 and ¢ as before, we are led to the simultaneous equa-
tions Y2dy? +2y dy de +da?=0, ......cccoveuveuveenne. (B)
and Y dpdy+dgde—(p+6y) dyda=0. ..................(6)

(5) gives (y dy +d2)2=0,

te. 2z+y2=a.
Using this integral and dividing each term of (6) by ydy or its
equivalent —dw, we get
y dp—dg+(p+6y) dy=0,
ve. py—gq+3y2=c.
This suggests the intermediate integral
PY—q9+3y*=¢(2z+y7).
As we have only one intermediate integral, we must integrate this
by Lagrange’s method.
The subsidiary equations are

de  dy dz

—_—_,—_— =— .,

y -1 -3y*+¢(2c+y?
One integral is 22 +y%2=a. Using this to find another,
dz+{-3y2+ ¢(a)} dy=0,
te. 2—-1P+yop(2z+y?)=b.
Hence the general integral is
Yo~ P +yp (20 +y?), 20+ 42 =0,
or 2= —yp((2z +y?) +f 2z +y?).
Ex (iii). pt—qs=gs.
The simultaneous equations are
. qdyde+pdz?=0, ........cevvrenunnneenc.(T)
and pdgdz—Pdydz=0. ........ccueeeeeunnn...n(8)
(7) gives dz=0 or gqdy+pdz(=dz)=0,
t.e. T=a or z=b,
If dx =0 (8) reduces to 0=0.
If 2=b, ¢ dy= — p dz and (8) reduces to
pdg+q*p dz=0,
t.e. dgf/q®+dx=0,

giving —;—+w=c=\b(z). ............................... 9)
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(9) may be integrated by Lagrange’s method, but a shorter way is

to rewrite it oy 1
a‘z=§=m_‘/’(z)’
giving . y=xz—I\p(z)dz+F(w)

y=az+f(2) + F(x).
Examples for solution.
(1) r—tcos?z+ptan z=0.
@) (z—y)(er—azs—ys+yt) =(z+y)(p- 9.
(3) (g+1)s=(p+1)t. (4) t—7sect y=2qtany.
() @y (t—1) + (2%~ y?) (s - 2) = py - go. -
6) (1+¢)%r—2(1 +p+q+pg)s+(1+p)2=0.
(7) Find a surface satisfying 2a2r — bzys +2y% +2(pz+qy) =0 and

touching the hyperbolic paraboloid z=x2— 4?2 along its section by the
plane y=1. !

(8) Obtain the integral of g2 —2pgs +p%=0 in the form
y+af (2)=F(2),

and show that this represents a surface generated by straight lines that
are all parallel to a fixed plane.

*155. Monge’s method of integrating Rr +8s +Tt +U (rt —s2)=V.
As before, the coefficients R, S, T, U, V are functions of p, g,
z, Y, 2.
The process of solution falls naturally into two parts :
(i) the formation of intermediate integrals ;
(ii) the further integration of these integrals.

For the sake of clearness we shall consider these two parts
separately.

156. Formation of intermediate integrals. Asin Art. 154,
r=(dp -s dy)/dz
and t=(dg —s dx)/dy.
Substitute for r and s in
Rr+8s+Tt+U(rt-s?) =V,
multiply up by dz and dy (to clear of fractions), and we get
Rdpdy+Tdgdec+Udpdg -V dxdy
—s(Rdy?2-Sdedy+T da? + U dp dx + U dg dy) =0,
say M —sN =0. k
* The remainder of this chapter should be omitted on a first reading. This

extension of Monge’s ideas is due to Audré Marie Ampére, of Lyons (1775-1836),
whose name has been given to the unit of electric current.
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We now try to obtain solutions of the simultaneous equations
M=0,
N=0.

So far we have imitated the methods of the last paragraph, but
we cannot now factorise N as we did before, on account of the
presence of the terms U dpdz + U dg dy.

As there is no hope of factorising M or N separately, let us try
to factorise M +AN, where A is some multiplier to be determined
later.

Writing M and N in full, the expression to be factorised is

Rdy?+T da? - (S+A\V)dxedy +U dpdx + U dg dy
+ARdp dy +AT dg dx +AU dp dyg.

As there are no terms in dp? or dg?, dp can only appear in one
factor and dg in the other.

Suppose the factors are

Ady+Bdx+Cdp and Edy+Fde+Gdg.

Then equating coefficients of dy?, da2, dp dg,

AE=R; BF=T; CG=AU.
We may take
A=R, E=1, B=kT, F=1/k, C=mU, G=\/m.
Equating the coefficients of the other five terms, we get

\

ET +R/k= —(S+AV), weoveevirereneeene()
AR/m=U, ..o n(2)
ETA/m =T, ..ccceevvvvviiiniincnneneen(3)

mU=AR, ........c.cc.cevviiiinnnene.(4)
mUE=U. ..cooceievviiinininciinnnennn(B)

From (5), m =Fk, and this satisfies (3).
From (2) or (4), m=AR/U.
Hence, from (1),
ART +UV)+AUS +U%=0. .....................(B)
So if A is a root of (6), the factors required are

(Ray+x %de \Rdp) (dy +)\—% do+ % ag),

ie. | T(Udy+\Tdw+\U dp). S (R dy+TU do+AU dg).

We shall therefore try to obtain integrals from the linear
equations Udy+ATdz AAUdp=0 ..oeeeeererreereane.(7)

and ARdy +Udz +AU dg=0, .....ccccuveuunneeeee.(8)
where \ satisfies (6). '
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The rest of the procedure will be best understood from worked
examples.

157. Examples.

Ex. (i). 2s +(rt—s2) =1.
Substituting B=T=0, S=2, U=V =1 in equation (6) of the last
article,* we get AZ+2\ +1=0,

a quadratic with equal roots —1 and 1.
With A= -1, equations (7) and (8) give
dy —dp=0,
dz—dg=0,
of which obvious integrals are
Yy —p=const.
and z — ¢ =const.
Combining these as in Art. 154, we get the intermediate integral

y-pr=fz-9).
Ex. (ii). r+3s+t4(rt—s2)=1.
The quadratic in X comes to
222+ 3\ +1=0,

soA=-lor —%
With A= —1, equations (7) and (8) give
dy —dx—dp=0,
—dy +dzx—dg =0,

of which obvious integrals are
PHT—Y=consb. ccevrriiiieriniinninenieninnnai(1)
and §—Z+Y=CONSb. cerrsrerrericrersreannennennes (2)
Similarly A= — % leads to t
PHT—2y=const. ceiveerrereniriinniieiniannenna(3)
and §—2%+Y=consb. coeeeererricneeniinceirinnnnnn.(4)

In what pairs shall we combine these four integrals ?

Consider again the simultaneous equations denoted by M =0, N=0
in the last article. If these are both satisfied, then M +A,N=0 and
M +X,N =0 are also both satisfied (where A; and A, are the roots of the
quadratic in A). Therefore one of the linear factors vanishes for A =2\,
and one (obviously the other one, or else dy=0) for A=2,.

That is, we combine integrals (1) and (4), and also (2) and (3),
giving the two intermediate integrals

p+o-y=f(q-2x+y)
and p+r—2y=F(q—z+y).

* We quote the results of the last article to save space, but the student is
advised to work each example from first principles.
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Ex. (iii).  2yr+(pz+qy)s+at—zylrt—s?)=2—pq.
The quadratic in A comes to
APzypq — Ay (pe +gy) +2*y* =0,

giving A=y[p or z[q.
Substituting in (7) and (8) of the last article, we get, after a little
reduction, PAY~dBAYAP=0, weveereeereeereererereasnnn(5)
2y dy—prde—oy dg=0, ...cccoeevreeeiieeneennnnce (6)
—qydy+2dz—2Y dP=0, cevvrrrrrereererririnienes (7)
and =2dy+qdr+adg=0. .ccvevvrieeeriinennieanennne(8)

Combining the obvious integrals of (5) and (8), we get

yp-z=f(-2y+qa).

But (6) and (7) are non-integrable. This may be seen from the
way that p and ¢ occur in them. Thus, although the quadratic in A has
two different roots, we.get only one intermediate integral.

Examples for solution.

Obtain an intermediate integral (or two if possible) of the following :

(1) 3r+4s+t+(rt—s2)=1. (2) r+t—(ri—s?)=1.

(3) 27 +1e®— (rt — 5%) =2¢". (4) 12-s2+1=0.

(5) 3s+(rt—s2) =2.

(6) qar+(x+y) s+ pyt+xy(ri—s?) =1 - pq.

(7) (g% -1)2r—2pgzs+(p®—1)2t +22 (rt — s2) =p2+ g2 - 1.

158. Further integration of intermediate integrals.

Ex. (i). Consider the intermediate integral obtained in Ex. (i) of

Art. 157, y-p=f(z-g).
We can obtain a ““ complete ” integral involving arbitrary constants
a, b, ¢ by putting . x—q=a
and y—p=f(a)=0, say.
Hence dz=pdz+qdy=(y—b) dz+(z—a)dy
and 2=y —-bx—-ay-+e.

An integral of a more general form can be obtained by supposing
the arbitrary function f occurring in the intermediate integral to be
linear, giving y—p=m(z—q)+n.

Integrating this by Lagrange’s method, we get

z2=zy + ¢ (y +mx) — nz.

Ex. (i1). Consider the two intermediate integrals of Ex. (ii), Art. 157,
prz—y=f(g-2r+y)
and prz—-2y=F(g—z+y).
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If we attempt to deal with these simultaneous equations as we dealt
with the single equation in Ex. (i), we get '
¢g-2rx+y=a,
9-z+y=p,
ptx—y =f (a)’
p+z-2y=F(Q).
If the terms on the right-hand side are constants, we get the absurd
result that z, y, p, g are all constants !
But now suppose that a and 3 are not constants, but parameters,
capable of variation.
Solving the four equations, we get

z=8-a,
y=f(a) - F(B)’
p=y-z+f(a),

. . .‘I=“’—?/+,3,
giving dz=pdz+qdy

=(y-2)(dz~dy) +f(a) dz+ B dy
= —{d(z-9)?+f(a) dB~f(a) da+Bf'(a) da- BF(B) dB;

ie. 2=~ 3@y~ | (0 da- [ BF(8) 4B+ Bf @)

To obtain a result free from symbols of integration, put

[f@ia=p@ ma [FE)i8-y®).
Now I,BF'(B) dB=BF(B) - IF (8) dB, integrating by parts,’

=BY'(B) - (B)
Hence z=-3(=z—-y)2- ¢ (a) - BY'(B) +y (B) + Bp'(w),
2= —§(z-y)2— ¢ (a) +¥ (B)+ By,
or finally { =B-a,
y=¢'(a) =¥'(B).

These three equations constitute the parametric form of the equdtion
of a surface. As the solution contains two arbitrary functions, it may
be regarded as of the most general form possible.

Examples for solution (completing the solution of the preceding set).
Integrate by the methods explained above :

(1) p+z—-2y=f(q—2x+3y). 2) p-z=f(g-9y).
(3) p—e*=f(q—-2y). “4) p-y=rflg+2),
p+y=F(g-2).
(6) p-y=£(g-22), (6) pr~y=f(qy~2).
p-2y=F(g-2) (1) (ep-2)=f(2q-y).

(8) Obtain a particular solution of (4) by putting ¢ (a)= —%a?,
\-(B) =132 and eliminating a and 8.
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MISCELLANEOUS EXAMPLES ON CHAPTER XIV.

(1) r=2¢2 (2) log s=z+y. (3) 2yg +y%=1.
(4) r—2s+t=sin (22 +3y). (6) 2% —2zs+t+q=0.
(6) 722 — 3szy + 2ty + px + 29y = + 2y.
(7) y2r +22ys + 2%+ pr+qy=0.
(8) Br+65+3t+2 (rt—s?) +3=0.
(9) 2pr+2qt —4pg(rt —s?) =1.
(10) 7t —s2—s(sin  +sin y) =sin z sin .
(11) 7r—8s— 3¢+ (1t —s2) =36.
(12) Find a surface satisfying r=6x+2 and touching z=a%+43
along its section by the plane z+y +1=0.
(13) Find a surface satisfying 7 ~2s+¢=6 and touching the hyper-
bolic paraboloid z=wxy along its section by the plane y=uz.
(14) A surface is drawn satisfying r+£=0 and touching z2+22=1
along its section by y=0. Obtain its equation in the form
23 (22 +22 - 1) =y2 (22 +22). [London.]
(15) Show that of the four linear differential equations in z, ¥, p, ¢
obtained by the application of Monge’s method to
27 +gs +xt — x(rt — 52) =2,
two are integrable, leading to the intermediate integral
p-z=f(gz-2y),
while the other two, although non-integrable singly, can be combined
to give the integral p+it-z=a.
Hence obtain the solutions
z=4x?% - 2may — §m3%3 + nw + ¢ (y + fma?)
and z2=(a— b2z + 122+ by +c,
and show that one is a particular case of the other.

(16) A surface is such that its section by any plane parallel to z=0
is a circle passing through the axis of . Prove that it satisfies the
functional and differential equations

y2+22+yf (x) +2F () =0,
(y2+23)t+2(2—yg) (1 +¢2) =0.
(17) Obtain the solution of z%r +2xys + y% =0 in the form

() 1er(2)

and show that this represents a surface generated by lines that intersect
the axis of 2.

(18) Show that 7t — s2=0 leads to the ““ complete ”’ integral
z=ax+by+ec.
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Show that the “ general ” integral derived from this (as in Art. 134)
represents a developable surface (see Smith’s Solid Geometry, Arts.
222-223).

Hence show that for any developable surface ¢=F£(p).

(19) Find the developable surfaces that satisfy

pg(r—1t)—(p%— 9% s +(py — gz) (i - s¥) =0.

[Assume g=f(p). This is called Poisson’s method. We get

g=ap or pi+gi=b2,
giving z=¢(z+ay) or z=bzcos a+bysina+e.

The second of these integrals represents a plane which generates the
developable surface given by the corresponding “ general integral.]

(20) Show that if

X=p, Y=q, Z=px+qy-z,
then r=T/(RT-8%), s=-S[(RT-8?%, t=R/(RT-8%),
0°Z

where R= 73X etc.

Hence show that the equation

ar+bs+ct+e(rt—s2) =0

transforms into AT -BS+CR+ E=0,
where @, b, ¢, e are any functions of z, ¥, p, ¢, and 4, B, C, E the corre-
sponding functions of P, @, X, Y.

Apply this Principle of Duality (cf. No. 21 of the Miscellaneous
Examnmples at the end of Chap. XI1.) to derive two intermediate integrals
of pa(r—1) - (p*— g% +(py — g2) (11— 5% =O0.

(21) Prove that if @, y, u, v ate real and w +w=f (¥ +1y), then V=u
and V =v are both solutions of

oy o7 _

ox2 Oy

and the two systems of curves u=const.,
v=const.,

0,

are mutually orthogonal.
Verify these properties for the particular cases

(i) u+w=z+1y,
(ii) w+iv=(2+1)3
(i) w+iv=1/(z+7y).

[The differential equation is the two-dimensional form of Laplace’s
equation, which is of fundamental importance in gravitation, electro-
statics and hydrodynamics. u and v are called Conjugate Functions.
See Ramsey’s Hydro-Mechanics, Vol. I1. Art. 41.]

(22) Obtain the solution of

0% _ 20%
o2 0z’
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subject to the conditions y=f(z) and g—ty =F(x) when £=0, in the form

1 "% -+-at
y=%f(x+at)+%f(x—at)+%_“ ) tF(A) aA.

[y is the transverse displacement of any point z of a vibrating
string of infinite length, whose initial displacement and velocity are
given by f(z) and F(x). See Ramsey’s Hydro-Mechanics, Vol. 1L
Art. 248.]

(23) If y=f(») cos (nt+ a) is a solution of

2 1
show that f(x) =4 sin mz + B cos mz + H sinh ma + K cosh mz, where
m=4/(nfa?).

[The differential equation is that approximately satisfied by the
lateral vibrations of bars, neglecting rotatory inertia. See Rayleigh’s
Sound, Art. 163.]

(24) Show that

w=4 sin (mmwfa) sin (n7y[b) cos (pet +a)

. 02w 02w 02w
satisfies e c? ( ):

, a2 o2
and vanishes when
=0, y=0, w=a or y=b,
provided that m and n are positive integers satisfying
(p/m)?=(m]a)® + (n[b)*.

[This gives one solution of the differential equation of a vibrating
membrane with a fixed rectangular boundary. See Rayleigh’s Sound,
Arts. 194-199.]

(25) Show that w=A4J,(nr) cos (net+a)

s 0w (0% 1 aw>
satisties 22 ¢ (Trz +; o)
where J, is Bessel’s function of order zero (see Ex. 2 of the set following
Art. 97). :

[Th)is refers to a vibrating membrane with a fixed circular boundary. .
See Rayleigh’s Sound, Arts. 200-206.]

(26) Show that V=(4r"+ Br=1)P, (cos 6)
satisfies all ga—V+122—I—,+m9g{i=

or r or 1200 2 90
where P, is Legendre’s function of order » (for Legendre’s equation,
see Ex. 2 of the set following Art. 99).

[N.B.—Take u=cos 0 as' a new variable. This equation is the
form taken by Laplace’s potential equation in three dimensions, when
V is known to be symmetrical about an axis. See Routh’s Analytical
Statics, Vol. II. Art. 300.] '
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The mecessary and sufficient condition that the equation M dz+ N dy=0
' should be exact

(@) If the equation is exact,
M dx + N dy=a perfect differential = df say.

o _I.
So M—a:z; and N—a H
therefore aﬂ—ﬁ—ﬂ = B_JLI’

ox 0xdy oyox
8o the condition is necessary.

(b) Conversely, if aiv 3aM put F= IM dz, where the integration

"is performed on the suppomtlon that y is constant.

oF 02F 92F oM oN
VThen —a;=M and‘ 3z ay—a—‘——yaz *ay“-é;-
7} 7}
So a—x(N—W ~o0,

N - a—F =a constant as far as z is concerned, that is,

; % a function of ¢,
=¢(y), say.
oF
Th N=—+ X
en y @ (y)
Now put f=F+j¢(y d
Then af

" Also M —%— by definition of F

=g—£, since F and f differ only by a function of 9.

Thus M dz+ N dy -a—f dz + af dy =df, a perfect differential.

So the equation is exact, that 18, the condition is sufficient.
2
aagy aa‘g is justified if f and its first and
second partial differential coefﬁclents are continuous. See Lamb’s
Infinitesimal Caloulus, 2nd ed., Art. 210.]
191

[Our assumption that
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of of of _
E +Q(x, ¥, 2) 53—/ + R(x, y, 2) o =0, regarded as

Sfour-dimensional, has no special integrals. (See Art. 127.)

. The equation P(x, y, z)

Let u(w, y, 2)=a,
v(z, ¥, 2)=b,
be any two independent integrals of the equations
dw/P=dy/Q=dz/R.

Then we easily prove that
ou

ou . ou
P%—FQEZ—FRé; O o ccrrrrrer e (1)
ov v ov
a,nd Pa—:$+Qa_y+R55 =O. ................................ (2)

The left-hand side of (1) does not contain @, and therefore cannot
vanish merely in consequence of the relation v=a. Hence it must
vanish identically. Similarly equation (2) is satisfied identically.

Now let f=w(z, y,2) be any integral of the original partial
differential equation, so that

ow
0z

This is another identical equation, since f does not occur in it.
Eliminating P, ¢, R from (1), (2), (3), we get

ow ow
P%+Qag+R =0, v 3)

. o(u, v, w) . .
W =0 ldentlcally.
Hence w is a function of » and v, say
w=¢(u, v).

That is, f=w is part of the General Integral, and therefore, as f=w
is any integral, there are no Special Integrals.

[The student will notice the importance in the above work of a
differential equation being satisfied identically. Hill’s new classification
of the integrals of Lagrange’s linear equation (Proc. London Math. Soc.
1917) draws a sharp distinction between integrals that satisfy an
equation identically and those which have not this property.]

192
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The expression obtained for dz by Jacobi’s method of solving a single
partial differential equation of the first order (Art. 140) 4s always
integrable. .

To prove that dz=p,dx, + pydz, + pyda,
is integrable it is necessary and sufficient to prove that

L=M=N=0, oo (A)
where Lsa—p—z—-% ]|l=ap"—zp—1 N“ap1 9P,

) Ozy Oxy’ 0z, Oz’ " 0w, Om;
Now, by adding equations (8), (9), (10) of Art. 140 and using the
relation (F, F,)=0, but not assuming the truth of (A), we get
d(F, F,) 9(F, Fy 9(F, Fy
L Y +M U+ N U=
9(p2, ps) 9(ps, p1) 9(py, P2
O(Fy, Fy) 1, 0(Fy, Fy) . 0(Fy, Fy)
+M +N =0
(P2 ps) 9(ps, p1) 9(Py> P2)
d(F,, F) d(F,, F) o(F, F)
+M N =
9 (P2, Ps) 9(ps, py) 9(py, p2)

From equations (B), (C), (D) we see that either L=M=N=0 or
A=0, where A is the determinant whose constituents are the
coefficients of L, M, N in (B), (C), (D).

But these coefficients are themselves the co-factors of the constituents
of the determinant 3(Fy, F, )

— 2+ 71

0Py, P2y p5)’
and by the theory of determinants A =J2.

Now J cannot vanish,* for this would imply the existence of a
functional relation which would contradict the hypothesis of Art. 140
that the p’s can be found as functions of the &’s from

F=F,—a,=F,—a,=0.
Hence A=£0; therefore L=M=N=0.

0 oo, (B)

Similarly L

and L

0. oo, (D)

* All the equations of this appendix are satisfied identically.
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APPENDIX D
Suggestions for further reading

No attempt will be made here to give a complete list of works on
differential equations. We shall merely give the names of a very
small number of the most prominent, classified in three sections.

1. Chiefly of analytical interest (forming a continuation to Chapter X.).

(¢) Forsyth : Theory of Differential Equations (1890 and later years,
Cambridge Univ. Press).

This important work is in six volumes, and is the most exhaustive
treatise in English upon the subject. It should not be confused with
his more elementary work in one volume (4th ed. 1914, Macmillan).

(¢) Goursat : Cours &’ Analyse mathématique, Vols. 1L and III. (2nd
ed. 1911-15, Gauthier-Villars ; English translation published by Ginn).

This deals almost entirely with existence theorems.

(¢) Schlesinger : Handbuch der Theorie der linearen Differential-
gleichungen (1895-8, 3 vols, Teubner).

II. Partly analytical but also of geometrical interest.

(a) Goursat: Eguations aux dérivées partielles du premier ordre (1891).

(b) Goursat: Equations aux dérivdes partielles du second ordre
(1896-98, 2 vols., Hermann et fils).

(¢) Page : Ordinary differential equations from the standpoint of Lie’s
Transformation Groups (1897, Macmillan).

This deals with the elements of differential equations in a highly
original manner.

TI1. Of physical interest (forming a continuation to Chapters I11. and IV.).

(¢) Riemann : Partielle Differentialgleichungen und deren Anwendung
auf physikalische Fragen (1869, Vieweg).

(b) Riemann-Weber: A revised edition of (a), with extensive
additions (1900-01, Vieweg).

(c) Bateman : Differential Equations (1918, Longmans).

This contains many references to recent researches.

It is impossible to mention original papers in any detail, but the
recent series of memoirs by Prof. M. J. M. Hill in the Proceedings of the
London Mathematical Society should not be overlooked.
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) dy _y°+3a?y
dz 23 +3my?’

(2) Z—Z+2wy=2w (1 +23).
. oy
(3) tany 7, Ttanz=cos ¥y cos®z.

oW (W
(4) y_2wdw+(d_x}‘

(5) (1-=% f,—z—wyﬂzyﬁ-

(6) (D?+4)y=sin 2z.
(7) (D®— D2+4-3D +5) y=12?+¢® cos 2.
(8) (D +a2D?) y=1+x+22

9) coswsinx%=y+cosw.
(10) fil—tx=w+y+2cos ¢
g—?=3w—y.
]
11) y=x<%> +1.
&%y (d_?/)z_ 2
(12) ¥ 2™ dz/) =Y
(13) (D*+8D?+16) y=zcos 2z.
(14) szdy+jxydx=x3.

(15) (y2+yz—2)dx+ (22 +az—-2)dy + (x+y —2y)dz=0.

[London.]

[London. ]

[London.]
[London.]"

[London.]

[London.]
[London.]
[London.]

[London.}

[London.]

[London.]

[London.]
[London.]
[London.]
[London.]

(16) (2a® - 42— 2°) yz dow + (2y° — 2° — 2®) 2w dy + (22° — 2® — ) 2y dz =0,

(17) @p—yq + (2% —y?) =0.

(18) (z+2y-2)p+(3By—2)g=z+y.
’ 195

[London.]
[Londeon. ]

[London.]
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2 (wz—yz+ay)

(19) zp+yq +———————4y_w+z =0. [London.]

(20) p(z+p)+q(y+9) =2 [London.]

(21) r+s=p. « [London.]

(22) z—3pz - qy=p?[a2. [London.]

(23) r—w=t—y. [London.]

(24) z=px+qy —szy. [London.]

(25) z (rt — s2) + pgs =O. [London.]

(26) 2%+ 2xys +yH=xy. [London.]

27) rq(g+1)—s(2pg+p+q+1)+ip (p +1)=0. [London. ]

(28) 43 =xy2p+atps. [Math. Trip.]

&y _ (i
(29) by 7= \dz/
d2y ndy .
(30) P Ry + 2y =0. [Math. Trip.]
(31) (zp+x)%+(2q+y)2=1. [Math. Trip.]
2

(32) Find a solution of the equation % -3 Z—Z + 2y =3¢ which shall
vanish when =0 and also when x=log,2. [Math. Trip.]

(33) Solve the equation

‘ d2z

EF+2K%’L:+(KZ+)\2)QI=AOOSPL

Show that, for different values of p, the amplitude of the particular
integral is greatest when p2=A%- k2, and prove that the particular
integral is then

(A/26\) cos (pt — a), where tan a=p/k. [London.]

(34) Solve the equation

d%y
dx?
by putting z=sin .

dy 2.
+‘Etan:v+ycos =0
. . . o2V 0V 0%V '
(35) (i) Assuming a solution of 5@“3?““32520 to be of the

form F(r+z), where r2=x%+y2+2%, obtain the function F; and by
integrating with respect to 2z, deduce the solution ¥V =zlog (r+2)—r.

.. . . ov a2V
(ii) Assuming a solution of E:'G'ZEGE to be of the form ¢ (),
where £=2[4/t, obtain the function ¢; and deduce a second solution
by differentiating with respect to . - [London.]
(36) Obtain a rational integral function V of x, y, z which satisfies
the condition 22V 9V o2V
ettt om0

and is such as to have the value 42% at points on the surface of a sphere
of unit radius with its centre at the origin. [Math. Trip.]
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{37) Show that a solution of Laplace’s equation V2u=0 is
u=(4 cos n@ + Bsin nB)e=*2 J,(Ar),
where 7, 0, 2z are cylindrical co-ordinates and A4, B, n, A are arbitrary
constants. {London.]

(38) Show that J,(r)(a,cosn0+b,sinnf), where r and O are
polar co-ordinates and @, and b, are arbitrary constants, is a solution

of the equation o2V o2V
22T P +V=0. [London.]
(39) Show how to find solutions in series of the equation
ou_ 0%
—_— a -—
. ot ox?’
and solve completely for the case in which, when =0,
u=a %Z =Ccosh 2. [London.]
(40) Obtain two independent solutions in ascending powers of z of
the equation d2y
4 T 92y =0;

and prove by transforming the variables in the equation, or otherwise
that the complete solution may be written in the form

y=A4a" (o) + BAJ_ (oY),
where 4 and B are arbitrary constants. [London.]
(41) Show that the complete solution of the equation

dy 2
%+P+Qy+Ry =0, '
where P, @), R are functions of z, can be obtained by the substitution
Y=y, +1/z, if a particular solution, y,, is known.

Show that, if two particular solutions y; and y, are known, the-
complete solution is

log (z - ;2) =j R(yy-yy) dw +const.

Obtain the complete solution of the equation

(z2-1) Z—Z+w+1 ~ (@2 +1)y +(z—1)y2=0,
which has two particular solutions, the product of which is unity.
(42) Show that the differential equation (London. ]
a2y dy
a2y Y _ dy _

has a solution of the form (1 +z)?(1 — z)?, where p and ¢ are determinate
constants. Solve the equation completely ; and deduce, or prove
otherwise, that if 2a is a positive integer %, one solution of the equation
is a polynomial in z of degree . [London,]
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(43) Verify that 1 —2 is a particular solution of the equation

z(l- xz)zd Y+ (1-22) (1+322) —+4w (1+22) =0,
and solve-it completely.

By the method of wariation of parameters or otherwise, solve com-
pletely the equation obtained by wrltmg (1 —22)3 instead of zero on the
right-hand side of the given equation. [London.}

(44) Show that the complete solution of the equation

d? d
d—xZ+Pd—Z+Qy=O,

where P, @ are given functions of z, can be found if any solution of the

equation du 1dP 1
oY 2o % _ = 2
Bt re-g g0
is known.
Hence, or otherwise, solve the equation
- )———439 Zy +(#%—3) y=0. [London.]

(45) Prove by puttlng v=we® that the complete solution of the
equation x -— d 5 — 21 7 ° taw= =0, where # is an integer, can be expressed
in the form

(A cosz+ Bsinz) f () +(4 sin z — Beos z) ¢ (x),
where f(2) and ¢ (z) are suitable polynomials. [London.]
(46) If u, v are two independent solutions of the equation
f@y" -f'(@)y"+¢ @)y +x(@y=0,

where dashes denote differentiation with regard to z, prove that the
complete solution is 4w+ Bv+ Cw, where

of (x) da uf (z) dw
WEMI (ui{;(—)u'v)z v I (m)j’r—— 24'1))2
and 4, B, C are arbitrary constants.
Solve the equation
22(22+5)y’"" — (722 +25)y" + (2222 +40)y" — 30xy =0,
which has solutions of the form 2”. [London.]

(47) Obtain two independent power-series which are solutions of
the equation a2y
(2? - )dx2+bz—+cy =0,
and determine their region of convergence. ‘ [London.]

(48) Prove that the equa.tion

z(1- :c)d—2+(1 2x)@—iy 0
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has two integrals

@ " 1 1 1N ,
zo;a,,x s 2 a,,( logz+1 - 5 +tg- —-ﬂ>w y
_[T(n+3)
where a,,—{r (n+1)} . {London.]

(49) Form the differential equation whose primitive is

y= A<s1nw+——> +B<cosw—$>,

where 4, B are arbitrary constants. [London.]
(50) Obtain the condition that the equation
Pdz+Q dy 0

may have an integrating factor which is a function of « alone, and apply
the result to integrate

(3zy — 20y?) d + (%® — 2azy)dy =0. [London.]
(51) Show that the equations
dy 2a2® dy _

Y 2 T E y? dx ’
— 2 2y =
22—y +2(xy+bz)dx 0,
have a common primitive, and find it. [London.]

(562) Prove that any solution of the equation

du
Qd +Ru=0

is an integrating factor of the equation
a? d

and conversely that any solution of the latter equation is an integrating
factor of the former.
Hence integrate the first of these equations completely, it being

iven that 2
& diwz <§> + E_ 0. {London.]
2
(63) If the equation ‘dT%+P +Qy=0,

where P and @ are functions of z, admits of a solution
y=A sin(nx + a),
where A and « are arbitrary constants, find the relation which connects
P and Q. [London.]
(54) Solve the equation Py _ 4y= %
da? 11—z
having given that it has two integrals of the form

— . [London.]
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(65) Show that the linear diﬁerential equation whose solutions are

the squares of those of &y 2+P +Qy 0

may be written (—~+2P> (d g P@”Q ) +2Q—=0

(56) Show that the total differential equation
32 (y +2)dw + (22— 2°) dy + (y? — 2®) dz =0
satisfies the conditions of integrability, and integrate it. [London.]

(57) The operatort% being represented by D, show that if X is a

function of z and ¢(D) a rational integral function of D,
¢(D)aX=a¢(D)X +¢'(D)X.
Extend the result to the case in which 1/¢(D) is a rational integral
function of D.
Solve the differential equation

&y 2\ pote :
st 8y =34? + xe2% cos . [London.]
3., .Y
(68) Show that d 2t 4= T -8y=0
has an integral which is a polynomialin 2. Deduce the general solution.

[Sheffield.]
(59) Show that, if in the equation Pdx+Qdy+ Rdz=0, P, Q, R
are homogeneous functions of «,y, z of the same degree, then onevariable
can be separated from the other two, and the equation, if integrable,
is thereby rendered exact.
Integrate
22 (adx + yPdy) + 2{zy? + 22 — (a® + 422 (dz + dy)
gl -2+ 1) - (& + ) de=0,
obtaining the integral in an algebraic form. [London.]
(60) Show that, if the equation Pdx+Qdy+ Rdz=0 is exact, it
can be reduced to the form A\ du+ udv=0; where A\/u is a function of
%, v only and w=constant, v=constant are two independent solu-

tions of dx dy dz
BQ oR O0R oP 0P oQ
0z 0y Ox 0z oy ow
Hence, or otherwise, integrate the equation
(yz+22)dx — xz dy + xy dz =0. [London. ]
(61) Prove that 22=2zy is not included in
&+ y+ /(2 - 2ay) = f(w+y +2),
which is the general solution of
{24/(22 — 2xy) — 20— L}2p + {1 + 2y — 24/(22 — 2a)}2g =z — 9,
but that it is nevertheless a solution of the equation. [Sheffield. ]
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(62) (i) Show how to reduce Riccati’s equation

d
 — (@) +a,(@)y + 0y (@) 9

to a linear equation of the second order ; and hence or otherwise prove
that the cross-ratio of any four integrals is a constant.
(ii) Verify that }+ztan®, 1 —x cot « are integrals of

dy

z dx =a?— i +9%
and deduce the primitive. [London.]
(63) By solving _ﬁ - wy,
’ é—y =0z

in the ordinary way, and eliminating ¢ from the result, prove that the
point (z, ) lies on a circle.

Also prove this by adding z times the first equation to y times the
second.

[The equations give the velocities, resolved parallel to the axes, of
 point which is describing a circle with angular velocity w.]
(64) Find the orthogonal trajectories of the curves
y2(a—x)=a3.
Prove that they reduce to the system

72 =b%(3 + cos 20). [Sheffield.] .
dx
(65) » = =Y —mz,
d

%y=lz—m',

dz
Fome ly,
where I, m, n are constants, prove that
l +my +nz,
22+ y2 428,

dx\? sdy\? /dz\?
and @) (@) +(@)
are all constant. Interpret these results.

(66) A plane curve is such that the area of the triangle PNT is
m times the area of the segment, APN, where PN is the ordinate, NT
the subtangent at any point P, and 4 the origin ; show that its equation
is yZm—l_aZm—zw

Show that the volume described by the revolution of the segment
APN about the axis of = bears a constant ratio to the volume of the
cone generated by the revolution of the triangle PN7. [London. ]
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(67) By using the substitutions z=rcos 6, y=rsin 6, or otherwise,
solve the differential equation
(2*+9%) (@p —y)* =1+ p™
Also find the singular solution, and interpret the results geo-
metrically. : [London.]

(68) Show that the equation
(@ +1% — 2apy)* = 4a®y? (1 - p?)
can be reduced to Clairaut’s form by making 42 —2* a new dependent
variable; solve it and show that the singular solution represents two
rectangular hyperbolas. Verify also that this solution satisfies the
given equation. [London.]

(69) Prove that the curves in which the radius of curvature is equal
to the length intercepted on the normal by a fixed straight line are
either circles or catenaries. [London.]

(70) Solve the equation
y=1z—2ap+ap?,
and find the singular solution, giving a diagram. [London.]

(71) A plane curve is such that its radius of curvature p is con-
nected with the intercept v on the normal between the curve and the
axis of z, by the relation py=c?. Show that, if the concavity of the
curve is turned away from the axis of z,

y2=c?sin® ¢+,
where ¢ is the inclination of the tangent to Oz. Obtain the value of

@ as a function of ¢ in the case b=0; and sketch the shape of the
curve. [London.]

(72) Show that, if the differential equation of a family of curves be
given in bipolar co-ordinates 7, #*, 6, 0', the differential equation of the
orthogonal trajectories is found by writing rdf for dr, +'d6’ for dr’,
—dr for rd0, —dr’ for +'d@’.

Find the orthogonal trajectories of the curves

a b
~+5=0C
ror
¢ being the variable parameter. [London.]

(73) The normal at a point P of a curve meets a fixed straight line
at the point G, and the locus of the middle point of PG is & straight
line inclined to the fixed straight line at an angle cot™'3. Show that
" the locus of P is a parabola. [London.]

(74) Solve the equation 2(p-1)y=p*z; show that the * p-dis-
criminant ” is a solution of the equation, and is the envelope of the
family of curves given by the general solution. [London.}

(75) Obtain the differential equation of the involutes of the parabola

4% =4az, and integrate it. What is the nature of the singular solution ?
[London.]
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(76) Prove that if the normals to a surface all meet a fixed straight
line, the surface must be one of revolution. [London.]

(77) Integrate the partial differential equation
Po+qy=+/(2*+ 7).
lee the geometrical interpretation of the subsidiary integrals and
of the general integral. [London. ]

(78) Integrate the differential equation
0z 0z o
z(x+2y)a—$—z(y+2x)a—y—y a2,

Find the particular solutions such that the section by any plane

parallel to =0 shall be (i) a circle, (ii) a rectangular hyperbola.
[London. ]
(79) A family of curves is represented by the equations
22+ y?+622=qa, 22%+D5y?+2%+4wy=_5,

where a, (3 are parameters.

Prove that the family of curves can be cut orthogonally by a family
of surfaces, and find the equation of this family. [London.]

(80) Solve b(bey + axz) p + a(acx + byz) g =ab(2? ~ ¢2),

and show that the solution represents any surface generated by lines
‘meeting two given lines.

(81) (i) Solve LZI+RI E,
where L, R, and E are constants.

[This is the equation for the electric current I in a wire of resistance
R and coefficient of self-induction L, under a constant voltage E.]

(i) Determine the value of the arbitrary constant if I=1, when
t=0. .

(iii) To what value does I approximate when ¢ is large ?

[Ohm’s law for steady currents.)

(82) Solve L a1 T RI=E cos pt.

[The symbols have the same meaning as in the last question, except
that the voltage E cos pt is now periodic instead of being constant.
The complementary function soon becomes negligible, s.e. the free
oscillations of the current are damped out.]

(83) Find the Particular Integral of
a?Q L, de

L t®a

[This gives the charge @ on one of the Poatmgs of a Leyden jar
when a periodic electromotive force E cos pt acts in the circuit con-

necting the coatings. - The Particular Integral gives the charge after
the free electrical oscillations have been damped out.]

+Q= E cos pt.
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(84) Show that the equations

dx _ dy dz
2 +350 ~165-3y=0, T3 -22-3y=0
are satisfied by the trial solution y=mz, provided that m is a root of
the quadratic 2+3m 16+3m
' 7 T %4sm’
and z is given by 7 %_ (2 +3m) z=0.
Hence prove that two sets of solutions of the differential equations
are y=4x=44¢*
and = —3z= —3Be™,

so that the general solution is z=A4e? + Be™,
y=4A4e* —~3Be .
(85) Use the method of the last example to solve

d*x
7E§+23w—8y=0,
3d”+2df‘/ 132 + 10y =0.

de?

[Equations of this type occur in problems on the small oscillations

of systems with two degrees of freedom. The motion given by y=2%

(or by y= —5z) is said to be a Principal or Normal Mode of Vibration.

Clearly it is such that all parts of the system are moving harmonically

with the same period and in the same phase. If y—2x and y+5x are

taken as new variables instead of # and y, they are called Principal or
Normal Coordinates.]

(86) Given that L, M, N, R, S are positive numbers, such that LN
is greater than M2, prove that « and y, defined by

dx dy
L% Mdt+R =0,
dz

M +N 7 +.5y-0,

diminish indefinitely as ¢ increases.

[Show that z=Aea*+ Be? and y= Eet + Fe?, where a and b are
real and megatwve. These equations give the free oscillations of two
mutually influencing electric circuits. L and N are coefficients of
self-induction, M of mutual induction, and R and S are resistances.]

(87) Show (without working out the solutions in full) that the
Particular Integrals of the simultaneous equations

L% u dy+ Rz+j”if—‘=Esin o,

dt

Md—”+Ndy

b +8y=0
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are unaltered if in the first equation the term Jé dt is omitted and L
. 1
is replaced by L— o

[This follows at once from the fact that the Particular Integrals are
of the form A sin (pt — a).

These equations give the currents in two mutually influencing
circuits when the primary, which contains a condenser of capacity c,
is acted upon by an alternating electromotive force. This example
shows that the effect of the condenser can be compensated for by in-
creasing the self-induction. ]

dx dy 1
dx dy
and Mat—-l-Nd—t——O,

where LN — M? is a very small positive quantity, show that the Com-
plementary Function for z represents a very rapid oscillation.

[These equations occur in Rayleigh’s theory of the oscillatory dis-
charge of a condenser in the primary circuit of an induction coil with
a closed secondary. Notice that the second equation shows that the
secondary current is at its maximum when the primary current is at its
minimum. See Gray’s Magnetism and Electricity, Arts. 489 and 490.]

(89) Prove that the Particular Integrals of the simultaneous equations

2
mg—t—:;= —a(z— X)+k cos pt,

M%= ~AX ta(z-X)

may be written T= Ef_kTB cos pt,

—ak’
X= a®-bB
where b=mp? —a and B=Mp?—(a+4).

Hence show that # and X are both infinite for two special values
of p.

[These equations give the oscillations of the *elastic double pen-
dulum.” - Masses m and M are arranged so that they can only move
in the same horizontal line. A spring connects M to a fixed point of
this line and another spring connects m to M. A periodic force acts
upon m, and the solution shows that both masses execute forced vibra-
tions whose amplitude becomes very large for two special values of p.
Of course this is the phenomenon of Resonance again. It is important
to notice that the values of p that give resonance in this case are not
thé same as they would be if only one mass were present. This may
be applied to the discussion of the ‘‘ whirling” in a turbine shaft.
See Stodola’s Steam Turbine.]

cos pt,

33
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(90) Show that the solution of the simultaneous equations

2 2
(hmo+ M) 10 TE 2060 ? — —g(m+200) 0,
by . 2

3 ae TgE = 9%

where m =M and a=>b, may be expressed by saying that @ and ¢ are
each composed of two simple harmonic oscillations of periods 27 [p, and
27[ps, pi® and p,? being the roots of the quadratic in p?,

28a2p* — 8dagp® + 2792 =0.

[These equations give the inclinations to the vertical of two rods ‘
of masses m and M and lengths 2a and 2b respectively when they are ‘
swinging in a vertical plane as a double pendulum, the first being freely ‘
suspended from a fixed point and the second from the bottom of the !
first. The two oscillations referred to are known as the Principal (or |
Normal) Oscillations. Similar equations occur in many problems on
small oscillations. A detailed discussion of these is given in Routh’s
Advanced Rigid Dynamics, with special reference to the case when the
equation in p has equal roots.]

d?x  dy
&
d? dx

dt—i’ —kg 2y =0.

[These equations give the motion of the bob of a gyrostatic pen-
dulum which does not swing far from the vertical. Notice that if the
initial conditions are such that B=0, we get motion in a circle with
angular velocity p, while if 4 =0, we get motion in a circle with angular
velocity ¢ in the opposite sense. (For p, g, 4, B see the answers.)

Similar equations hold for the path of revolving ions in the ex-
planation of the Zeemann Effect (the trebling of a line in a spectrum
by a magnetic field). See Gray’s Magnetism and Electricity, Arts.
565-569. ]

(92) Given dz

(91) +c2z =0,

7 +ax=0,
dz

a="
z+y+z=c,

where a, b, ¢ are constants, obtain a differential equation for z.

Hence prove that if z= % =0 when ¢=0,

z=c+ a—-c——b [be~% — ae~?].

[These equations occur in Physical Chemistry when a substance 4
forms an intermediate substance B, which then changes into a third
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substance C. , y, z are the “ concentrations ” of 4, B, C respectively
at any time ¢. See Harcourt and Esson, Phil. Trans. 1866 and 1867.)

(93) The effect on a simple dynamical system with one degree of
freedom of any other dynamical system to which it is linked can be
represented by the equation

E+2uzg+nir=X,

If the exciting system of waves is maintained steady so that
X = A cos pt, find the value of p for which there is resonance, and prove
that if u exceeds a certain value there is no resonance. Draw curves
illustrating both cases. N [Math. Trip.]

(94) Solve the differential equation
&+ 2ks+n?x=0 when k2 << n2
In the case of a pen&ulum making small oscillations, the time of a
complete oscillation being 2 secs. and the angular retardation due to
the air being taken as -04 x (angular velocity of pendulum), show that

an amplitude of 1° will in 10 complete oscillations be reduced to about
40’. [Take loge=-4343.] [Math. Trip.]

(95) The motion of a system depends practically on a single co-
ordinate % ; its energy at any instant is expressed by the formula
$ma? +Jea®; and the time-rate of frictional damping of its energy is
$ka?.  Prove that the period (7o) of its free oscillation is

2 (o )

Prove that the forced oscillation sustained by a disturbing force of

» and that the amplitude

is abi a_€_ B
type 4 cos pt is at its greatest when p?= ponl g

of this oscillation is then A::;:O, while its phase lags behind that of the
force by the amount tan‘lé?cﬂo . [Math. Trip.]
o 1 /ds\?
(96) Show that the substitution 7 =3 <Et reduces
d?s ds\2
a+F(g) -e
. ar
to the linear form s +2PT =0Q.
d?s  (ds\? ‘
From (s+a) ;T <‘%> =(s—a)g,

g; =0 and s=2a when =0, obtain

and e =%

with the conditions
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[This gives the solution of the dynamical problem : “ A uniform
chain is coiled up on a horizontal plane and one end passes over a
smooth light pulley at a height @ above the plane; initially a length
2a hangs freely on the other side. Prove that the motion is uniformly
accelerated.” See Loney’s Dynamics of a Particle and of Rigid Bodies,
p. 131.] :

(97) Find a solution of the equation
20 1 9 /. ,0¢\
——)'l".—'—‘—— sm@a—6>—0

3r or/ sin 6 00
of the form ¢=f(r)cos 0,
given that a—(é V cos O when r=a
and —¢ =0 when r=00.

[¢ is the velocity- pobentlal when a sphere of radius @ moves with
velocity V in a straight line through a liquid at rest at infinity. See
Ramsey’s Hydro-Mechanics, Part II. p. 152.]

98) Find a solution of  ¥=22Y

(98) Find a solution o 52 —C 522 |
which shall vanish when =0, and reduce to 4 cos (pt+a) when z=b.

[This gives the form of one portion of a stretched string, fixed at
both ends, of which a given point is made to move with the periodic
displacement 4 cos (pt+a). The portion considered is that between the
given point and one of the ends. See Ramsey’s Hydro-Mechanics,
Part II. p. 312.]

(99) Obtain the solution of
%P _ e <32¢ 2099
or o2 " r or
in the form r¢p=f(ct—7)+ F(ct+7).
[¢ is the velocity-potential of a spherical source of sound in air.
See Ramsey, p. 345.]

(100) Obtain a solution of

¢ 8295 0,

022 ay
such that ‘ 0¢[0y=0 when y=—h
and ¢ varies as cos (mx —nt) when y=0.

[¢ is the velocity-potential of waves in a canal of depth %, the sides
being vertical. See Ramsey, p. 265.]

(101) Obtain the solution of the simultaneous differential equations

a2z dy
B —-2n dt+pw =0,
dy+2nd—§ L p2y=0,

ae dat
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with the initial conditions
da_o dy_

z=a, y=0, EE=0’ b7

0,

in the form z= % {(g+n)ei@-mt 4 (g —n)e-itatmyy,

where z=z+ty and g=+/(p%+n?).

Show that the solution represents a hypocycloid contained between
two concentric circles of radii @ and an/q.

[This example gives the theory of Foucault’s pendulum experiment

demonstrating the rotation of the earth. See Bromwich, Proc. London
Matk. Soc. 1914.]

(102) Obtain an approximate solution of Einstein’s equation of
planetary motion &2u m )
Jqp tu=zrg +.3mu
in the following manner :
(@) Neglect the small term 3mu2, and hence obtain

u= %"2 {1 +ecos (¢ — )}, as in Newtonian dynamics.

(b) Substitute this value of % in the small term 3mu?, and hence
obtain

2, 3 3 3,2
g—%+u=%+§%—+ 6}%3 cos (¢—m)+§%{l +cos 2(¢p — @)}

(¢) Neglect all the terms on the right-hand side of this differential
3

}—7:; and %e cos (¢~ ). The term in cos (¢ — =) must

be retained ; it is of the same period as the complementary function, and

therefore produces a continually increasing particular integral. [See the

resonance problem Ex. 36 on p. 46.] Hence obtain

u=%{l +e cos (¢—c7)+§hﬂ:e¢ sin (¢ —w)}

equation except

=}% {l+ecos (p-w—e)} approximaitely,

2
where €=§7L7rzz_ ¢ and ¢? is neglected.

[This result proves that when the planet moves through one revolu-
tion the perihelion (given by ¢ —@—e=0) advances a fraction of a
revolution given by qES = 3%2— When numerical values are given to the
constants it is found that Einstein’s theory removes a well-known
discrepancy between observed and calculated results on the motion
of the perihelion of Mercury. See Eddington, Report on the Relativity
Theory of Gravitation, pp. 48-52.]

P.D.E. 0
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(103) L(z, y, ', ¢) is a function of the variables z, y, o', ¥'.
X, Y are defined by the equations
x-% y %L
z oy

Tf these equations can be solved for #’ and y’ as functions of X, Y, z, %,
andif H (X, Y, «, y) is the function obtained by expressing

X' +Yy' - L
entirely in terms of X, Y, «, y, then prove that
oH |,
67( /D ( 1)
o0H oL
and Fp s T dp s (2)
Prove also that the equation
d (0L\ oL
(o) @)
. . dX O0H v
is transformed into T T (4)

[This is the Hamiltonian transformation in dynamics. Equation (3)
is a typical Lagrangian equation of motion in generalised co-ordinates.
Hamilton replaces it by the pair of equations (1) and (4). See Routh’s
Elementary Rigid Dynamics, Chap. VIIL. This transformation should
be compared with that of Ex. 21 of the miscellaneous set at the end of
Chap. XIIL., where we had two partial differential equations derivable
from each other by the Principle of Duality.)

(104) Show that Jacobi’s method (Art. 140) applied to Hamailton’s
partial differential equation ‘ ‘
0z
§+H(w1, Tgy oo Tpy P1> P2s +r Prs 1) =0

leads to %=g—i, %ﬂ= —g-ﬁ—[; (r=1,2,..mn),
which are the equations of motion of a dynamical system, in Hamilton’s
form. [See Whittaker’s Analytical Dynamics, 2nd ed., Art. 142.]

(105) (i) Prove thatif  w(=, y,2)=a
and v(z, ¥, 2)=b
are any two integrals of the system of differential equations
’ de  dy dz

?(@, ¥, 2) T 9, 2) (@, z),

19(u,v) _109(u, v)_19(w,v)
po(y,2 qdz2) 7y
[m is called a multiplier of the system.]

then

=m(z, Y, 2), say.
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(i) Show that m satisfies the partial differential equation
2 8) 2 (ma) + 2 (mr)=0.
(iii) If n(2, y, 2) is any other multiplier of the system, show that

ra () 413, (2) v 5 (3)=o

o(m/n, u, v)
a(z, 4, 2)
80 that m/n is a function of u and v, and m/n=c is an integral of the

original system of differential equations.

(iv) If u(x, y, 2)=a can be solved for z, giving z=f(z, y, a), and
if capital letters ¥, P, Q, R, M denote the functions of z, 4, a, obtained
by substituting this value of z in v, P, ¢, 7, m, then prove that

and hence that =0 identically,

Y . dr _dy
V(x, y, a)=b is an integral of Yl Th
Prove also that MP= - 9V 9u
o0y 0z
and . : MQ= a_V _af_‘
ou . ox 0z
(Where % is to be expressed in terms of =, ¢, a), so that

dV=M(de—de)/g—:.
[This suggests that if any integral u=a and any multiplier m are
known, then M(Q dz - P dy) / gg will be a perfect differential, leading

to an integral of the system when & is replaced by u(z, Y, 2).

For a proof of this theorem see Whittaker’s Anralytical Dynamics,
2nd ed., Art. 119. A more general theorem is that if (n—~1) integrals
of a system of differential equations

doy _dz, _do, du
51 P2 Pn p
are known and also any multiplier, then another integral can be deter-
mined. This is generally referred to as the theorem of Jacobi’s Last
Multiplier. In Dynamics, where this theorem is of some importance
(see Whittaker, Chap. X.), the last multiplier is unity.]
(v) Show that unity is a multiplier of
dz dy  de
xz~2y 2w-yz 4P—a?
and 2®+ 4% +2%=q an integral, say u(z, y, z) =a.
Show that in this case

2 .
M(Qda—Pdy) [ =d{ ~ ey —+/(0-a2~y2),
and hence obtain the second integral zy +22=b. .
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b
(106) Show that if y =j ¢**f (t) dt, where a and b are constants, then

2 (3 )y+v (1) y=emp 0/ 6) - = (@) f 0

~[gororsoro-vosaae
Hence prove that y will satisfy the differential equation

a2 ()0 (5)9=0

i o) f () =exp { I‘Zg) dt}
and & (b) f (H) =0=e g (a) f (a).

Use this method to obtain
-t dt 1 dt
=4| et———+B| &t———
Y j—w V(e -1) j—l V(@ -1)
as a solution, valid when >0, of
Ty dy
‘ a7 A P 0.
The corresponding solution for the case <0 is obtained by taking
the limits of the first integral as 1 to « , instead of —© to —1.
[Exs. 106-108 give some of the most important methods of obtaining
solutions of differential equations in the form of definite integrals.]

o/20/ (xt)
(107) Verify that v=v,+ 2V e~?

vV Jo
. . ov
is a solution of 5 =522’

reducing, when t=0, to v,+ ¥V for all positive values of z and-to v,— V
for all negative values.

[v is the temperature at time ¢ of a point at a distance 2 from a
certain plane of a solid extending to infinity in all directions, on the
supposition that initially the temperature had the two different constant
values vy+ ¥ and vy— V on the two sides of the plane z=0.

Kelvin used this expression for » in his estimate of the age of the
earth (see Appendix D of Thomson and Tait’s Natural Philosophy). The
discovery that heat is continually generated by the radio-active dis-
integration of the rocks introduces a new complexity into the problem. ]

(108) (@) Show that
V=ﬂ dztmytnef (s, 1) ds de

(the limits being any arbitrary quantities independent of . y, 2) is a
solution of the linear partial differential equation with constant

coeflicients <a Jd 0
V=0
oz’ 3 az>
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if I, m, n are any constants or functions of s and ¢ such that
F(l, m, n)=0.
Extend the theorem to the case when there are n independent
variables z, ¢, 2, ... , and (n —1) parameters s, ¢, ... .

Obtain V=|| ee@costtysinti)f (s, ¢) ds di
. >V o2V oV
as a solution of 72 W= [H. Todd.]
o o 0

(b) Show that if F (a—a;’ 3 % V=0 is a homogeneous linear

partial differential equation with constant coefficients a solution is
V=jf(lw+my+nz, t) dt,

where the limits are any arbitrary quantities independent of z, y, 2, and
1, m, n are any constants or functions of ¢ such that
F(l, m, n)=0.
Extend the theorem to the case when there are n independent

variables and (n—2) parameters. [See H. Todd, Messenger of Mathe-
matigs, 1914.]

2%
Obtain V=j f(xcost+ysint+iz, t)dt
0 ,
eV oV EV_
02 ' o2 02
[Whittaker’s solution of Laplace’s equation.]
(109) By substituting the trial solution

as a solution of 0.

a4 a
i y=ao+;+$—§+...
in the differential equation dy +y= 1,
) dx x
. . o' 1! 21 3!
’obtamthesenes y—_a;+x—2+a73+?+

Prove that this series is divergent for all values of z.

Obtain the particular integral
X &
y=e‘“j < da,
and by repeated integration by parts show that
Y or 1t 2 nl " (n+1)!e”d
e J._w; $=;+;2+§+...+wn+1+6 —7_‘_—2— X
Hence prove that if « is negative the error obtained by taking =
terms of the series instead of the particular integral is less than the
numerical value of the (rn +1)™ term.
[Such a series is called asymptotic. See Bromwich’s Infinite Series,
Arts. 130-139.]




214 DIFFERENTIAL EQUATIONS

(110) Show that if the sequence of functions f,, (z) be defined by
Jo(@)=a+b(z—c), where a, b, ¢ are constants,

wd  f@=[ -DFOfa0@,
c
d?
then wf 2@ =—F(2) f4(2).
Hence show that y= 2 Jfn(2) is a solution of
0
dy
E + yF (w) = O,
provided that certain operations with infinite series are legitimate (for
a proof of which see Whittaker and Watson’s Modern Analysis, p. 189.

They give a proof of the existence theorem for linear differential equa-
tions of the second order by this method).

(111) Prove that the solution of the two simultaneous linear differ-
ential equations with constant coefficients

F(Dyz+F(D)y=0,
¢(D)z+(D)y=0
(where D stands for d/df), may be written _
z=F(D)V,
Y= "‘f (D) Va
where V is the complete primitive of
{f (D) ¥-(D)- F(D) ¢(D)}V =0.
Hence show that if the degrees of f, F, ¢, \/- in D be p, g, r, 5 Tespec-
tively, the number of arbitrary constants occurring in the solution will
in general be the greater of the numbers (p+s) and (g+7), but if

(p+5)=(g+7) the number of arbitrary constants may be smaller, and
may even be zero. as in the equations

(D+1)z+ Dy=0,
(D+3)x+(D+2)y=0.
(112) (a) Prove that if- y=u(z),
y=0(x)
are any two solutions of the linear differential equation of the first order
P(2)y, +@(x)y =0,

then (vu; — uvy)fu?=0,
so that v =aw, where a is a constant.
(b) Prove that if y=u(x),
y=v (@),

y=w(z)
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are any three solutions of the linear differential equation of the second

order P(x)y, +Q @)y, + R(x)y=0,

then P %ﬂ (wv, — vw,) +Q (wo, —vw,) =0

and P g_x (uwy — vug) +Q(uvy —visy) =0.
Hence show that w=au +b.

[By proceeding step by step in this manner we may show that a
differential equation of similar form but of the nt" order cannot have
more than n linearly independent integrals.]

(113) Let u, », w be any three functions of x.

Prove that if constants a, b, ¢ can be found so that y=oau+bv+cw
vanishes identically, then ‘
: u v w

u v W, |=0,
Uy Vg Wy

while conversely, if this determinant (the Wronskian) vanishes, the
functions are not linearly independent.

Extend these results to the case of » functions.

[Consider the differential equation of the second order formed by
replacing u, , ¥, in the determinant by ¥, ¥y, ¥, Tespectively. Such
an equation cannot have more than two linearly independent integrals.

The Wronskian is named after Hoéné Wronski, one of the early
writers on determinants.]

(114) Prove that z=et*(¢=1/) satisfies the partial differential equation

t—aa—t tg—:>=iw2(t+%>2z+%w(t—%) 2.

Hence, if J,,(z) is defined as the coefficient of t» in the expansion

0

e}x(t-l/t) = 2 t"J,,(w),
prove that y=J,,(x) satisfies Bessel’s equation of order n,
Py, Y
w“‘d—ﬁﬂv J—z+(x2—'n2)y=0.
[The operations with infinite series require some consideration.]

(115) If u, denotes a function of x, and E the operator which changes
u, into %y, prove the following results :
(i) Ea®=a .a?, i.e. (E—a)a®=0.
(i) E?a®=a?.a". ,
(i) E(va®) =a(za®)+a .a® ie. (E—a) (xa®)=a.a®
(iv) (E - a)*(za®)=0. ,
(V) (poE?+p1E +py)a®=(pga®+ps0+ pg)a®, if the p’s are constant.

I
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(vi) u,=Aa®+ Bb* is a solution of the linear difference equation
PoUsra t D1l +Potiy=0,
v.e. (poB?+pyE+py)u,=0,

if 4 and B are arbitrary constants and a and b the roots of the auxiliary
equation pgm?+pym+p,=0. (Cf. Art. 25.)

Solve by this method (2E2 +5E +2)u,=0.

(vil) u,=(4 + Bx)a® is a solution of (K2 -2z E+ a?)u,=0.

Here the auxiliary equation m2-2am+a2=0 has equal roots.
(Cf. Art. 34.)

(viii) w,=7%(P cos 20 +@) sin 6) is a solution of

(poB? +p1E+p2)u¢=0

if P and @ are arbitrary constants, p=ig the roots of the auxiliary
equation P2+ pym+py=0
and p+ig=r(cos O +isin §). (Cf. Art. 26.)

Solve by this method (E%—2E +4)u,=0.

(ix) The general solution of a linear difference equation with constant
coefficients

F(E)=(poB" +prE" + o 4+ Pp_y E+p,) 4y =f ()

is the sum of a Particular Integral and the Complementary Function,
the latter being the solution of the equation obtained by substituting
zero for the function of z occurring on the right-hand side. (Cf.
Art. 29.)

(x) a®/F(a) is a particular integral of

F(E)u,=a®,

provided that F(a)==0. (Cf. Art. 35.)

Solve by this method (E2+8E —9)u,=2¢.

[For further analogies between difference equations and differential
equations, see Boole’s Finite Differences, Chap. X1.]



ANSWERS TO THE EXAMPLES

CHAPTER 1.
Art. 5.
&y Py_
1) ~=4y. (2) T 9y.
Py (dy dy , (dy
@)y L (dx> @) y= wdw ( >

(5) The tangent to a circle is perpendicular to the line joining the
point of contact to the centre.

(6) The tangent-at any point is the straight line itself.
(7) The curvature is zero.

Art. 8,

a2 w3 t
1) Y=a+az+agtagita ... =aes.

2) y=a+ba:—am—2 :1:3 x4

3 3! +...=acosx+bsmw.

Miscellaneous Ezamples on Chapter I.

d?/_d_y Py P 1YW e
N @ 5-65%+1157 -6y=o0.
dy
@ DY _oW 19, —o.
da? " i

R AN ST N S
© {1+(2) 2} @B, ie prect,
M @ Th=2(e 3 -y ) 1+ (X)),

dy 21d3 d2 >2 dy _ .
® {1 (dx |72= 3(%2 = (11) y=az+ba®.

(12) y=ae®+be=. (14) 60° and —60°.
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(15) Differentiate and put =1, y=2. This gives % and hence p.
(17) @) z+1=0; (i) y?=a?+62+1.

CHAPTER II.

Art. 14.
(1) 622 +bBzy +y%—9x—4y=c. (2) sinztany +sin(z +y)=c.
(3) secwtany —e®=c. 4) z—y+c=log(z+y).
(5) = +ye®=cy. (6) y=cz.
(7) e¥(sin z + cos x) =c. (8) oty +4cy+4=0.
(9) ye*=cm. (10) sin x cos y=c.

Art. 17.
1) (@+yP=c(z—y). (2) 22+2y2(c+log y)=0.
(3) ay?=c(z—y)* (4) ca?=y+/(2*+97).

(5) (2z—y)2=c(z+2y—b). (6) (z+by-4)°3(3z+2y+1)=c.
(1) z—y+ec=log(3z—4y+1). (8) 3z —3y+c=2log(3x+6y—1).
Art. 21.

(1) 2y=(z+a)®+2¢(z+a). - (2) zy=sinx+ccos .

(3) ylog x=(log x)% +ec. 4) @*=4*(3sinz+o0).

(8) y*(x+ce®)=1. (6) x=19°+cy. (1) x=€e¥(c+tan y).
Art. 22.

(1) The parabola y?=4az +c.

(2) The rectangular hyperbola zy =c?.

(3) The lemniscate of Bernoulli r*=a? sin 26.
(4) The catenary y=Fk cosh ‘?—’;—c

6) yi=at+cd. (7) y»=cat. (8) r2=ce”

(9) log r +36%+36%=c. (10) The equiangular spirals r=ce®? e,

(5) zy=22

Miscellaneous Examples on Chapter IL

1) zy=y>+ec. (2) ex®=y++/(5*—2%).
(3) sin z sin y+e2%=c. (4) 2a2— 2y + 3y + 2c2?y =0.
(B) cxy=y+V(g*-2%)- (11) a*y 2+ 202 =c.

(12) tan—(zy) +log(zfy)=c. (14) (@2-1+yhe’=c.

(15) (i) The Reciprocal Spiral r(@—-a)=c.
(ii) The Spiral of Archimedes r=c(0 - a).
(16) The parabola 3ky?=2x. (18) z=y(c —klog y).
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(19) (i) 22+ (y—c)®=1+c2, a system of coaxal circles cutting the given
system orthogonally.

(i) r2=ce~%. (iii) n2=7 {c+log(cosec 16 +cot nO)}.
dy dx
(20) (”*ya‘w>(“’y@)=““92'

(21) 1°g(2w2iwy+y2)+§7 tan? w;:/27y=c.'

CHAPTER IIL

Art.-28.
(1) y=Ae=+ Be = (2) y=4 cos 2z + B sin 22.
(8) y=Ae 3+ Be 2. (4) y=e2*(4 cos x+ Bsin ).
(5) s=e~%(A4 cos 3t + B sin 3t). (6) s=A+ Be™*.
(7) y=Ae®+ Be®+Ce ™. (8) y=2¢"—e22,

(9) y=A cos (2z - a)+ B cos (32— 3).
(10) y=A4 cosh (22— a) + B cosh (32—~ 3), or
y=Ee?® + Fe2® + G’ + He3%.
(11) y=Ae 2%+ Be® cos (24/3—a).
(12) y=Ae®+ Be2% + Ee~= cos (x4/3 — a) + Fe® cos (z/3-0).

(13) 8=a cos t/(g/!). (14) k2 < 4me.
(16) Q=G g 2o sen ermata.
Art. 29,
(1) y=e*(1 + 4 cos z+ B sin ). (2) y=3+Ae®+ Bel?®,
(3) y=2sin 3z + A cos 2z + B sin 2z. 4) a=2; b=1.
(5) a=6; b=—1. 6) a=—-4; p=2. (7) a=1; b=2; p=L
@) a=2. (9) e (10) 8¢7=.
(11) -4 sin 5a. (12);’%‘ cos bz -,’;7? sin 5a. (13) 2.
Art. 34.

(1) y=4+ Bz +(E+ Fa)e ™.

(2) y=(4 + Bz +Cx?) cos & + (E + Fz + Gz?) sin .
(8) y=(4 + Bx)e*+ E cos x+ F sin z. '
4) y=A+Ba:+C’e°’+(E+Fw)e‘*”.

Art. 35.
(1) y=263%+¢-3%(4 cos 4z + B sin 4a).
(2) y=e?%(4 cos gz + B sin gz) +e**[{(a+ 2 +q%.
(3) y=(4 +9z)€*®+ Be3.
(4) y=A+(B+ix)es+(C+ix)e?.



iv DIFFERENTIAL EQUATIONS

(5) y=(A4 +ax/2p) cosh pz + B sinh p.
(6) y=A + (B +Cx~2a?) e 2=,

Art. 36.
(1) y=2sin 22 -4 cos 2z + Ae~=.
(2) y=4 cos 4z —2 sin 4 + Ae2® + Be3=,
(3) y=2 cos z+e2%(4 cos 3z + B sin 3z).
(4) y=sin 20z +e (4 cos 20z + B sin 20z).

Art. 37.

(1) y=28—-322+6x -6+ de®. (2) y=6a%—6x+ A + Be 2,

(3) y=6x+6+ (A4 + Bz)e®®.

(4) y=2°+322+ Ex+ F+(4 + Bx)e,
(6) y=2422+14x -5+ Ae="+ Be?®,
(6) y=82*+Ta2—bx+ de~*+ Be?* 4+ C.

Art. 38.
(1) y=A4 cos x+(B+2x) sin z. (2) y=Ae® +(z +2)e22.
(3) y=Ae®+ (B +Cx — 200 — 2023 ~ 15a* — 925) ==,
(4) y={4 sin z+(B-) cos z}&2.
(5) y=(4 + Bz —2®) cos z+(E + Fz +32?) sin .
(6) y=4 +(B+3w)e*+Ce*+2?+ E cos z + (F +2x) sin .
(7) y={4 sin 4z + (B -z +2?) cos 4z} €32

Art. 39.
(1) y=Ax+ Bx?+ 243 ,
(2) y=2+ Az cos (3 log ) + Bz~ sin (3 log ).
(3) y=8 cos (log ) —sin (log ) + Az~2+ Bz cos (1/3 log 2 - a).
(4) y=4+log v+ Ax+ Bz log 2+ Cz (log )2 + Dz (log =)3. .
. (B) y=(1+2x)%[{log (1 +2x)}*>+ 4 log (1 +2z) + B].
(6) y=A cos {log (1 +2)~a}+2 log (1 +=) sin log (1 +).

Art. 40.
(1) y=Acos(x~a); 2= —Asin (z—a).
(2) y=Ae®+ Be3®; 2=64¢5°—TBe3>,
(3) y=Ae*+ B cos (2z—a); 2=2A4e®— B cos (2 - a).
(4) y=e*+ A+ Be2®; z=e*+ 4 — Be 22,
(5) y=A cos (x—a)+4B cos (2z — B) +cos Tx ;
2=A4 cos (x—a) + B cos (2z — 8) — 2 cos Tz.
(6) y= —5Aed® — 4 Bet® 4 2¢~* + cos 22 —sin 2z ;
2=Ae® + Bet® +3¢~%+4 cos 22 +5 sin 2z.
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Miscellaneous Examples on Chapter IIL
(1) y=(4 + Bz + Ca?)e®+26>. (2) y=(4 + Bx+6%)e~ %P,
(3) y=Ae37+ Be 2§+ Ce?+ Ef+2e7*(sin o — 2 cos ).
(4) y=Ae®+ B cos (2x — a) —2¢*(4 sin 2z + cos 2x).
(5) y=(4 + Bz +Ca?)e*+(E +x + 222) 3.
(6) y=A sin (z—a)+ Bsinh (3z-38) -2 sinh 2z.
(7) y=(4 + Bz +ba?) cosh  + (B + Fa) sinh .
(8) y=3+4x+24*+(A4 + Bz +4a?) e2® + cos 2.
(9) y=(4 + Bz +3 sin 2z — 4z cos 2z — 2 sin 22) &%,
(10) y=A4 cos (x — a) +§ ~ % cos 2z — §x cos x + % sin 3.
(11) y=A4 cos (x—a) + B cos (3z — 8) — 3z cos z+x cos 3.
(12) y=(4o+ 4w+ 452 +... + 4,z Ve +a®((log a —a)’.
(13) y=A+ Blog x +2(log x)®. (14) y=A + Br 1+ 522
(15) y=Ax*3+ B cos (1/2 log z— a).
(16) y=A + Blog (z+1) +{log (z+1)}* +*+8z.
(17) x=Ae¥+ Be 3+ Ecost+ Fsint—¢;
y=Ae +25¢3 +(3E —4F) cos t+(3F + 4E)sint—eé.
(18) x=Ae+ Betcos (v/3t—a) ;
y=Ae + Be~t cos (v/3t—a+27[3) ;
2=Ae? + Bet cos (1/3t — a+47[3).
(19) x=At+ Bt1; y=Bi™ - At.
(20) z=At cos (log ¢ —a) + Bt cos (log t - 8) ;
y= At sin (log ¢ — a) — Bt sin (log ¢ — B).
(27) (i) (z—1)e2®; (ii) $(2® -2z +1)sin z+%(x?-1) cos z.
(31) y=e2=+ Aeo.
(32) y={sin a)/(p* —a?) + 4 cos px+ B sin p.

=
(33) y=Ae+ Beb® +eb“jac3"””(log z—1)dx. J= A" Be e

(35) (iil) y=4 cos (z—a)— cos z +sin z log sin .
(37) (i) k/(2phe) ; (ii) zero.
(38) y=E cos nx + F sin nz + G cosh nz + H sinh na.

CHAPTER 1V.
Art. 42,
92 0z
1) 3y =a 5
2
(2) g—:;+gT;=O. (Laplace’s equation in two dimensions.)
9% 0% 1 0% 0z

(4) y%+w 0.

@ optopa o oy

b [ a-t)x
Jce /éql_/)’!i
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(5) bg€+

3z % _ 2abz.

7
Y

r "0
0z 0z , .
(6) = 55TV 5= nz. (Euler’s theorem on Homogeneous Functions.)

At 43
0B eZEEa  eiia
@) 2= xaazwaa; g;) + %‘:).

() dz= gz) +<-g—;). | (6) ‘%z %:1.

Art. 45,

(1) y=Ae-?@&+, (2) 2= A sin pz sin pay.  (3) z=4 cos p(az—y).
(4) V=Ae P>+ sin 24/(p? +¢?), where P and ¢ are positive.

(5) V=C cos (pgz + p2y + g%).

(6) V=Aesin (mzafl) sin (nmyfl), where m and n are any integers

and 72 = 72(m? + n2).
Art. 48,
4} i(sin Zz+%sin 3z +1sin bz +...),

(2) 2(sin z— 1 sin 22+ 4 sin 3w —...).

()~[< ™ sinx (2 23>sm2x+<—3——g?>sm3x ]

[22 sm2w+4 41s1n4w+6 6181n6m+ ]

(5) — [2-(1 +e7) sin 2+ £(1 —e7) sin 22 + 3 (1 +¢7) sin 3
+i7(l—e)sindz+...].

3221 . nr/f, . nr mr) .
(6) ;Zl:;ﬁ sin 5= (4 SI 4= — w7 c0s —- ‘sm Nz,

(7) (a) (2), (3), and (6) ; (B) (6).

- Miscellaneous Examples on Chapter IV.

oV 19V 2V 2o
@) 02 K ot ®) TR ar< ar>
() V= Voe‘yf‘ sin (nt — gz), where g= + \/(%/21{).

(12) V_—( ~Ksin @+ g4 eK gin 3z + 11 se B8 ).

(18) Replace @ by 7xfl, ¢ by 7%[P?, and the factor 8/ by 82/x3,
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2
(14) V= % — (¢4 cos 22 + 1 €7 19K cos 4w + L eK cos 6 +...).
400 kg 1 ,-9Kt g 1 25Kt g
(18) V=—= (¢ Ftsin 2+ 3¢ *F'sin 3z +4e " sIn b5z +...).
w

[Notice that although ¥ =100 for all values of @ between O
and 7, V =0 for =0 or 7, a discontinuity.]
(16) Write 100 — V instead of V in the solution of (15).

(18) V= % {e=EnI4 gos (w[2) & 3 e~ 9K cos (37a[21) + ...}

19 ==4Ln sin & cos vf — 1 sin 3z cos 3vt + & sin 5z cos bt ~...).
) = 7 zF

(22) a—;%,w; y=f(z—at) + F(z+at).
CHAPTER V.
Art. 52,
* (1) (y—2x-c)(y+3z—c)=0. (2) (2y—22-0)(2y+3a*—c)=0.
(3) 49(y —c)*=4a". 4) Qy-22-c)(2x—y?—c)=0.

(5) (2y—2*—c)(y—ce”)(y+z—1-ce)=0.
(6) (y-e2 - o)y +e=-9)=0.

Art. 54, '
(The complete primitives only are given here. It will be seen later

that in some cases singular solutions exist.)

(1) z=4p+4p®; y=2p*+3p*+ec.

@) z=3(p+p7); y=1p*—}logp+e.

@) (p-1Pw=c—p+logp; (p—17y=p*(c—2+logp) +p.

(4) z=3p%+3p+3log (p—1)+c; y=p*+4p*+3p+3log(p-1)+e.

(6) z=2tanp-pt+c; y=log (p*+p).

(6) z=p+ce?; y=4p>+c(p+1) e?.

(M) a=2p+op(p -1 }; y=pP-L+e(pr-17%,

(8) m=sin p+c¢; y=2p sin p+cos p.

(9) x=tan p+ec; y=p tan p+log cos p.
(10) z=log (p+1)—log (p—1)+log p+c; y=p—log (p*-1).
(11) z=p/(1 + ) +tanlp; y=c-1/(1+p?).  (12) c=L.

CHAPTER VI.

Art. 58.
(1) C.P. (y+c)2=2®; z=0 is a cusp-locus.
(2) CP. (y+c)=x-2; B.8. x=2.
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(3) C.P. 22 +cy+c2=0; S.8. y2 =492,

(4) C.P. 3(y +cos 2) — 2 sin Z+y—-cosz=0; 8.8. 42=1,

(5) C.P. (243 + 3wy + )2 —4(x®+y)®=0; 2®+y=0isa cusp-locus.

(6) C.P. ¢ —12cay + 8cy® ~ 124%2 + 1628 =0 ; y*—x=01is a cusp-locus.
(7) C.P. &+ 6cay — 20y — 2(32 -#)*=0; y2+x=0 is a cusp-locus.

Art. 65.

(1) CP. (y+o)2=n(x-1)(x—2); S.8. #(@~1)(x-2)=0; z=1-1/4/3
) is a tac-locus and =1 +1/4/3 a tac-locus of imaginary points
of contact.

(2) CP. (y+o2=a(x-1)?; 8.8. z=0; z=1/3 is a tac-locus; z=1

is a node-locus.
(3) C.P.y2-2cx+c2=0; 8.8. y2=22
(4) CP.2®+c(z—8y) +c2=0; S.8. By +x)(y —x)=0.
(5) CP.y—ca®-c*=0; S.8. 2 +4y=0; z=01is a tac-locus.
(6) C.P. y=c(z—c)®; y=0is a 8.8. and also a particular integral ;

2Ty —433=01is a S.8.
(7) Diff. Eq.  p%? cos?a — 2pay sin®q + 4% — 22 sin2q =0 ;

8.8. 42 cosa =22 sin%q ; y=0 is a tac-locus.
(8) Diff. Eq. (#2-1) p*—2zyp—22=0; S.8. ?+yi=1;
=0 is a tac-locus.
(9) Diff. Eq. (2z2+1)p2+(x2+2wy+y2+2)p+2yz+l=O;
S.8. 22+ 62y +y2=4; z=y is a tac-locus.
(10) Diff. Eq. p?(1 -2%) —(1-4®)=0; S.8. ¢=+1 and y==+1.

Art. 67.
(1) CP. y=co+c®; S.8. 2% +4y=0.
(2) CP.y=co+c3; S.8. 2742 + 423 =0.
(3) CP.y=cw+cosc; S.8. (y—x sinx)2=1 —g2,
(4) CP. y=cz++/(a%+b?) ; 8.8. a?fa? +12[12 =1,
(5) CP.y=cx—e; S.8. y=z(log z-1). ’
(6) CP. y=cx—sin7l¢c; 8.8. y=4/(2%~1) - sin4/(1 — Lfz?).
(7) 3(y—pa)?=—pk?; 2ay=12 a rectangular hyperbola with the
axes as asymptotes.
(8) (z—y)?—2k(x+y)+k*=0, a parabola touching the axes.
(9) The four-cusped hypocycloid a# + % =k,

Miscellaneous Examples on Chapter VI.
(1) No 8.8.; z=0is a tac-locus.

(5) 2y= +3z represent envelopes, y=0 is both an envelope and a
cusp-locus,
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(6) C.P. xy=yc+c2 _
(7) C.P. z=yc+ayc®; 8.8.4=0, y+4a*>=0. (Put y=1/Y; z=1/X))
(8) (i) Putting p+x=3:> we get
20 =3(8—12); 40y=9(51%+2t>~5i%) +c.
(i) C.P. g2 +4c=1+2cw; 8.8.22-4y2+4=0; y=0isa tac-locus.
(11) C.P. r=a {1 +cos (0 — a)}, & family of equal cardioids inscribed in
the circle #=2a, which is the S.8. The point r=0 is a cusp-

locus.
CHAPTER VII.
; - Art.70.
(1) y=log sec o +aw+b. (2) x=a+y+blog (y-b).
(3) ay=cos (az+b). (4) z=log {sec (ay +b) +tan (ay +b)} +c.

(5) y=2*+azx log x+bz+ec. :

(6) y= —e®+ae*®+ba* 2 +ca" 3 +... +hr +k.

(T) The circle (z—a)?+(y—b)*=k% The differential equation ex-
, presses that the radius of curvature is always equal to k.

(9) /(1 +y.2) =ky, ; the catenary y —b=Fk cosh {(z - a)/k}.

Art. 73. »
(1) y=z(alog z+b). (2) y=az cos (2 log «) + bz sin (2 log ).
(3) y=x(alog z+Db)2. (4) y=a?(a log z +b)2

Art. 74.
(1) y=coth " (2) y=—log(1-2). (3) y=sinia.

1 [/
(4) t=— <2_£_7> {h cos"l,\/% +4/(xh - xz)}.
(5) (i) The conic u=pufh®+(1fc— u[h?) cos 0;
(i) cu=cos 04/(1 — u[h?) or cosh 64/(ufh?—1), according as usShe

Art. 75.

(1) y=a(z?+1) +be®. (2) y=a(x—1)+be ™.

(3) y=a(x—1)+be*+22 (4) y=1+e " (5) y=e=.
Art. 77.

(2) y=2*+ax—bfx. (3) y=(a*+ax)e® +ba.

(4) y=e2*+(aa®+b)e” (5) y=ax®+bzx 3.

(6) y=02*+bsin .

' Art. 80.

(1) y=(a—=) cos z+(b+log sin ) sin .

2) y= {a —log tan <{ + w)} cos 2z + b sin 22.

P.D.E. 3
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(3) y={a-e2+log(l +e2) )}e® +{b—log (1 +e%)}e-=.
(4) y=az+bat+(1 -z Y)eo. (5) y=ae®+(b—x)e2= +ce32,

Miscellaneous Examples on Chapter VII.

(1) y=aewo— b (2) y=a-+log (a* +0).
2 xn Zn-1
3) y= (n+1)'+2a ( _l)!+bac”‘2+cw"“3+...+ha;+k.
(4) y=-3*"cos {8z —4w(n—-2)} +acos z+bsinx+ca"3+... + hr+ k.
(5) y=ax+5blog . (6) y=ae®+b(x®~1)e22,

1
(7) y=a cos nz+b sin nx + sin L= 5 COS NG log sec nz.

8) y(2x+3)—wlogz+b+e°’.
(9) () y=+/(aw+8); (i) y=+/(alog z+?).
(10) y=(a cos x+b sin 2 +sin 2z)e?™.
(12) y=a2. : (14) I= -1
(17) (i) y=ae”+be* ~sin a2, (Pus z=22.)
(ii) y(1+w2)=a(1 ~a?) +bx. (Put z=tan 2.)
(18) -2y=2(1-2%); y=sin?z+4 cos"(\/2 sin z + a).

(19) y=acos{2(1 +x)e"} +bsin {2(1 +x)e*} +(l+z)e 2.

CHAPTER VIII.
Art, 83,

(1) y=2+z+a? - Lot — 245 ; exact solution y=2+z+22
(2) y=2x-2logz—1(logx)®; exact value y=a:+}0.
(3) y=2+2% 4+ 2%+ 3505 + L;a8 ;

2=32%+ 2% + a5 + Ba” + 2 b
(4) y=5+z+&at+ 1o + a7 + 10 ;

z=1+1 x3+x5+9—x6+ 38 4+ Fla® + ;T o,
(5) y has the same value as in Ex. 4.

. Art. 87.
(1) 2-19. (2) 2-192. (3) (a) 4-12; (b) 4-118.
(4) Errors 0-0018; 0-00017 ; 0-000013 ;
Upper limits 0-0172 ; 0-00286 ; 0-000420.

Art. 89.
1-1678487 ; 116780250 ; 1-1678449.
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CHAPTER IX.
Art. 95.
A1) u= 1—%+g-—...}=cos\/x; v=w’}{ +a—...}=sin\/w.
-3z

w8+§ﬁ 3:L5+ };v=xé(1—x):

1.3" 5.
47

3
3.5
1.

+

(3) u= {1+1x+ 56 9%t } (1-2)3;

8.11 8.11.14x3' }

*t1.3
1.4
3.67
2
2+15.13% *10.13.16
1 1

) '“=9°"{1‘4£(1;Ln)“’2 1 8(1+n)(2+n)w4

v=g"8 {1 +

4.8, 12(1+n)(2+n)(3+n) }
To get v from u change n into —n. If u is multiplied by
1 . , .
the constant m, the product is called Bessel’s iunct?on
of order # and is denoted by J,(x).

Art. 96.
(1) and (4), all values of =. (2) and (3), |z|< 1.

* Art. 97.

2 ,.2.5, 2.5.10 ,
(1) U= {I+w+4w + 9153 m?f‘-l—...}s
x? -

'v=ulog:v+{-2:c 14a8...}.

1 1
(2) u={1—2 22 42$4 22 42 62$6+...};
1 1
v= ulogw+{22w"‘ g5 42(1+%)w4+22 i 62(1+é+g)me }

u is called Bessel’s function of order zero and is denoted by
Jo(c).

3) u={1 —2x+%¢2—34—!x3+...};

2.
4.

3 4
'v=uloga:+{2(2—%)m—2—!(2+%—%)x2+3—!(2+%+%—%)w"—...}.

% 1.8, 1.3.5.7, 1.3.5.7.9.11 ¢ }
4) u=x {1+ e 22+ oD 24+ £ 8§19 O

v=ulogz+2:t| L2043 - par

42, g

P.D.E. P2

1.3.5.7 '
+———§——(1 +%—%+%+l¢—%)x4+...)}.
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Art. 98.

1 1 1
1 u=z-2] _ 6_ )
(1) =2 { DI W Ll Tt

+___1—_w10_ }~
23.42.,62.8.10 B e

V= ulogw+x—2{1+1x+ 1 xt 11

RV Tor 2% ot g2 2"

31
. +22.42.62.82’”8“‘}‘

(2) u=2+222+303+...=2(1 —x)~2;
v=ulogz+l+a+a®+..=ulogz+(1-z)2L

(3) w={1.222+2.32°+3.42%+...};
v=ulogz+{-1+z+322+523+ 724 +...}.

(4) u={2%+22% — 23 — &t + 5a5.. }~ '
v=ulogz+{l-z- 5902 @3+ g, ),

Art. 99.

(1) 2/=a0{1—xz—%’a#—%xﬁ,..}+a1x=ao{ %xlogl }+a1x

@) y=ao{1_n(4n2+1)w2+n(n—2)(n4-f-1)(n+3)$4_'m}

+a1{ (n- 1;(,n+2)x3 (n-1)(n- 31’3('n+2)(n+4)%5 }
[For solutions in powers of 1/z see No. 7 of the Miscellaneous

Examples at the end of Chapter IX.]

1 1 1

= - 8 _

3y “0{1 5.4°%3 4.7 8% 34751110
U 1 9 ! 3 }
+“1{”‘473“5+4.5.s.9” “i5.8 9.2 13° Ty

(4) y=ap{l — }a? — 152 + F5at.. } + o {o — 3B — At + F4ab. ).

1
xlz+...J

Art. 100.
(1) 24 y+z3 L+ (1-n22) y=0. () y=az?(l+24).

(3) y=22(1+2x){a +bJ.a;—2 1 +2w)‘2ei’da:}.

a g i 1> : < : 1) }]
2]1_2 d il i Y- 2
(5) 2% and [ze 2logz +# {1 2!\1+2 z+3! 1+2+3 22—,
where z=1/x. ’
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Miscellaneous Examples on Chapter IX.

1) u= w3{1+3w+gx2+gw3+ }

3! 9!
= {l 3 +9x2+2—7—w3+ }
b VT T 100 ’
11 3 9 27
’w=$ﬁ{ﬂ+a$+8‘$2+ﬁw3+ }
1 1 1
(2)u {1+12$+12 x> 12—22—§Z'$3+.};
'v=ulog:1;+2{ %~ 12122<1+1>ac2

1 1 1> }
12.22.32(l+2+3 B

w=1u (logx)2+2 (v—ulogx)logx

6 8 6
+{6w+<14.22+13'23+12.24)w2+...}.

CHAPTER XI.

Art. 113.

(1) z/a=y/b=z; straight lines through the origin.

(2) lz+my+nz=a; B2+y2+22=b; circles.

(3) y=0z; 2®+y?+22=0bz; circles.

(4) 22~y2=a; 22—22=>b; the intersections of two families of rect-
angular hyperbolic cylinders.

(5) z—y=a(z—2); (x—y)*(x+y+2)=b.

(6) 22 +y2+22=a; y®>—2yz—22=b; the intersections of a family of
spheres with a family of rectangular hyperbolic cylinders.

(7) 4/ (m?+n?). (8) The hyperboloid 42 +22 - 22%=1. ,
(9) (2 +y?) (b tanly[x)? =222 (10) Yz=1[y+1/2=1[z+2.
Art. 114,

(1) y—3z=a; 5z+tan (y — 3x) =be®®.
(2) y+az=a; log {2+ (y+2)% —2z=b.
(3) rY=a,; (z2+xy)2_w4=b. (4:) Yy=ax; log (Z_2x/y)—$=b.

Art. 116.
(1) 2®+92+22=c?; spheres with the origin as centre.

(2) 2% +y?+22=cx ; spheres with centres on the axis of .
(3) zyz=¢c3.
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(4) y2+22+xy=c?; similar conicoids with the origin as centre.
(6) z—cy=yloga.
(6) @*+2y2+222=c?; similar conicoids with the origin as centre.

Art. 117,

(1) y=czlogz. (2) @2y =czes. (3) (z+y+22)e?=c.
(4) y(z+2z)=cly+2). (B) (y+2fz+(z+2)fy=c.
(6) my—mz=c(nz—Ilz). The common line is ofl=ylm=z/n.

A Art. 120,
(3) z=ce?=, . (4) 2% +4=0.

Miscellaneous Examples on Ch;.pter XI.

(1) y=az; 22—ay=0. (2) PyPe=a; 2®+yPB=ba?y2.
(3) y+z=ae®; y2—22=p. (4) y=sinz+ecz/(1 +22).
(5) P +ay2+atz=t+c. (6) f(y)=Fky ; &*=cy~.
(8) dafr=dyf2y=dz/3e. (9) y+2=3¢"3; 42,23,

(10) () @+ +22=c(o+y+2); (i) 2®—ay+yt=cz;
(ii)) *—yz 22 =ca?
(14) 2y =ce*sin w.

CHAPTER XII.

Art. 123,
(1) ¢p(wfz, yf2)=0. (2) ¢p(lz+my+nz, 2%+ y2 +22) =0.
(3) plyle, (P +y2+DF=0.  (§) p(a 42, a2~ =0,
(5) {(z~y?(@+y+2), (@ y)/(z )} =O0.
(6) p{z®+y2+22, 42— 2yz— 22 =0.
(7) ¢y —3x, e={5z + tan(y - 3z)}] =0.
(8) ¢{y +x,log(2®+ 2 +2yx +a2) — 22} =0.
(9) y2=A4zz. (10) a(a?—y2) +b(2® - 22) + ¢ =0,
(12) ¢(a%+y2 2)=0; surfaces of revolution about the axis of 2.

. Art. 126,
(1) p(z+y, @1+ 2y, B, +25) =0.
@) ¢ 227, 22057, @y%,71) =0,
(3) ¢(z—~2y%y, @) + @5+ x5, T,25)=0.
(4) ¢p(2e+a? 2~ 2,2~ 52) =0.
(5) ¢p(4vz—2zs? 203—x2, 27,-2,%)=0; special integral z=0.
(6) p{z—3m;, 2-3x,y, 2+6+/(2—a,— Ty~ )} =0; special integral

2=T +Ty+2g.
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Art. 129,
(1) z=(20* + 1)z +by +ec. (2) z=xcosa+ysina+e.
(3) z=ax+yloga+e. (4) z=a?z+a 2y +e.
(5) z=2xsec a+2ytana-tec. (6) z==z(1+a)+y(l +1/a)+c.
Art. 130.
(1) az=(z+ay+Db)2 (2) z==cosh{(z+ay+b)[+/(1+ a®)}.
(8) 22—a2=(z+ay+b)? or z=b. (4) 22(1+ad) =8(x+ay+b)%
(B) (z+a)e=r¥=b. (6) z=Dbesztay,
Art. 131,
(1) 3z=2(x +a)*+3ay +3b. (2) 20z=a2a? + 12+ 2ab.
(8) az=aa®+aPx+e¥+ab. (4) (22— ay? —2b)*=16ax.
(5) z=a(e®+e¥) +D. (6) az=a?z+asinz+siny+ab.
. Art. 133.
(1) z=-2-logzy. - (2 Sz=ay-a2—y: (3) 8= — 2Ta%2,
(4) zx=-y. (5) 2=0. (6) 22=1. (7) 2=0.
Art. 136.

(1) 4z= -2
(4) A particular case of the general integral, representing the surface
generated by characteristics passing through the point (0, -1, 0).

Miscellaneous Examples on Chapter XIIL

(1) z=az +by —a?b; singular integral 2% =a%y.

(2) zz=az+by - a®b ; singular integral 2% =y.

(3) ploy, (2 +ay)*— oA =0.

(4) 2=3823 - 3aa® +az +2y* — 4ayB +3a®y? — a®y +b.

(5) z=aw,+blog zy+(a® +2b)zs! +e.

(6) 2=p{(my +3)[2y 21 — 2.

(7) 3a(z+ay+b)=(1+d%)logz, orz= b. z=0isincluded in z=b, but

it is also a singular integral.

(8) 2(1+0a2+b2) = (x,+axy+bay+ c)2.

(9) plzse™, 2562 2% %) = 0. (10) z=az—(2+3a+3a®)y +Db.
(11) 2=az?—(2+3a+3a*)y>+b. (12) 22=(1 +a*)a®+ay? +b.
(13) z=atan(z+ay+b), or z=b. 2=01is a singular integral, but it is

also included in z=0.
(14) 22=aa®+by® —3a® + V% Singular integral 22 = ==22%/9 —y*[4.
(15) p=z+y—-1x2y/{(z-1)(y -1} (16) 2> —wy=c.
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(17) ¢(z[x, z[y) =0; cones with the origin as vertex.

(18) a?+y%+22=2xcos a+2ysina+e¢; spheres with centres on the
given circle.

(19) xyz=c. (This is the singular integral. The complete integral
gives the tangent planes:)

(20) The differential equation (2—pz—gqy)(1—1/p—1/g)=0 has no
singular integral, and the complete integral represents planes.

CHAPTER XIII.

Art. 139.
1) ¥?*{(z—a)®+y%+22}=0. (2) 22=2az+a%%+b.
(3) z=ax+be¥(y+a)=4 (4) 22=2(a®+1)2%+2ay +D.
(6) z=ax+3a%y+b. (6) (2+a?)®=9(x+ay+D)>
(7) z=a®+az+3(y+a)®2+b. (8) 2=0az+by +a?+ b2

Art. 141,

(1) z2=a,@; + a7+ (1 — a2 —at) w3+ a,.
(2) z=0.2, + agxy+sina,0.23) +ag.
(3) z=a,log z; +a,log z,250/(a, +ay) +ag.
(4) 22=0,2,2+ 02,2 +agxs® — 2(a,0,05) 3 log x4+ a4,
(5) 2(a12904)Plog z=a,2:2 + agx,? +asws? + 1.
(6) 4a,2=40a.2log x5 +2a,0,(%, — By) — (¥, +2,)% + 40,405
(7) (L+a4a,) log z=(ay+ag) (B1 + a1y + ag%3 + @)
(8) 2= —(ay+ay) @y + (201 — @) 3y +( — a1+ 2a5) 5
— 12 + T2 + @) = 2{wy + Ty + Ty — 20, + 20,0, — 20,72 + ag.

Art. 142.
(1) 2= (2, +2,)% +logz3+a. (2) No common integral.
3) z=z2+z2+x2+a, or z=x242z,75+a. '
(4) z=a(z;+2z,) +blog x;+2ablog x4 +c.
(8) z=a(3x, + % — 3% +D. (6) No common integral.
(1) z=a(x;—2,) +b(y—z3) +¢, Or z2=0(2; —2x,) +b(225—z,) +¢.
(8) 2= (32 + 2% — %),
(9) 2= (@, — %y, Ty—T3), OF 2= (2, — 225, 233—Ty).

Miscellaneous Examples on Chapter XIII.
(1) 22=a,log x, — @ a,log @y +aylog x5+ az.
(2) No common integral.
(8) z=a, log z, +ayTy+ (@) + ax) Tg v /{a, (a; 4+ 2a5) %} + @y,
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(4) 0=a,log @, +agy+(aq+a,) T3+ Via (aq+2a5)2% +1.

(5) 2logz=c(2,?+ 2% +25%). (6) =z +a’ +aP+e.

(7) 4z+32+32+22=0. (10) 2= (%5, Bp+T3+Zy, T %)
(11) (iii) 32=,® - 3w,25+C.

CHAPTER XIV.
Art. 144,
(1) z=2®+azf(y) + F(y). (2) z=logzlog y +f(x) + F(y)-
(8) 5= — Lsinay +yf(@ + F@). (1) s=2% /() log+ F )

(5) z=sin(:c+y)+:—/f(w)+17(y). 6) z= -y +f (@) +e™ I'(x).

(7y z=(®+y??2-1. (8) z=y2+2xy+2y+am2+bx+c.
(9) z=(a®+ )% _ (10) z=a®+y(1 -2

Art. 145,
48] z=Fl(y+x)+Fz(y+2x)+F3(y+3w).
(2) z=f(y—2x)+ F(2y - 2). , - (3) 2=fly+2)+ Fly—2).
(4) The conicoid 4a? —8zy +4? +8z—4y +2=0.

: Art. 146.
(1) z=F(2y - 3x) +xF (2y — 3x). (2) z=[(By +4x) +F (5y +4).
(3) z=f(g{+2w)+'xF(y+2x)+¢(y). 4) 2(2x+y)=3=.

Art. 147,
(1) =22+ 2%y + fly +2) + 2f (y +2).
(2) z2=2(y*—2°) + f(y +2x) + F (2y + ). (3) V=-—-2ma%y>

Art. 148,
§)) 2=t f(y +a) + 2 F (y +2).
(2) 2=22(3x+y) + fly +32) +aF (y +32).
3) z= —xzcos(2w+y)+f(y+2x)+wF(y+2m)+¢(y).
(4) z=we*¥ + f(y — ) + F (2y +32).
(5) V =(z+y)3+ fly +1x) + F(y — ).
(6) z=22% log( +2y) + f(2y +2) +2F (2y +2).

Art. 149,
(1) z=wsin y +f(y—) +2F(y—2).
(2) 2=t + 2% + f(y + bx) + F(y — 3x).
(3) z=sinz —ycosz + f(y — 3x) + F (y +2x).
(4) z=sinay + f(y + 2x) + F(y — @).
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() z=}tanztany+ f(y +x) + F(y - 2).
(6) y=wzlogt+tloga+f(¢+2x) + F(t — ).

Art. 150. |
(1) z2=f(2) + F(y) + ¢ (y +2a).
(2) z=e2{f(y-z) +aF (y —2)}. (3) V=X Ael=tnn,
(4) z=f(y+x)+e*F(y—2). (6) z=3Ae M) 1 T Bttt
(6) z=XAenr(wcosatysina) () z2=e2{f(y +22) + T4tttk
(8) z=1+e*{(y—z)?~1}. -
Art. 151,
(1) 2=362"Y +e%f(y +2) + 2 F (y + 2).
(2) z=143-y—zy+e*f(y) +eVF ().
(3) z=g5{sin (& — 3y) +9 cos (x — 3y)} + TAekW+),
(4) 2=z +f(y) +e2F (y +2). * (B) y=fpent + Tderscontetana,
(6) z=e**{a? tan (y +3x) + zf(y + 32) + F (y +3x)}.

Art. 152,
(1) 9*r—2ys+t=p+6y. . (2) pt-gqs=pg.
(8) 7+3s+t+(rt—s2)=1.
(4) pg(r—1) - (p* - ¢*) s +(py — gu) (£ — s%) =0. v
(5) 2pr+qt—2pq(rt —s2)=1. (6) gr+(zg — p)s —2zpt=0.

Art. 154.
(1) 2=f(y+sin@)+ F(y—sinz). (2) z=f(z+y)+ F(xy).
B) y—Y(@+y+2)=¢(2), or z=f(z)+ F(z+y+2).
(4) z=f(z+tany)+ F(z~tany). (5) z=f(a®+4?) + F(y/x) +zy.
(6) y=f@+y+2)+aF(z+y+z). (7) 3z=4aPy—2% —6logy—3.

_ Art. 157.
(1) p+2—2y=f(qg—2x+3y); A\=—3%.
(2) p-2=f(g-9); A=w. 3) p—e*=flg—2); A\=c0.

(4) p-y=f(g+2); p+y=F(g-=2); A\==1.

(B) p-y=flg-22); p-2y=F(g—x); A=-1or —}.
(6) pr—y=f(qy-x); A= -z or -9

(7) zp—z=f(2g~y) ; A=2[p? or 2/

Art. 158,
(1) z=ax+by —La®+2xy — $y%+c;

z=4a%(1 +3m?) + (2 + 3m) zy +nx + $(y +ma)
=2y — 3(2* + 3y) + nx + Y (y + ma).
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2) z=3(=®+9y®) +az+by+c; 2=3(2? +9®) +nw -+ (y + ma).

(3) z=e*+y:+ax+by+c; 2=e®+ 12+ 0%+ (y +ma).

(&) o=3(a—B); y=HW(B) - #' (@} 2=y +H$(a) Y (B)}+By.
(6) 2=B-a; y=¢(@)—V(8); 2=y - p(a@) +V-(B) +By.

(6) z+y/m+mz—nlogz=g(x™y) ; the other method fails.

(1) =22 +y2+2aw+2by +c 3 2=0+y?+2nz -+ (y +ma).

(8) 2e=92—a?

* Miscellaneous Examples on Chapter XIV.
(1) 2=a2? +af(y) + F(3). ) 2=t +f(z) + F(y).
(3) ye=ylogy—f(2) +yF(z).
(4) z=f(z+y) +2F(z+y)—sin(2z +3y).
(5) 2=f(y+loga)+xF(y+logz). (6) z=z+y+f(ay) + F (22y).
() z=log(z+y) . f(2* —4*) + F (a* - 4°).
(8) 42=6xy —32% - 5y? +4ax+4by+c;
4z =6xy — 322 — By + 2nz + 2 (y +m2).
(9) 32=3c+2(z+a)¥2+2(y+b)""~
(10) mz+sin y +m? sin & — mnz=mep(y +ma).
(11) 2o=a=B; 2=y (8) - ¢'(a) ;
T 922=3a2 — 6wy — Ty2 + pla) — Y (B) +28y-
(12) z=23+ 4>+ (v +y+1)% (18) z=a® —zy + 92
(20) pz+qy=f(p*+¢*); py—qa="Flg/p). ‘

" Miscellaneous Exzamples on the Whole Book.

1) (2®-9y2)2=czy. (2) y=2a2+ce~".
(3) 2secxsecy=a+sinzcosz+e. (4) (wy+c)=4(a?+y)(4* - ca).
(5) 1 +ay=y(c+sinw)y/(1 —a?). (6) y=(4 - }x)cos 2x+ Bsin 2z.
My =%2 - g—; + 12—28—5~+ liﬁwe“(sin 2% — cos 22) + Ae~% + Be® cos (2% + a).
(8) y=A + Bz +Cxlog z+log z+}x(log 2) + 32>
(9) y+secx=ctanz.

(10) z=Ae? + Be~% —2(cos t —sint) ; y=Ae* ~3Be~* - § cos .

(11) 2?P=(y—-1)#+ec. (12) y=a cosec (b—x).
2\ . z?
(13) y=<A +Bw+672> sin 2w+(E+F —9_6> cos 2.
(14) 2xy =3 +ec. (15) z+wxy=c(x+y—my).
(16) o*+4° 22 =cayz. (17) z=f(xy) — 3o — 392,

(18) (z —y) e~ =f{(x -3y +2)[(z —y)%}.

(19) (z+2)?=(2+29) f(y/7).

(20) z=ax+ by +a? +b?; singular integral 4z +a+ y*>=0.
(21) z=e"f(c—y)+ F(y).
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(22) z=ax®+by+4a?; singular integral 16z +a2=0,

(23) z=f(z+y)+ Flz-y) +F («*+9°).

(24) z=af (y) +yF (z). (25) cz=(z+a)(y+0b).
(26) z=3xy +f (y/x) + = F (y[x). (27) z=f(z+z)+ F(z +¥).
(28) y (z+c)=c*r; singular solutions y=0 and y + 442 =

(29) ay=(a+B)5. (30) y=4 cos (n +1) +Bsin (Zf:)

(31) 2 +y2+2>=2 (zcos a+ysina+c). (32) y=e"— 7;62”+%63”.
(33) z=e (@ cos At + b sin A#) + C cos (pt — a),

where C'=A[1/{(k?+ 72 — p?)2 + 42p?, tana=2xp/(x%+ A2 - p?),
and a and b are arbitrary constants.

(34) y=A4 cos (sin =) + Bsin (sin z).
(35) (i) F=Alog(r+2)+ B;
i) p=4 Ie—g‘/“‘ﬂ d¢+B; g"’ 4
(36) V=A{L+3(322—12) + 24 (354 — 3Oz2r2 +3m)},

where 72 =a? + 2 + 22,

(39) u= 0(1+ +4T;:4+5?55+ )cosht

3 ol x
3t Telas T

et

+C (2' @23l
(41) y—z=c(xy—1)e®.
(42) y=Q1 +2)*?(1-2)*{4+B J' (1 + )~ t-1(1 — gy~ g},
If 2a¢ is an integer, the integral can be evaluated by
putting z=(1 +2z)/(1 - z).
(48) (i) y=(1-2?)(4+ Blogw); (i) y=(1-2?)(x+ A4+ Blogx).

(44) 1-2)y= (a+bje—w2dm)e’m2 [Put log y = [(u~lP)dw u=x is

a solution of the differential equation in w.]
@n-2)2® (2n-2)(2n-4)(2n—-6)at
(45) f (@) =1- (2n-1) 2'+(2n 1)(2n-2)(2n-3) 4! *?
. (2n-2)2n-4)aP
¢ @) =2= 0 )@ 931"
(46) y=Aa5+ Ba®+ E(2*+1), replacing C[6 by E

(47) u= 1+2|< )2+0«——~—{c+2(b+1)}(a>

+ ) sinh £,

1l
LA+ 2+ 1He+4(b+3)} (v .
6! <a> e
{c+b} (#\® {c+b}{c+3(b+2)} /x\° .
=)+ 50 G) + R () v

both converge within the circle || < |a.
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b
49) 5 4=(2-a)y.

(50) %{g—;—g—%} must be a function of z alone ; #%y — ar?y?=c.

(61) a2 +y? + 2bzy =2az.
(52) uwve¥?= a,j‘v%’” dx+b, where v=Q/P and w= jv da.

(63) Pn cot (nz+a)+Q=mn%
(54) y(1 —z)=A4(3 —22) "+ B(1 —22) e7?2.
(56) 2 +yz=c(y+2).
(57) y=Ae?*+e*(B cos 14/3 + C sin 24/3)
+22% + ghree 2*{1572(6 cos x + 11 sin z)
+3(783 cos & — 56 sin a)}.

(58) y=(3+4a?) {4+ BJ-(3 +4a?)~2e~ ¥ da}.

(59) 22z +y)N@? +y? +22) =c(a®+y> - 2%). (60) zz=c(y +2).
. _ 1 du .. 1 _z(c+tan 2)
(62) () Put y= " uay(2) do’ W) ¥=3=T Gtanz
[See Ex. 41 for method.]
(65) If a particle P moves so that its velocity is proportional to the
radius vector OP and is perpendicular to OP and also to a
fixed line OK, then it will describe with constant speed a
circle of which OK is the axis. ,
(67) 72sin 2(0+a) =1 ; singular solution r*=1.
(68) 4 —a?=cx+2a%+a4/(4a? - &) ; singular solution y? ~2? = =+ 2ay.
(70) 4a(y—c)=(z—c)?; singular solution y=x - a.
(71) z+a=ccos ¢ +clog tan . (72) acos 6+bcos O0'=k.
(74) 20y=(z+0¢)?; singular solution y(y - 22)=0.
(75) z+py+ap?=0; (y+ap)y/(p?+1)=c+asinh™p,
24/(p?+1) + p(c+a sinh~1p) =0.

There is no singular solution. The p-discriminant y®=40z

represents the cusp-locus of the involutes.
(17) y=aw, z=b+ V(@ +9?) ; 2=/(2"+9°) +f(y[2).

The subsidiary integrals represent a family of planes through
the axis of z and a family of paraboloids of revolution with
the axis of 2 as axis ; the general integral represents a family
of surfaces each of which contains an infinite number of the
parabolas in which the planes and paraboloids intersect.

(78) R+ +22=f{2+y2+(@+y)}; P+yi+P=0; 2=y
(79) 2z —y)"=c%(x+2y).
(80) (az - by)/(z+c)=f{(az+by)/(z - )}
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(81) () I=E|R+de-RiL; (ii) A=I,- EJR; (iii) I~ EJR.

(82) I=acos(pt—€)+Ae~ R/, where a= Ef+/(R?+ L?p?), tan e=Lp/R,
and 4 is arbitrary.

(83) @=a sin (pt —¢€), where tan e= (CLp? -1)/pCR and
a=EC[\/{(CLp*-1)®+ p2C2R3}.
(85) w=4 cos (t—a) + B cos (3t-B); y=2A4 cos (t—a)—5B cos (3t-B)
(86) @ and b are the roots of A\2(LN — M?) +A(RN+LS)+ RS =0.
(91) 2=4 cos (pt—a) + B cos (¢t - 8), y=A sin (pt—a) - Bsin (gt - 8),
where 2p=1/(46*+ k?) + &, 2¢ =1/(4¢® +42) — .
(92) ilitf;-l- (a+Db) %—j+ abz =abe.
(93) p=+/(n*-2u? makes the amplitude of the particular integral a
maximum, provided 242 does not exceed n2.
(94) m=Ae* cos (pt - €), where p=1/(n?— k?).
(97) ¢=%Va3r2cos 0. (98) y sin (pbfc) =4 sin (pz/c)(cos pt + a).
(100) ¢=0C cosh m(y +%) cos (ma — nt).
(115)  (vi) u,=A(-2)*+B(-})%;
(viil) w,= 2’”<P cos ﬂ—;—v +@ sin '%a:> H
2(0

(x) w,=A (-9 + B+
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Ampére, xvi, 183.

Angstrom’s determination of diffusivity,
58.

Approximate methods, 5, 94, 209.

Arbitrary constants, 2, 50, 126, 127,
214.

Arbitrary functions, 49, 137, 147, 172.

Asymptotic series, 213.

Auxiliary equation, xv, 26, 174, 216.

Bar, vibrating, 190.

Bateman, 194.

Bernoulli, xv, 12, 18.

Bernoulli’s equation, 18.

Bessel, 110. .

Bessel’s equation, 114, 116, 118, 120,
215.

Boole, xv.

Boundary conditions, 53, 56.

Briot and Bouquet, xvi.

Brodetsky’s graphical method, vi, 5.

Bromwich, 209.

Cauchy, xvi, 121, 124.

Cayley, xv.

¢-discriminant, 67, 155.

Change of variables, 40, 61, 79, 85, 91,
93, 119, 120, 164.

Characteristics, 6, 97, 158.

Charpit, xvi, 162.

Charpit’s method, 162.

Chemistry, 206.

Chrystal, xvi, 150.

Clairaut, xv, 76.

Clairaut’s form, 76, 79.

Common primitive, 10.

Complementary function, 29, 87, 175,
216.

Complete integral, 153.

Complete primitive, 4.

Conditions of integrability, 139, 144,
191, 193

Conduction of heat, 52, 53, 57, 58, 59,
60, 212.

Confocal conics, 23, 79.

Conjugate functions, 24, 189.

Constant coefficients, xv, 25, 49, 173,
178; 212, 214, 216.

Constants, arbitrary, 2, 50, 126, 127,
214.

Convergence, xvi, 112, 124.

Corpuscle, path of a, 48.

Cross-ratio, 201.

Cusp-locus, 68, 73.

D’Alembert, xv, 25, 44, 49.

Darboux, xvi.

Definite Integrals, solution by, 212, 213.

Degree, 2.

Depression of order, 81.

Developable surface, 189.

Difference equations, 216.

Difficulties, special, of partial differen-
tial equations, 51.

Diffusion of salt, 60.

Discriminant, 67, 71, 155.

Duality, 160, 161, 189, 210.

Dynamics, 2, 24, 28, 36, 46, 47, 50, 61,
85, 86, 190, 204, 205, 206, 207, 208,
209, 210, 211.

Earth, age of, 60, 212.

Einstein, 209.

Electricity, 24, 29, 46, 48, 58, 59y 134,
203, 204, 205, 206.

Elimination, 2, 49, 50, 179.

Envelope, 66, 71, 146, 155.

Equivalence, 92.

Euler, xv, 12, 25, 49.

Exact equations, 12, 23, 91, 191.

Existence theorems, 121, 214.

Factorisation of the operator, 86.
Falling body, 24, 86.
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Falling chain, 208.

Finite differences, 215, 216.

First order and first degree, ordinary,
12, 133 ; partial, 147, 151.

First order but higher degree, ordinary,
62, 65 ; partial, 153, 162, 165.

Fontaine, xv.

Forgyth, 150, 194.

Foucault’s pendulum, 209.

Fourier, 54.

Fourier’s integral, 60.

Fourier’s series, 54.

Frobenius, xvi, 109.

Frobenius’ method, 109, 127.

Fuchs, xvi.

Functions, arbitrary, 49, 137, 147, 172.

Gauss, 110.

General integral, xvi, 137, 147, 149, 157.

General solution, 4.

Geometry, 5, 19, 65, 133, 137, 146, 173,
188, 189.

Goursat, xvi, 172, 194.

Graphical methods, 5, 8.

Groups, xvi, 120, 194.

Hamilton’s equations, 210.

Heat, 52, 53, 57, 58, 59, 60, 212.

Heaviside, 58, 61.

Heun, 94.

Heun’s numerical method, 104.

Hill, M. J. M., vi, xv, xvi, 65, 150, 155,
192, 194,

Homogeneous equations, xv, 14, 40, 44,
83, 144, 171, 173, 213.

Homogeneous linear equations, 40, 44,
171, 173.

Hydrodynamices, 208.

Hypergeometric equation, 119, 120.

Hypergeometric series, 92, 119.

Indicial equation, 109, 111.

Initial conditions, 4, 28, 53.

Inspection, integration by, 12, 172.

Integrating factor, xv, 13, 17, 22, 23, 91,
199.

Intégrability, 139, 144, 191, 193.

Integral equation, 96.

Intermediate integral, 181.

Invariant, 92.

Jacobi, xvi, 165.
Jacobi’s Last Multiplier, 211.
Jacobi’s method, 165, 193, 210.

Kelvin, 58, 60, 212.
Klein, xvi.

Kutta, 94, 104, 108.
Kutta.’sv numerical method, 104.

Lagrange, xv, 49, 81, 162.

Lagrange’s dynamical equations, 210.
Lagrange’s linear partial differential
equation, xvi, 147, 151, 158, 192.

Laplace, xvi.

Laplace’s equation, 51, 189, 190, 196,
197, 213.

Last multiplier, 211.

Laws of algebra, 30.

Legendre, 110.

Legendre’s equation, 117, 120.

Leibniz, xv.

Lie, v, xvi, 194.

Linear difference equations, 216.

Linear equations (ordinary), of the
first order, 16, 214; of the second
order, 86, 87, 88, 109, 127, 214, 215;
with constant coefficients, xv, 25,
214.

Linear equations (partial), of the first
order, xvi, 50, 147, 151, 158, 192;
with constant coefficients, 49, 173,
178, 212.

Linearly independent integrals, 216.

Lines of force, 24, 134.

Lobatto, xv.

Maxwell’s equations, 59.
Mechanics, see Dynamics.
Membrane, vibrating, 190.
Monge, xvi, 172,

Monge’s method, 181, 183.
Maultipliers, 135, 210, 211.

Newton, xv.

Node-locus, 68.

Non-integrable equations, 142.

Normal form, 91, 92.

Normal modes of vibration, 204, 206.

Number of linearly independent inte-
grals, 216.

Numerical approximation, 94.

One integral used to find another, 87.
136.

Operator D, 30, 44, 86, 174, 214,

Operator 6, 44.

Orbits, planetary, 86, 209.

Order, 2.

Orthogonal trajectories, xv, 20, 23, 138,
189.

Oscillations, xv, 2, 28, 29, 36, 46, 47,
48, 50, 61, 190, 203, 204, 205, 206,
207.
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Page, 104. R

Particular integral, xv, 4, 29, 33, 44, 87,
175, 178, 216.

p-discriminant, 71, 155.

Pendulum, 28, 206, 207, 209.

Perihelion of Mercury, 209.

Physics, see Conduction of heat, Cor-
puscle, Diffusion, Dynamics, Electri-
city, Hydrodynamics, Potential, Ra-
dium, Resonance, Telephone,Vaporisa-
tion, and Vibrations.

Picard, xvi, 94, 121.

Picard’s method, xvi, 94, 122.

Poincaré, xvi.

Poisson’s bracket expression (F, F,),166.

Poisson’s method, 189.

Potential, 134, 190.

Power series, XV, Xvi, 4, 109, 124.

Primitive, 4.

Radium, 24.

Reduction of order, 81.

Regular integrals, 110, 118.
Resonance, 37, 46, 205.
Riceati, 110.

Riccati’s equation, 119, 201.
Riemann, vi, 194.

Runge, xvi, 94, 99, 100.
Runge’s numerical method, 99.

Schwarz, xvi, 92.

Schwarzian derivative, 92.

Schlesinger, 194.

Second integral found by using a first,
87, 136.

Separation of the variables, xv, 13.

Series, solution in, xv, xvi, 4, 109, 124,

Shaft, rotating, 47.

Simple harmonic motion, 2, 85, 204, 206.

Simultaneous equations, 42, 59, 133,
168, 171, 214.

Singular integral, 155. -

Singular point, 7.

Singular solution, xv, 4, 65.

Solid geometry, 133, 137, 146, 173, 188,
189. .

Solving for p, z, or y, 62.

Special integral, 137, 150, 192.

Standard forms, 153.

String, vibrating, xv, 50, 61, 190, 208.

Subsidiary equations, 147, 164, 166.

Substitutions, 40, 61, 79, 85, 91, 93, 119,
120, 164.

Symbolical methods, xv, 33, 44, 45, 61,
175, 178, 214. '

Tac-locus, 72.

Taylor, xv.

Telephone, 58.

Todd, 213.

Total differential equations, 137.

Transformations, 40, 61, 79, 85, 91, 93,
119, 120, 164. :

Transformer, electrical, 48,

Vaporisation, 24.

Variation of parameters, 88, 93.

Vibrations, xv, 2, 28, 29, 36, 46, 47, 48,
50, 61, 190, 203, 204, 205, 206, 207.

Wada, xvi. 5, 8, 9.

Weber, 194.

Whittaker and Watson, 214.

Whittaker’s solution of Laplace’s equa-
tion, 51, 213.

Wronski, 215.

Wronskian, 215.

2 absent, 82.
y absent, 82.

Zeemann effect, 200.
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