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Preface

THE main purpose of this book is to give a thoroughly elemen-
tary account of the ‘operational method’ for solving linear
differential equations with constant coefficients, subject to
prescribed initial conditions.

No previous knowledge of differential equations will be
demanded from the reader, and accordingly the basic proper-
ties of linear differential equations with constant coefficients
are treated in the first chapter. This chapter may be found
useful even by those readers who do not wish to learn the more
specialized technique of operators, treated in the second
chapter.

The book is addressed primarily to students of the exact
sciences and of engineering, but it deals only with mathema-
tical techniques and does not contain any illustrative examples
drawn from other fields (such as mechanics, electric circuit
theory, probability theory, and so on). Each reader will no
doubt meet problems in his own field of studies to which the
mathematical techniques described in this book may usefully
be applied.

I am very grateful to Dr. Walter Ledermann for reading the
draft with great care and for making many useful suggestions.
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CHAPTER ONE

Linear Differential Equations with Constant
Coefficients

§ 1. The first order equation

1.1 Introduction. The linear differential equation of the first
order with constant coefficients is the simplest of the equations
which will be treated in this book, and thorough familiarity
with its properties will be absolutely essential in everything
that follows.

The equation is most conveniently written in the form

o PR
7, o=/ (1)

Here a is a constant (i.e. does not depend on x or ¥), f is a given
function of x, and ¥ is an unknown function of x which we have
to find from (1) by ‘solving’ this equation. The equation is
called ‘linear’ because it contains only a linear combination of
y and dy/dx, as opposed to non-linear combinations such as
dy
ya;
tive dy/dx and not the higher derivatives d2y/dx?, . . .
One instance of (1) will certainly be known to the reader: the
equation

and first order because it contains only the first deriva-

dy
R}_f (). (2)

Here we have to find a function y whose derivative equals the
given function f, and this is simply the problem of integrating f.
Thus y must be an indefinite integral of f:

y=jf(x)dx+c, (3)

where C can be any constant. The general solution of (2)
b P



LINEAR DIFFERENTIAL EQUATIONS

therefore involves one arbitrary constant whose value is at our
disposal. In practice it is often not the general solution which is
needed, but rather some special solution, for instance that solu-
tion for which y has some given value y, when x has some given
value x,. For example, if dy/dx=3x*—2 then y=x%—2x+4C,
but if we also require that y=1 when x=2 then we must take
C=—3. Generally, if an initial condition:

y=Y, when x=x,,

is imposed then the value of the arbitrary constant C in (3) can
be determined. The required solution is then most simply
written in terms of a definile integral of f, as

Y=Y+ E J(E)dé. (4)

Another familiar special case of (1) occurs when the right-
hand member f(x) is zero, so that the equation reduces to

R
S To=o. ()

Dividing through by y and noting that

1dy d(logy)
ydx  dx

we can then write

d(log y) /dx=—a,
whence
log y=—ax+C, y=C'e"%,

where C is an arbitrary constant and C’'=eC. The preceding
argument is, however, inadequate because it ignores the possi-
bilities that y may be zero (then we must not divide by y) or,
even worse, that y may be negative (then log ¥ is not defined).
It would not be hard to patch up the argument and to arrive
at the complete solution to (5), but for us it will be better to
make a fresh start: we shall give another method of treating (5)
which not only leads to the complete solution of (5) but can
also be used to solve the more general equation (1).
2
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1.2 The integrating factor. We now want to show that the
general solution of (5) is
YKo, (6)
where K is an arbitrary constant. Now (6) is equivalent to
ye**=constant,
which in turn is equivalent to

d
a(.'}"’“) =0,

e"“(%+ay) —o;

since ¢** is never zero, the last equation is equivalent to (5).
Thus (5) and (6) are equivalent: every choice of K in (6) gives
a solution of (5), and every solution of (5) has the form (6) for
some value of K.

The success of this method is due to the fact that

dy
~(z+)

is an ‘exact derivative’, i.e. is the derivative of y¢®*. The same
fact can be used to solve the general equation (1),

dy A
a_!_ay _f (x) »
if we multiply by &*® we obtain
)
and then we can integrate both sides to obtain

yﬁ=pﬂwa+a

y——-s‘“je“f(x)dx+ Ce-o=, )

Formula (7) gives the general solution; if an initial condition
has to be satisfied, say y=y, when x=z,, the formula would
read

y=‘*”rs"‘f(ﬁ)dfﬂoe‘“‘“"- ®)
3



LINEAR DIFFERENTIAL EQUATIONS

In practice it is hardly worth while to try to memorize these
two formulae: one need only remember the method by which
they were obtained.

dy .
Example 1: 5—3}' =sin #.
Multiply by 3% in order to bring the equation into the form
% 0% == gin) 7,

and then integrate to obtain

ye—3 = Is-” sin xdx+C

= —'i%s—”(m x+3 sin #) +C.
Hence the general solution is
y= —%(cos x+3 sin #) +Ce®?,
where C is an arbitrary constant.
Example 2: Solve j—i +y=x"1 for x>0, with the initial condition

y=0 when x=1.
After multiplying by ¢* we get
2 tye) =,
Integrating this and making use of the initial condition, we get
z
ye“=j E-1g8dE
1
and hence the required solution is
x
¥ =s-‘=J- E-1g8dE,
1

It will be noticed that our formula for the solution contains an
integral which cannot be expressed in terms of ‘elementary’ func-
tions (polynomials, exponentials, logarithms, sines and cosines).
This will often happen and when it does we must be content to
accept such formulae for a solution. In practical problems one is

4
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in any case likely to need numerical values for the solution, and
from this standpoint the ‘known’ functions are those whose values
have been tabulated: amongst these occur not only the ‘elemen-
tary’ functions mentioned above but many others (including, as it

z
happens, the integral I £-1g8dE which occurs in Example 2). We
1
cannot of course expect that the solution will always involve
integrals which have already been tabulated, and it may some-
times be necessary to use numerical methods of integration (such
as Simpson’s Rule).

The work of this section may conveniently be summarized
in the following rule for solving the first order equation (1):

Multiply by e® to bring the equation into the form
= (9o =e*f(x).

Then integrate both sides; initial conditions can be fitted
at this stage by using appropriate definite integrals (as in
Example 2).
It is usual to call ¢** an integrating factor for equation (1) be-
cause multiplication by this factor enables us to solve the
equation by simple integration.

1.3 The form of the general solution. We return briefly to
the general formula (7),

y=eo J' e=f(x)dx+Ceo=,
for the solution of dy/dx-+ay=f(x). Taking C=o0 we see that
y=g~wjﬂf(x)dx

is a particular solution, and that the general solution is obtained
by adding Ce~**. Now Ce~** is the general solution of the
reduced equation dy/dx--ay=o0; it is usually called the comple-
mentary function. Thus we can say:
‘General solution=particular solution
plus complementary function.”
5




LINEAR DIFFERENTIAL EQUATIONS

We shall find that a similar assertion may be made for linear
equations of higher order and will then be very useful in finding
the general solution.

§ 2. The second order equation

2.1. The reduced equation. The general second order equa-
tion reads

dﬂ+@+wﬁmm (1)

but we shall first treat the reduced equation in which the right-
hand member is zero, i.e.

dy+a y+by 0. (2)

Here a and b are supposed to be comstants; they must not
depend on x.
The first order equation

—--]—ay 0,

analogous to (2), has solutions Ce~%*. We may therefore expect

(2) to have exponential solutions also, and indeed we can easily

find such solutions by substituting y=¢** into (2). This gives
k2ek|qke** -beF*=o0,

and so y=¢" will be a solution provided that

k2ak+-b=o.

This quadratic has two roots, &, and %,, and so we obtain two

solutions, &% and e¥*, of (2). Now whenever we know two

solutions, say y, and y,, of (2), then C,;y,+C,y, will also be a

solution for arbitrary values of the constants C; and C,; for

if y=C,y;+Csy, then

ay
dx2 +Qy ;
= (eZ2c2) (e yuxf@ﬂ+MQx+0go

6
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=c,("'”y‘ ‘i”‘+by1)+cz(dzy’+a5’i=+by,)

=C3(0)+Cyf0)=o.
We have therefore found a solution

y: Clgkﬂ.‘_l_ Czeha!
which contains two arbitrary constants. This is quite satis-
factory except when %, and %, happen to be equal; then we
merely get y=(C;-C,)e", i.e. an arbitrary multiple of ¢*=
only, and we may expect that there is a second solution which
we must still find. Also we cannot be sure (even when &, and k&,
are not equal) that we have found all possible solutions. We
therefore make a fresh start, using a better method which will
not only resolve our present difficulties but can also be used to
deal with the general equation (1).

The new method depends on ‘factorizing’ the left-hand side
of (2) in a way which is perhaps made clearer by adopting a new
notation. Let us write ‘D’ for ‘d/dx’, so that %zgy will be
denoted by Dy. Then

a*y d fdy

dx? dx(dx) D(D3).
and naturally we shall abbreviate D(Dy) to D2%y. Equation (2)
can now be written as

(D?*+-aD--b)y=o,

which at once suggests that we should factorize the expression
in brackets as (D—Fk)(D—#k,), just as we would factorize
k*+-ak+-b as (k—Fk,)(k—ky). Since ‘D’ is not a number but a
symbol denoting ‘differentiation’, the reader will be quite
justified in doubting whether such a factorization is legitimate.
It is in fact legitimate because D satisfies the usual arithmetical
laws relating to addition, subtraction and multiplication. To
put it less abstractly: once we have agreed that D and D2 shall

stand for d/dx and d%/dx® a reasonable interpretation for
(D—ky)(D—ky)y is

o ()4l 20 ()

7




LINEAR DIFFERENTIAL EQUATIONS

%y dy
=E§“‘(k1+ks)df‘x+k1kay
_ay, dy
ﬂE;;-“+adx+bj,'

because k,+ky=—a and kyk,=b, ky and k&, being the roots of

k2tak-+b=o.

We have now written (2) as (D—k,)(D—ky)y=o0. If we put
(D—Fky)y=2, for the moment, this becomes (D—Fk;)z=o0, or
dz/dx—kz=0. This gives z=Cé"*, and now we have

dy

= —kyy=2z=Ce"*,

dx 2y

which is a first order linear equation for y. Solving it by the
standard method we get

%(yg—k.m)zcg(x,—k.)m’
ys"*=”=CJs‘*l‘*-’zdx-1-C’.

If ky <k, the integral on the right is
_C .g“’l- ko)ﬂ'-;

ky—ky

if ky=Fk,, it is simply I Cdx=Cx. We have now proved that

etz - Cleks® if ky=hy,
7 U
y=Cxet=4-C'eh®  if ky=k,.
; : ; e it
Note that C/(k,—k,) is an arbitrary constant: we can give 1
whatever v.raluel W(;3 wish by suitably choosing C. Thus the
general solution of (2) is an arbitrary linear combination of
¢t and e if ky =Ry,
el® and xeb® if ky=ky.
8

the most general solution of (2) is given by
Pl >
-
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Incidentally we have found the missing second solution when
Ri=ky: 1t 18 2eh®,

One further point needs discussion: what happens if the roots
of k2-+-ak--b=o0 are complex? In practice a and b will certainly
be real, so that &, and %, will be complex conjugates, say

k=a+tiw, ky=0—iw.
The corresponding solutions will be
ele 0T — ox%(cos x -1 sin wx).
Any linear combination of ¢@+%) and ¢~ can therefore be
rewritten as a combination of ¢* cos wx and e** sin wx, say
(4 cos wx--B sin wx);
it is usually preferable to write the solution in this form because

the constants 4 and B will then be real for a real-valued
solution.

Example 1: (D*+42D+2)y=o0.
Here k2 +2k+2=0,s50 (k+1)2+1=0and k+1= 41, or k= —1 1.
Thus e¢= —1, @w =1, and the solution is

y=e"*(4 cos x+B sin x),
Perhaps the reader who feels any doubt about the use made of
complex numbers in this calculation may be slightly reassured
when we have checked that this is a solution. We have
Dy= —e%(A4 cos B sin x) +¢*(— A sin 2+ B cos #)
=e~2[(B —A) cos x—(A +B) sin 7],
and similarly
Dy =e—[—2B cos x 424 sin x].
Hence (D2*4-2D+2)y is a linear combination of e~*cos # and
e—®sin x, with coefficients
—2B+2(B—A4)+24=o0,
24 —2(A +B) +2B =o0;
that is to say, (D?+42D +2)y=o.

2.2 The general equation. The ‘factorization’ method, used
above to solve the reduced equation (D?+aD-b)y=o0, can be
used equally well to solve the general equation (1):

(D?*+-aD+-b)y=f(x),
E.D.E.—B 9




LINEAR DIFFERENTIAL EQUATIONS

when the right-hand member f(#) is not zero. Putting (D—ky)y
—z as before, we now have

(D—ky)z=f(x).
After solving this first order linear equation for z, we can then
solve
(D—ha)y=z
for y.

Unfortunately this method usually involves rather clumsy
calculations because of the integrations needed for solving two
first order linear equations, and the method is #nof recommended
for practical use. If we did use it, we should find that the solu-
tion consists of two parts: one part, containing two arbitrary
constants of integration, coincides with the solution of the
reduced equation (see p. 8) and is called the complementary
function; the other part depends on f(x) and is a particular
solution. Thus the general solution of

(D2+aD+b)y=f(x)
can be found by taking one particular solution and adding to it the
complementary function (i.e. the general solution of the reduced
equation (D?+aD+b)y=o0, which contains two arbitrary
constants).

In view of the practical importance of the above statement,
we will give a direct verification. Let y, be a particular solution
of (1) and let y, be any solution of the reduced equation. Then
if y=9,-y, we have

(D*+aD+-b)y=(D*+aD~+b)y,+(D*+aD+-b)y,
=f(x)+o0=f(x),
so that y is also a solution of (1). Conversely, if y is any solution
of (1) and if we put y—y;=2,, then
(D‘-l—aD+b)y,={D=+aD+b)y—(D’+aD+b)yl
=f(x)—/(®)=o,
so that y, satisfies the reduced equation; this shows that y is
necessarily of the form y,-+¥s.

Now it is often possible to find a particular solution fairly
easily without having to use the general method explained at
the beginning of this section. In particular, this can always be

10
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done when f(x) is a polynomial, an exponential, or a combination
of sines and cosines. The next three sections will show how it
can be done in these three special cases.

2.3 Particular solution: polynomial f(x). If f(x) is a poly-
nomial, we can always find a particular solution which is also
a polynomial by substituting into the equation a trial poly-
nomial (with undetermined coefficients) and then equating
coefficients.

Example 2: (D*—7D —5)y =#*—1.

We try a particular solution of the form y=p*-+gs®+rx+s.
Then

Dy =3px®+2qx+7, DYy =6px+2q,
and we must have
6px +29 —7(3px2 +2qx +7) —5(px° +qx® +rx+s) =2 —1.
Equating the coefficients of 2%, #2, » and 1, we find that

I
_5 =I, = ——
p=1,p 5

B L DAY
» 5 251

6
6p —140— 57 =0, ————F =gy, yu= —3o%;
5. =5 125
aplar L5 P 42 +2268+I 2603
— — ==, = —_— =55, §=——="
25 125 5 625

Hence a particular solution is
¥ =gig(—125%%+ 52548 —1620% +2603).

Notice that the trial solution was taken to be a polynomial
of the same degree as the right-hand side #3—1 of the equation.
This will suffice unless the coefficient b (of y on the left-hand
side) is zero; in this case the degree of the trial polynomial must
be increased by 1. The reason for this is that when b=o0 the
constant term s in the trial solution y= . . . 4-s will disappear
when we form (D*+aD--o)y, and will not be available when
we equate coefficients. We therefore need another coefficient

Ix
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at the start of the trial solution. If a, the coefficient of Dy, is
also zero then the equation is simply D?y=f(x) and can be
solved by integrating twice.

2.4 Particular solution: exponential f(¥). Another case in
which the form of a particular solution can be predicted is
when f{(x) is an exponential, so that the equation reads
(D2+4-aD+-b)y=Mem=,
In general one can then find a particular solution of the form
y=Ae™, and the constant A can be found by substituting into
the equation. We must have
Am2emztq, Amem=4-b. Aem*=Me™=,
A(m*+am-+b)=M.

This fixes A, unless m?+am--b=o0. In this case, k=m is a root
of the equation k2-+4-ak+b=o0: thus ¢™* occurs in the comple-
mentary function, and naturally the result of substituting
y=Ae™ into the left-hand side is zero. We must then try
y=Axe™ and find 4 as before by substituting. Finally it may
happen that both ¢”# and xe™* already occur in the comple-
mentary function, i.e. that k=m is a double root of k*+-ak-+-b
=0. We must then try y=A4x2%™ and find 4 by substituting.
(We have not attempted to explain why multiples of xe™* or
x2e™ should occur in the exceptional cases mentioned above.
The reader may either accept this as an experimental fact or
may derive it for himself by applying the general method of
solution explained in § 2.2.)

Example 3: (D*—3D +2)y=5e*.
Substituting y =4e**, we get
gde¥® —3.34e% 243 =5e%,

24e%®=5e%%, 4 =-‘Z—.

Hence y =-2—.‘="‘1= is a particular solution.

Example 4: (D*—1)y=3e""%.
Here ¢—* already occurs in the complementary function; it is
12

THE SECOND ORDER EQUATION

useless to substitute de—*, and we must try Axe—* instead. If
y=Axe~%, then

Dy=A(—x+1)e®, DYy =A(x—2)e".
So we must have
A(x—2)eF—Axe*=3e°
The terms in xe—* cancel as they should (this is always a useful
check), and we are left with

—2de®=3e% A= -—%,

so that y = —%xe-“ is a particular solution.

Example 5: (D2—2D+1)y=¢"

Here k2—2k 4+ 1=0 has k=1 as a double root, and therefore both
é* and xe® occur in the complementary function. Thus we have
the worst possible case and must try y=4Ax%®. This gives

Dy =A(x*+2x)e%, D2y =A(x2+4x +2)e*.
Substituting and cancelling the common factor &%, we get
A¥2 447 +2) —24 (#2 +27) + Ax?=1.

The terms in #? and x cancel (again a useful check), and this
simply leaves 24 =1, A =}; y=4x%"® is a particular solution.

2.5 Particular solution: trigonometric f(x). Finally, we
deal with the case when f(x) is a multiple of cos nx or sin nx,
or more generally of the form

f{x)=P cos nx+-Q sin nx.
There are several methods, of which we give two. First, we
may try a solution of the same form as f(x), namely

y=A cos nx-+B sin nx,

and find 4 and B by substituting in the equation.

Example 6: (D*—2D—5)y=2 cos 3x¥— sin 3#.
Substituting y =4 cos 3¥-+B sin 37, we have
(—94 cos 3x —9B sin 3x) —2(—34 sin 32+ 3B cos3%)
—5(4 cos 3x 4B sin 3x) =2 cos 3¥— sin 3%.
13
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Equate the coefficients of cos 3x and sin 3# to zero; this gives
—144 —6B=2, 64 —14B=—1,
and hence
(14%+6%4 =2(—14) —1(6), 2324 =-—34, 4=—17/116,
(14%+6*) B =2(—6) —1(—14), 2328 =2, B=1/116.
Thus we have as a particular solution

1 §
=— =1 4
¥y 1!6( 7 cos 3% sin 3%)

The preceding method will fail when cos #x and sin nx
already occur in the complementary function, i.e. when the
equation is

(D2+4-n2)y=P cos nx-+Q sin nx.
The trial solution must then taken to be
y=x(A cos nx+B sin nx);
see Problem 12.
A second method for finding a particular solution of
(D2+aD+-b)y=P cos nx+(Q sin nx
is based on the fact that cos #x and sin #x can be expressed in
terms of complex exponentials. For instance cos nx and sin nx
are the real and imaginary parts of ¢, and more generally
P cos nx+-Q sin nx is the real part of
(P—1Q)(cos nx--7 sin nx)=(P—iQ)e™®,

(We shall assume that P and Q, as well as the coefficients 2 and
b, are real.) Now suppose that we have found a complex-valued
solution y of

(D*+aD+b)y=/(x),
where f(x)=f,(x)+ifs(x) is also complex-valued. Writing
y=y,-+1y,, where ¥, and y, are the real and imaginary parts of
¥, we have

(D*+aD+-b)yy+i(D*+aD+-b)y,=f,(x) +fs(%).

Equating real parts,

(D2+aD+-b)y,=f(x),
and equating imaginary parts,

(D*+-aD+b)y,=fy().

14
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Thus if y is a particular solution when the right-hand side is
f(x), then Ry and Iy are solutions when the right-hand side is
Rf(x) and If{x), respectively. To find a solution when the right-
hand side is K cos nx or K sin nx, we may therefore first find
a solution when the right-hand side is K¢**®, and then take its
real or imaginary part; more generally when we have P cos nx
+@ sin #x on the right, replace it by (P—iQ)e™*, find a solu-
tion, and then take its real part.

We illustrate the method for the same equation as in Ex-
ample 6.

Example 7: (D®—2D —5)y=2 cos 3x—sin 3%,
The right-hand side is the real part of (2 +2)e%®%. To find a particu-
lar solution when the right-hand side is (2 4+1)e3®, substitute
y=Ae*=, Then after cancelling %% we get
A[(37)* —2(38) —5] =2 +i,

2414 241)(14—61 +21 I e
___m_{_ 3 )(a4 2 e SR S
14 -+6i 14%4-6 232 116
Taking the real part of the corresponding solution Ae%®, we
obtain the required solution

1 . 3
y=R{-—R(x7 +14)(cos 3+ sin 3x)}

= I(:::: ¥ — sin 34
kg by Gt bl )-

# A similar method applies in the exceptional case when
cos nx and sin #x already occur in the complementary function.

Example 8: (D2+4)y =3 sin 2z.
Here we shall first find a solution when the right-hand side is
3¢%® and then take its imaginary part. Since £2% already occurs
in the complementary function we must take a trial solution of
the form y=Axe?®. This gives
Dy =A(2ix+1)e?®, Dy =A(—4%+4i)e=,
Substituting and cancelling 2,
3 3 3.
A(—4x+40)+4dx=3; A===—"4,
(—47+40)+4 < ik
Hence the required solution is
y=1{—3ixe®?®} = — 3z cos 2z.
i5
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2.6 Particular solution: some further cases. The methods
of the preceding three sections can be extended to deal with
more complicated forms of right-hand side f(x). We shall
merely state what procedures can be used: examples can be
found amongst the problems at the end of this chapter.

(i) If f(x) has the form

e™*(P cos nx-+Q sin nx),
either substitute a trial solution of similar form, viz.
y=em*(A cos nx-+B sin nx),
or replace the right-hand side by
(P—ig)etminv,

find a solution, and take its real part. As usual a factor x must
be inserted if ¢™® cos nx and e™* sin #x occur in the comple-
mentary function. Unless the reader has strong objections to
the use of complex numbers, he is advised to use the second of
the above methods.

(i) If f(x) consists of a polynomial multiplied by an expon-
ential factor, try a solution of the same form; the polynomial
occurring in the trial solution should have the same degree as
that occurring in f(x), but its degree must be increased in
exceptional cases. For instance suppose that f(x)=(x*-1)e?=.
Then take y=(px*-+gx-+7)e?® as trial solution; but if ¢ occurs
in the complementary function take y=(px3+4gx*+-rx)e?2, and
if x¢2* also occurs take y=(px*-gx®-}-rx2)e?=.

(iii) Similarly, if f(x) is a polynomial multiplied by (P cos nx
-+Q sin nx), either try a solution of the same form or (better)
replace the right-hand side by the same polynomial multiplied
by (P—iQ)e™®, find a solution as in (ii) above, and then take
its real part.

(iv) It may happen that f(x) is the sum of several terms,
each of which could be treated by substituting an appropriate
trial solution. Clearly we can deal with such an f(x) by sub-
stituting an appropriate combination of terms. For instance if
fl¥)=e*—2e~%54x2, substitute y=Ae*+Be 3-px?4-gx+r
and hence determine 4, B, p, g and 7.

16
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2.7 Arbitrary constants and initial conditions. The general
solution of an equation
(D*+aD-+b)y=f(x)
has the form y=y,-+v,, where y, is a particular solution and y,
is the complementary function containing fwo arbitrary con-
stants. One often wants not the general solution, but rather the
special solution which satisfies given initial conditions: y and
Dy are to have given values at some given value of x. The
appropriate values of the arbitrary constants can then always
be found by substitution, as in the example below.
Example o:
Find the solution of (D®—4D—5)y=x* for which y=1 and
Dy=—1 when x=o.
The quadratic 22— 4% —5=0 has roots k=5, —1, so that the com-
plementary function is 4e5 4 Be—=. As a particular solution, try
y=px%+4qx+r. This gives
2p —4(2px +q) — 5(px% +-qx +7)=x%
equating coefficients,
—5p=1, —8p—5¢=0, 2p—44—5r=0,
and hence
I 8 8 2
= —— q:-—- ==, ¥ =20 — = ——— = ——
R £ Qi it A A 225
So the general solution is
1 8 42
W A s S S —
¥ sx +25x us-i—Ae +Be~*,
For this solution we have
--2 1445,
3 when x=o.

8

To fit the initial conditions (y =1, Dy = —1, when ¥=0), we must
have
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Adding, we get—i+6A =0, 4 =§-;—-: then

8 4
B=14544+—=1+4+— +—==—
8 25 75 %7 '3

Thus the required solution is

y=-—lx’+—x-—-ii- I s“+ic".

5 @5 " ey 31D 3

The reader will notice that even a simple example may in-
volve quite heavy calculations because one has first to find the
general solution and then to fit the arbitrary constants to the
given initial conditions. The arithmetical work can be lightened
by using the operational method, to be presented in Ch. II; this
method is specially designed for finding the solution satisfying
given initial conditions, and at the same time will also give the
general solution if this is wanted.

2.8 Recapitulation. We shall now give a brief summary of the
methods developed in the preceding sections for finding the
general solution of

(D*+aD+b)y=f(x).
The reader will recall that the general solution is the sum of any

one particular solution and of the complementary function; the
latter is the solution of the ‘reduced equation’

(D*+aD+b)y=0

and contains two arbitrary constants. The following routine for
finding the general solution is recommended:

(i) Find the roots, ky and ks, of k*+-ak-+b=o0.

(ii) Write down the complementary function; this is
C1e52+Coe®® if ky and ky are real and unequal,
C,e¥*4-Coxe®s® if ky and k, are real and equal,

e(C, cos wx+C, sin wx) if ky and ky are complex con-
jugates o.t-1m;
C, and C, are arbilrary constants.
(iii) Find a particular solution. This can be done by substitut-
18
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ing a trial solution with undetermined coefficients in the
Jfollowing cases.

(ilia) f(x) s a polynomial of degree n. Try a polynomial of the
same degree, y=px"+gx"~1+ . .. ; if b=o0, iry a poly-
nomial of degree (n+1), y=px"14gx"+ . . ..

(iiid) f(x) an exponential, say f(x)=Me™*. Try y=Ae™=, this
succeeds if m does not equal ky or ky and gives the particu-
lar solution

M
= il EPTSAA"
Y m2+am-+b
If ky=kky and m equals ky or ky, i.e. if €™ occurs in the
complementary function but xe™ does not, try y=Axem>,
If ky=ky=m, i.e. if both e™* and xe™= occur in the com-
plementary function, try y=Ax%em=.

(ilic) f(x) 4s a combination of cos nx and sin nx. If f(x)=
K cosnx (or K sinnx), veplacef(x) by Ke'™, find a solution
as in (iiib) and then take its real part (or imaginary
part). If f(x)=P cos nx+Q sin nx, replace f(x) by
(P—1Q)e*™®, find a solution as in (iiib) and then take its
real part. (For another wmethod, not using complex
numbers, see § 2.5.)

(iiid) f(x) is a polynomial multiplied by e™* or by P cos nx
+Q sin nx: see § 2.0,

(itie) Iff(x) is not of one of the above types (nor a sum of several
terms, each of one of these types) use the ‘factorization’
method, § 2.2: see Example 10 below.

(iv) Add the complementary function, found in step (ii), to the
particular solution. If initial conditions have to be satis-
fied, the arbitrary constants can now be determined, as in
Example g (§ 2.7).

The following example illustrates case (iiie) above, when a
particular solution can not easily be found by guessing its form
and substituting a trial solution.
Example 10: Find a particular solution of
(D2—2D+1)y=1/(1 +€%).
19
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Since the left-hand side can be written as (D —1)%y, we shall put
(D —1)y=2, so that

(D—1)z=1/(1 +%).
Multiply this first order equation by the integrating factor %,
which gives D(ze—*) =e—%/(1 +¢€%) =e—2%/(1 +¢~%). Hence

—2r
2= J. £ dx.
I+4e =

Putting e~ =u, the integral becomes

—J—uwdu=-—j(r-——£-)du=—u+ log (1 +u);

I4+u I4u
we may ignore the constant of integration because we are only
looking for a particular solution. So we may take
26 ®=—g=+log (1+e7).
Now we must solve (D —1)y =2, or D(ye=)=z"%.
This gives

ye =g Jlog (1 +e%)dx,

y=1I +e’J.log (x4e%)dx.

Note that this method will always require fwo integrations.
In the above example, the first integration could be carried out
explicitly (but the second could not); in general, however,
neither integration can be done explicitly so that one obtains
a rather awkward formula containing a repeated integral.
Once again the use of the operational method (Ch. II) will
improve matters because it gives solutions involving at worst
single (and not repeated) integrals.

§ 3. Equations of higher order and systems of first
order equations

3.1 The n* order equation. The general linear equation
with constant coefficients,
dry &y W
E;;+“xa;€;‘_—1+ -+« Fay=f(z), (1)
20
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can be treated by straightforward extensions of the methods
used for second order equations. We again associate with (1)
the reduced equation
ary
e tay=o, (2)
and begin by treating this. It will be helpful to extend the ‘D’
notation by writing D3y for 4%y /dx®, and so on.

Our knowledge of second order equations suggests that we
start by looking for exponential solutions of (2). We find at
once, by substituting in (2), that y=e*? is a solution provided
that

kB tafr1+ .. . ta,=o, 3)
In general this equation has » distinct roots %, k,, . . ., &,,
and then we get » distinct solutions é®, . . . , e¥*, When (3)
has multiple roots, however, we get less than the expected
quota of # distinct solutions and we must look for further solu-
tions. Suppose then that k=%, is an 7-fold root of (3); this
means that the left-hand side of (3) can be written as
P(k)(k—FE,)T, where P(k) is a polynomial which does not contain
the factor &—k,. We now assert that the » functions

ghz, xgkﬂ:, ngk;z’ oy et AT—1ghz ( 4)
are all solutions of (2). To prove this we write (2) as
(D+-a, D24 . . . +a,)y=0
and then, by factorizing the left-hand side, write this as
P(D)(D—ky)"y=o0;
it will now suffice to prove that the » functions in (4) all satisfy

the simpler equation (D—&,)"y=o0. Now these functions all
have the form e**#x, where u is a power of #, and we have

(D—Fy) (e¥®u)=D(e*1%14) — k,e*r®u—e*¥r=Day,
(D—Fky)*(e*1%u) =(D — k,) (e"*Du)=e**D(Du) =e**D?%u;
by repeating this argument we finally obtain
(D—ky)"(¢fr2u) =et* Dy =0
because D'u=0 when u=1, x, #2, ..., "1 This completes
the proof that the functions (4) are solutions of (2). When we
21
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have treated each root of (3) in this way, allowing for its multi-
plicity, we can obtain the full quota of # distinct solutions.

Let the roots be &y, k,, . . . , k; with multiplicities 7y, 75, . . . , 75,
so that #,+7,+ . . . +7;=n. Then the » functions
M3 xghi® | afighs; ghe | gfimighe, (5)
; ek, xek®, | . ., AT lekR

are solutions of (2). It follows that any linear combination of
these functions is also a solution, and conversely it can be
shown that every solution of (2) is a linear combination of the
functions (5) (a proof of this last fact will be given later: see
p- 63). Thus

the general solution of the reduced equation (2) is an arbitrary
linear combination of the n functions (5), where ky, . . . , kyare
the distinct rools of (3), with multiplicities ry, . . . , 7;.

When some roots of (3) are complex, they will occur in pairs
a-+iw (assuming that the coefficients a,, . . . , 4, are real), and
one may then replace combinations of e*+@= and ¢~k by
combinations of ¢** cos wx and &** sin wx.

Next it can be shown, by an argument similar to that used
on p. 10, that the general solution of the full equation (1) is the
sum of any one particular solution and of the complementary
function (general solution of the reduced equation), the latter
involving # arbitrary constants. Particular solutions can be
found whenever f(x) is a polynomial, exponential, cosine or
sine, by substituting a trial solution of suitable form. The usual
troubles occur when f(¥)=Me™* and k=m is a root of equa-
tion (3), i.e. when ¢™* already occurs in the complementary
function; if k=m is a root of multiplicity 7, one must take a
trial solution of the form Ax"em=,

It should hardly be necessary to give a detailed set of instruc-
tions (like that on p. 18 for second order equations), but we will
illustrate some typical points by an example.

Example 1: Find the general solution of (D*—1)y=sin x.
The roots of £*—1=o0 are k= 414, 41, s0that the complementary
function is an arbitrary linear combination of cos #, sin #, €® and
¢~*,To find a particular solution, replace the right-hand side by ¢**
22
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(and take the imaginary part of the resulting particular solution).
Since % =i is a root of k*—1 =0, we must try y=Axe*?. This gives
Dby = A (itx 4 41%)e% = A (x — 41)e',

(Dt —1)y = —4ide,
and we must take —4i4 =1, 4 =}i. The particular solution is

I{}ixe™} =}xcosz,
and the general solution is

y =}xcosx 4+ C cosx 4 C,siny + Cge® + Cpe~2.

3.2 First order systems. The methods of the present chapter
can be adapted to problems involving simultaneous differential
equations for several unknowns y, z, . . . , but the arithmetical
work tends to become excessively clumsy. The operational
method (Ch. II) is more efficient and systematic, and is there-
fore to be preferred in all except the very simplest problems.
Accordingly we content ourselves here with the simplest
possible case: a pair of first order equations for two unknowns,
y and z,

dy

dx
with zero right-hand sides.

We shall look for solutions of (6) in which y and z are both

multiples of the same exponential, say

Yo gt g=e Beka, (7)
Naturally we want a solution other than the trivial one y=z=o0
so A and B should not both be zero. When we substitute into
(6), we find after cancelling ¢** that
(k+a)4+pB=o0, pA+(k+8)B=o. (8)
From (8) we obtain
[(%-+o0) (k+0) —fylAd =[(k+ o) (k+06)—Ppy)B=0

so that 4 and B will both be zero unless % satisfies the quad-
ratic equation

tay+r=0, Tt yyba=mo, ©)

(k+a) (k+-6)—py=o. ©)

‘When % does satisfy (g), then the left-hand members in (8) are
23
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proportional and either equation in (8) determines the ratio
A : B uniquely. (Those readers who are familiar with deter-
minants will recognize (g), written in the form

k+oa B |=o,

y k46
as a necessary and sufficient condition for equations (8) to have
a non-trivial solution.)

To avoid further complications we will now assume that the
quadratic (g) has distinct roots, &, and %,. Taking k=%, and
k=k, in (8), ratios 4, : B, and A, : B, can be found such that

y=A,e"%, z=DB,e® and y=A %%, z=B,e*
are solutions of (6). We can then form further solutions by
taking arbitrary multiplies of these solutions and adding them
together, and it can be shown that every solution of (6) can be
obtained in this way.

Example 2:

dz

dy_ +22=0, — +4y—2=0
Sy 3y +22=0, — +4y—z=o0.

The quadratic (9) is (k—3)(k—1) —2:4=0, k*—4k—5=0, with
roots k=5, —1, The equations (8) are
(h—3)A4 +28B =0, 44 +(k—1)B=0,
When k=35, either equation gives 4 +B=o0, and when k= —1
either equation gives 24 —B =o. Thus we can take
y=e%, z=—gb%
or y=e% r=2e"%
from these we can build up the general solution
y=C,5%+Coe", 2=—C,e%4-2Ce~%.

3.3 Arbitrary constants and initial conditions. The general
solution to the #'® order equation (1), p. 20, contains » arbi-
trary constants. Their values can be determined if »# suitably
chosen conditions are imposed on the solution: usually these
are initial conditions, and the » functions whose values are
prescribed at some given point x=x, are y and its derivatives
up to order n—1. We assert (without proof) that
24
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the n™ order equation (1) has exactly one solution salisfying
given initial conditions of the form y=y,, dy/dx=y,, ...,
ary/dxt=t—y. .. thkeit x=x,.

This assertion will be proved in Ch, II, § 2.6 (though a differ-
ent notation will there be used).

Similarly the general solution of the pair of equations (6),
P. 23, contains two arbitrary constants whose Values can be
determined when y and z are required to take given values
Yo and z, at x=x,:

the pair of first order equalions (6) has exactly one solution
satisfying given initial conditions
Y=Yy, 2=12,, When x=2x,,

This is a very special case of a general fact about sets of first
order equations which will also be established in Ch. II, §2.6.

PROBLEMS FOR CHAPTER I

[v" will denote dy/dx; Dy, D%y, . . . will denote dy/dx,
d*y/dx® ... Unless otherwise stated, the general solution
should be found.]

1. y'—y=x2 2, y'—y=e" y=0 when x=o0.

3. y'++2y=cos x. 4. y'+4y =sech x.

5. (D24-4D+5)y=z2e"2, 6. (D2+1)y=e"" cos x.

7. (D*—5D+-6)y=cos x-{sinx. 8. (D2—4)y=x2—3x—4.
9. (D24-2D+-1)y=2x¢"" 10. (D?*4-2D+5)y==x sin x.
11. (D2—2D—3)y=o0; y=2, Dy=—4, when x=o.
12. Find a particular solution of (D24-1)y=3 cos x—sin z by

substituting the trial solution y=x(4 cos x+B sin x).

13. (D34-1)y="6e2=. 14. (D*—3D?-}-D+-5)y=100 cOS 3%.
15. (D3—2D24-1)y=23.
16. Dy=2y—=z, Dz=3y—2z; y=2, z=0, when ¥=o0.
17. Dy+y+z=o0, Dz—y+z=o0.

E.D.E.—C 25




CHAPTER TWO
The Operational Method

§ 1. Preliminary discussion of the method
1.1 The operator Q. The purpose of the operational method
has already been indicated in Ch. I: it is to find solutions of
linear differential equations with constant coefficients which
satisfy specified initial conditions.

We shall depart from our previous notations: the unknown
will now be called #, and the independent variable ¢; the initial
conditions will be imposed at ¢=o0. This notation is in common
use because it fits in with many applications in which £ is a time
variable and x describes the state of some physical system
whose initial state (at time o) is given.

To introduce the operational method we consider the initial

value problem
) }

x=x, when {=o0,
for a first order equation. The solution is given by

d —aly —al
d_‘(x‘s )_f{?a ’
x(t)e—*—x(0)= j flx)e % dx,
0

T j: e-If()dx. (2)

Thus (1) can be solved by an integration from o to ¢; but it can
also be stated in a form involving only such integrations, with-
out any differentiations. To see this, integrate each term in

dx
“r—ax=f()

26
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from o to #. This gives

) —xo—aj: x(-r)dt=j: . (3)

Conversely if x satisfies (3), then x(0)=x, because the integrals
occurring in (3) are zero when =0, and also by differentiating
(3) we get

L) —ax() =10,

Thus the initial value problem (1) is equivalent to the ‘integral
equation’ (3). The operational method takes (3) as its starting
point, because this single equation incorporates the initial value
%o whilst in (1) the initial condition had to be stated separately.

The operation ‘integrate from o to #’ will play an essential
part from now on, and so we shall use a special notation for it.
If f is any function of #, we shall denote by Qf that function
whose value at ¢ is

t
ofo=| foy, @
and we shall speak of () as the operator which produces Qf when

applied to f. In this notation, (3) may be written as

x—2xg—aQx=0Qf,
(1—aQ)x=%+0f, (s)
where (1—a())x naturally stands for x—aQx. It is now tempt-
ing to write down a solution to (5), namely

x=1 -Ian°+I--QaQﬁ (©)

regardless of the fact that 1—a(Q is not a number but an opera-

tor so that the meaning of such expressions as ﬁ is not
—a

clear at present. However, we can tentatively identify the two
terms on the right in (6) by comparing with the known solution
(2); such a comparison suggests that we should interpret (6)
by means of the rules

ﬁ%‘—“"u‘“ o (7)
27
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_— ; —I: e =f(z)dr. ®)

From (8) we see that -

Q

A 0 although this is not so evident

must again be regarded as an

operator; so must ¥

because in (7) it operates only on the constant function x,.

1.2 Formal calculations with Q. So far no advantage has
been gained from the introduction of (), since we already knew
the solution to problem (1). Let us now look at an initial value
problem for a second order equation:

L] .

X=2%,, —=2%,, when {=0-

dt
We convert this into a form involving integrations only by
integrating twice. The first integration gives

%—x1+a(x-x,,)+b()x=@f,

g—tf+ax+b@x=x1+axo+Qf; (z0)

the second integration gives

%— %9 +aQx4-bQ(0x) =Q(%;+-axe) +Q(Q)),

x2+-aQx+-bQ*x=xy+aQx,+Qx,+Q%, (11)
where we have written Q% for Q(Qf) so that Q2 denotes re-
peated integration. Now suppose conversely that x satisfies
(1x). Then x==x, when ¢=o0, because all terms in (11) which
involve Q or Q® are zero when ¢=o. Next, by differentiating (11)
we get back to (10), and on putting #=o0 in (10) we find that

j-f:x, when ¢=o. Finally, by differentiating (10) we get back

to (9). Thus we have again converted the initial value problem
28

(9) into an equivalent single equation, (1x), which involyes ‘
integrations only and incorporates the initial values z,
We now write the left-hand side of (11) as
(x+aQ-+50%)x
and factorize this as
(x—20)(1—uQ)x,
where A and p are the roots of k2+4-ak--b=o0; this brings (11)
to the form

(1—2Q) (r—pQ)x=%y+aQx,+ Q% +Q%.
Equations of this kind can be solved quite easily, provided that
we are prepared to manipulate expressions involving Q rather

freely; the following example illustrates what kind of mani-
pulations are likely to occur.

Example 1:

d*x dx
an 3t =f(®),

dx
x=1, —=—1, when t=o0.

dt
By integrating twice we get (as in (11)) the equivalent equation
(x—3Q+20%)x=1—30(1) +Q(—1) +Q%, ’
(1—Q)(x ~2Q)x = (1 —4Q)1 +0. |
Proceeding quite formally, we get |

L E—=43 ____Q‘ A
(I—QJ(1~ZQ} (:—Q)(:—zg)

To deal with the first term on the right, we note that we can

evaluate - X QI a.nd Qr by using formula (7), p. 27. We shall 1
i |
therefore evaluate - =0 {:Q 20) 1 by putting it into partial frac-
tions; thus
1—40 3 §
1=3et—2¢%,
(- Q)(1—20)" (r 0 12 ) i

9
(1-Q)(x1—
29

We can deal similarly with — f by writing it as
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il - v it/ g,
a—0a—20% (r —9+r—zg)gf‘ i—g/ ticag)
the last expression can now be evaluated from formula (8), p. 28.
So we arrive at the tentative solution

t
x=3et+20% 4 J (e2(t=) —elt=7))f(7)d.
0

Some readers may find it interesting to verify that this is a
solution; to do this, they may prefer to write the last term on
the right as

t t
c"j e=2f (v)dr — et j e~f (2)dr.
0 0

Naturally we must still show that the treatment to which we
subjected Q in the above example is legitimate. This will be
done in the next few sections. However, some readers may be
eager to learn the technique of the operational method as
quickly as possible, and may be prepared to accept formal cal-
culations with Q at face value. Such readers may, if they wish,
pass straight on to § 1.6 in which the technique will be further
developed.

1.3 Operators. Whenever we have a rule for producing from any
given function f a new function Af, we shall call 4 an operator.
For example, the rules

Q1) = j ),
0

Df(t)=1"(®),
define the operators Q (integration) and D (differentiation). By
‘function’ we shall always mean a function of ¢ which possesses
derivatives of every order, i.e. which can be differentiated as
many times as we please.
We call 4 a linear operator if

A(f+ng) =21Af +udg,
for any functions f, g and constants 4, u; here A (if+pg) stands
for the result of applying the operator 4 to the function Af+ug.
Clearly Q and D, as defined above, are linear.
If A and B are linear operators, they may be combined in two
ways. First, we may take two constants « and f, and form the
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linear combination a4 +fB. The effect of this operator on any
function f is defined by
(x4 +pB) f=oAf+pBf.
Secondly we may form the product AB. The effect of this operator
on f is defined by
ABf=A(Bf).
Thus:

to find ABf, first apply B to f, and then apply A to the vesult Bf.

It is almost obvious that a4 +fB and AB are linear operators
when A and B are linear, and we shall omit the formal verifica-~
tion of this fact.

The definition of product will be illustrated by calculating QD
and DQ. To find QDf, first apply D to f (i.e. differentiate) and then
apply Q (i.e. integrate from o to #):

0ns(0)= [ =1 (o) (12)
0
Similarly
t
D0/ =5 1ie=10. (13)
0

Notice that QD and DQ are not identical, and we must therefore
take care to attend to the order of the factors when dealing with
products of operators. When 4B and BA are equal, we shall say
that 4 and B commute.

When one performs numerical calculations, one uses the laws
of algebra quite freely. We will not give an exhaustive list of these
laws, but recall several typical ones:

a.b=b.a (‘commutative law of multiplication’),
a.(b+c) =a.b+a.c (‘distributive law’),
a.(b.c)=(a.b).c (‘associative law of multiplication’).
Analogous laws also hold for calculations with operators, with one
important exception (already noted): the commutative law
AB=BA does not always hold. All other laws relating to addition
and multiplication continue to hold; for instance the distributive
law, A(B +C) =AB +AC, and the associative law, 4(BC)=(4AB)C,
where 4, B and C are linear operators. The associative law means
that we can simply write ABC, without any brackets, for the
operator whose effect on f is found by first applying C to f, then
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applying B to the result Cf, and finally applying 4 to the result
B(CY).

In particular we may form the powers of a single operator A:

A%=44, A3=4A4A4,.. .,
so that A" stands for ‘4 applied » times in succession’. We can
then form polynomials in A:
ot d e A2 L .. Fep AT,
where ¢, denotes the operation of multiplying by ¢,. Any two such
polynomials commute, so that polynomials in 4 may be multi-
plied together or factorized just like ordinary polynomials, the
order of the factors being immaterial. For instance
(1+4)(1 —24) =(1 —24)(1 +A) =1 —A4 —242.

1.4 The inverse of an operator. Now consider an equation of
the form
Ax=g,

where A is a linear operator, g is a given function and # is an
unknown function. (Equations of this kind have already occurred
several times, for instance (5) on p. 27 and (11) on p. 28.) Such
an equation may have no solutions at all, or on the other hand
may have infinitely many solutions. For example Qx =g, that is

I‘x(t}dt =g(f),
o

has no solution if g(o) % o because the left-hand side is necessarily
zero when #=o0; but Dx =g, that is

dx

77 =80,

always has infinitely many solutions:

()= rg{t}d'r +C.
0

However, suppose that Ax=g has exactly one solution for each
given g. This solution will of course depend on g; we shall denote it
by A—'g, and call the operator 4-! the inverse of A. The operator
A-1is again linear, i.e. we have

AYAgy +pgy) =2A g + pd g,
To prove this, write #; =A4~g, and x, =A4~g,, so that 4x, =g, and
32
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Azxy=g,. Then
A7y +pxg) =2A %) +pAxy=2g, +ugy
and therefore ¥ =1x, +pux, is a solution of the equation

Ax=2gy+pgs.
But this equation has only one solution, namely

x=A"2g,+ngs),
and so A¥; +ux, must coincide with the above expression; in other
words we have
A7y +pA=gy =AY (Agy +pga),
which proves our assertion that 4-? is linear. Next, we have
A(47'g)=g;
this merely states the fact that ¥ =A4-1g is a solution of Ax=g.
But we also have
A~Y(Ag) =g,
because ¥ =A4-1(4g) is by definition the solution of Ax=Ag; now
x=g is clearly « solution of this equation and since the equation
has only one solution, g must coincide with 4-1(4g). We have
now evaluated the product of 4 and A1, in either order, and our
results can be written as
AA1=3, A-14 =1,
where 1 denotes the ‘identity operator’ defined by 1g=g. Con-
versely, suppose that we can find a linear operator B such that
AB=1, BA=1.
Then B is the inverse of 4; that is, the equation Ax =g has exactly
one solution, given by #=DBg. To see this, note that »=Bg is a
solution because
A(Bg)=ABg=1g=g,
and that it is the only solution because if Ax=g then
x¥=1%=BAx=B(Ax)=Bg.

To sum up the preceding discussion:

If the equation Ax =g has exactly one solution, x=A=g, for each

given g, then the operator A= is linear, and AA-1=A"14=1;

A~ will be called the inverse of A.

Conversely if theve exists a linear operator B such that AB =BA =1,

then A has an inverse, namely A—1'=B,

To illustrate the definition of the inverse operator, let us first
observe that neither Q nor D possesses an inverse; the equation
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Qx=g sometimes has no solution, whilst Dx=g always has in-
finitely many solutions. Next, we will show that 1 —aQ (where a
is any constant) does have an inverse; this important fact forms
the basis of the operational method. To establish it, we must look
at the equation

(1—aQ)x=g,
that is
t
(1) —aJ' sr)dr=g0).
(]
This is equivalent to

¥ () —ax(?) =g'(t), #(0) =g(0),
and we know from Ch. I (§ 1.2) that this initial value problem has
exactly one solution:

t
#(0) =g(o)s°'+j a1 (1)dr. (14)
0
Thus (1 —aQ)—! exists, and x=(1 —aQ)~'g can be calculated from
formula (14). (At this point, we should recall the agreement made
on p. 30 that all functions are to have derivatives of every
order. Now x(f), given by (14), is such a function; its first deriva-
tive exists and equals ax(f) +g'(¢), its second derivative therefore
exists and equals a¥'(f) +g”’(¢), and so on.)

In particular if we take g(f) =1, identically, we have g(o) =1
and g’(r) =o; if we take g =0f, then g(o) =0 and g’(z) =f(z); from
(14) we therefore obtain the formulae

(x—aQ)-11 e, (15)
(x—aQ)-1Qf () = j eat—of(z)ar. (16)
0

These are precisely the formulae (7) and (8) which we tentatively

and

1
1—aQ 1—aQ

wrote down in § 1.1, except that there we wrote

instead of (1 —aQ)~! and (1—aQ)—1Q.

1.5 Inverse of a product. When we come to deal with second
order equations, as in § 1.2, we are led to equations of the form
(1 +aQ+bQ%x = (c; +6,Q)1 +Q%.

It will then be useful to know the inverse of 1 4-aQ +b0Q?; we shall
see presently that this operator has an inverse because it can be
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factorized as (1 —AQ)(r —pQ) and we already know the inverses
of the factors 1 —1Q and 1 —puQ.

Consider then the following more general question; given that
two operators 4, B have inverses, does 4B also have an inverse?
To answer this question, we look at the equation

ABzx=g.

This can be solved in two steps; first write the equation as

A(Bx) =g,
and solve for Bx. This gives

Bx=A4"1g,
and now we can solve for #, obtaining

x=B-}(A-1g)=B—14-1g.
This is the only solution, and therefore AB does have an inverse,
given by
(4B)~2=B-14-1,

We can also verify this by showing that the product of 4B and

B-14-1, in either order, is 1. Thus
(AB)(B-14-1)=A(BB-)A'=A(1)A-'=AA =1,
(B-14-1)(AB) =B-(A—14)B =B~(1)B=B-1B=1.

Now suppose in addition that 4 and B commute. Then

(BA)~1=A-1B-!, but BA =AB so that we can now write
(AB)"'=A—-B-1=B-14-1,
Thus:

if A and B commule and have inverses A= and B, then AB
IJ has inverse B—1A-1=A-1B-1, and so A—' and B! also
commule.

In particular, if 4 has an inverse then 4A?=44 has inverse
A-14"1=(4-1)8, A*=A4%4 has inverse (A%—14-1=(4-2)14?
= (4~%)3, and generally
(An)—xg(A—x)n_
We shall therefore denote the inverse of A™ by A-", and we then
have A-"A"=A"A-"=1, Indeed we have now defined AT for
positive and negative integers 7; if we define 4%=1, then the ‘index
law’ ATA*=AT*will hold for all » and s (positive, negative or zero).
The following fact will also be useful:

if A has an inverse, and if A commules with B, then A= also
mules with B; that is, A='B =BA~1,
35

1I




THE OPERATIONAL METHOD
To prove this, take the equation 4B =BA and multiply by 4-1
at the beginning and end:
A-YAB)A-1=A-YBA)A,
(A—14)BA-1=A—1B(4A4™);
since A=14 = A A-1=1, the last equation reduces to BA-1=4-1B,
as required.

The preceding work may seem remote from the practical prob-
lem of solving differential equations, but in fact it will be very
useful to us because we shall be dealing with products of operators
in which the factors are all of the form 1 —2Q, 1 —u0, . ., and so
commute with each other, and also commute with Q. We shall
therefore be able to use rules I and II above quite often, and by
doing this we shall be able to handle calculations with Q just like
ordinary (numerical) calculations. For example, IT shows that

(1—aQ)—'Q=0Q(1 —aQ),
and I shows that if 1 4aQ+400Q?%= (1 —2Q)(1 —nQ), the inverse of
1 +aQ +bQ?* exists and is given by
(r+aQ +bQ%) = = (1 —2Q) (1 —uQ) ! = (1 —uQ)~}(x —2Q) 2.
Again, if we have an expression like
(=)~ (1 —-3Q) (1 —Q)"*(x—3Q)
we can ‘cancel the common factor 1 — 30’ by using I to reverse the
order of the two middle factors, which gives

(r=0)~Y(1 =)~ (x —3Q)~*(1 —3Q) =((1 —Q)~)*=(1—Q)~*.
We can now afford to simplify our notation, without any risk
of ambiguity, by writing

I

g for (1 —aQ)—?,
s for (1—00)10=Q(s ~a0)",
ot for (1 —a0)-30 =Q(z —a),

and so on; more generally if we have any expression

Q)
(1=, Q) ... (1-2,0)
where ¢(Q) is a polynomial in Q, it shall have the interpretation
(1=a,Q)7" .. . (1—a,Q)"'$(Q)
36
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and we may then alter the order of the factors in any way we
please. If it so happens that ¢(Q) contains say (1 —a,Q) as a factor,
we can cancel this factor against (1 —a,Q)~! by a suitable re-
ordering which brings (1 —a,Q)~! and (1 —a,Q) next to each other.

1t is now easy to justify ‘partial fraction expansions’ such as
those which we used tentatively in Example 1 (p. 29). Thus, to

—4Q . : :
put —— T Q) (1—20) into partial fractions, write the numerator as
1—4Q=3(r—2Q)—2(x—-Q);
then
1—40Q 3(x—20) Late=gy 3 2

((=0)(1—20) (1-Q)(1—20) (1-Q)(x—20) 1-Q 1-20'
on cancelling the appropriate common factors. Similar justifica-
tions can be given in more complicated examples; thus any
rational function of Q, of the form

GtoQ+ ... towa0
(1=6,Q) . .. (1—aQ)
may be put into partial fractions of the form
4, Ay e
T e o
1—a,0 I—a,Q 1—anQ
just as if Q were an ordinary (numerical) variable. (Of course the
form of the expansion must be modified when the denominator
(r—a,Q) . . . (x —a,Q) contains repeated factors; this point will be
dealt with in the next section.)

1.6 Partial fractions for inverses. We have now reached a
point where we can justify any of the formal calculations with
Q which we shall perform, and it is time to develop the tech-
nique of such calculations somewhat further. We already know

how to evaluate e I a.nd Q Q’ but we shall also need
the more general expressions
Qn Qn+1
F=aQi” (r—agpri/ 7T 230
which we shall now evaluate.
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First, using (7) and (8) from pp. 27-8, we have
AR 5 e e e
o ) e,
=I Mt-1)gstdy
0

t
=sdj 1dr=tc*,
0
Clearly this argument can be repeated:

el Q e
(I—aQ)“I*I—aQ((I-aQJ’I) _I—ﬂQ“s ?
——-r e“‘“"re“‘dt:e"'j ' 'rdt:fs“:
1] 0
S, B N L.l DL 48
(1—aQ)* 1—aQ\(1—aQ)* ) 1—aQ\z
t T2 i3
=6“‘J. T‘z—d‘r=3—!'6'“.
Proceeding in this wa;, we get the general result
"
—agpri " >
for n=1, 2, 3, ... ; it also holds for #=0 when we make the
usual definitions that Q%=r1, =1 and ol=r.

Notice that we have chosen to evaluate LI rather
(1—aQ)*

(I_ Q)“I The latter is given by
r (1—aQ)+aQ _ 1 0
G (-aQ) | iag o G—aQr

=e%-ate® = (1 at)e™

and is thus less simple than
(1—aQ)?
The second formula to be established reads

gl j D wevfpar. (19)
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This holds when #=o0, and we shall prove it by induction for

n=1,2,3,....Suppose that (18) has been established for n==%.
Th
g Qk+2 0 Qk+1
(i—agp+/ = T-ag ﬁ:zgimf}'

+A t k+1
(_,:g:gjiuf ()= I:qH){{—_I _QEQ}HJ (‘r)}dr

‘a - *(z—u)* Tt
=I: (t ){-L—ek! a( }f(u)du}dt.

u=T

uw

T=t
In this repeated integral we can invert the order of the integra-
tions, provided that we attend carefully to the limits of integra-
tion. We have o< u<7<¢, so if we do the z-integration first (keep-
ing u fixed), then 7 varies from % to ¢ in the second integration, =
varies from o to £ (This can also be seen by regarding the integral
as a double integral, taken over the shaded triangle in the (7, #)-
plane in the diagram. If the u-integration is done first, # goes
from o to 7; if the 7-integration is done first, v goes from # to ¢
in either case the second integration is from o to £.) Thus we get

J’{I s“(‘—‘)h—_fe“('—“b‘{u)dt}du
0 {13

44 : a(t—u S(T_“}k
~LS“ ‘J’(ﬂ){L k! dr}d“

att—u) )k“
Le £0) .
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This is (18) for #=k+1, except that the integration variable is
called u instead of 7, and the induction has been completed.

Armed with formulae (17) and (18), we can now tackle any

equation like

(1-+aQ+0Q%)x=(c,+¢,Q) 1+ 0%, (19)
and also similar but more complicated equations which arise
from differential equations of higher than second order. Let
(x+aQ+bQ%=(x—AQ)(x—uQ); then the solution to (19) is

__ ot . 0?
(—20) ) (= 20) =)

and this can be evaluated by putting the right-hand side into

suitable partial fractions. Example 1 (p. 29) shows how this is

done when 2 and u are unequal; the following example shows

how one proceeds when 4 and p are equal.

Example 2:
Evaluate e + o f.
1—20+Q% " 1-20+Q"
Here 1 —20 +Q%=(1x—0Q)* We could express ——— ( Q)' in terms of
1 I bye oA = 0
of o and ( o but it is more convenient to use (_1 —0)
rather than ——— o -Q}' So we write 2—Q as 2(1—0Q)+0Q, and then
we have
2—0Q _ 2(1-0)+@Q 2 2

G—QF  @-Qp i-g Ta-gp

=2¢t--1et, by (17).
The second term can be evaluated at once from (18), with n=1,
and we therefore have

(:_ g]z I+ }Jf’}—(z +1)et 4 J. (¢ —7)ett=7)f (z)dr.

Similar prmmples apply to the evaluation of the more general
expressions
9‘*(0) _

a0+ . .. Fa0n” :+a,Q+ ey 7,
40
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where ¢(Q) is a polynomial of degree less than n. Factorize
1+a,0+ . .. 4a,Q" as (1—4,0)™ . .. (1—2,Q)™, and then
qS(Q)

(1=4Q)™ . . . (1—HQ)™

as a combination of
Q Qﬂll—l

1-40' (1—4,0* "’ (14@7‘:
andsimilar termsinvolving1—24,0, . . . , 1—2,0; likewise write
——_Q:—— as a combination of

RN
0 om

I-4Q T (=A™
and similar terms. The expressions (20) can then be evaluated
by using formulae (17) and (18).

In general the use of formula (18) will lead to integrals which
cannot be further simplified. However, in practice the function
f (which stands on the right-hand side of the differential equa-
tion) is often a simple exponential, or polynomial, or a product
of a polynomial and an exponential. The solution can then be
written in a form which contains no integrals at all; the follow-
ing example shows how and why this can be done.

Example 3:
Find the solution of

= 2x =3¢t
dt' ~ai 3

Jfor which =2 and :—:=o when t=o.

The equivalent equation involving Q is found as on p. 28; it is
(1 —Q —2Q%x=(2 —2Q)1+Q*3¢7).
We now use (17) to replace 3¢—* by ;i—gx; this gives

(r1—0Q—20%x=(2—20)1 +13+%I’
+0*
(x +Q)(I-—ZQ}#—TQ
LY 57 i

T EFO 20"
E.D.E.—D 41



B - A = SR am _ CEEGE BN Sl B e

THE OPERATIONAL METHOD
aior
(1+0)%(1 —20Q)

9
+Q T+

Now write as a combination of ——

3

1 —-ZQ:

1 Q 1
— — “+ b
1+Q (1+0Q)* 1-20
and finally evaluate this by using (17). The solution is
x=e—t—te—t |,

The above procedure can clearly be applied whenever f(¢) is
a multiple of #"¢* or a linear combination of such multiples.
Only formula (17) is needed, and the result will be of the same
general form as f(f) (but with some extra exponential terms
which belong to the complementary function).

§ 2. Practical instructions for using the method

2.1 The symbol p. The general principles underlying the
operational method have now been established. For practical
purposes, it is convenient to make a change of notation which
will help to simplify the algebraic work involved in handling
rational functions of Q. We introduce a new symbol, p, make
the substitution Q=p—1, and then perform all our calculations
with p, treating expressions in p according to the usual alge-
braic laws.

In this notation, ——Q—-— will be replaced by - @ f;::)m —

—AQ)mt1
P .
which simplifies to . Pz . Thus the basic formula (17) from
p- 38 becomes
R
@_A)m-i—l]: mle’-‘, (I)
and similarly (18) becomes
I t(f—)m
= Z-'_"“f (i)=j-0 o m? =9 (v)dz. (2)
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The special cases

I I
§I=t, ;;I=ét’;

B Ly
mr_e” e A}*I —te¥; (3)

30 [ e, 225 70= [ ao-opeyar

should be particularly noted.
The typical expression
Co+6Q+ . - . 6@ II

I+a1@+ . +a 0" +"nQﬂf(t)
now becomes

Y bl w27 i R o S I ¢
? P+ap* 4 ... ta, I+P"+ . +a,.f @
e e
A
The advantage of the latter form is that we can put C(p)/4(p)

and 1 /A () into partial fractmns of the usual kind, containing
terms in

I 1
P =2 " (oA
for each factor (p—2)™ of A(p), and then

Clp),
?A@) +A{P)f(i)
will contain terms in
? # 1
T g e O g O
which can be evaluated from formulae (1) and (2). Standard
methods for finding partial fractions are therefore available; if
we were to use  we should have to modify these methods
because we should need fractions of the less convenient form
Lo uuill gn-1
1-2Q' (=19 '’ (—aQ™
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It should be stressed that the symbol $ merely serves to
simplify calculations, and that it is #ofan operator; the operator
on which the method depends is p~1=0. (If » were an opera-
tor, it ought to be the inverse of Q; but, as we saw on p. 33,
Q does not have an inverse.) The justification for using # lies
in the fact that any valid calculation with Q can be ‘“translated’
into an equivalent calculation with p, and vice versa; for
instance the p-calculation

p20+1_ S+1)+ip—1)_5 2 ?
R e T
is equivalent to the Q-calculation
240 _30+Q+0-0)_, 1 .
o N .
and we already know that such calculations with Q are per-
mitted.

2.2 Procedure for solving n* order equations. To deal
with the initial value problem

(D"+-a, D"+ . . . ta,)x=f(t), )
X=2%y, D=2, ..., D 1x=x. . when {=o, 4
we integrate » times. This leads to an equivalent equation, in
terms of (), into which the initial values x,, ..., %,_, have
been incorporated. If we then put Q=p"1 and multiply by "
in order to remove negative powers of p, we shall arrive at the
following equation:
(@ "+ap* - . . . tan)x
=f(t 3’0@’ +alpn 1+ +a'ﬂ—l.ib) +x1(p"_1 }
B thedleal )
This will be called the apemiwnal Sform of (4)- The details of the
calculation which leads to it will be given later (p. 62); we can
check it for n=2 by putting Q=p~'in (11), p. 28, and multiply-
ing by $*. (Note that a and b in (11) are now called @, and a,.)
At present we want to show how (5) can most easily be memor-
ized, and we recommend the following rule for finding the
operational form of (4):
44
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On the left-hand side of the differential equation, replace D by
the symbol p;
on the right-hand side, add to f(t) the polynomial in p which is
obtained from

(P +ap™ '+ . . . +ay,) (xu'}'%‘l' ven +;:::)I
by multiplying out and retaining only the positive powers of p.

It should be noted that the polynomial on the right of (5)
always contains $ as a factor, and also that none of its terms
contain the coefficient a,,.

The function f(f) is often the sum of one or more terms of the
type Af"e*. Using (1), we can then write f(f) as a sum of terms

Ar!-——-p—-l; the resulting expression, when simplified, will

—a)™1
have the form F()1 and will be called the operational form of
f(¢). For example #24-(3¢—2)e~* has the operational form

? P ( 2‘5(1-—2?))
i T2 =
F g oo
When we replace f(#) by F($)1 in equation (5), we obtain
A(p)x=(pC(P)+F(p))1.
If we solve for %, writing the solution in the form
G(2) .
()"
we can then put the rational function G(p)/H(p) into partial
fractions and evaluate x by using formula (z). It is important

to remember that a factor » must be extracted before finding
the partial fractions, because we want to express x as a com-

? ( I
—=71 (and not ———
(p—H" (p—2m
accounted for in the following rule for solving (4) when the
operational form of f(f) is known:

Write down the operational form (5) of (4), and at the same time
replace f(t) by its operational form F(p)1. Solve for ;, oblaining

45
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it in 1!.‘:.9_)"u:w-m15 =R(p)1 where R(p) is a rational function. Pui

R(p) into partial fractions, and then evaluate x=pR(p)1 from
Jormula (1).

Let us now illustrate the procedure by two examples,

Example 1: Solve (D3+42D*—D —2)x =3¢,
Jfor the initial conditions xy=2, %= —3, ¥g=1.
The operational form of 3¢ is ;ég-: the positive powers of p in
syopt—p)(2—34
G
form of the problem is

@°+zp'—p—z}x=(zp'+p’ s 3¢ )

B i s i 2/ )
P—2
Factorizing p®+2p*—p—2 as (p—1)(p+1)(p +2), we get
¥ 2p'—-3p—op+17
P p-Dp+0@+2)(p—2)
=(_ 7/6  7/2 _17/13 ”‘*):
p—1 p+1 ptz p—2)"
(We have suppressed the calculations required for the partial

fraction expansion; the technique of such calculations will be
discussed in the next section.) Thus we have

7(_ 2 2P 7(_2 LY
) ) )

) are 2p3+4-p? —7p. Hence the operational

A +%¢-¢_ ?_G—u+%,u

The reader will observe that the first three terms belong to the
complementary function, and that the last term is a particular
solution; he is also invited to check that the initial conditions are
satisfied.
Example 2: Solve (D?—7D —6)x =12,
JSor the initial conditions x,=x,=o0.
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Since 2 ==§’1, the operational form of the problem is simply

(0~ 7p+6)7 =31
no other terms appear on the right because the initial values
%y and x, are zero. We now have
x 2
» PB-1@-6)
=(—2/5 L 1/540  43/308, 7/18 . z/s)

p—1  p—6  p ' pt T p?
x=(—-—2— P i = ._.?.._ +.7._.I+ )

5p—1 540p—6" 18p  3p*
2 1 43 , 7

L b ’
53 +5 o 108+18t+"‘

We now give a rule for solving (4) when the operational form of
f(¢) is NOT known (i.e. when f{(#) is not the sum of one or more
terms Af'e*"):

Write down the operational form

A(p)x=pC(B)T+/()
of the problem. Then

_,C).
76+ A

This is to be evaluated by putting C(p)/A(p) and 1/A(P) into
partial fractions, and then using formulae (1) and (2).
Note that once again a factor p should be extracted before the
first partial fraction expansion (but not before the second one).

Example 3: Solve (D®*—3D +4-2)x=f(1),
for the initial conditions xy= —1, %, =5, ¥3=2.
The operational form, found from the rule on p. 45 or from (5), is
(p°—3p +2)x=(—1(p*—3p) +5p° +2p)1 +/(?)
=(—p*+5p* +5p)1+/1).
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Since p*—3p+2=(p—1)%(p +z) we obtain
—p*+5p+5
L 10

B-0p+2) (B e

3 1 —-1/9 1/3 1/9
="({p—x)’“p+=)‘+(p—x =g p+z)’”

t
=3fef —e—2t | J. _..I.g(l—r) +1_(g —7)elt-7) 4 —e—*("'") f(z)dz.
ol 9 3 9

2.3 Some remarks on partial fractions. In the preceding
examples we have deliberately suppressed the arithmetical
work involved in finding the various partial fraction expan-
sions. We must now warn the reader that this work usually
forms a substantial part of the operational method of solution.
It is therefore desirable to have a systematic technique for
finding partial fractions; we shall now describe such a tech-
nique, and shall use it in all future examples.

Suppose then that G(p)/H(p) is a rational function, the
degree of the numerator G(p) being less than the degree of the
denominator H(p). Let p—A be a typical factor of H(p), with
multiplicity m; thus H(p)=(p—A)"K(p) where K(p) does not
contain the factor p—A. Then there is an expansion

GP) __ An Apm LA
= 2+, 6
2p) - g-at gt O
where the last dots represent similar terms corresponding to
other factors of H(p). (We assume here that G(p)/H(p) can be
expressed in the form (6); this fact is proved in textbooks on
algebra, e.g. in Durell and Robson, Advanced Algebra, Vol. I1.)
We want to find the coefficients 4,,, ..., 4, in (6), and in
doing this we are permitted to treat $ as a numerical variable.
When p—21 is a simple factor of H(p) (i.e. when m=1) the
coefficient A in the single corresponding term 4 /(p—2) can be
written down at sight. For then, if we multiply the identity (6)

by H(p), we obtain

G(p)=AK(p)+(p—AL(p),

where L(p) is a polynomial whose exact form will not concern

PRACTICAL INSTRUCTIONS
us. When we put p=41 in this identity, we obtain G(1)=A4K(2),
whence A=G(1)/K(2). Now K(2) can be found either by re-
moving the factor p— 2 from H(p) and then putting p=A4, or by
differentiating the identity H(p)=(p—A2)K(p) and then putting
p=2, which gives H'(1) =K (2). Hence we may state the follow-
ing rule:

To find the coefficient A of the term A/(p—2) when p—1 is a

simple factor of the denominator, strike out the factor p— 2 from

the denominator and then put p=J in the expression which
remains. Alternatively, differentiate the denominator with
respect to p and then put p=>» in the resulting expression

G(p)/H'(p)-

Usually (but not always) the first version of this rule is more
convenient to apply.

When p—4 is a multiple factor of H(p) (i.e. when m>1), we
first put p—A=u and express G(p)/H(p) in terms of «; it will
then take the form L(u)/umM («) where L(x) and M(u) are
again polynomials and M («) does not contain the factor % (i.e.
M (0)-0). We now want the coefficients in the expansion

L(u) Am Ap 4,
W M) wn i S
Multiplying up by #™M (u), we get
L(w)=(Apn+ Ayt . . . + A0 )M (u)+2"N(w), (7)
where N(u) is a polynomial whose exact form will not concern
us. We can now find 4,,, 4,54, ..., 4, (in that order) by
successively equating coefficients for #°, %, ..., w1 The
procedure will perhaps be best understood by seeing it at work
in a numerical example.

Example 4: Find the terms corresponding to p—1 in the partial
R L ey
-1 +1)(p+2)

Putting p —1=wu, we have
PP +3p=(u+1)*+3(u+1) =4 +6u+3u+u’
and (p+1)(p+2) =(u+2)(1t+3) =6-+5u+u
So we want
4+6u+31t Fud=(d,+A,u+Au?)(6+5u+u)+ ...,
49
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the dots representing terms in %® and #* We can get the correct
constant term on the right by choosing 4, properly; then the
correct term in % by choosing 4,, and the correct term in #* by
choosing 4,. Terms beyond %* do not concern us, and in particular
the term %2 on the left has no effect on the values of 4,, 4, and
A,. The arithmetical work can be performed mentally, but those
readers who mistrust their skill in mental arithmetic may prefer
to set out the work more systematically like a long division (but
done ‘in reverse’, working in ascending powers of % and ignoring
terms beyond u?). Thus

2
24ty 4w
B
6+5u+u')4+6u +3u?
0 2
4+ —u-t+—u
e
8
—u+zu'
B D
8 2o
—t - —ul
3 9
£
9
2

‘What this calculations shows is that

54
The fractions which we want are now got by dividing,

4+6u+3u2 u? a(% +-g-u +iu') (64 5u+u2)+. "

2 1
§+§u +3;u' by #® and then replacing % by p —1; thus they are
2/3 4/9 | 1/54

B-10 -1 Th1

We may now state the following rule:

To find the terms involving p—2A in the partial fractions for
G(p)/H(p) when p—A is a multiple factor of the denominator,
50
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put p—A=u and write G(p)/H(p) in the form L(u)/u™M (u).
Then find A, +Ap_u+ ... +4,0™2 from equation (7),
divide by w™, and finally replace u by p—A again. In finding
Ap+ . .. +AwmL, the method used in Example 4 may be
imitated, w™ and higher powers of u being ignored.

Naturally one must be prepared to meet complex factors of the
denominator H(p). In practice G(p) and H(p) will usually have
real coefficients, so that with any complex factor p—1 the con-
jugate complex factor p—A will also occur, and with any
fraction A/(p—2) the conjugate fraction 4/(p—A). In the
evaluation of the solution we will therefore obtain terms like

42 +A—p--)I=Ae’-‘+JJ'=zR Ae*)
Py :
and these can always be written as real combinations of
cosines, sines and exponentials. It must be admitted that
multiple complex factors may lead to rather unpleasant cal-
culations, but fortunately they do not occur very often.

2.4 Further examples. [We continue to use the notations x,,
%, . . . for the values of x, Dz, . . . when #=0.]

Example 5. (D% +4)x=0;
initial conditions xy=3, ¥} =%y =23=0,
The operational form is
(p*+4)r=3p'1,
so that
Lapt
Pi+4

I.

lw

Now

P4 =(p?—2i)(p*+2i) =(p—1 —i)(p—1 +4) (p+1—i) (p+1 +),

so that the factors of the denominator are all simple. If p—4 is

any one of these factors, the coefficient of the corresponding term
3

in the partial fractions for Pfi4 may be found by differentiating

e
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the denominator and then putting p =4 (see the rule on p. 49

which gives
[3? :l S5
), 4

for all four choices of . Hence

osf P AL, ?
% 4(p-1—i+p—1+i 'p+1—i+p+1+i)l
- %R(,n Ht | g(~140)

m%s'cost +%c"' cos t=3 cosh £ cos £,

Example 6: (D—1)% =sin &
initial conditions %y=1, %, =2, ¥3=3.
The operational form of sin # can be found thus:

il ~1f -2, p(p+1i) P
smt-l(e“}—l(j’_‘-) (?.+, ) PI+IL

Also (p—1)*=p*—3p?+3p—1. So the operational form of the
problem is

(p-z)=z=(1{p*—31b'+3p) +2(p* —3p) +3(p) +psix)
P\, P —ptpi—ptip
(PS"P""p'-i-x) 1 i

whence
x_p-prpipir
P (P=1)P*+1)
The complex factors p +i in the denominator give rise to two
conjugate fractions, and the coefficient of 1/(p —i) is
i —i3 42 —i 1 1 1 I+14
G—1)%2i  (2+2i)2i  4(1—i) 8

The corresponding contribution to #is — x—;:s“ plus the conjugate
term, that is

zn{-‘T'H(oos t 44 sin :)}a —3{cost— sin #).
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For the terms corresponding to the multiple factor p—1, put'
p—1=u. This gives
PP P —p+1_T+2utqutt .
G- 1) W)
dots denoting terms in #® and #* which we shall not need. Follow-
ing the method used in Example 3, we obtain
142ut4qu+ ... =3(2+2utul)
+du(z 420 +uf)

+-i—u'(z +2utul)+ ...

Thus the required terms are obtained by dividing -~ +— +-i-u- by
u? and replacing % by p —1; the corresponding contribution to # is
.. P L 4 5 9
(itp—r}=+5(p—x)=+2p-r)"

Evaluating this, and adding on the contribution found earlier,
we get the solution

x::—i(cos t—sin #) + Ip +-1t+‘—5- L
4 4. L2
Example 7: (D?*+w?)x=f(t) (0% o being a real constant); arbilvary
initial conditions x =x,, Dx=2x,.
The operational form is
(P + )& = (%P +2,)1 +f(2).
Zop +% 1 t
=P et T pirat O
The required partial fractions, easily found, are

Ay Xy
s +5) ((=+5) | )
Li}]

Hence

P+t P—iw . p+io 'plie? zio\p—io P+i
so that we get

x=2R{}(x,-—£ﬁ)e‘“} o I ‘ {oi0t-) _ g—iot-0}f(z)dx
o 0

% . ok K
=%,C0S wi+—sin mt+—I sin w(t—1)f(7)dz.
® o),
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Ezxample 8: (D242D 4 5)x=e"%
initial conditions xy= —3, x,=2.
The operational form is
(08 20+ = ~30%420) +2(0) o

also p2+2p +5=(p+1—2i)(p+1+2i). Hence we have

PR ot AU
P {p+2}(p+:-—zs)(p+1+2:)
In the partial fraction expansion
3p*+10p+7 A B B
(Pp+2)(p+1—2i)(p+1+2i) p+2 p-;-x-—zs p+:+zs'
we have
Aa[SpitI0P47] | 12-z04y 1
PP+2p+5 |,n, 4—4t+5 5
| o S RI0PEY Ll iR
P+AP+1+20) |, 4,0 (GF2N@) 5
Hence
4 P P
=(4 B
4 ( p+2+ p+1—2i+Ep+1+2i .
L,—u.;.m(s_"“,t—uun)
5 5
=§s‘“"+§s—‘R((-—8 ++)(cos 2t+i sin 2#))
: | 2
.=.§¢—“—;c—‘{8 cos 2f-}-sin 2f).
Example o: (D+2D2%41)xr=o0;

initial conditions xy=1, %, =0, ¥y= —1, ¥3=0.
The operational form is
(P +2p% + 1) =(x(p* +2P%) —1(p%) 1 =(p*+%)1.

We are lucky because the factor (p2+1) can be cancelled, and

VISR L VR T VL T S Y
gy (p =+p+s) _2(p—i+p+s‘)x'
So the solution is
x=}{e" 4+ =cos t.
54
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(Dt +2D2+1)x=0;
initial conditions xy=x, =%, =0, ¥3=1.

Example 10:

This time we have (pi+4-2p+1)x=p1, and 2 » (?._IH)‘I The
denominator is (p—i)? (p-+4)% the terms in p—i are found by
putting p —i=u, which gives
- g I 1 )
(p‘+1}‘_u’(u+2i}’ W —4+40%+ ...)

Now 1=(—}—}iu)(—4+4iu+ ...)+ ..., dots denoting terms
in %®. Dividing —} —}iu by #? and replacing » by p —i, we find
that

= -}—f—.-;z —-i—iPL_‘,I plus the conjugate terms. Hence

(p—1)
x=2R {—}ett —}iett}
=—} cosi+sins

We have deliberately set out the solutions to examples in
such a way that only the formulae (1) and (2) from p. 42 need
be used. More elaborate formulae could sometimes be used to
shorten the work slightly, the most useful being

_pp—a) = ¢, P yeetsinof. (8
(p—a)? )’-{—w’ SO (p—o)*+w? @)
We do not advise the reader to make strenuous efforts to
memorize (8), since it can be derived very simply by taking
real and imaginary parts in
-
p—o—iw

2.5 Simultaneous equations. These can also be treated by
the operational method. First consider the simplest problem:
to solve two first order equations

(@D-+b)x-+(eD+d)y=f(), i
(@D +by)x+(coaD+dg)y=¢(0),
subject to the initial conditions
X=%y, Y=Y, When {=o0. (r0)
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The equivalent pair of equations involving Q is found by
integrating equations (g), which gives
@y (% —2%0)+b,0%+¢y (y—yo) +d, Qy=0/(1),
ay(%—20) +byQx+co(y—0) +d:0y=0g(t).
Now put Q=p"%, and multiply by p, obtaining
(@1p+-by) 2+ (rp+dy )y = (%001 +366:) p1+S(0), (x1)
(@ +-bo) %+ (Cap+aa)y=(%s2s+Yoca)pT+(0)-
This is the operational form of the problem; if the operational
forms of f(f) and g(f) are known, we of course insert these.
The equations (11) are now solved by ordinary algebra,  being

treated like a number, and the result is evaluated in the usual
way.

Example 11:
—2x+(D—1)y=t;

initial conditions x,=2, yy=4.

(D—1)x—2y=t, }
The operational form is

(p—1)x—2y=2p1 +§x.

1
=25+ (p-T)y=4pro.
Solving for #,

e Y0 Ty el i = -
[(p—1)2—4]x (&b 1}(2p+p)+z(4p+P))r,
x_2p34+6p2+p1

—= — T,
? Pp+1)(p-3)
After finding partial fractions in the usual way, we obtain

x_=p(_£.—§£_;+i/9.)[

EE % 28
= ——f gt +_ss!.
138 9
We could find y similarly, but it is slightly simpler to note that

2y=Dx—x—t=— -4 +et +2_§38¢ +."(.¢+f. N _2_8631 =
3 3 3 9 9
whence y= --?:-r-—i + s—‘+2_838‘_
9

9
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In exceptional cases the above treatment may break down.
Suppose that in equations (9) the terms containing derivatives,
a,Dx+-¢,Dy and @,Dx+c,Dy, are proportional. It is then
possible to obtain a single equation, involving x and y but not
their derivatives. For example, if the equations are

Dx+-2x+4Dy—3y=t,
2Dx+x+2Dy+2y=0,
then we can derive the single equation

3x—8y==2L.

In such a case, the initial values %, and ¥, can certainly not be
independently assigned (in the above example we must have
3%,—8y,=0), and even when x, and y, are suitably connected
there may be no solution to the problem. We shall not treat
such cases; they should not occur in physical applications, pro-
vided that the physical problem has been correctly translated
into mathematical terms,

The treatment of # simultaneous first order equations follows
lines which should now be obvious. Denote the unknowns by
%y, - - -, %y, let the equations read

Z @ D+b)t=f ) (r=1,2,...,n),  (12)
=1
and let the initial conditions be
%.=un, when f=0 (r=1,2,...,n). (13)
Then the operational form of the problem reads

D (@riptba)t= apaptHfl) (=1,...,n), (14)

=1 =1
and these equations are to be solved by ordinary algebra. The
solution can then be evaluated in the usual way. It is assumed
that the terms in (12) which involve derivatives are indepen-
dent, i.e. that it is impossible to combine these equations so as
to obtain a single equation free from derivatives. This assump-
tion is equivalent! to the following one:

1See P. M. Cohn, Linear Equations, Ch. V, § 12 (in this series).
E.D.E—E 57
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The determinant formed from the coefficients a,, (r, s=1, ..., n)
is not zero,

and it ensures that the initial values o, . . . , o, may be inde-
pendently assigned.

More complicated systems of equations can also be dealt
with. We content ourselves with one illustration: suppose we
have two second order equations in unknowns x and y. Let
%y, %1, Yo, ¥y denote the values of x, Dx, ¥, Dy, when {=0, and
let the first of the two equations read

(aD*-BD+ )+ (@' Db D+¢)y=f(0).
Then the corresponding operational equation can be written
down by an obvious extension of the rule (p. 45) for a single
second order equation:

on the left, replace D by p; on the right, add to f(t) the terms

(%o(ap®+bp)+xy(ap) +ye(a’p®+-0'P) +3:(a'p))1.
The second equation is treated similarly, and the resulting pair
of operational equations is then solved by ordinary algebra.

Example 12:

(D-+6) +(D*—D)y=e*,
inilial conditions xy=2, =y,=1, ¥, =0.
The operational form of the problem is

(PP —4p)¥—(p—1)y =(1(p*—4p) +1(p) +1(—p) +1)1
=(p*—ap+1)1,
P

(P +6)x+(p*—p)y = (l{p) +1(p*—p) +o(p) +§*__4)'

z( '+P!—’4)l'
Solving for #,
(P2 —ap)(P*—P) +(p—1)(p+6)]x=(p*—P)(P* — 4P+ 1)1
+{pw—x)(p' P 4)1
(P‘-#"HP’ 17 1 g s
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(D’—4D)x—{D—I}y=!-}

po—1)\,
p—a
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The coefficient of x on the left is

Pt=50*+5p*+5p —~6=(p +1)(p—1)(p —2)(P—3):

on the right we have

P (pt—8p -20pt —16p+3)1 =

Pl —1)(p—3)(P*—4p +1}L

P—4 p—4
Hence we get
LSRN v, e SO, o ) MO W L
P (@+1)(p—2)(p—4) p+1 P—I p—4)"

x ,-_-Ec—i +_eli +_3“.
5 2 10
To find y, we have
(p—1)y=p(p—4)x—(P*—4p+1)2

o g
—(pt—sp+1 }({p p :):
—(?'-4?**1)@_"_‘:)(? <t

Jaiiarisipba) J gt S0 8, Ak
A SR T T s

p PE+OB-10(p—2)
y=I—e~t{3e'—2¢2,

Once again, difficulties arise when the terms involving second
derivatives are not independent. For two equations this means
simply that the second derivative terms are proportional; in
the example, these terms were D?x¢ and D2, and no trouble
occurred because these terms are independent.

2.6 Justification of the method. We have not yet supplied a
detailed proof of the facts that the operational method, applied
either to an »!t order equation (§ 2.2) or to a system of first order
equations (§ 2.5), gives the correct solution to initial value
problems. This gap will now be filled; the proofs will be given in
terms of @ (more convenient than p in theoretical work).
Consider first the problem of solving the equations (12) on
P- 57, subject to the initial conditions (13). If x,, . . ., %, are a
solution to this problem then by integrating (12) and using the fact
E.D.E.—E¥* 59
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that QDx(t) =x4(t) —x,(0) = x,(f) —x; we obtain

Zn“ﬂ(xa —tg) -+ Zﬂbngxs =Qf (),

=1 =1
( ra+0r - 3%+ Qf (¢
; py +b,4Q) Zar A0 =

=g. (1}, say (r=1, .. .. 1),

Conversely, if #,, . . ., x, satisfy (15) then (differentiating) they
satisfy the differential equations (12). Also, putting f=o0 in (15),
the terms involving Q vanish and we get

n

D anlmlo)—a) =0 (r=1,". . )

s=1
But we are assuming that the determinant of the a,, is non-zero,
and therefore these equations imply that x,(0o) —«,=o0, i.e. that
the initial conditions (13) are satisfied. Thus we have shown that
the initial value problem (given by (12) and (13)) is equivalent to
the set of equations (15). Note that when we put Q=41 in (15)
and multiply through by $, we obtain precisely equations (14), i.e.
the equations which are actually used in practical work (where
$ is more convenient than Q).

‘We now show that the equations (15) have exactly one solution.
Denote a,,+b,Q by ¢,4(Q), let A(Q) be the determinant whose (7, s)tb
element is ¢,,(Q) and let C,,(Q) be the cofactor of ¢,,(Q). Then A(Q)
is a polynomial of degree at most # in Q, say

A{Q) =AO+ALQ+ .. .+anﬂa

in which the constant term 4, is simply the determinant of the a,,
and is therefore different from zero; also C,,(Q) is a polynomial in
Q. (We are using determinants whose elements are operators; they
can be defined and treated like numerical determinants because
their elements all commute, so that multiplications can be per-
formed in any order.) Now let x,, . . ., #, be any solution of (15).
Multiply the #*h equation in (15) by C4(Q), and add; then the
coefficient of x,; on the left is

2 Cril@enl@ =15 A en s
re=]
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So only z; survives, and we must have

AQw=D Col @) (=1, ..., ™.

r=1

The operator 4(Q) on the left has the form Aq(1 +4,0 + . . . +£,Q")
with A,%o; it therefore has an inverse (cf. § 1.5). It follows that
we must have

xj=r-lmgr{;) (F=1,...m). (x6)

A similar argument, which we omit, will show that (16) does give
a solution to (15); this completes the proof that (15) has exactly
one solution, given by (16). Of course all we have done in the above
proof is to go through one of the methods of solving linear equa-
tions with numerical coefficients and to check that the steps are
still valid when the coefficients are operators of the form @,y -+b,Q
the resulting formula (16) for the solution is ‘Cramer’s rule’.! This
justifies the second step in the operational method, which consists
in solving (15) ‘by ordinary algebra’. The final step is to evaluate
the solution (16), which involves putting rational functions of Q
into partial fractions; this has already been justified in § 1.5. We
have now established the following fact:

the diffevential equations (12) have exactly one solution satisfying
given initial conditions of the form (13), provided that the deter-
minant formed from the coefficients a5 is different from zevo, and
this solution can be calculated by the operational method as set out
in § 2.5 (in its practical form, using p vather than Q).

We turn now to the initial value problem for a single n*® order
equation, stated as (4) on p. 44. To justify the operational
method of solving this problem, we shall replace it by an equiva-
lent problem for a set of » first order equations. Let us take #,
Dz, . . ., D"=1x as new unknowns and denote them by %, %, . . ,
. Then we have Duy=1,, Dity =1tty, . . ., Dtip_g =, 4, and the
differential equation for x (in (4)) becomes Duy; +@Up—q+ - - -
4 anu,=f(2); also uy, . . ., #,—, have the initial values #,, . . ., #p—1-
Conversely if w,, . . ., #,, satisfy the preceding equations and
initial conditions, then x#=u, is a solution to problem (4). So an

1 See P. M. Cohn, Linear Equations, Ch. V, §§ 12-13 (in this series).
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initial value problem equivalent to (4) is given by

Duy—uy =0, Duy—uy=o, . . ., Dity_y—tty_, =0,
Dty +ayttny +agtin_g+ . . . +anttg=f(t); (17)
Ug=Fg, Uy =%y, . . ., Up_y =%, When i=0, (18)
But this, when inessential differences in notation are disregarded,
is precisely the type of problem stated in (12) and (13); the crucial
determinant, formed from the coefficients of the derivative terms,
is non-zero because its elements are 1 on the main diagonal and o
elsewhere. So we may write down the operational form of the
problem as in (15), namely
tg—Quy =%, thy—Quy=2,, . . ., Un_y —Qtty—y =%p—s, } (19)
Un—y+8,QUny +8QUn—+ . . . +anQuy=2n_, +0f(2).
We may then solve these equations by ordinary algebra; only the
solution for uy(=2#) is wanted, and this can be obtained by
multiplying the equations (19) by
I+a,0+ .. .4+a,,0",
Q+“1Q=+ < wo Opyf Py

Q"3+ a, 0",
Q’t—l'
and adding. Writing » for u,, this gives
(T+a,Q+a,0%+ . .. +a,Q")x=0"/()
Zo(14+a0+ ... +6,,Q"Y) }1 (20)
+4(Q0+a,07+ . . .46y 0" Y) .. 2,0
and x can now be found because the operator 1 +a,0+ . . . +2,0"
has an inverse. This justifies the operational method in its theoreti-
cal version, using Q. It only remains to observe that when we
replace Q by p~! in (20) and multiply through by p", we obtain
precisely the operational form (5) of problem (4) which is used
in the practical version (using p) of the operational method. We
have therefore established that
the initial value problem (4) has exactly one solution, and this can
be calculated by the operational method as set out in § 2.2.

2.7 The general solution of an ntt order equation. The
structure of the general solution of

(DP-a, D1+ . . | +-a,)x=f({), (21)
becomes very clear when the operational method is applied.

Whatever initial conditions are chosen, we obtain a solution
62
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of the form
C(p) I
r=p——1+4+—— f(t 22
where A(p)=p"+a,p" '+ ... +a, and the polynomial C(p)
depends on the initial conditions but does not depend on f{(¢).
Thus (22) displays the solution as the sum of two terms; the

first term, p i(é)) 1, satisfies the reduced equation

(D*+ . .. +a)x=0 (23)
with the same initial conditions as before, whilst the second

term, A—(I;) (), is the particular solution of (21) for which the
initial values of z, D%, . . . , D" 1x are all zero. Moreover we see
that every solution of the reduced equation has the form

pjT(g 1; when we evaluate this expression, after factorizing

A(p) as
(B—=2)™(P—2)™ . . . (P—2)™,

we obtain a linear combination of

s o Y ol o R AR L R
Conversely, as we already showed in Ch. I (p. 21), any linear
combination of the functions (24) is a solution of the reduced
equation. We have therefore confirmed what was stated with-
out proof on p. 22:

the general solution of the reduced equation (23) is an arbitrary
linear combination of the functions (24).

Now suppose that we merely want to find the general solu-
tion of (21). Then all we need, after writing down the comple-
mentary function, is a particular solution. The operational
method at once provides us with one particular solution,

namely —I——f{t). We can do even better when the operational

A()
form F(p)1 of f(£) is known, so that we get the particular solution
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f.‘ﬂl, because when we evaluate this (by partial fraction

A(p)

expansion) we may omit all terms which have already occurred
in the complementary function. For example, a particular
solution of (D%—1)x=te* is

_I.—?];:P._ ki !: > . 1
-1 (1) T (P*+1)(p+1)(p—1)¥"
but when we make the expansion
B cid ARG
(P*+1)(p+1)(p—1)* p—i p+i p+1 p—1
Cy Cs
T -

we need only the last two terms because the other terms will
merely produce multiples of ¥, e *, ¢~* and ¢!, which are
already in the complementary function. The technique for
partial fractions described in § 2.3 is very convenient here: it
enables us to isolate a particular group of terms without having
to find the other (unwanted) terms. The numerical work in-
volved is perhaps no shorter than if one were to substitute a
trial solution, but has the advantage of following a familiar
pattern when one has become used to the operational method.

PROBLEMS FOR CHAPTER II

[The values of x, Dx, D%, . . . at {=o0 will be denoted by #,,
%y, Xy, . .. ; D stands for d/dt.]
1. Check the partial fractions occurring in Examples 1-3 of
§2.2.
2. (D24-6D+-qg)x=1%"3%; xy=x,=0.
3. (D®—D—2)x=¢t sin 2¢; xy=2,=0.
4. (DA—5D345D%4-5D —6)x=0; xy=%3=2, X;=2,=0.
5. (D34-3D2—D—3)x=e"¥; xy=2x;=%3=0.
6. (D242D+2)x=f(t); xy=2x,=0.
7. (D*—2D+1)x=¢"; 2y=1, %;=—T1.
8. (D3+1)x=e"%; xy=T, %y=—T1, Xg=—2.
9. (D*—5D+6)x=cos 3¢; %,=0, %,==5.
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10. (D*—3D%3D—1)x=346"; %=1, % =2, %=3.
11. (DA4-2D34-D2—2D—2) x=t; %=1, X%;=—2, Xy=0, Xg=5.
12. (D*—5D3%4-6D*4-4D—8)x=0; xy=0, % =%3=1, %3=3.
13. (D*+4)x=f(l); xg=2%,=2g=2%3=0.
14, (D4-4D%4-4)x=1+1%; Xy=2%y=%Xy=X3=0.
15. (D’—D)’+4DD—4)x=153‘; Xg=2%=1, %g=0.
16. (3D+2)x+Dy=o, WA
Dx+(4D+3)y~—-r7e‘.} e i
17. (D2—8)x+Dy=o, gl g e
( —6Dx+(D*+2)y=o,}x°_y°_I’ %=—1, ;=0
2 M
18. (D_+3i)-f( gs+‘§t)}’,=o'}xo=x1=yo=yl=o.
19. D%} 2x—z=D%+2y—z=D%—8x—y-82=0;
Xo=%=Yo=Y1=%H=0, 7,=1. Find 2.

20. (2D ={(t), i
(zD::E %f)ilz)%-gé()g)’ %9=Y,=0. Find x.

SOLUTIONS TO PROBLEMS

[Arbitrary constants will be called 4, B, C, sometimes with
suffixes attached.]

Chapter I (p. 25):

1. Ceo—(x2+2x+2). 2. xe°,
3. % cos x-+% sin x4-Ce™ 2=, 4. e~*(C+log(x-+¢€%)).
5. e~2%(2 4+ A cos x| B sin x).
6. te*(cos x— 2 sin x)+4 cos x+-B sin x.
7. % cos x4 Ae** Bed=, 8. —Ix%t+dx+i+Aer®Be %
9. (A+Bx+§x%)e = .
10. {5%(2 sin x—cos x)+-gg(cos x—7 sin x). )
{Replace R.H.S. by xe**, substitute trial solution
(Ax-+B)e**, then take the imaginary part.]
11, fe=—4c%~. 12. }x(cos x+-3 sin x).

13. §c”+Ae‘=+si=(B cos §x+c sin %3,,)

14. 2 cos 3x—3 sin 3x-} Ae—%-}-e2%(B cos x-C sin ).
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15. 234124 (Cix+C,)e*+ (Cyx+C,)eo.
16. y==3e”—e-:, z=3.2"—~3£—g.x+ de
17. y=e=*(A cos x+-B sin x),
z=¢"%(4 sin x—B cos x).

Chapter II (p. 64):

2. tte3, 3. et — et —diet(cos 2¢+3 sin 2).

4, ‘}i‘+1’§3_‘*§38‘+¥¢s‘- 5. gyet—Je~t4Jett 4 Joot,
6. L eIsin ((—7)f(Ddr. 7. e1—at+ 389,

8. 31 +t)e"+s!‘(§ cos. (,1/2_3)_3_‘% sin (11/2—3) )

9. oo, 2l+ 3¢ __ t H
10. w%u:;ﬁgasj’xﬁ.(m F IR,

11. }(1—#)+e (% cos ¢+-sin t—2). 12. j(e**—e),

13. *J‘: {cosh(t—z)sin(t—7)—cos(¢—t)sinh(t—1)}f(z)dx.

14. }{t*—1+-cos(t )
15. (3t i;-)s&sé(}ézgt))s 2t—2 sin 2i).

16. x=5(—56'+ 172"t —2¢7141), y=15(25¢'—17¢~*—8e~xt),

17. x=}e*+-}e~2 }(cos 2¢t—sin 2i),
y=4e —e~21 3(cos 2¢4-sin 21).

18. x=#>—%--} cos(ty/2)+cos(t4/6),
y=t*—4+% cos(ty/2)—% cos(t1/6).

19. z=1%5—} cos(t/2)+1§ cos(2t/2).

20. %J: e~ f(r)+g(x))dr + 3 J' t e=8(-)(3g(7) —2(7))dx.
0
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‘ELEMENTARY DIFFERENTFAL

EQUATIONS AND OPERATORS'
G. E. H. REUTER ’

In this explanation of the simplest methods for, ;olvmg Hnur
- differential equations with constant coefficients, Cha ; -
tains a detailed description of standard methiods for  th
general solytion and Chapter II gives an el
for, finding the’ solution which satisfies spcc
ditions. - R
Readers will find a careful description of practlca.t methed:
of soiutxon and those who also wish to learn on what mg

“these prmcrples are “discussed in an informal but - “
rigorous manner.
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