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Chapter |

ORDINARY DIFFERENTIAL EQUATIONS IN
MORE THAN TWO VARIABLES

In this chapler we shall discuss the propertics of ordinary differential
equations in more than (wo variables.  Parts of the theory ol these
cquations play important roles in the theory of partial differential
equations, and it is essential that they should be understood thoroughly
before the study of partial differential equations is begun. Collected
in the first section are the basic concepts from solid geometry which
are met with most frequently in the study of differential equations,

. Surfaces and Curves in Three Dimensions

By considering special examples it is readily seen that if the rectangular
Cartesian coordinates (x,p,z) of a point in three-dimensional space
are connected by a single relation of the type

feyy -0 (1)

the point lies on a surface. For that reason we call the relation (1) the
equation ol a surface S.

To demonstrate this gencrally we suppose a point (x,),2) satisfying
equation (1).  Then any increments (Ax,0y,0z) in (x,y,z) are related by
the equation

Do Loy Lo g
\,' Loy

"\J

so that nvo of them can be chosen arbitrarily. In other words, in the
neighborhood of P(x,1,z) there are pomt% P{x 2 &y 4, = - () satis-
f'}mg (!) and for which any two of &, 4, { are chmm arbitrarily and the
third js given by

VAL R

ir # iy 2

The projection of the initial direction PP’ on the plane ¥Oy may there-
fore be chosen arbitrarily. In other words, equation (1) is, in Ue:nera!
a relation satisfied by points which lie on a surface.

|



1 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

If we have a set of relations of the form
x e ), voer Fofie). o Flwn) (2)

then to each pair ol values of u, v there corresponds a set ol numbers
{x,y,7) and hence a point in space. Not every point in space corre-
sponds to a pair of values of v and r, however. If we solve the first
pair of equations

x == Fylu,r), v Fylut)
we may express « and ¢ as functions of x and y, say

Mo ALY, v ()

so that « and ¢ are determined once x and y are known. The corre-
sponding value of = is obtained by substituting these values for i and v
into the third of the equations (2). In other words, the value of z is
determined once those of x and y are krown. Symbolically

oo Fyli(x ) (\1) 1

so that there is a functional relation of the type (1) between the three
coordinates x, y, and -.  Now equation (1) expresses the fact that the
point (x,1,z) lies on a surface. The equations (2) therefore express
the fact lhdl any point (v,1.7) determined from them always lies on a
fixed surface. For that reason equations of this type are called para-
metric equations of the surface.

It should be observed that parametric equations of a surface are not
unique; i.e.. the same surface (I) can be reached from different forms
of the functions £, F,, F, of the set (2).  As an illustration of this fact
we see that the set of parametric equations

X == ¢ SN U Cos 1, ¥ e sinusin e, rowm g COS U

and the set

1 — 2 1 — e . pres
X= @5 osu, pea g sing, R
both vield the spherical surface
o2 o2 gl

A surface may be envisaged as being generated by a curve. A point
whose coordinates satisfy equation (1) and which lies in the plane
----- < k has its coordinates satisfving the Lquallons

oo ke flagk) == 3
which expresses the fact that the point (_.\-,y,z) lics on a curve, I', say,
in the plane z ==k (cf. Fig. 1).  For example, iff § is the sphere with
equation x? L yF 4 2% = '3, then points of S with r == k have

Z = k, AR _‘l"'? R T



ORDINARY DIFFERENTIAL EQUATIONS 3

showing that, in this instance, T, is a circle of radius (a2 — £%)! which
isreal if & < @.  As & varies from —a to + &, each point of the sphere
is covered by one such circle.  We may therefore think of the surface
of the sphere as being “generated” by such circles. In the general case
we can similarly think of the surface (1) as being generated by the
curves (3).

We can look at this in another way. The curve symbolized by the
pair of equations (3) can be thought of as the intersection of the surface
(1) with the plane z = k. This idea can readily be generalized. Ha
point whose coordinates are (x,y,2) lies on a surface S, then there must
be a relation of the form f{x,y,z} = 0 between these coordinates. If,
in addition, the point (x,y,2) lies on a surface S,, its coordinates will
satisfy a relation of the same type, say g(x,y,z) -== 0. Points common

Figure | Figure 2

to §; and S, will therefore satisfy a pair of equations
fixy,z)y =0,  glxyz) =0 (4)

Now the two surfaces S, and S, will, in general, intersect in a curve C,
so that, in general, the Jocus of a point whose coordinates satisfy a pair
of relations of the type (4) is a curve in space (cf. Fig. 2).

A curve may be specified by parametric equations just as a surface
may. Any three equations of the form

x=H0,  y=L0,  z=/H0 (5
in which ¢ is a continuous variable, may be regarded as the parametric
equations of a curve. For if P is any point whose coordinates are
determined by the equations (5), we see that P lies on a curve whose
equations are

Dy(x,y) =0, Qy(x,z) =0
where @,(x,y) = 0 is the equation obtained by climinating ¢ from the
equations x = f,(f), y = fi(7) and where ®,(x,z) = 0is the one obtained



4 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

by eliminating ¢ between the pair x = fi(1), 7 - fi(¢). A usual para-
meter ¢ to take is the length of the curve measured from some fixed
point. TIn this case we replace ¢ by the symbol s,
If we assume that P is anv point on the curve

x = x(s), ¥o=1(s), o z(s) (6)
which is characterized by the value s of the arc length, then s is the
distance Pyf of P from some fixed
point Py, measured along the curve
(cf. Fig. 3). Similarly if Q is a
point at a distance s along the
curve from P, the distance P, will
be s -+ ds, and the coordinates of
Q will be, as a consequence,

1xX(s + 0s), pls - 09), z(s - b3}

The distance o5 1s the distance from
L 0 P to Q measured along the curve
and is therefore greater than dc, the
length of the chord PQ. However,
in many cases, as @ approaches the
x Figure 3 point P, the difference ds — é¢
becomes relatively less. We shall
therefore confine our attention to curves for which

Y.

. e
fim = ! @
On the other hand, the direction cosines of the chord PO are
[x(s -+ a5) — x(s) p(s = 0s) — p(s) (s - ds) — z(s))
l e ’ oc ' Be J
and by Maclaurin’s theorem

fdx) .,
x(s -+ dsy - x(s) = ds (E) — O(ds%)
so that the direction cosines reduce to
ds [dx N a_; 'f{l O | 2 fdz |
oc lds O(ris)r oc ldy ! O({)S)J, oc lds O(ﬁs)‘,

As oy tends to zero, the point @ (ends towards the point P, and the
chord PQ takes up the direction to the tangent to the curve at £, If
we let 45 — 0 the above expressions and make use of the limit (7),
we see that the direction cosines of the tangent to the curve (6) at the
point P are

(dx dy d:")
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In the derivation of this result it has been assumed that the curve (6)
is completely arbitrary. Now we shall assume that the curve C given
by the equations (6) lies on the surface S whose equation is F(x,3,2) = 0
(¢f. Fig. 4). The typical point {x(s5),1(s),z(s}} of the curve lies on this
surface if

FIx(s),3(s).2(s)] — 0 )

and if the curve lies entirely on the surface, equation (9) will be an

identity for all values of 5. Diflerentiating equation (9) with respect

(o ¢, we obtain the relation
cFdx  Fdy  Fd= T
= T e 00 (10 /
ox ds (vds o ds

Now by the formulas (8) and (10) we see that S

the tangent 7' to the curve C at the point £ 15

perpendicular to the line whose direction

ratios are

ey e

x o Cy oz

(rF o CF) (11) Figure 4
The curve C is arbitrary except that it passes through the point £ and
lies on the surface S, It follows that the line with direction ratios (11)
is perpendicular to the tangent Lo every curve lving on S and passing
through P Hence the direction (11) is the direction of the normal (o
the surface S at the point P.

If the equation of the surface S is of the form

z = flx.»)
and if we write
¢z cz
S g 2
TP 5T (12)

then since ' — flx,y) - z, it follows that F, = p, F, == ¢, F, -+ —] and
the direction cosines of the normal to the surface al the point (x,y,2) are

¢ opeg, 1
(et @
VPt gt 4 L
The expressions (8) give the direction cosines of the tangent o a
curve whose equations are of the form (6). Similar expressions may
be derived for the case of a curve whose cquations are given in the

form (4).
The equation of the tangent plane = at the poinl P(x,y,z) to the

N N
b (14)

where (X, Y,Z) are the coordinates of any other point of the tangent
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plane.  Similarly the eguation of the tangent plane =, at P to the
surface §, whose equation is G{v,rz) = 0 is
G (G ‘

(X - X)) - (V- )= (L= =0 15
£ ‘v

4

by

The intersection L of the planes =) and =, is the tangent at P o the curve

Figure 5

C which is the intersection of the surfaces S, and S,. It follows from
equations (14) and (13) that the equations of the line L are
X —x Y -y 7 7 -z

FFiG_iFiG  FiG _iFiG  iFiG iFiG  (16)

iy tz iz cy  izix  dxiz  ix iy iy ix
In other words, the direction ratios of the line L are
[e(F.G) F(FG) S(F.G)
1202 " )" dx ]
Example 1. The direction cosines of the tangent ai the point (x.y,z) to the conic
ax* 5 by bzt |, x4 v ez = 1 oare proportional 1o (by - ¢z, cz - ax,

ax —~ by}
In this instance

(16)

and Geooxry~z—1
HAFG) | 2by 2cz
W Lt
etc., and the result follows from the expressions {16).

= by -z}

s0 that
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PROBLEMS

1. Show that the condition that the surfaces Foeasy 00 Gixr,z) - 0 should
touch is that the eliminant of a. v, and = from these equations and theequations
F.:G, F,:G, F,:G should hold.

Henee find the condmon llmt the pline v my  nz - p 0 should
touch the central conicoid an® Mm* Lozt L

2. Show that the condition that the curve nlx,v,z) - 0, vlxy.z) 0 shoold
touch the surface »{x,v.z) - 0is that the elimimant of x, + and r from these
equations and the further relation ’

[AESRY
AR 0
A

should be valid.
Using this ¢riterion, determine the condition for the line
X-od v = h

s

/ 1 H

o

to touch the quadric zx* = 5?22 - L

2. Simultaneous Differential Equations of the First Order and the
First Degree in Three Variables

Systems of simultancous differential equations of the first order and
first degree of the type

iy,

T = ANLXg LX) i=1,2,...,n (1)

arise frequently in mathematical physics. The problem is to find n
functions v,, which depend on ¢ and the initial conditions (i.e., the
values of xy, x,, . . ., x, when ¢ - 0) and which satisfy the set of
equations (1) idenfically in 7.

For example, a differential equation of the nth order

d'x f( d,\‘ d®x dr },.\.') e
dr T dr B
may be written in the form
dx iy, dy,
- = Vs - = Y = Vo e e a0,
dat - dr de -
dy,

dr == f([ \)1,]«-3, P )_]"‘n—])

showing that it 1s a special case of the system (1).
Equations of the kind (1) arise, for instance, in the general theory
of radioactive transformations due to Rutherford and Soddy.*

1 E. Rutherford, J. Chadwick and C. D, Ellrs, “Radiations from Radioactive
Substances” (Cambridge, London, 1930), chap, 1.
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A third example of the occurrence of systems of differential equations
of the kind (1) arises in analytical mechanics. In Hamiltonian form the
equations ol motion of a dynamical system of » degrees of freedom
assume the forms

dp, ‘H dg, < H i
A= B S F=1,2,....,n {3)
et oy, di P

where Higy.qe « o o iy « o o ofrad) 18 the Hamiltonian function
of the system. 1t is obvious that these Hamiltonian equations of motion
form a set of the (ype (1) for the 2 unknown functions ¢,. ¢, . . . , ¢,
P Pos v o s p.. the solution of which provides a description of the
properties of the dynamical system at any time 7.

In particular, if the dynamical system possesses only one degree of
frecdom. i.c., if its configuration at any time is uniquely specified by a
single coordinate ¢ (such as a particle consirained to move on a wire),
then the equations of motion reduce to the simple form

dp cH dg ¢H
é - =, 2 = (4
g dr ip
where Hip,q.0) is the Hamiltonian of the system. If we write
H Plpgn  tH O O(pgn)
cg  R(p.ag.0) i R(pagt)
then we may put the equations (4) in the form
dp dh d

Plp.g,) Opg)  Ripgh)

For instance, for the simple harmonic oscillator of mass m and stiffness
constant & the Hamiltonian is

P kg
2m 2
50 that the equations of motion are

dp _dg __di
—kmg p m

Similarly if a heavy string is hanging from two points of support and
il we take the p axis vertically upward through the lowest point O of
the string, the equation of equilibrium may be written in the form

dr _ ds
H™ W T

(6)

where H is the horizontal tension at the lowest point, T is the lension
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in the string at the point P(x.}), and W is the weight borne by the portion
OP of the string,
By trivial changes of variable we can bring equations (5) and (6)
into the form
dv dv  dz 7
5 5= % )
where P, O, and R arc given functions of x, v, and =, For that reason
we study equations off this type now. In addition to their importance
in theoretical investigations in physics they play an important role in
the theory of differential equations, as will emerge later.

From equations (8) of Sec. [ it follows immediately that the solutions
of equations (7) in some way trace out curves such that at the point
(x,y,7) the direction cosines of the curves are proportional to (#,Q,R).

The existence and uniqueness of solutions of equations of the type (7)
is proved in:

Theorem 1. If ihe jrmcnom / (\ 242) and flx.y.z) are continuous in
the region defined by |x — a| <=k, [v — by <21, |z~ ¢| < m, and if in
that region the functions satisfyv a L ;p\c/m‘: condition of the fype

]fl(.\“,}‘, - filwapd) s 1|‘l """"" ".'l ! Bl\."—”' =
| felx32) == Julen )y < Ay = o - Bufz —

then in a suitable interval |x — a| < h there exists a wnique pair of
SJunetions (X)) and z(x) continuous and having continuous derivaiives in
that interval, which satisfy the differential equations

dy s d= -
Z[“\”_"‘fl(f\r,,\!‘-)ﬁ ZF; """" 'fa(»-‘h}»—)

ideniically and which have the properiy that y(a) = b, =(a) = ¢, where
the numbers a, b, and c are arbitrary.

We shall not prove this theorem There but merely assume its validity.
A proof of it in the special case in which the functions fi and f, are
linear in 3 and : is given in M. Golomb and M. E. Shanks, “Elements
of Ordmdry Differential Equations”™ (McGraw-Hill, New York, [930),
Appendix B, For a proof of the theorem in the general case the reader
15 referred to textbooks on analysis.?

The results of this theorem are shown graphically in Fig. 6.
According to the theorem, there exists a cylinder v == 1(x), passing
through the point (@,5,0), and a cylinder z = z(x), passing through the
point (a.0,c), such that dy/dx = f; and dzjdx - f,. The complete
solution of the pair of equations therefore consists of the set of points

! See, for instance, E. Goursat, A Course in Mathematical Analysis™ {Ginn,
Boston, 1917y, vol. 1L, pt. 11, pp. 4311,



i ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

common to the cylinders p = p(x) and = -+ z(v); ie. it consists of
their curve of intersection I,

This curve refers to a particular choice of initial conditions; ie.,
it 1s the curve which not only satisfies the pair of differential equations
but also passes through the point (¢,5,¢).  Now the numbers «, b, and ¢
are arbitrary, so that the general solution of the given pair of equations
will consist of the curves formed by the intersection of a one-parameter
system of cylinders of which y == 3(x) Is a particular member with
another one-parameter system of cylinders containing = == z(x) as a

e ¥=y¥ (xt

{a.b,C})
Figure &

member. In other words, the general solution of a set of equations of
the type (7) will be a two-parameter family of curves.

3. Methods of Solution of dx/P = dy/Q = dz/R
We pointed out in the last section that the integral curves of the set
of differential equations
de dy d: (1)
P 0 R

form a two-parameter family of curves in three-dimensional space. 1f
we can derive from the equations (1) two relations of the form

wlrps) =6 ufnyg) = ¢ @

involving two arbitrary constants ¢; and ¢, then by varying these
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constants we obtain a (wo-parameter family of curves satisfying the
differential equations (I).

Method (a).  In practice, to find the functions u, and u, we observe
that any tangential direction through a point (x,3.2) to the surface
(v, 1,7) - ¢ satisfies the relation

~

i
= d.‘{' e
(X (v - >

If w, »= ¢, is a suitable one-parameter system of surfaces, the tangential
direction to the integral curve through the point (x,),z) is also a tan-

gential direction to this surface. Hence
cuy T
— - R— =0

e ¥ =

|
T

P

X
To find u, (and, similarly, u,) we try to spot functions P’, @', and R’
such that

PP~ QQ" 4+ RR =0 {3
and such that there exists a function w, with the properties
7 L u it
Pt o, gt 4
x !‘1‘ €z
i.e., such that
Pdy - Q'dy + R d: (5)
is an exact differential du,.
We shall illustrate this method by an example:
Example 2. Find the integral cnvves of the equations
dx dy dz
e S = (€)
Vix — ) -ar My - v)--az oHx )

In this case we have, in the above notation,
Po=ylx ) 2 ag, g - xx ) - oaz R=zlx+¥

It we take

I I
Po-i Q- R —

then condition (3} is satisfied, and the function w of equation (4) assumes the form

Xy

1y -

Similarly if we take
P x, g - - R = g

condition {3) is again satisfied, and the corresponding function is
wy = Lt - ) —az

Hence the integral curves of the given differential equations are the members of the
two-parameter family
X+ ¥ =60, xt

-yt —2az = ¢ ("

2
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We have derived the solution in this manner to illustrate the general argument
given above. Written down in this way, ithe derivation of the solution of these
equutions seems to require a good deal of intuition in determining the forms of the
functions £, @, and R, In any actual example it is much simpler to try 10 cast the
given differential equations into a form which suggests their solution.  For example,
if we add the numerators and denominators of the first two “fractions,”” thetr value
is unaltered. We therefore have

dx oy ¢z

(oo P zlx o)
which may be written in the form

dix + )
X1y

MR

This is an ordinary differential equation in the variables x = y and z with general
solution
XSy eZ (8)
where ¢, is a constant.
Similarly
xdx - ydy oz
alx - ykz x -y}

which is equivalent to
xdx - ydy —adz =0

ie, to dilx? - 1y —az) =0

and hence leads to the solution

2o 2az ooy (9

X
Equaticns {8) and (9) together furnish the solution (7),

In some instances it is a comparatively simple matter to derive one of
the sets of surfaces of the solution (2) but not so easy to derive the
sccond set.  When that occurs, it is possible to use the first solution in
the following wayv: Suppose, for example, that we are trying to deter-
mine the integral curves of the set of differential equations (6) and that
we have derived the set of surfaces (8) but cannot find the second set
necessary for the complete solution.  If we write

x+y
CJ

in the first of equations (6), we see that that equation is equivalent to
the ordinary differential equation
dx ‘ dy

¥y +ale,  x--ajq

which has solution
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where ¢, is a constant. This solution may be writlen
X — e —(x Y) sy (10)

and we see immediately that, by virtue of equation (8), the curves of
intersection of the surfaces (8) and (10) arc identical with those of the
surfaces (8) and (9).
Method (B).  Suppose that we can find three functions £/, O, R’
such that
Prdx - Q'dy - R d: I
PP+ Q0" + RR (n

is an exact differential, W say, and that we can find three other
functions £, Q°, R" such that
P d}i 'il- Q ({_’1* - R ”a': (12)
PP" Q0" RR
is also an exact differential, W " say. Then, since each of the ratios (11)
and (12) is equal to dx/P, it follows that they are equal to each other.
This in turn implies that

AW = dW”
50 that we have derived the relation
W= W" ¢
between x. 1, and . As previously. ¢; denotes an arbitrary constant.
Example 3. Solve the equations
dx dy iz

¥obaz 2o ix By oy
Each of these ratios is equal to
Ay pdy A ovds
My voxz) oplz - fdx) el )

If &, si. and v are constant multiphiers, this expression will be an exact differential if
it is of the form
Tide + pdy - wdz

P ix - Hy -bovz

and rhis is possible only if
ﬂ..P/'_ ke Ffj’u e ¥z () ]
Ao gt — v =0 (13
A p - gy o= ()J

Regarded as equations in 2, s, and », these equations possess a solution only if »
is a root of the equation

o ] - ) (14)

which is equivalent to
P e L agy =0 (15)
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This equation has three roots, which we mun denote by pro gy, pg. 1F we substitute
the value o for pin theequation (1) and sebetofind 2 Ay p = v oy then
in the notation of (13

I 2y i s

dW e -

L T e B
»0 that Weoodoglyy mr orobe
Similarly W™ logtie oy et

and (13) is ¢quivaient to the relation
(v =y o2 iy s et
where ¢ s a constant.  Ina similur way we can show that

L e PR SN 1= VL WY oW (O S P T s

with ¢, & constant,
A more Tamiliar Torm of the solution of these equations is that obtained by
setting each of the ratios equal to . We then hine relations of the type

! R
B A T L P S T S S
i ’
which give
Fx ey oD ooend

where the ¢, are constants and 7 .23

Method (c). When one of the variables is absent from one equation
of the set (1), we can derive the integral curves in a simple way.
Suppose, for the sake of definiteness, that the equation

dr =
0 R
may be wrilten in the form
ey

g I

Then by the theory of ordinary differential equations this equation has
a solution of the form
By = 0

Solving this equation for = and substituting the value of = so obtained
in the equation

PQ
we obtain an ordinary differential equation of type

(E::I\ g(}“gr’fs}
whose solution

Pl Cney) = 0
may readily be obtained.
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Example 4. Find the ivtegral civves of the cgnation
dly dy d-

e - ————— ( l f))

X2 vz E

The second of these equations niy be written us

oz z
oIy
e
which is equivatent to
d oz
—{Z] -
dr ‘ v J
and hence has solution
e A {(17)

From the first equation of the set (16) we have

dy  x -
Aoy
and this, by equation (17) s equivatent to
dx X
oy oY

W we regard v us the independent variabic and x as the dependent variable in this
equation and then write it in the form

dxooq
—_—— -]
dvry oy
we sec that it has a solution of the form
x coylogy ey o0 (18)

The integral curves of the given differentiat equations (16) are therefore determined
by the equations (17y and (18),

PROBLEMS
Find the Integral curves of the sets of equations:
’ ey o odv el
Toxly -2 ylo-x =xoon)
adx by cdz
th —owz (¢ —amx e - Dy
1. dx - dy 7{{"_‘
xz—y rz-x b=z
4 dx B dv B ez
TOXE - T N TR -

4. Orthogonal Trajectories of a System of Curves on a Surface
The problem of finding the orthogonal trajectories of a system of
plane curves is well known.! In three dimensions the corresponding
problem is:  Given a surface
oy —0 (1)
' M. Golomb and M. E. Shanks, “Elements of Ordinary Differential Equations”
(MeGraw-Hiil, New York, t950), pp. 25-31, 64-65.
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and a system of curves on it, to find a system of curves each of which
lies on the surface (1) and cuts every curve of the given system al right

angles.

The new svstem of curves is called the s.\sth ot or rlmgona.’
trajectories on the surface of the given svstem of curves.

The original

system of curves may be thought of as the intersections of the surface

#4

Figure 7

(1) with the one-parameter family of
surfaces

Glvpo) = ¢ {2)
For example, a system of circles
(shown by full lines in Fig. 7) is
formed on the cone

Xt = Pant e (3

by the system of parallel planes
Doy (4
where ¢, is a parameter, It is

obvious on geometrical grounds that,
in this case, the orthogonal trajec-
tories are the generatorsshown dotted
in Fig, 7. We shall prove this
analytically at the end of this section
(Example 5 below).

In the general case the tangential

direction (dvielydz) to the given
curve through ‘the point (x,3,2) on

the surface (1) satisfies the equations

Hence the triads (dv,dy,d=) must be such that

dx

P
where

2 f’ffh ;-;’Ld:To (3)
f\ (",' - z
and
AG 6 dy - e
[ r} [
dy  d=
7R (7
FiG FFAG
C-Zm T .
FFETG (
Ty iy

The curve through (x,r,z) of the orthogonal system has tangential
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3irection (" v\ ="y (ef. Fig. 8). which lies on the surface (I}, so that

4

s iF F o ,

“ fedX ey e d e 0 (9)
-t (x o ('

and is perpendicular to the original system of curves. Therefore from
equation (7) we have

Pdy' - @Qdr’ + Rd=" =0 (10)
Equations (9) and (10} yield the equations
dy' dy’ _C/:'_'

e i o " (dx’ dy' dz")
5 Q, R (11} ¥ bz
where
) K F
PfR?—Yf—--Q?:;; | J—
- { {dx,dyv.dz)
, tF F .
0= P — R=, ' (12)
[ [ ‘E
, ( F I F '
R o= Qﬁ — P = ‘; Figure 8
- A

The solution of the equations (1) with the relation (1) gives the system
of orthogonal trajectories.

To illustrate the method we shall consider the example referred to
previously:

Example 5. Find the orthogonal trajeciovies on the cone x> — v 22 tan” wof s
interseciions with the fannly of planes pavallel 10z - 0.

The given system of circles on the cone is characterized by the pair of equations

Xelx vy otan® wzdn, dr - 0

which are equivalent to
iy _ dv _ dz

A -x 0
The system of arthogonal trajectories is therefore determined by the pair of equations
xdy vy = tant ardz, rdx - xdp e 0

. dx dy ztanfxdz
e iy S
] . y P

which have solutions

Xyt P an® g, X =0y it
where ¢ 1s a parameter.  Henee the orthogonal trajectories arc the gencrators of the
cone formed by the intersection of 1ts surface with the sheaf of planes v - oy
passing through the - axis (ef. Fig. 7).
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ich

PROBLEMS ht

1. Find the arthoponal trajectaries on the surface % v* - Uz Dol mal

curves of intersection with planes paratlel 10 the planc xOv. al

2. Find the orthogenal trajectories on the sphere x® 3% =+ 27 & of ine
intersections with the paraboloids xi ¢z, e being a pdrdmet(,r

3. Find the equations of the system of curves on the cylinder 2y == x* orthogonai’
10 1ts intersections with {he hyperboloids of the one- parameter system
Xy o= -,

4. Show that the orthogonat trajectories on the hyperboloid

RS G-
of the conics in which it is cut by the system of planes x v ¢ are (s
curves of intersection with the suridcca (- - - &, where & iva pdmm\,tcr

£, Find the orthogonal trajectories on the conicoid
(x — )z |
of the conics in which it is cut by the system of planes
Aoy ook
where & s a parameter.
5. Pfaffian Differential Forms and Equations
The expression

F':("\-]s'\“ze e ,.\'”} d-’(z (1)

N

f

in which the F, (/ == 1, 2, . . ., n}are tunctions of some or all of the n
independent variables x,, x,, . . ., x,, is called a Pfaffian differential
Jorm in 1 variables.  Similarly the relation

> dy, =0 (2)

is called a Pfaffian differential equation.

There is a fundamental difference between Pfaffian differential
equations in two variables and those in a higher number of variables,
and so we shall consider the two types separately.

In the case of two variables we may write equation (2) in the form

Plepydy — Qlx, }) dl .......... (3)

which is equivalent to
C 11’

— = flen) 4)

if we write flv.y) = ‘P;"Q. Now the functions P(x,y) and Q(x,y) are
known functions of x and ¥, so that f{x,y) is defined uniquely at each
point of the xy plane at which the functions P(x,1) and Q(x,y) are
defined. In particular, if' these functions are single-valued, then
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=2 condition (9) is satisfied, we see that
oF dr
dy ay )
"o function ¢ is a function of both x and v, so that dv/@y is not identi-
vozero. Hence
aF
av
=ich shows that the function F does not contain the wvariable x
- plicidy,
Another result we shall require later is:

Theorem 4. [f X is a vecror such that X -curl X = 0 and » is an
SAirrary function of x, v, 2 then (pX) - curl (1X) = 0,
For, bv the definition! of curl we haye

uX -cur] pX = ? () la(u\R) — mam%f:g)}

~here X has components (P.Q,R}. The right-hand side of this equation
~wiv be written in the form

u? Z P {mam@ a(‘?; {PQ Op — PR E{{}

FoT > ! W

=0

a0 the second of these sums is identically zero. Hence
aXoeurl (uX)y == (X -ceurl X - 2

<1d the theorem follows at once.

The converse of this theorem is also true, as is seen by applying the
Letor [fu to the vector pX.

Having proved these preliminary results, we shall now return to the
siscussion of the Plaffian differential equation (6). It is not true that
I equations of this form possess integrals. If, however, the equation
~ such that there exists a function g(x,y.2) with the property that
Pdx + Qdy — Rdz)is an exact differential 4, the eguation is
-1id to be integrable and to possess an integrating factor p{x,,,z). The
“unction & s called the primitive of the differential equation. The
-terion for determining whether or not an equation of the type (6)
~ mntearable 1s contained in:

Theorem 5. A necessary and sufficient condition that the Pfaffian

nerential equation X - de = 0 should be integrable is that X - curl X == 0.

The condition is necessary, for if the equation

Pdx — Qdv + Rd==0 (6)
PH. Lass, “Vector and Tensor Analysis™ (McGraw-Hill, New York, 1950), p. 45.
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is integrable. there exista borw om0 - - L .t the
type
f. -
where (i a constant. W SN .
~F ~f ~f
AN L '
fx - o

we see that there must exist o function « vy such that

eF
g

- ,gm, HQ HR:

,.
Ll Ty

i.e,, such that
IICX - grad F
s0 that since
curf grad £ 0
we have
curl (uX) =0
so that
aX ceurl (X)) 0

From Theorem 4 it follows that
X-aurl X =0

Again, the condition is sufficient.  For, if = is treated as a constant,
the differential cquation (6) becomes

Plxgpcydy - Qlxyo)dy = 0
which by Theorem 2 possesses a solution of the form
U(x o) - 6

where the “constant™ ¢, may involve 2. Also there must exist a function
2 such that

ol au
==y P, T 10
ox a7 Q (10)

Substituring from the equations (10) into equation (6), we see that the
latter equation mav be written in the form

a8 ol ol ( ol
oy — dy - r:_dZ (;c[\’ %) dz = 0
o dz : 0z
which is equivalent to the equation
dU - Kdz =0 (11

if we write

a3
]

A uR -

i
1y
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Now we are given that X curl X - - 00 and 1t follows from Theorem 4

Ll
aXccurl a0

N
(ol ol dl )
X - (wPnQaRy (25,50 K
I {(uP Ry (a\ 51 5- )
-grad U 7 (0.0.K)
. ety el ol oK ok )
X LLIT’%{‘H,X) (""é"";""s ‘a—l-a—: ;\) ‘ ) a—l P _E!\ 0)

o( 5:’\ él/ 6K
ox 01‘ dr ox

~ the condition X »curl X - 0 is equivalent to the refaticn

d(L.K)

vy
-1 Theoremn 3 1t follows that there exists between U and K a
on independent of v and v but not necessarily of =, In other

. K can be expressed as a function KU oyof {7 and - alo'm and
non (11) is of the form

(e
RS =0
=
Jho by Theorem 2, has a selution of the form
Bl zy— ¢

oo ds an arbitrary constant.  On replacing U by its expression in
“~of vy, and o, we obtain the solution in the form
s —=c
“owing that the original equation (6) is integrable.
Onge it has been established that the equation is inlegrable, it only
~muins to defermine an appropriate integrating factor pdx,y,z). We
call discuss the solution of Plaffian differential equations in three
anibles more fully in the next section.  Before going on to the
wilsslon of methods of solution, we shall first of all prove a theorem
mieeraling factors of Pfaffian differential cquduons which is of
Cimportance in thermodynamics.  Since the proof is elementary,
~hall state the result generally for an equation i # variabies:
Theorem 6. Given one integrating factor of the Pfaffian differential
wition

Xy, + Xpelvy & - - - 2 X, dxy, =0

can find an infisitv of them,
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For, i p{yy.x, . .. .x,) i an integraung factor of the given
equation, there exists a function ¢{xv,.v,, . . . v} with the property
that :

aff} -
X, e i= B2 Ln (13)
v,

If d{¢} is an arbitrary function of &, we find that the given Plaffian
differential equation may be written in the form

9 vy - X Y )
poee (X ey - Xodlve - - o X, vy L
dp B *
which, by virtuc of the relations (13), is equivalent to
a‘(l)[ qS - O i O . 0
AP R I LRy A\
db oy, 7t ey, ox,
. dP
ic, 1o mdu = dth — 0
4
with solution
d(d) = ¢

Thus il 1 is an integrating factor vielding a solution & - - ¢ and if @
is an arbitrary function of ¢, then w(d/dd) is also an integrating
factor of the given differential equation,  Since @ s arbiwary, there
are infinitely many iegrating facrors of this type,

To show how the theoretical argument outlined in the proof of
Theorent 5 may be used 1o derive the solution of a Pfaflian dilferential
equation we shall consider:

Example 6, Yerifv that the differential eqnation
OF rovdy s 2Hdr -t - xpyds - O
is integrable and find its priminre.
First of all to verify the integrability we note that in this casc
X 0F ypnar 5 -
so that el X - 2{—x + v - o1 )
and it is readily verified that
XrcutlX 0
If we treat - as a constant, the eyuation reduces to
dx dv dy

Xooooo Vo
which has solution Ulx.yz) -~ ¢, where
. Wy - -
Uixasy - ~—~)
: L
[ at’ | | {
N i e = ———— R
o TP EE = - EURTI-S
and, in the notation of equation {12
1
JE—— Vi E— - 6}

R
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. A O equation (1) reduces to the simple form U7 — 0 with solution
o e, the solation of the orginil cquation

<o eonstant.

iv of interest to consider the geometrical meaning of integrability.
iunctions y == v{x), - z(x) constitute a solution of the equation

Pdv . Odv - Rdz--=0 (14

“ov reduce the equation 1o an identity in v, Geomerrically such a
~ton is a curve whose tangential direction = at the point X{x.y.2)
~erpendicular to the line 4 whose direction cosines are proportional
7.Q.R) {cf. Fig. 9), and hence the tangent to an integral curve lies
o disk ¢ which is perpendicular
- and whose center is (v}, On A
. wther hand, a curve through the /
Y s an integral curve of the /
~on i its tangent at X lies in o
s hen the equation is integrable,
‘ntegral curves lic on the one-
- umeter family of surfaces

Mo vo) =

curve on one of these surfaces
automatically be an integral
2 of the cquation (14). The Figure 9
“dron of integrability may there-
- be thoughy of as the condition that the disks o should fit together
arm a one-parameter family of surfaces.
wnother way of looking at it is to say that the eguation (I4) is
s2urable if there exists a one-parameter family of surfaces orthogonat
:he two-parameter system of curves determined by the eguations
dy dy d:

P 0O R
When the equation is not integrable, it still has solutions in the
cwang sense. 1t determines on a given surface S with equation

Ulxy,z) -0 (15)

ne-parameter system of curves.  For, eliminating - from equartions
<vand (15), we have a first-order ordinary differential equation whose
ston

1}‘(.\',_1’,{’-} == 0
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1s a one-paramerer system of cylinders €, Cu, . . . (c[. Fig. [0) with
generarors parallel to Oz and cutting the surface S in the inregral
curves '), I's, + . ..

0

Figure 10

PROBLEMS

Determine which of the following equations are integrable, and find the solution
of those which are:
1 pydx = xdy +2z2dz =0
2 zlz = dx ~ 2z + )y - 2xpdz =0
3. pzdx -2xzdy — dxydz =0
4, 2xzdx b zdy —dz =0
5. O~ xz)dx + (xF =y dy - 32%dz = 0

6. Solution of Pfaffian Differential Equations in Three Variables

We shall now consider methods by which the solutions of Pfaflian
differential equations in three variables x. y, z may be derived.

(a) By Inspection. Once the condition of integrability has been
verified, it is often possible to derive the primitive of the equarion by
inspection.  In particular if the equation is such that curl X = 0, then?

Uthid., p. 46.
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\ nust be of the form grad v, and the equation X + dr = 0is equivalent

or er oi-
Sl e e @ e — = s D)
dx dy - oz
n primitive
rlxey,s) = ¢
Example 7. Solve the equation

(x*z =~ W) dx — 3xpPdv + XFdr = 0

- howing that it is infegrable.

T test for integrability we note that X = (x% — 3 3x3% 1%, so that
L0 Xo= (0, 2x% 642}, and hence X+ curl X = 0.

We may write the'equation in the form

Kzdx -+ xdz) — ¥ dx — 3xydy =0

1.3 3}2
2. zdx = xdr ~ = dx = =—dy =0
X X
s ]}3
e d(xz) - d( -?) -0

- that the primitive of the equation is
Xz o PR e ex

.here ¢ is a constant.

(h) Variables Separable. In certain cases it is possible 10 write the
2raffian differential equation in the form

P(xydx + Q(y)dy + R(z)dz =0

1 which case it is immediately obvious thar the integral surfaces are
ziven by the equation

J.P(x) dx + | Q0 dy + | R(z) dz

where ¢ is a constant.

Example 8. Solve the equation

a*yiidy = P dy - PP dr = 0
I we divide both sides of this equation by x*y*z%, we have
a* b c?
—dx + 5dy - 5dr =
x? Ve E=
s1owing that the integral surfaces are

2 =
X

~here £ is a constant.
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() One Variable Separable. 1t may happen that dne variable is
separable, z say, in which case the equation is of the form

Plxyyde - Q) dy + R(z) dz =0 (H
For this equation
X == {P(x, 1) Q) R(2) )

and a simple calculation shows that

o (0.0.22 _ 2]
& dx 9y
so that the condition for integrability, X - curl X = 0, implies that
or_ 90
dy  dx

In other words, P dx +  dy is an exact differenrial, du say, and equation
(1) reduces to

du - R(z)dz =10
with primitive

u(x,)) | ’ R(z)dz = ¢
Example 9. Verify that ihe equation
22— aNdx = yW&® —2Hdy 200 —aBdz =0

is integrable and solve it
If we divide throughout by (* — u®)x? - %), we sec that the equation assumes

the form
xdx —zdz vy

RN 2

e 0
X =2 ¥ —d

showing that it {s separable in v. By the above argument it is therefore integrable if
P  8R
F ox

which is readily shown to be true. To determine the solution of the equation we

note that it is
tdlog(x® — 2% + ldlog()® -ah =0

so that the solution is
(x‘Z . 22)()'2 - ‘12) g
where ¢ is a constant.

(d)y Homogeneous Equations. The equation
P(x.p2ydx + Q(x,y.2) dy + R(x,y.2)dz = 0 (2)

is said 1o be homogeneous if the functions P, Q, R are homogencous in
x, v, = of the same degree n. To derive the solution of such an equation
we make the substitutions

}. e LLY, Joli=— i 5 o (3)
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~tituring from (3) into (2), we see that equation (2) assumes the form
Thary dx - OQUhaeeudy - xduy - R{LutYvde =edyy—~ 0
Jor x" canceling out. If we now write

B Ol
P(lary - nQ¢lanry + e R(Lu,r)

A,y ==

) Rl )
Bl =

) Pllaney - uQ(lacry - rR(1a1)
fnid that this equation is of the form

%\‘ LA,y du - Blu ey de o= 0

.

. ean be solved by method ().

't is obvious from the above analysis that another way of putting
o same result is to say that if the condition of integrability is satisfied
P00, R are homogeneous functions of ., v, = of the same degree

vP - vQ + =R does not vanish identically, its reciprocal is an
curating factor of the given equation.

txample 10, Ferify that the equation
vy - o)dx o xzlx Dhde = xy(x - pddz =< 0

orable and find (s solution,

i~ easy ta show that the condition of integrability is satisfied; this witl be left
cenercise to the reader.  Making the substitutions y = ax, z - rx, we find
the equation satisfied by xow, e i

pel - cydy orle - Budxy xdwy o own - Wrdx s xdry =0

i reduces o

dx peoo- Pydu b - 1) de
7 n ! . _O
X 241 - 0o+ or)

- ating the factors of du and (v into partial fractions, we see that this isequivalent to

ST LN N DYV L L
X %u [ - z“} lz‘

which is the same thing,

Sdx du de dG - w0
X It i - v

- ~olution of this equation is obviously
xX2ur e ol 4oy -8}

wre ¢ is a constant.  Reverting to the original variables, we see that the sclution
“he given equation is
2z ely — v+ 2)
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(&) Naranis Method.,  1n the [irst instance we treat the variable - as
though it were constant, and selve the resulting differentiai cquation

Pdy - Qdy 0
Suppose we find that the solution of this cquation is
Ay o) — o {H
where ¢, is a conslant.  The solulion of cquation (2} is then of the form
Doy o (5
where ¢, is a constan(, and we can express this solution in the form
HMro) = o)

where y is a functlion of z alone. Teo determine the function w(z) we
observe that, if we give the variable v a fixed value, « say, then

Blx,p.2) = (2) {6)
is a solution of the differential equation
O ,z)dy -+ Rlzy)dz =0 (7
Now we can find a solution of equation (7) in the form
w(y,2) == ¢ %)

by using the methods of the theory of first-order differential equations.
Since equations (6) and (8) represent general solutions of the same
differential equation (7), they must be equivalent,  Therefore it we
eliminate the variable y between (6) and (8), we obtain an expression
for the function #(z). Substituting this expression in equation (6), we
obtain the solution of the Plaffian differential equation {2).
The method is often simplified by choosing a value for x, such as
0 or 1, which makes the labor of solving the differential equation (7)
as light as possible. 1t is important to remember thal il is necessary Lo
verily in advance that the equation is integrable before using Natani’s
method.
Example 11, Verify that the equation
2z = PWrdx - ziz 4 XM dy - xulx S oyhdz = 0
is Integrable and find its primitive.
For this equation
X =dzlz = ¢, 2(z = &%), —xvix + 1)}
curfX = 20 —x% — xy - =, % Xy -5 fx - :'}‘)

and it is soon veritied that X - curl X « 0, showing that the equation is integrable.
An inspection of the equation suggests that it is probably simpiest to take dy == 0
in Natani's method,  The equation then becomes

1
S —:](}2 == 0
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2 that it has the solution

x(1? o)
— . £y) (i)
iy 1) A
v now et o I in the original equation, we see that it reduces to the simple
dx (N
A (10}

P—x 1
Hution
tan 'x  tan 1 const

“wwn~! {}e) for the constant and making use of the addition formula

X i
tan'tx — tan~ty - tan? :
. ; — -\(.‘

.« that the sclution of equation (10) s

I —ar

{n

X - v

- slution must be the form assumed by (%) in the cuse = - 1 in other words,
.t be equivalent to the refation

SIS (12)

X -y
- eating x between equations (11 and (12), we find that
Jiy =1 - c¢r

" ruting this expression in equation (9), we find that the solution of the
Ton iy
x(F —op = oalx 4N = o)

v Reduction to an Ordinary Differential Equation. I this method
“oduce the problem of finding the solution of a Pfaffian differential
won of the type (2) to that of integraling one ordinary differential
.o of the first order in two variables. 1t is necessary, of course,
-~ the condition for integrability should be satisfied.
" the equation (2) is integrable, it has a solulion of the form

Jlxps) = ¢ (13)
—resenting a one-parameter family of surfaces in space. These
-2ral surfaces will be intersected in a single infinity of curves by the

o= XOo-E Ky (14)

cre hois a constant.  The curves so formed will be the solutions of
. diiterential equation

pleykyds + g(x,p,K)dy — 0 (£5)

~med by eliminating = between equations (2) and (14},
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If we have found the solution of the ordinary differential equation
(15), we may easily find the family of surfaces (13) since we know their
curves of intersection with planes of the type (14). For the single
infinity of curves of intersection which pass through one point on the
axis of the family of planes obtained by varying & 1n (14) will in general
form one of the integral surfaces (13).

Suppose that the general solution of equation (13} is

B(x,1,k) -~ consl. (16)

then, since a point on the axis of the planes (13) is determined by
¥ = 0, Xx = ¢ (a constant), we must have

‘_é(.\',_}',k) = $(c,0,k) (17)
in order that the curves (16) should pass through this point. When &
varies, (17) represents the family of curves through the point y = 0,
x = ¢. If ¢ also varies, we obtain successively the family of curves
through each point on the axis of (14). That is, if we eliminate &

between equations (17) and (13), we obtain the integral surfaces required
in the form

’X, ‘,: — X - c. (),Z wx)
plxn =) gle 0= (18)

The complete solution of the Pfaffian differential equation (2) is
therefore determined once we know the solution (16} of one ordinary
differential equation of the first order, namely, (15). If it so happens
that the constant & is a factor of equation (13), then we must use some
other family of planes in place of (14),

Theoretically, this method is superior to Natani's method in that it
involves the solution of one ordinary differential in two variables
instead of two as in the previous case. On the other hand, this one
equation is often more difficult to integrate than either of the equations
in Natani’s methed.

Example 12. Integrate the equaiion
(y +2)dx —(z - x)dy —- (&~ pddz =0

The integration of this equation could be effected in a number of ways—by
methods (a), (d), (e), for instance—but we shall illustrate method ( £} by applying
it in this case.

Putting z = x - k3, we find that the equation reduces to the form

d; 2x -i— (k + 2)],

k + 2 + ”k}
which is homogeneous in x and y.  Making the substitution 3 = rx, we find that
dx {Zkp o~ (k= 20 dr
X et ok - e -
x2{ke® ~ (k- 2 = 1} const.
therefore $la, v k) — ky? = (k= Dap - X7

~

-0
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=5 immediately that

£ - - '\,‘
‘f)("‘a"» ) SXV ovT e EX
po o
* -

1 =3
:f)((‘, 0, ) = (‘2

~2  for ¢, we obtain the solution

Xy o+ VI X ¢

PROBLEMS

-2y that the following equations are integrable and find their primitives:
Tg = xddx < [z =)t 2 (e —2Mdy — ydz =0

N D=2 de — x(l 2Dy (0 =y dz <0

: oy (2 -z xBdy - e Xy Bz = 0

< odx - xzdy oxvdz =0

P —yzdde » xlz —xddy — (1 = xp)der = 0

tx - ANy - zddx — x(y - 3z)dy b Zxydz = 0

dx (X -z dy - (x% - xiddz = 0

~ Niodx = 2xzdy — (X2 =0z — 1) dz =0

Carathéodory's Theorem

The 1mp0rtancu of the analysis of Sec. 5 is that it shows that we
-not, in general, find mu,crratm0 factors for Pfaffian differential
“ms in more than two mdependent variables. Our discussion has
+n that Plaffian differential forms fall into two classes, those which
. ntegrable and those which are not.  This difference is too abstract
~: of immediate use in thermodynamical theory, and it is necessary
~eek a more geometrical characterization of the difference between
o two classes of Pfaffian forms,
Jefore considering the case of three variables, we shall consider the
-sz of a Pfaffian differential form in two variables. As a first example
.-.2 the Pfaffian equation

dx —dy =0
~ich obviously has the solution
X—y=c¢c ()

-ere ¢ is a constant.  Geometrically this solution consists of a family

straight lines all making an angle =/4 with the positive direction of

¢ vaxis, Consider now the point (0,0). The only line of the family

which passes through this point is the line x = y. This lin¢ inter-
213 the circle x2 4 3 = £ in (wo points

A(x% \_%) and B(_&% \;ﬁ)
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Now it 15 not possible to go from 4 to any point on the circle,
other than B, il we restrict the motion to be alwavs along lines
of the family (1). Thus, since r may be made as small as we please, it
follows that arbitrarily close to the peint (0,0) there is an infinity of
points which cannot be reached by means of lines which are solutions of
the given Pfafiian differential equation.

This result is true of the general Pfaffian differential equation in two
variables. By Theorem 2 there exists a function $ix.y) and a funclion
#(x,3) such that

(P dy = Qv dy = dd(a)

so that the equation
Pdv — Qdy—0

must possess an integral of the form

Plx)) = ¢ (2)

where ¢ 1s a constant,  Thus through every point of the xy plane there
passes one, and only one, curve of the one-parameter system (2),  From
any given point in the xy plane we cannot reach «// the neighboring
points by curves which satisfy the given differential equation.  We shall
refer to this state of affairs by the statement that not all the points in the
neighborhood are accessible from the given point.

A similar result holds for a Pfaffian differential equation in three
independent variables. If the equation possesses an integrating factor.
the situation is precisely the same as in the two-dimensional case.  All
the solutions lie on one or other of the surfaces belonging to the one-
parameter system

$lx,y,z) = ¢

so that we cannot reach af/ the points in the neighborhood of a given
point but only those points which lie on the surface of the family passing
through the point we are considering.

By extending the idea of inaccessible points to space of # dimensions
we may similarly prove:

Theorem 7. If the Pfaffian differential equation

AY == Xydy) — Xpdx, + - -+ + X, dx, =0

is integrable, then in any neighborhood, howerver small, of a given point
Gy, there exists points which are not accessible from G, along any paih
for which AX = 0.

What is of interest in thermodynamics is not the direct theorem but
the converse. That 13, we consider whether or not the inaccessibility of
points in the neighborhood of a given point provides us with a ¢riterion
for the integrability of the Pfaffian differential equation. If we know
that in the neighborhood of a given point there are points which are
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v near but inaccessible along curves for which A& = 0, can
. assert that the Plaffan differential equation AX = 0 possesses
orating factor?  Carathéodory has shown that the answer to
o-tion is in the affirmative.  Stated t'ormz-lll_v his theorem is:
scorem 8. If a Pluffian differential form AX = Xy dy, — X, dy, -~
A dx, has the property that in cvery arbitrarily close neighbor-
 given point Gy there exist points G which are inaccessible front
curves jor which AX == 0, the corresponding Plaffian diffecential
< MY == 0 s integrable.
~hall consider the proof of this theorem in the case n = 3. The
sirical concepts are simpler in this case, and the extension to a
.~ number of independent variables is purely formal.
> of all we shall prove the theorem making use of a method
_~txd by a paper of Buchdahl's.? This depends essentially on
- that by means of the transformations (10) and (12) of Sec. 5 the
VY

Pdv - Qdy -~ Rdz=10 (3)
-2 written in the form
[_'(_(_ 4 K{l,v,2)=10 (4
o= g

b will be observed, the function K may be expressed as a
on of the fliree variables U, v, and =. If we take y to be fixed,
vowrite equation (4) in the form

dU + K(U,v,z)dz =0
v Theorem 2 has a solution of the form
U = $(z,1) (3)

ae showed in Sec. 5 that equation (3) was integrable if it could be
the form

5{5 - K(U,5) = 0 (6)
. and only if,
20 "
dy

.ortain region of the yz plane.

POse the point Gy(xg, 4.2} 15 contained in a domain D of the

nace. Then if £, @, R, and x are such that ¥ and A are single-
.J finite, and continuous functions of x, 3, and =, there is a one-to-

A. Buchdahl, Ane. J. Phiys., 17, 44 (1949).
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one correspondence between the points of D and those of a domain 2
of the Uyz space. Let H (L, v.py) be the point of D corresponding
to the point G, of D, We shall now consider how the passage along a
solution curve of equation (6) from H, to 4 neighboring point H may
actually be effected:

{¢r) First pass in the plane v - v, from //, to the point #/,; then by
virtue of (5) the coordinates of Hy will be {d(z, - &L v vaozy = <70
where (" denotes the displacement in the = coordinate. Furthermore
since £{, lies on the same integral curve as f/, it follows that

Ly = ‘rf’(:nfl‘s))

(hy Next pass in the plane &' = &(z, — ', vy) from H, to the point
H, Since - is constant, it follows that the coordinates of I/, are

yd

KU Figure |1

Wze b OLve), vo o — ), zy =475, where y — ) denotes  the
displacement H, H .

(¢) Next pass in the plane v — v, -+ 4 — #" to the point /7, which
then has coordinates [z, — & vg — i — i), vo 5 — 1" T 1t L}
¢ — " denoting the change in the = coordinate.

() Finally pass in the plane U == &z, - L, vy — 4 — 7") through a
displacement 5" to the point /, which then has coordinates

U by v =y — ) ¥ Yo o Tem ol

If the point (L & ¢, vy = #y Ty o £5), which is arbitrarily close to
H (U, va.25), 1s accessible [rom A, along solutions of the equation (4),
then it is possible to choose the displacement ¢, 3, { in such a way that

dlzy + 4 Yoty =y ) =z 00) = &y, H ==Ly, {=1¢; (8)

Now if ¢/ the points in the neighborhood of H, are accessible from
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fows that the points (U7 - «. 1y, 2y which lie on the line & - ¥,
-, arc accessible from £/,. Thercfore it should be possible 1o
~¢ a displacement " such that

e O Il G U SR (9)

his s so onlv i 64/dy s not identically zero, in which case, as we
thed above, the cquation is not integrable.

- the other hand i there are pornts which are inaccessible from H,
ows that there exist values of #, ., and #; for which the equations
vrwhat is the same thing, equation {(9)—have no solutjon.  To the
srder we may write equation (99 m the form

Uy oy O

i
~ tails to give a value for 4, it can only be because

= — 0
Ol
nlv if the equation 1s integrable,
v more geometrical prool of Carathéodory’s theorem has been given
Born.' In this proot we consider the solutions of the Pfaffian
orentral equation (3) which [re on a given surface S with parametric
SHONS
N xdr), () oo o)

-0 eurnves will satisfy the two-dimensional Plaffian differential

~im

Fdu —Gde -0 (10)
. ox gv . oz 0y v ez
FoPS QZ -R=.  G-Pm+ Q%R

~. by Theorem 2, equation (10) has a solution of the form
Ay =0

“osenting a one-parameter system of curves covering the surface S,
o~ now suppose that arbitrarily close to a given point G, there are
c.owible points, and let us further assume that G is one of these
~. Through G, draw a [ine 7 which is not a solution of equation
wnd which does not pass through G. Let = be the plane defined
“he line 4 and the pomnt G.
~1. Born, “MNatural Philosophy of Cause and Chance™ (Oxford, London, 1949),
ondix 7, p. 144,
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I we now take the planc = to be the surface §, introduced above, we
see that there is just one curve which lies in the plane =, passes through
the point ¢, and is a solution of equation (3). Suppose this curve
intersects the line £ in the point # then since ( is accessible from H
and inaccessible from G, 1t follows that # 15 Inaccessible from G
Furthermore, since we can choose a point G arbitrarily close to Gy,
the point /f may be arbitrarily near to G|,

Suppose now that the line 2 1s made to move parallel to itsell’ to
generate a closed cvlinder o, Then on the surface » there exists a

Figure [2 Figure 13

curve ¢ which is a solution of (3) and passes through . If the line 2
cuts the curve ¢ again in a point /. then by continuously deforming the
cvlinder ¢ we can make the point / move along a segment of the line 72
surrounding the pomt G, In this way we could construct a band of
accessible points i the vicinity of G, But this is contrary to the
assumption that, arbitrarily close to G, there exist points on the line 4
(such as H) which are inaccessible from G,: hence we conclude that
for each form of o the point 7 coincides with G,

As the cylinder o is continuously deformed, the closed curve ¢ traces
out a surface which contams all solutions of the equation (3) passing
through the point &, Since this surface will have an equation of the
form

ff‘i(.\‘.}'q—'_) = ‘5(-\‘0-}'0,-:0)

it follows that there exist functions # and ¢ such that
(P dx 4 Qdv = Rdz) — dd

and so the theorem is proved,
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=~ >plication to Thermodynamics

-t clementary textbooks on thermodynamics follow the historical
opment of the subject and conscqutnlly discuss the basic principles
s of the behavior of several kinds of “perfeet™ heat engines.
~ no doubt advantageous in the training of engineers, but mathe-
-.ansy and physicists often feel a need for 4 more formal approach.
re clegant, and at the same time more rational, formulation of the
“idens of thermodynamics has been developed by Carathéodory
¢ hasis of Theorem 8, and will be outlined here. For the full
“s the reader is referred to the original papers.!
: first law of thermodynamics is essentially a generalization of
2> experimental l[aw that whenever heat is generated by mechanical
the heat evolved 1s always in a constant ratio to the correspond-
cuount of work done by the forces. There are several ways in
- such a generalization may be framed. That favored by
“heodory is:
wder to bring a thermodynamical svstem from a prescribed initial
o another prescribed finul state adiabatically, it is necessary 1o do
wnt amount of mechanical work which is mdependeur of the munner
i the change is accomplished and which depends only on the
hed initial and final states of the systen.

-ill be observed that in this axiom the idea of quantity of heat is
cairded, as it s in the classical theory of Clausius and Kelvin, as
2 an intuitive one; an adiabatic process can be thought of as one
- place m an adiabatic enclosure defined by the property that the
state ol any thermodynamical system enclosed within it can be
Sonly by dlSp]d(,m%.. a finite area of the wall of the enclosure.

i 'nmncall\ this first [aw is equivalent to saying that in such an
“e process the mechanical work done B s a function of the
Lodvnamical variables (vpwve, . ..v,) and (U, L0 )
=g the final and initial states of the system and not of the inter-
e values of these varrables.  Thus we may write

Wo— Wilvxg, ooyl o i
“we consider a simple exper%ment i which the substance goes from
n] state (", . . ) to an mntermediate state (v, L L L w7
110 a final state (xl, <« . .Y,) we obtain the functional equation
X, ;—\‘(Ii)« L. 11(5:) M/(_\ft;il’ . n-\'i,”;-\'lm-. o ’Xt[‘.fl:)
_ I/V(.Yl, o ._\.h;_\,flm1 L "\,i::u

Carathéodory, Math, Ann., 67, 355 (1909): Sitzher, premss. Akad. Hiss.
~nath, KiL, 1925, p. 39, General aceounts of Carathéodory’s theory are
“wdin M, Born, Phvsik, Z., 22, 218, 249, 282 (1921); A, Landé, “Handbuch
-ix” (Springer, Berlin, 1936}, vol. 9, chap. IV,
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for the determination of the function . This shows that there exists a
function Ulx,, . . . .x,), called the internal energy of the svstem, with
the property that

Wiy, oo™ oy = Ut .y = L
H

If we now consider the case in which the state of the system 1s changed
from (x{", . . . ;" to(x. . .. ) by applying an amount of work
W, but not ensar.ng that the system is adiabaticaliv enclosed. we find
that the change in internal energy Uiy, . . . ,x,) - L0 00 L0y,
which can be determined experimentally by measuring che amount of
work necessary to achieve it when the system is adiabaticully enclosed,
will not equal the mechanical work W.  The difference between the
two quant ities is defined to be the quantity of heat O absorbed by the
system in the course of the nonadiabatic process. Thus the first law
of thermodynamics is contained in the equation

Q=U—U,— W (2)

In Carathéodory’s theory the idea of quantity of heat is & derived one
which has no meaning aparl from the first law of thermodynamics.

A gas, defined by its pressure p and its specific volume ¢, 1s the
51mp[fvsl kind of thermodynamical system we can consider. It is
readily shown that if the gas expands by an infinitesimal amount dr,
the work done by it is —pdr, and this is nor an exact differential.
Hence we should denote the work done in an infinitesimal change of
the system by AW, On the other hand it is obvious from the definition
of {7 that the change in the internal energy in an infinitesimal change
of the system is an exact differential, and should be denoted by dU.
Hence we may write (2) in the infinitesimal form

AQ = dU — AW (3)

If we take p and r as the thermodynamical variables and put AW =
—p dv, then for a gas

AQ = Pdp I Vdv (4)
where P = C_’F , | BTL 4op
ap ov

Now from Theorem 2 we have immediately that, whatever the forms
of the functions P and V', there exist functions w(p.ry and $(p.t) such
that

1w AQD = do (3

showing that, although A Q is not itself an exact difterential, it s always
possible to find a function x of the thermodynamical variables such
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that # AQ 1s an exact dilferential. This result 1s a purely mathematical
consequence of the fact thal two thermoé\;ndlmcdl variables are
sufficient for the unigue specification of the system.

It 1s natyral to inquire whether or not such a result is valid when the
system requires more than two thermodynamical variables for its
complete specification. I the system is described by the n thermo-

dynamical variables vy, x5, . . . . .x,, then equation (4) is replaced by
a Pfaffian form of the type
AQ - I X.dy, (6)
P
m which the X,’s are functions of x,, . . ., x,. We know thal, m

seneral, functions # and ¢ with the property # A0 = d¢ do not exist
in this general case. If we wish to establish that all thermeodynamical
systems which occur in nature have this property, then we must add a
new axiom of a physical characler. This new physical assumption is
the second law of thermodynamics.

In the classical theory the physical basis of the second law of thermo-
dvnamics is the realization that certain changes of state are not physicaily
realizable; e.g., we get statements of the kind “heat Cannol flow from
a cold body o a hotler one without external control.™  In formulating
the second law, Carathéodory generalizes such statements and then
makes use of Theorem § to obtain mathematical relationships similar
to those derived by Kelvin and Clausius from their hypotheses. The
essential point of Carathéodory’s theory is that it formulates the results
of our experience m a much more general way without loss of any of
the mathematical results.  Carathéodory's axiom is:

Arbitrarily near to any prescribed initial state there exisi states which
cannot be reached from the initial state as a resuls of adiabatic processes.

If the first [aw of thermodynamics leads to an equation of the type
{6} for the system. then the second faw m Carathéodory's form asserts
that d{bmaﬂly near to the point (x{", x4y there exist points

(¥, . . . .x,} which are not accessible [rom %he initial point along
paths for which AQ — 0. It follows immediately from Theorem § that
there exist functions gy, ... ,x) and &y, . . . v, with the

property that
it _'SQ = Cf&") {7)

The function & occurring in this equation is called the enrropy of the
‘hermodynamical system. [t can be shown that the function g is,
apart from a multiplicative constant, a function onfy of the empirical
temperatyre of the svstem.  Jt s written as [/7, and 7" is called the
absolute temperature of the system. Tt can further be demonstrated
that the gas-thermometer scale based on the equation of state of a
perfect gas defines a temperature which is directly proportional to T;
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by choosing the absolute scale in the approp{iate Mannper we can make

the two temperatures equal.

With this notation we can write LqudllOn

{7y in the familiar form

:‘2 == feh {8)

Theorem 8 shows that such an equation is valid only if we introduce a
physical assumption in the form of a second law of thermodynamics.

MISCELLANEOUS PROBLEMS
Find the integral curves of the equations:

dx dy =

(@) P =2 : WMo e
dx dy dz

W i T ETaECR

() dx dy oz

Yo y o ox+-y —x-y+ln

Find the integral curves of the equations

dx dy dz
oy bz az ocx bx oooay

and show that they are circles.

Salve the equations
dx dy  dz

- @ xy - a4z xz —ay

and show that the integral curves are conies,
The components of velocity of a moving point (x,y,2) are 2z
2y - 2y~ 3z} determine the path in the general case.

If the initial point is (5,1,1), show that as 1 — = the limiting point (1,2,
approached along a parabola in the plane x - 2;} -2z =9,
Find the orthogonal tm;ulmu,s on the cvlinder v¥ = 2z of the curves in which
it is cut by the system of planes x + 7 = ¢, where ¢ is a parameter.
Show that the orthogonal tra}eclories on the cone

yzooix +xy=20

—dx, 2z — 2v,

2)is

of the conies in which it is cut by the system of planes x — v - care itscurves

of intersection with the one-parameter family of surfaces

(x - o 22)2(x -y D=k
Find the curves on the paraboloid
e
orthogonal {0 the system of generators
. 2q
X =y -4z X oy

)
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Find curves on the cylinder x* i 23*  2¢* orthogonal to one svstem of
circular sections.
Show that the cutves on the surface x*  1* - 27 orthogonal to its curves of
intersection with the paraboloids vz cx lie on the cvlinders
X2 - 270 zlogikn) O
where & is a parameter,
Verify that the following equations are integrable and determine their
primitives:
@y zvdx - zedy — prds — 0
) S Hde - xydy + xrdz =0
(e) &y --z)dx tdy | odz ~ 0O
(o) (2xyz — 2% dx —x%zdv - (xz ) 1ydz =0
ey zvidx 4 zxtdy — xdz = 0
(f) xQF —2Mele - p(2% — 30 dv + 2(x* — dz =0
(e) 0 —2Hdx —(x* —20dy + (x — Pix -~ y —22)dz =0
() G2 yzddx ©ixz 0 dy - R —x)dr -0
(Y 2e(y < ordx — 2xzdy - (v + 2P —x? o 2xoydz =0
() (&% - xy - yryde — xlx - ydy - x*dz = Q)
thy vl — dxzydx - xz(l + 2x2)dy —xydz =0
i (2Zxz = Pydx = 2ycdz — (2xF - 2% - xz — 2a¥)dz — 0
() (ydx — xdv)la 2y — xydz = 0
(M 2xdx | (2x%2 + 2yz = 22 4 Ddy - dz =10
() 2xz{y — z2)dx — z2(x* + 22ydy — y(x* 4+ 2y)dz = 0
If f1. £, und f3 are homogeneous functinns of the same degree in x, ¥, and z and
if wfy - vfe = 2fy = 0, show that the equation fidx + fdv + fadz = 0 s

integrable,
Find the general solution of the equation

(2x 4 29z de - (Ux - 12p)zdy — (2x* + 3xy — )%y dz = 0

and determine the integral surface which passes through the curve v = 0,
o= xb, i

If L, M, Nand P. (, R are proportional to the direction cosines of two direc-
ttons tangential to the surface f(x,y,z) = 0at the point {x,y,z) and make equal
ungles with the z axis, show that

(P24 OOLf, + MY = (L - MH(Pf. + Of,F
and deduce that

L P2 — fy 2011,

Mo QU — [ = 2R
Hence find the equations of the system of curves on the paraboloid xy = =
such that each curve, at its intersection with each generator of the system
x - A,z = Ay, makes with the z axis the same angle as that generator.
Find the integral curves of the equation

ydy —xdy +~dz =0

on the surface v = xz,



Chapter 2

PARTIAL DIFFERENTIAL EQUATIONS OF THE
FIRST ORDER

[. Partial Differential Equations

We now proceed to the study of partial differential equations proper.
Such equations arise in geometry and physics when the number of
independent variables in the problem under discussion is two or more.
When such is the case, any degktndeﬁ% variable is likely to be a function
of more than one variable, so that it possesses not ordinary derivatives
with respect to a single variable but partial derivatives with respect to
several variables.  For instance, in the study of thermal effects in a
solid body the temperature ¥ may vary from point to point in the solid
as well as from time to time, and, as a consequence, the derivatives

o oh ol i)
ErA AR A
will, in general, be nonzero.  Furthermore in any particular problem it
may happen that higher derivatives of the types
o0 %) k]
axt’ ax or ax® or
may be of physical significance.

When the laws of physics are applied to a problem of this kind, we

sometimes obtain a relation between the derivatives of the kind

+ RIC,

ofl piaf 220
Al e T T G e o TR I
SRR TR = SRR ELEC
Such an equation relating partial derivatives is called a partia! differential

equation,

Just as in the case of ordinary differential equations, we define the
order of a partial differential equation to be the order of the derivative
of highest order occurring in the equation. 1If, lor example, we take 9
to be the dependent variable and x, v, and ¢ to be independent
variables, then the equation
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s a second-order equation in two variables. the equation

I /]
B T 3
5 -3 3)
i a first-order equation in two variables, while
i 3 an
e S 4
SN B (4)

~ a first-order eguation in three variables.
In this chapter we shall consider partial differential equations of the
iirst order, t.e., equations of the type
o Of
Flhz ) =0 5
( T ) (3)

in the main we shall suppose that there are two independent variables x
-nd 3 and that the dependent variable is denoted by z.  If we write
oz oz
o S — 6
r ay q oy ( )
= see that such an equat%on can be written in the symbolic form

J {‘\'.};:,p,q) = 0 N

~. Origins of First-order Partial Differential Equations
Belore discussing the solution of equations of the type (7} of the last
~ction, we shall examine the interesting question of how they arise.
~uppose that we consider the equation
X2t (2= o) =gt (h

which the constants ¢ and ¢ are arbitrary. Then equation (1)

spresents the set of all spheres whose centers lie along the z axis, If
¢ differentiate this equation with respect to x, we obtain the rzlation
X -=p{c—c) =0

hile if we differentiate it with respect to y, we find that

minating the arbitrary constant ¢ from these two eguations, we
“tain the partial difierential equation

yp— x4 =0 (2)

aich is of the first order.  In some sense, then, the set of all spheres
:h centers on the z axis is characterized by the partial differential
. uation {2).
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However, other geometrical entities can be described by the same
equation.  For example, the equation

(- P tanta )

in which both of the constants ¢ and = are arbitrary, represents the set of
all right ¢circular cones whose axes coincide with the line Oz If we
differentiate equation (3) first with respect to x and then with respect to
v, we find that

plz — ¢ytan® 2 = x, gz —o)tan?« - v (4)

and, upon eliminating ¢ and » from these relations, we sec that for these
cones also the equation (2) is satisfied.

Now what the spheres and cones have in common is that they are
surfaces of revolution which have the line Oz as axes of symmetry.
All surfaces of revolution with this property are characterized by an
equation of the form

= £ (5)
where the function fis arbitrary. Now il we write x* © 1* — u and
differentiate equation (3) with respect to x and y, respectively, we obtain
the relations

P 2x) (), g = 2y}

where (¢} = df jdu, from which we obtain equation (2) by eliminating
the arbitrary function f(u).
Thus we see that the function = defined by each of the equations (1),
(3), and (3) is, in some sense, a “solution” of the equation (2).
We shall now generalize this argument slightly, The relations (1)
and (3) are both of the type
Fxy,zab) — 0 {6)

where ¢ and b denote arbirrary constants, 1f we differentiate this
equation with respect to x, we oblain the relation
aF oF oF or
— —p=—=0, —+g==0 7
ax Pz a9 @
The set of equations {6) and (7) constitute three equations involving two
arbitrary constants ¢ and b, and, in the general case, it whl be possible
to eliminate ¢ and b from these equations to oblain a relation of the
kind
Slxyznpg) =0 : {8)
showing that the system ol surfaces (1) gives rise to a partial differential
equation (8) ol the first order.
The obvious generalization of the relation (5) is a relation between
x, ¥, and z of the type
Flu,t) = 0 9
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where i and ¢ are known functions of v, y, and z and Fis an arbitrary
function of i and v. If we differentiate equation (9) with respect to
vand v, respectively, we obtain the equations

NN AL
Bu oy 8:/),1( i g loy a::pJ )

offou  ouw | @Ffdv  dv }0
8:1[6

=9 e o wY
and if we now eliminate 0F/du and JdF/dv from these equations, we
obtain the equation
a(u,t‘)_ . a(u,z) &)
o(p,z) 6( 7,X) 8(;\’,_}:)

which is a partial differential equation of the type (8).

It should be observed, however, that the partial differential equation
(10) is a finear equation; i.e., the powers of p and ¢ are both unity,
whereas equation (8) need not be linear. For example, the equation

(x . a)2 o (}- ........... b)2 N |

which represents the set of all spheres of unit radius with center in the
plane xOy, leads to the first-order nonlinear differential equation

21 A p? - gY) = |

(10)

PROBLEMS

1. Eliminate the constants & and b from the following equations:
(@) z =(x +aly ~ &)
by 2z = {ax + ¥y + b
(¢} ax® -+ byz e E e ]
2. FEliminate the arbitrary function f from the equations:
(@) z = xy + fla® )
)z =x 4y flop
© 2= f(l?i)
{dyz = f{x —y)
(o) f(x® -+ 02 2% 22 — 2y = 0

3. Cauchy’s Problem for First-order Equations

Though a complete discussion of existence theorems would be out of
place in a work of this kind, it is important that, even at this elementary
stage, the student should realize just what is meant by an existence
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theorem. The business of an existence theorem is Lo establish con-
ditions under which we can assert whether or not a given partial
differential equation has a solution at all: the further step of proving
that the solution, when it exists, is unique requires a aniguencss theorem.
The conditions (o be satisfied in the case of a first-order partial differ-
ential equation are conveniently crystallized in the classic problem of
Cauchy, which in the case of two |§§dgpg§1(§ult variables may be stated as
follows :

Cauchy’s Problen,  1f

() xolu), yolp0), and z () are functions which, together with their
first derivatives, are continuous in the interval M defined by
Hy < e

by And if Flx,y,z,p,q) is a continuous function of x, v, z, p, and ¢
in a certain region U of the xvzpg space, then it is required to establish
the existence of a function $(x,3) with the following properties:

(1) $(x,3) and its partial derivatives with respect to x and y are
continuous functions of x and y in a region R of the xy space.

{2) For all values of x and v Eylné} in R, the point {x,y.E(x ) )he (X)),
¢ (x.p} Hes in U and

FLord (.0, (v 00,8, (v, 0)] =

{3) For all u belonging to the interval M, the point {xole), yel 1) ;
belongs to the region R, and

é’{ 3’(;(#),}'@;{#)} !

Stated geometrically, what we wish to prove is that there exists a
surface = -= ¢(x,y) which passes through the curve I' whose parametric
equations are

= ~‘39{#)a o= }'(;(;ti), = zglp) (h

and at every point of which the direction (p,g, 1) of the normal is such
that
Flxyz,pg) = 0 {2)

We have given only one form of the problem of Cauchy. The problem
can in fact be formulated in seven other ways which are equivalent to
the formulation above.!  The significant point is that the theorem can-
not be proved with this degree of generality. To prove the existence
of a solution of equation (2) passing through a curve with equations (1)
it is necessary to make some further assumptions about the form of the
function F and the nature of the curve I There are, therefore, a whole
class of existence theorems depending on the nature of these special

! For details the reader is referred to D, Bernstein, “Existence Theorems in

Partial Differential Fquations,” Annals of Mathematics Studies, no, 23, (Princeton,
Princeton, N.J., 1950), chap. IL
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~sumptions.  We shall not discuss these existence theorems here but
-hall content ourselves with quoting one of them to show the nature of
~uch a theorem, For the proof of it the reader should consult pages
*2 10 36 of Bernstein’s monograph cited above. The classic theorem
5 this field is that due to Sonia Kowalewski:

Theorem 1. If g(y) and all its derivatives are continuous for

— Vo <0 0, if x4 s a given number and zy == g(yy), g = g1(Yo), and if
nvwnzg) and all its partial derivatives are continuous in a region S
ivfined by

,X — an <8, "l,«‘ - 1.301 <74, J - qﬂl <

“hen there exists a unique function &(x,y) such that:

() Hx.¥) and all its partial deriv ames are continuous in a region R
defined by |x — x| < 6y, ]y — ¥yl <

(hy For aff (x, 0} in R. z = &(x, L) is a Saz’unon of the eguation

m}m

/!Y ]v‘a aq)

(¢) For all vatues of y n the interval |y — yo| <0 9y, &(X4,y) = gly)
Before passing on (o the discussion of the solution of first-order

nartial differential equdllons we shall say a word about different kinds
Af solutions,  We saw in Sec. 2 that relations of the type

Flx,v,z,0.h) = 3

Jed to partial differential equations of the first order. Any such
relation which contains two arbitrary constants « and b and is a solution
of a partial differential equation of the first order is sid to be a complete
wolurion or a complete inregral of thal equation. On the other hand
ay relation of the type

Flup) =0 (4)

mvolving an arbitrary function F connecting two known functions u
and v of x, ¥, and z and providing a solution of a first-order partial
differential equation is called a general solution or a general integral of
that equation,

It is obvious that in some sense a general integral provides a much
broader set of solutions of the partial differential equation in question
than does a complete integral.  We shall see later, however, that this is
purely illusory in the sense that it is possible to derive a general
integral of the equation once a complete integral is known (see Sec. 12).

4. Linear Equations of the First Order

We have already encountered linear equations of the first order in
Sec. 2. They are partial differential equations of the form

Pp+ Qq= R (1)
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where P, @, and R are given functions of x, v, and = (which do not
involve p or g), p denotes 2=/3x , g denotes 6”’8\, and we wish 1o find a
relation between x, v, and = 111\;01\;1115_ an drbltldw func¢tion, The first
systematic theory of equations of this lype was given by Lagrange.
For that reason equation (I} is frequently referred to as Lagrange’s
equation. Its generalization to » independent variables is obviously
the equation

Xy — Xopy— - = X,p,— Y (2)

where X}, Xy, . . ., X, and ¥ are functions of » independent variables
Xy, X2, . . ., X, and a dependent variable /; p, denotes 8/ /ox, (i — I,
2, ... ,n). It should be observed that in this connection the term
“linear™ means that p and ¢ {or, in the general case, py. ps, . .« ., p.)
appear to the first degree only but 2, 0, R may be any funcrions of x, y,
and z. This is in contrast to the situation in the theory of ordinary
differential equations, where z must also appear linearly. For example,
the equation

Bh z
= i3 A
Loy — - 1y
8\ © oy
is linear, whereas the equation
d* ,
= 7« { \u
d\

is not.
The method of solving linear equations of the form (1) is contained in:
Theorem 2. The general solution of the linear partial differential
equation
Fp—Q¢=R (1)

Flur) = 0 3)

where F is an arbitrary function and u(x,y,2) — ¢y and 1{x,3,2) = ¢, form
a solution of the equations

is

dx dy d:z
P 0O R

We shall prove this theorem in two stages: (g) We shall show that
all integral surfaces of the equation (1) are generated by the integral
curves of the equations (4); (b) and then we shall prove that all
surfaces generated by integral curves of the equations (4) are integral
surfaces of the equation (1).

(a) I we are given that = — f(x,y) is an integral surface of the partial
differential equation (1), then the normal to this surface has direction
cosines proportional to {(p.g, 1), and the differential equation (1) is no
more than an analytical statement of the fact that this normal is perpen-
dicular to the direction defined by the direction ratios (P.0,R). In

(4)
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 words. the direction (P.Q,R) is tangential to the integral surface
fvh
. therefore, we start from an arbitrary point 4 on the surface (cf,
- 141 and move in such a wav that the direction of motion is always
2.R). we trace out an integral curve of the equations (43, and since
(2, and R are assumed to be unique, rthere will be only one such
- through M. Further, since (#.Q,R) is always rangential to the
dce, we never leave the surface,  In other words, this integral curve
“he equations (4) lies completely on the surface.
b ¢ have therefore shown that through each point M of the surface
sreisoneand only one integral curve of the equations (4) and that this
~¢ lies entirely on the surface. That
the integral surface of the equation ATP.QR]
1v generated by the integral curves of /
o equations {(4). /
“1 Second, if we are given that the
fwe 2 == f{x,1) 1s generated byintegral
sves of the equations (4), then we
sice that its normal at a general point
.oy which is in the direction (dz/dx,
- ¢r. 1) will be perpendicular 1o the
“wtion (P,0,R) of the curves generat-
2 the surface. Therefore

az ar
P L0 ~- R=10
ox oy Figure 14

“ich is just another way of saying that
S v is an integral surface of equation ().
To complete the proof of the theorem we have still to prove that any
tace generated by the integral curves of the equations (4) has an
sation of the form (3). Ler any curve on the surface which is not a
~rucular member of the system
u(v,,o) = oy r(x, o) = o ()
e equations
o) = 0, p(x,nz) = 0 {0)
the curve (3} is a generating curve of the surface, it will intersect the
ve (0). The condition that it should do so will be obtained by

minating v, v, and z from the four equations (3) and (6). This will
- a relation of the form

Flepey) == 0 {7y
siween the constants ¢y and ¢,.  The surface is therefore generated by
crves (5) which obey the condition (7) and will therefore have an

suation of the form
Fluy) =0 (3)
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Conversely, any surface of the form (3) is generated by integral curves
(5) of the equations (4), for it is that %urfdcc Umerdtt,d by those curves
of the system (3) which satisfy the relation {7)4

This completes the proof of the theorem.

We have used a geometrical method of proof to establish this theorem
because it seems to show most clearly the relation between the two
equations (1) and (4). The theorem can, however, be proved by purely
analytical methods as we shall now show:

Alternative Proof. I the equations (3) satisfy the equations (4), then
the equations

Uy dx =, dy + u, dz =0
dx dy dz

and FT—E_E

must be compatible; i.e., we must have
Pu, + Qu, + Ru, =0
Similarly we must have
b Qu, - Re, == 0
Solving these equations for P, 0, and R, we have
P ¢ R

= 8
ou,0)/( y, zy Ol Hzx)  Awr)/e(x,y) ®)
Now we showed in Sec. 2 that the relation
Flup) =0
leads to the partial differential equation
FHu.r (i, o,

vy 1azx Ay

Substituting from equations (8) into equation {9), we see that (3) 1s a
solution of the eqUE.lU.Oﬂ (1) if 4 and ¢ are given b}; equations (5)
We shall illustrate the method by considering a particular case:

Exampie 1. Find the genecal solution of the differential equation

HEY
B

The integral surfuces of this equation are generated by the integral curves of the
cquations
dy  dv dz
de dv 4= (10)
¥ (x ooz

The first equation of this set has obviously the integral

eyt g (11)
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2ot follows immediately from the equations that

dy dv =
X x s
ch has the integrat
xXo— )
Lo gy (12

~hining the solutions (11}and {12), we sec that the integral curves of the equations
Are given by equation (12) and the cquation

b

~ ¢ (13)

ry |'

-hat the curves given by these equations generate the surface

r(ﬂ x —") 0 (14)

-2 the funetion Fis arbitrary.
~hould be observed that this surface can be expressed by equations such as

- . ’X _}‘
R

nich fand g denote arbitrary functions), which are apparently different from
on (14).

“he theory we have developed for the case of two independent
bles can, of course, be readily extended to the case of n independent
:Hles, though in this case it is simpler to make use of an analytical
od of proof than one which depends on the appreciation of
~etrical ideas.  The general theorem is:

Theorem 3. If wdxnXe, .. .00 — ¢ (0= 1,2, ..., n) are
- adent solutions of the equations

dy,  dy, B di dz

P, P. P, R

the relation ®{uguy, . o . ) =0, in which the function @ s
wary, is a general solution of the linear partial differential equation

oz oz oz
Pl?\_["szf i‘PnE - R
prove this theorem we first of all note that if the solutions of the
.ons
dx, _dvy o dx, dz (15)
£, P, P, R

X1 X o . . X205 G i=1,2,...,n (16)
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then the 7 equations
A, au
\ dy. -
8\* ’ o:
J“i
must be compatible with the equations (15). In other words. we must
have

0 A O S 7 {17)

P,— —R— 0 (18)

Solving the set of n equations ([8) for P, we find that

P, R
7 T i, N Aty tn, . . - W)
oL SV U SRR ) B 7| (R ST SR ¥,)
P— 1,2, . .., 1 (19)
where é(uy,tty, - . . 00 )0, v, . . . ,X,) denotes the Jacobian
adu, i, du,
T\'l dx, o Kn
ai, dis, S,
oy, ox,  ax,
. . . |
dii, du, ai ‘x
gx, ox, T ax, |
Consider now the relation
Wty oo, — 0 20

Differentiating it with respect fo .x,, we obtain the equation

i (81D ou; 6:} 0

Ju, ax, 8 ox,’

and there are » Smh equations, one for each value of i, Eliminating
the » quantities 6B/, . . . , d®/du, from these equations, we obtain
the relation

"

Olidy, « - Hi) o~ 02 AUy, o v Wy G gy o . i)

SN s e o- : _ ,
O(¥i - oY) 2’ ON; 00Xy, o N DG - Y) ¢l

Substituting from equations (19) into the equation (21), we see that the
function = defined by the relation {20) is a solution of the equation

oz o o

g Py e P - R 22
tax, T o, S, (22)

as we desired 10 show,

P
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Example 2. If wis a function of x, v, and = which satisfies the partial differential
Ll FHIN
A

oz

du dur
T S ) e L P _
Dt E g g0

15

“w that u contains x, y. and z only in combinations x — y - z and x> - 3% + 2%
in this case the auxiliary equations are
dx  dy dz du
0

y—z I-x X-y

4 they are equivalent to the three relations
d =0

dx = dy + de =
xdx 4+ vdy = zdz 0

aich show that the integrals aré

i == Ci? x - ). e T CIE? 'S Ve Pl ('3
-fence the general solution is of the form
o= f - (“X ” ,.%’! A + X‘Z e J"ﬁ - 4 2)

~ we were required 10 show.

It should be observed that there is a simple method of verifying & result of this

- nd once the answer is known,  We transform the independent variables from x, y,

dotod yoand { where & = x vy - oz, 0 m xR },,2 w22 and s any other
~cmbination of x, v, and z, say ¥ ~ z. Then we have

fn Gy Budy | dudz

=z (23)

T A wma

g

nd itis readily shown that

ox . v x -~z oz oy ox
3t R T
» that
Ju éu u
z wx)gf =y 2y b 2 ) g (0 )

PROBLEMS
Find the general integrals of the linear partial differential equations:
zixp - 3(]) - J,-ﬂ —xe
Cpxlz = 2 = — gz — P - 245
Cpx(x = y) =gyl 4+ ¥ — (0 - YI2x = 2y - o2)
PP xyg e Xz - 2)
Ay tzxip - (x 4 oyz)g =X -yt
X(x% - 3~ p(3x% - By = 22017 — x%)

e kd e

ENET AR
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5. Integral Surfaces Passing through a Given Curve

In the last section we considered a method of finding the general
solution of a linear partial differential equation. We shall now
indicate how such a general solution may be used to determine the
integral surface which passes through a given curve.  We shall suppose
that we have found two solutions

wx.v.o) - o, vlv,nn) ()
of the auxiliary equations (4) of Sec. 4. Then, as we saw in that section,
any solution of the corresponding linear equation is of the form
Fluey — 0 (2
arising from a relation
fey,ee) - 0 (3)
hetween the constants ¢; and ¢,.  The problem we have to consider is
that of determining the function £ in special circumstances.

If we wish to find the integral surface which passes through the

curve ¢ whose parametric equations are
X o= Xt = (1), o= (1)
where ¢ is a parameter, then the particular solution (1) must be such that
A R (VR R TR () R () N (S YRS
We therefore have two equations from which we may eliminate the
single variable 7 fo obtain a relation of the type (3).  The solution we are
seeking is then given by equation (2},
Example 3. Find the integeal surfuce of the linear partiol difforentiol equation
A oip = WX g =)

which confains the straieht line x - v -0,z - 1,
The auxiliary equations

elx dv d=
B Rt I -
have integrals
Xyz = ooy, Xt =2 (4

Far the curve in guestion we have the freedom equations
x o=, o=
Substituting these values in the pair of equations (4), we have the pair
-1t g, 2P -1 =¢,
and eliminating ¢ from them, we find the relation
200 — ¢y 2 =0
showing that the desired integral surface is

W=t 2xyr — 20220
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PROBLEMS

Jd the equation of the integral surface of the differential equation
= 3 2y - z)¢y  1(2v - 3)
wh passes through the cirele = 0, x* 1% 24
~d the general integral of the purtial differential equation
(2vy Dp (o 2x%g 2Ax - E)
Jalso the particular integral which passes through the Tine v - 1, v = 0.
3 the integral surface of the equation
(x -% L oy - (7 s
“ough the curve xz - g% 1 - 0,
J the general sotution of the equation
2x(y 2 w2 g P
J deduce that

< osolution,
- the general integral of the cquation
tx- vlp v x- 2l oz
A the particular sofution through the circle = - 1, 2% * * = [,

J the general sefution of the differential equation

XMoo= 2a)p 0 {xz - 21z 2avyg = (2 a)
1d also the integral surfaces which pass through the curves:
v, o day
L0, b xtz b a)f =0

: .rfaces Orthogonal to a Given System of Surfaces

mteresting application of the theory of linear partial differential
ns of the first order is to the determination ol the systems of
..oy orthogonal to a given system ol surfaces. Suppose we are
© & one-parameter family of surfaces characterized by the equation

Jtrpa) = M

“mat we wish to find a system of surfaces which cut each of these
surfaces at right angles (cf. Fig. 15).

s normal at the point (.v.y.2) to the surface of the system (1) which

<.~ through that point is the direction given by the direction ratios

(P,O.R) ("f a’ 7) 2
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cuts each surface of the given system orthogonally, then its normal at
the point (.x,1.2) which is in the direction

dz d-

Z2 )

dy dy
is perpendicular to the direction (P,Q,R) of the normal to the surface of
the set (1) at that point.  We there-
fore have the linear partial differen-
tial equation

o (e

P?\.;’ !ﬂ

R (4)

for the determination of the surfaces
(3).  Substituting from equations
(2), we see that this equation is
equivalent to

of o= _ofe=_of
dxéx  advoy oz

Conversely. any solution of the
linear partial differential equation
(4} is orthogonal to every surface
of the system characterized by equa-
tion (1), for (4) simply states that the
normal to any solution of (4) is per-
pendicular to the normal to that
member of the system ([) which
passes through the same point,
The linear equation (4) is therefore the general partial differential
equation determining the surfaces orthogonal to members of the system
(1); i.e. the surfaces orthogonal to the system (I) are the surfaces
generated by the integral curves of the equations
dx dy iz
ofles iy afe
Example & Find the surface which intersects the swrfaces of the sysiem
Ax o oy ddz - 1)

Figure 15

(5)

srtlogonally ancd whicli passes throngl the civele ¥ = 1,z 1.
In this instance
z(x 1)
fo
32 1
so that the equations (3) take the form
dx dy -

3z - HdA3: D) e
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which have solutions
X oy 0y X2 28 a2 gy

Thus any surface which is orthogonal to the given surfaces bas equation of the form

x = -2 2R - )

For the particular surface passing through the circle x? -+ 3* = 1, 7 = 1 we must
take fto be the constant -2, The required surface is therefore
x4yt e 220 Lg% 2
PROBLEMS

1. Find the surface which is orthogonal to the one-parameter system
7= expa® - ®)
and which passes through the hyperbola x* — )2 = a% 7 = 0.
2. Find the equation of the system of surfaces which cut orthogenally the cones
of the system x® + )3 — 2% = cxp.
3. Find the general equation of surfaces orthogonal to the family given by
{a@) Xx® R 2t = eP
showing that one such arthogonal set consists of the family of spheres given by
{'b) P }.2 __ 22 0oz
If a family exists, orthogonal to both (@) and (6), show that it must satisfy
2e(x? ~ 2Bydx + p(3x* - P - Hdy - 2222 -+ B dz =0

Show that such a family in fact exists, and find its equation.

7. Nonlinear Partial Differential Equations of the First Order

We turn now to the more difficult problem of finding the solutions .
of the partial differential equation
Fxpzpg) =0 (1)
m which the function Fis not necessarily linear in p and ¢.
We saw in Sec. 2 that the partial differential equation of the two-
parameter system
flxyzab)y =0 ()
was of this form. Tt will be shown a little Tater (Sec. 10) that the
converse is also true; i.e., that any partial differential equation of the
ivpe (1) has solutions of the type (2). Any envelope of the system (2)
touches at each of its points a member of the system.'! It possesses
therefore the same set of values (x,y,2,p,9) as the particular surface,
so that it must also be a sofution of the differential equation. In this

! The properties of one- and two-parameter systems of surfaces are outlined
briefly in the Appendix.
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way we are led to three classes of integrals of a partial differential
equation of the tvpe (1):
(¢) Two-parameier systems of surfaces
Flegpmaby 0

Such an integral is called a complete integral,
(h) 1f we take any one-parameter subsystem

- iy nadla)yt 0

of the system (2), and form its envelope, we oblain a solution of equation
(1), When the function é(e} which defines this subsystem is arbitrary,
the solution obtained is called the general integral of (1) corresponding
to the complete integral (2). Whm a definite function &(«) is used, we
obtain a particular case of the general integral.

¢y If the envelope of the two- pdmmuer system (2) exists, it is also a
solution of the equation (1); it is called the singular integral of the

equation,
We can illustrate these three kinds of solution with reference to the
partial differential equation
1+ }?2 —+ q2) = | (3)
We showed in Sec. 2 that
(@t (b )
was a solution of this equation with arbnrary aand b, Since it contains
two arb'trary constants, the solution (4) is thus a compleie integral of

the equation (3)
Putting b = « in equation (4), we obtain the one-parameter sub%\ stem

(x —ap “(y —ap L 2=1
whose envelope is obtained by eliminating ¢ between this equation and
Aoy = 2a =0

;
-~

so that it has equation
(x — 1) + 277 =12 (3)
Difterentiating both sides of this equation with respect to v and ¥,
respectively, we obtain the relations
2zp = 1 - x, 2zg =X y

from which it follows immediately that (5) is an integral surface of the
equation {3). It is a solution of type (b): Le.. il 1s a general integral
of the equation (3).

The envelope of the two-parameter system (3) is obtained by elimi-
nating ¢ and » from equation (4) and the two equations

X —a=10 ¥o-b =0
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2. the envelope consists of the pair of planes z = +1. It is readily
crified that these planes are integral surlaces of the equation (3); since
ey are of type (c) they constitute the singular inicgral of the equation.
It should be noted that, theoretically, it is alwavs possible to obtain
atferent complete integrals which are not equivalent to each other, i.e.,
-hich cannot be obtained from one another merely by a change in the
otce of arbitrary constants.  When, however, one complete integral
4~ been obtained, every other solution, including every other complete
~1egral, appears among the solutions of type () and (¢) corresponding
- the complete integral we have found.
To illustrate both these points we note that
(y —mx — o) == (1 + m2)( 1 — z%) (6)
+ complete integral of equation (3), since it contains two arbitrary
“stants # and ¢, and it cannot be derived from the complete integral
<y asimple change in the values of wand 4. It can be readily shown,
wever, that the solution (6) is the envelope of the one-parameter
wvstem of (4) obtained by taking b = ma -- ¢

PROBLEMS

Verify that z = ax - bv -« - & — ab is & complete Integral of the partial
differential equation

Z=px gy p g —pg
where a and b are arbitrary constants,  Show that the envelope of all planes
corresponding 1o complete integrals provides a singular solution of the
differential equation, and determine a general solution by finding the envelope
if those planes that pass through the origin.

o \enfy that the equations

=~ x - a- \"j}; A

== AL =2 D - A

re both complete integrals of the partial differential equation
bl

[ R

£ g
Show, further, that the complete integral () is the envelope of the one-
narameter subsystem obtained by taking

R

[ERN

1) z

4] H
[ AT

AR R X
1 the solution {a).

Zauchy’s Method of Characteristics

&2 shall now consider methods of solving the nonlinear partial
“oential equation
dr ¢z

=0 (1)

I U -
F( ’ ox ay.
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In this section we shall consider a method, due to Cauchy, which is
based largely on geometrical ideas,

The plane passing through the point P{x,.1,,0,) with its normal
parallel to the direction n defined by the direction ratios (pu.g,.—1) is
uniquely specified by the set of numbers Dy voZop0go).  Conversely
any such set of five real numbers detines a plane in three-dimensional
space. For this reason a set of five numbers D{x,y,z.p.q) 1s called a
plane element of the space.  In particular a plane element (., 6.7,/ 0-¢4)
whose components satisfy an equation

Flxyopg) =0 (2)

is called an integral element of the equation (2) at the point (v, ve.7q).
It is theoretically possible to solve
an equation of the type (2) to
oblain an expression
g - Gy.v2p) (3)
from which to calculate ¢ when x,
y, z, and p are known. Keeping
o Voo and =, fixed and varying
: p, we obtain a set of plane
\\\ elements {vg, V2 pp, G361 02 0s0) 1
“Plane element  which depend on the single para-
meter p. As p varies, we obtdin
aset of plane elements all of which
pass through the point P and which therefore envelop a cone with
vertex P the cone so generaled 1s called the elementary cone of
equation (2) at the point £ (cf. Fig. 16).
Consider now a surface S whose equation is
7= gl (4)
If the function g(x,y) and its first partial derivatives g (x,v) g,(v,)) are
continuous in a certain region R of the xy plane, then the tangent plane
at each point of S determines a plane element of the type
{'\'na_’r‘mg(-\'m)’n)sg X0 V)8 ;;(-‘50’)'0) ¥ (5)
which we shall call the tangent element of the surface S at the point
(Vo) g (o, o) 1

It is obvious on geometrical grounds that:

Theorem 4. A necessary and sufficient condition that a surface be an
integral surface of a partiol differential equation is that ai each point its
tangent element should touch the elementary cone of the equation.

A curve C with parametric equations

x o= a(r), ¥o= {1, - =z (6)
lies on the surface (4) if

Elementary cone

Figure 16

(1) = i
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~or all values of ¢ in the appropriate interval /. 1f £, is a point on this
curve determined by the parameters /.. then the direction ratios of the
nngent line PPy (el Figo 17) are W1V (1)27 (7,0, where (1)
Jonotes the value of dx/dr when 7 - 1. ete. This direction will be
~erpendicular to the direction (py.gu.—1) if

3'(%)' f’n-\'n'(fn) "?s)}'uf("n)

t.or this reason we say that any set

L0 (0.2 (Dpl).gl1y (7)
o7 five real functions satisfying the condition
(1) = p(x(1) = g(in'(1) (8)

sofines a strip at the point (v,1,7) of the curve ¢, If such a strip is
slso an integral element of equa-
. on(2), we say thatitis an integral (Pg.ay1)
~ip of equation (2); Le., the set
“functions (7) is an integral strip
equation (2) provided they
-stisfy condition(8)and the further
.-ndition
F(DD (D p(Dg() ) = 0-(9)
“orall rin 1
It at each point the curve (6)
- uches a generator of the elemen-
v ocone, we say that the corresponding strip is a characteristic strip.
A¢ shall now derive the equations determining a characteristic strip.
we point (v 4-dx, y 4 dy, = =~ dz) lies in the tangent plane to the
Jmentary cone at £ if

Figure |7

dz = pdx —gdy (10

here p, g satisfy the velation (2).  Differentiating (10) with respect to
. we obtain
0= dy - ﬁId}’ (1n
dp
qere, from (2),
of  dFdg 0

ap = bgdp (12)

~ Hing the equations (10), (11), and (12) for the ratios of dy, ¢= 1o dx,
o obtain
dv dy dz

(13)

Er o };Fp - q[:q

that along a characteristic strip x'(¢), (1), ='(r) must be proportional
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to F,, F,, pF, - gF, respestively, 1f we choose the parameter / in
such a way that
X(1y = F,. (= F, (14)
then
() — pF, - gF, (13)

Along a characteristic strip p is a function of ¢ so that

JAUR -'m\(!) E. V(1)

B ap aF c?g aF
oy ap ' dy o
ap oF aq oF
T oy 8p EN 8(}

since Op/dy = dg/dx. Differentiating equation (2) with respect to x,
we find that
oF oF  oFdp  dFdg

o Tl e agax
so that on a characteristic strip
piy - —(F, L pF) (16)
and it can be shown similarly that
q'(1) = —(F, — qF) (7

Collecting equations (14) to (17) together, we see that we have the
following system of five ordinary differential equations for the deter-
mination of the characteristic strip

x()=F, y)=F, () =pF, +4F,
p') = —F, —pF.,  g{)= —F, —gF,

These equations are known as the characteristic equaiions of the differ-
ential equation (2). These equations are of the same type as those
considered in Sec. 2 of Chap. 1, so that it follows, from a simple
extension of Theorem 1 of that section, that, if the functions which
appear in equations (18) satisfy a Lipschitz condition, there is a unique
solution of the equations for each prescribed set of initial values of the
variables. Therefore the characteristic strip is determined uniquely by
any initial element (xy,10,20,00.40) and any initial value 7, of 7.

The main theorem about characteristic strips is:

Theorem 5, Along cvery characteristic sirip of the equaiion
Flxy.z.p.g) = O the function F(xy,2p.4) is a constant.

(18)
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The proof is a matter simply of calculation. Along a characteristic
“rip we have

J Fx( 1 (10,2(0),p(0).g(1) }

= Fx =Ry - Fz2 W Fp' ~ Fg
- F.an - FJJFr: o Fz(pFu - C]ﬁ,) o Fu(Fx + PF;) - F;r(Fy -+ sz)
= 0
<o that F(x,y,z,p.g) == k, a constant along the strip.
As a corollary we have immediately:
Theorem 6. [If « characterisiic sirip coniains at leasi one integral
Cement of Fx,yz,pg) =0 it is an integral strip of the equation

We are now 1n a position to solve Cauchy’s problem. Suppose we
~~h to find the solution of the partial differential equation (I) which
~asses through a curve T whose freedom equations are

I ONEERPI (19)
-onin the solution
X == X2 GooX YosZolanl)s CLC (20)

~ the characteristic equations (18) we may take
X = ), Yo = (), zg = y(v)

- the initial values of x, y, z. The corresponding initial values of
4, are détermined by the relations

Fioe,d(e)yehpege) == 0

~¢ substitute these values of xo, yy, 7. py, g0 and the appropriate
< dae of #, in equation (20), we find that x, y, z can be expressed in
s of the two parameters 7, ¢, to give

R Xl(l‘){), },‘ s Yl(L."{')’ it Zl(vﬂf) (21)

minating ¢, 7 from these three equations, we get a relation

-h is the equation of the integral surface of equation (1) through
~urve I, We shall illustrate this procedure by an example.
Svample 5. Find the solution of the equation

I o= %([)2 — q?-) i (p ....... x)(q — .'-)

pusses through the x-axis,
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It is readily shown that the injtial values are
Xy =1 vy =0, zy = 0, Po =0, gy = 2v, fy =0

The characteristic equations of this partial differential equation are

dx 1 dy dz .
ZOFTETy g TPrTecn m=pp g Tglp g - )
& 4q

df mP+qm/V’ d_;.mp—wq-_x
from which it follows immediately that
X =r+-p, y=g —2

Also it is readily shown that

d (- o d )

ZP gD =prg-x  Sprg-p=prg-y
giving

prg-x=vet, pig-—y=2Qve

Hence we have

x = v(2eb — 1), y = ulet — 1), po=2(et =, g =uet - 1) (22)

Substituting in the third of the characteristic equations, we have

iz w= Sp2et — 3ptet
it
with solution
z = 3 — 1)~ 3et(et — 1) (23)
Now from the first pair of equations (22} we have
N S ey
¢ 3 t=x — 2y

so that substituting in (23), we obtain the solution
7 = tpldx — 33

PROBLEMS
1. Find the characteristics of the equation pg — z, and determine the integral
surface which passes through the parabola x = 0, y* = z,
2. Write down, and integrate completely, the equations for the characteristics of
(- qz)z = px

expressing x, J, z, and p in terms of $, where g = tan ¢, and determine th
integral surface which passes through the parabola x® = 2z, y = 0.

3. Determine the characteristics of the equation 7 = p* — g% and find th
integral surface which passes through the parabola 4z - x® = 0, y = 0.

4. Integrate the equations for the characteristics of the equation
P g A

expressing x; ¥, z, and p in terms of ¢, and then find the selutions of th
equation which reduce to z = x* + 1 when y == 0,
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9. Compatible Systems of First-order Equations

We shall next consider the condition to be satisfied in order that every
~otution of the first-order partial differential equation

fivyzpgy -0 (D
~ also a solution of the equation
glxy.zpg) = 0 (2)

When such a situation arises, the equations are said to be ('an;'pcm'fn’e.
It

ad fgy .
ALt ()
(p.4)
+e can solve equations (1) and (2} to obtain the explicit expressions
7= 95('\'!}5:)1 4= y.’(_\’,j’,:) (4)

v pandg.  The condition that the pair of equations (1) and (2) should
- compatible reduces then (o the condition thal the system of equations
< should be completely integrable, i.e., that the equation

pdx — ydy —dz 0

-nould be integrable.  From Theorem 5 of Chap. I we see that the
condition that this equation is integrable is

?S( 'm‘“z) - y‘(éz) - (zf)z - QSZI) =0
~uch s equivalent to
-y, = ¢, + yo, (5)

Substituting from equations (4) into equation (1) and differentiating
th regard to x and z, respectively, we obtain the equations

Jov fobe H Sy =0
So FSobe T hy. =0
-m which it is readily deduced that
_fr QSJZ ;’,fg((.ﬁr - qf)q{‘z) - ﬂ;(wr 9 ﬁﬂz}":) - O
~ mifarly we may deduce from equation (2) that
g ‘?ng + gp(qg.r + QSQSZ) o gq(ylm - ?SWZ) =0

~oving these equations, we find that

Liatfe) | a(h)l
Jaep) ¢ e )

~here J is defined as equation (3).

+ Py, =
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If we had differentiated the given pair of equations with respect to
yand =, we should have obtained
PO NI 2\ B D]
u TP ey Vazg)
so that, substituting from equations (6) and (7) into equation (§) and
replacing ¢, y by p, ¢, respectively, we see that the condition that the
two conditions should be compatible is that

Lfig) =0 (8)
ALY Ao e, [ o

where [fgl=

(7)

Ay ey T face

Example 6.  Show that the equations

xp = vy, 2{xp = vgy = 2xy
are compatible and solve them.
In this example we may take f =« xp - pg, ¢ = z{xp - 14) — Lxy so that
L L X £ A2
A v.g) : é(z,q)

xv, e
x,p) . oz, p)
from which it follows that
[f.51 = xplvg — xp) =0
since xp - vp. The equations are therefore compatible.
it is readily shown that p - v/z, g = x/z, so that we have to solve
cdr o= ydy + xdy
which has solution

e b Ixy
where ¢, is a constant.
PROBLEMS
1. Show that the equations
Xpo— v =X, AP g = xz

are compatible and find their solution.

2, Show that the equation z = px - gy is compatible with any equation
fixy,z.pg) + 0that is homogeneous in x, v, and z.
Solve completely the simultaneous equations

2 =px gy, gt g7 = 20p - oxg)
3. Show that the equations f (x,y,p,q) = 0, glx,1.p.¢) = 0 are compatible if

Afg) 2Ly
Ha,p)  AHyg)

Verify that the equations p == P(x,v}, g = Q(x,») are compatible if

2P 2@
v ax



PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER 69

40 Wy = dufax, uy = éufév, ny & éz, show that the equations
flx v amte,) 0, gl i) 0

are compatible if
AL ALY KL

i) dlvag)  #zae)

13. Charpit’s Method
A method of solving the partial differential equation
flxy,zpg) =0 (1)

Jue to Charpit, is based on the considerations of the last section. The
‘undainental idea in Charpit’s method is the introduction of a second
partial differential equation of the first order

g(xs}"ezpf)-qea) - O (2)
+which contains an arbitrary constant ¢ and which is such that:
{a) Equations (1) and (2) can be solved to give

p=plpsa. g = glxy,za)
(h) The equation
dz — plx voa) dy ogley,za) dy (3
s integrable.
When such a function g has been found, the solution of equation (3)

f‘ﬂ(.\‘_\]’,f,(l,b) - O (4)

ontaining two arbitrary constants «, b will be a solution of equation (1).
t rom the considerations of Sec, 7 it will be seen that equation (4) is a
complete integral of equation (1),

The main problem then is the detcrmination of the second equation
21 but this has already been solved in the last section, since we need
mly seek an equation g = 0 compatible with the given equation f — 0.
The conditions for this are symbolized in equations (3) and (8) of the
.ast section.  Expanding the latter equation, we see that it is equivalent
to the linear partial differential equation

. ag . 85{ da
fo= LS. N =
r. oy f; ay (Pfy q\fq, ”‘"“a:

. ¢ .o
(o) aﬁ SIETA 53_ =0 (3)

“or the determination of g. Our problem then is to find a solution of
'his equation, as simple as possible, involving an arbitrary constant a,
nd this we do by finding an integral of the subsidiary equations

dy dy dz dp dg

A T T A =TT TA

(6)
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in accordance with Theorem 3. These equations, which are known as
Charpit's equations, are equivalent to the characteristic equations (18)
of Sec. ¥,

Once an integral g(x,y,2.p.q.a) of this kind has been found, the problem
reciuces to solving for p, ¢, and then inlegrating equation (3) by the
methods of Sec. 6 of Chap. . It should be noted that not all of
Charpit’s equations (6) need be used, bul that p or ¢ must occur in the
solution obtained.

Example 7. Find g complete imegral of the equation

fﬁ:.\‘ rﬁj- z (N

The auxiliary equations arc

dx oy o dp dy
P vy R R
from which it follows that
prdx  2pxdp  gtdv 2gvdyg
e st fﬁl'

and hence that
X agty (%)

where a is 4 constant.  Solving cguations (7) and (8) for p, g, we have

e ¥ o=
P el axl ’ ¢ - %_(E ‘ a)}']

so that gquation (33 becomes in this case
L= ay* [\ 1y
( ) dz = (-} dx - (w} dy
Loz X S

{1 - izl =taxy -yt = b

with solution

which is therefore a complete integral of (7),

PROBLEMS

Find the complete integrals of the equations:

5

Loip* = ¢y = gz
20p g

3.5 - pyxy
4. xp - 3_]'{[ =2z — xaqgg

5. p.\"" - ﬁkfjx'l L Gxtr w2 o 0
6. Ur - zg) = glap + 14
T2z s xp oy = }.pz

{1, Special Types of First-order Equations

In this section we shall consider some special types of first-order
partial differential equations whose solutions may be obtained ecasily
by Charpit's method.
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ta) Fquaiions Involring Onlv p and g.  For equations of the type
(D

fipagy—0
Charpit’s equations reduce to
de_dr o d o dp
Jo Loopleogfe 00
v obvious solution of these #quations is
pooa (2)

“he corresponding value of g being obtained from (1) in the form
(3)

flag)— 0
< that g = Na)
. constant.  The solution of the equation is then
(4)

c=ax - Qla)y b
-here & is a constant, :
We have chosen the equation dp — 0 to provide our second equation.
i1 some problems the amount of compurtation involved is considerably

wduced if we take instead dy - 0, leading to g — a. .
Example 8. Find a complere integral of the cquation pg - 1,
In this case (M=) — la, so that we see, from equation (4), that a complete
“legral is
p
z—ax - b
a
fich is equivalent Lo
g’ -y ar - ¢ .
nere o, ¢ are arbitrary constants,
If the partial

() Equations Not Involving the Independent Variables.

Jdifferential equation is of the rype
Fapg) =0 )

Charpit’s equations take the forms

d.\f _____ d_} dz dp dg
Lo fooophafe Pl —ql.
‘he last of which leads to the relation
(6)

peug
Solving (8) and (6), we obtain expressions for p, g from which a complete

‘ntegral follows immediately.
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Example 9. Find « camplete integral of the equation pP2% — ¢ = 1,
Putting p - ag. we find that
S RN L I g Al - @7 p w] - et
Hence 0 ¥ dr ady - dy
which leuds 10 the complete integral
ax{l  ghzv - dog laz ol - @®2%) 0 2alax 4y - b
(¢} Separable Equations.  We say that a first-order partial differential
is separable if it can be written in the form
Slepr - g(rg) (7

For such an equation Charpit’s equations become

dx dy dr dp dy

L e h—e S

so that we have an ordinary differential equation

{f;) f -
e ‘/p s ()

in x and p which may be solved to give p as a function of v and an
arbitrary constant ¢.  Writing this equation in the form f, dp = f, dx
-~ 0, we see that its solution is fx p) = ¢, Hence we determine p, ¢
fmm the relations-

flxp) = a, (g =« %

and then proceed as in the general theory.

Example 10.  Find a complete integral of the equation p*y(l -~ x¥) = gx*,
We tirst observe that we can write the equation in the form

Pl - XN g
* SRR
X ¥
X
+0 that !) .Ttm . {? e, 02}'
Voeox® ’

and hence w complete integeal is
soeav i o xf e oty o b
where ¢ and /# are constants.
{d) Clairauwt Equarions. A first-order partial differential equation is
said to be of Clairaut type if it can be written in the form

s px cogy o+ fpg) &)
The corresponding Charpit equations are
de  dy d= dp _dyg
Ly N, cqf 070
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so that we may take p = g, ¢ — b. I we substitute these values in (9),
we get the complete integral
z = ax - bv + f(ah) (1
as is readily verified by direct differentiation,
Example 11.  Find a complete integral of the equation
(p —giz — xp — yg) = 1

Writing this equation in the form
[

L D e
P9
we see that a complete integral is
) I
o X f')“} H &"—"‘""'""/;
PROBLEMS
Find conipiete integrals of the equations:
Lpig=pg
Lz optegt
g =p g

5. ,Ul‘}': + x‘.!}f." - _,(‘2(’,2{){2 “}‘2}
6. pgz = plag 5 P S g0p < g

'2. Solutions Satisfying Given Conditions
I this section we shall consider the determination of surfaces which
satisfy the partial differential equation
Flxyzpg) =0 {1
and which satisfy some other condition such as passing through a given

curve or circumscribing a given surface.  We shall also consider how to

derive one complete integral from another.
First of all, we shall discuss how to determine the solution of {1)
which passes through a given curve C which has parametric equations

xe= a0, y=H0, 2= )
“being a parameter. If there is an integral surface of the equation (1)

“hrough the curve C, then it is:
(¢ry A particular case of the complete integral

f(xvnabh) =0 (3

obtained by giving a or b particular values; or

~
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() A particular case of the general integral corresponding to (3),
L.e., the envelope of a one-parameter subsystem of (3); or

{c) The envelope of the two-parameter system (3).
It seems unlikely that the solution would fall into either () or (¢) so
we consider the case (b), which is the one which occurs most frequently.
We suppose, therefore, that a surface, £ say, of type (h) exists and
passes through the curve C. At every one of its points this envelope £
is touched by some member of the subsystem. In particular at each
point P of the curve C we may suppose it to be touched by a member,
S, say, of the subsystem, and since S, touches E at £, it also touches C
al thesame point.  Inother words, E is the envelope of a one-parameter
subsystem of (3) each of whose members touches the curve C, provided
that such a subsystem exists. To determine E, then, we must consider
the subsystem made up of those members of the family (3) which touch
the curve C.  The points of intersection of the surface (3) and the curve
C are determined in terms of the parameter 1 by the equation

F R0 nz(@ab) =0 (4)

and the condition that the curve (" should touch the surface (3)is that
the equation (4) must have two equal roots or, what is the same thing,
that equation (4) and the equation

a S 1l

“é“;f L“\(f),-),(f),-:”)aaabf == 0 (S)

should have a common root. The condition for this to be so is the
eliminant of ¢ from (4) and (%),

wa,b) = 0 (6)

which is a relation between ¢ and b alone. The equation (6) may be
factorized into a set of alternativeequations

b = &y(a), = olet)y ... N

each of which defines a subsystem of one parameter. The envelope of
each of these one-parameter subsystems is a solution of the problem.

Example 12.  Find a conmplete integral of the partial differemial equation

(p‘2 e (]2)3( = pz

and deduce the solution which passes through the curre x - 0, 7% = 4y,
ir may readily be shown that .
2'2 mm 02X2 - (a,}. i h)‘l (8)

is a complete integral, and it is left to the reader to do so.
The parametric equations of the given curve are

X = 0, ¥ {2, T o= 2t (9)
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The intersections of (8) and {9) are therefore determined by
42 - (art b
Le, by at 2ab - B0
and this cquation has cqual roots if
{ah — 2P = g2h*
ie, if ah = 1

The approprialc onc-parameter subsystem is thercfore

/ { 2
22 gyt ( ay -
. L ey

ie., aa =) a2y - 2% 1 =0
and this has for its envelope the surface

(2y — 2% = 4(x* 1 %) (10)
The function = defined by equation (10} is the solution of the problem.

The problem of deriving one complete integral [rom another may be
treated in a very similar way. Suppose we know that

flxgzah) 0 (1
is a complete integral and wish to show that another relation
g(x,rh k) =0 (12)

involving two arbitrary constants #, &k is also a complete integral. We
choose on the surface (12) a curve I' in whose equations the constants
h, k appear as independent parameters and then find the envelope of the
cne-parameter subsystem of (I1) touching the curve I'. Since this
solution contains two arbitrary constants, it is a complete integral.

Example 13.  Show that the equation

xpg = vg® =1
has complete integrals
(a) (z 4 0 - dlax + 3
€2 kx(z - Ry = KBy 4 X

and deduce () from {a).

The two complete integrals may be derived from the characteristic equations.
Consider the curve
y =0, X = k(z - 1) (£3)

on the surface (#). At the intersections of (g} and {13) we have
(z - bY — dak(z — b)) — dak(b — I =0

and this has equal roots if
a*ht - gkth — I
le,ifak =0orb =h + ak.
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The subsystem given by ¢ -~ 0 cunnet be the desired one since its cnvelope does
not depend on A and k. The second subsystem has equation
(- hoakP Hax  x)
ie., K v 2alkiz - 2x) o P -dr -0

and this has envelope
fhlz = ny - 200% = {io 0 AP - Ayl
which reduces to
kx(z =Ry Ky xE
Next, we shall outline the procedure for determining an integral
surface which circumscribes a given surface. Two surfaces are said to
circumscribe each other if they touch along
= a curve, e.g., a conicoid and its cnveloping
cylinder. It should be noted that the curve
of contact need not be a plane curve. We
shall suppose that (3) is a complete integral
of the partial differential equation (1} and
that we wish to find, by using (3), an inte-
gral surface of (1) which circumscribes the
surface X whose equation is

iy — 0 (14)
If we have a surface F
u(xo,z)y - 0 (15)

of the required kind, then it will be one of
three kinds (a), (#), (¢} listed above. We
Figure 18 shall consider the possibility (b), since it is

the one which occurs most frequently.
Suppose that the surface E touches the given surface X along a
curve 1" {cf. Fig. 18). Since E is the envelope of a one-parameter
subsystem S of the two-parameter system (3), it is touched at cach of ils
points, and, in particular, at each point P of I', by a member §, of
the subsystems S, Now, since S, touches E at P, it also touches X at P.
Hence equation (13) is the equalion of the envelope of a set of surfaces
{3) which touch the surface (14). We now proceed (o find the surfaces
(3) which touch X and see if they provide a solution of the problem.
The surface (3) touches the surface (13) if, and only if, the equations

(3), (14), and
in == [i e L (16)
?}j; t{!‘.’y ?f’.":

are consistent. The condition for this is the eliminant of x

from these four equations. i.e., a relation of the form
by =0 (7

bl

v, and z



PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST OQRDER 77

between « and . This equation factorizes into a set of relations

hosda), b doa) .. (18)

cach of which defines a subsystem of (3) whose members touch (14).
The points of contact lie on the surface whose equation is obtained by
climinating ¢ and & from the equations (16) and (18). The curve I'is
the intersection of this surface with X, Each of the relarions (18)
defines a subsyvstem whose envelope £ touches X along 1.

Example 14, Shosw thar the only inregral surface of the equation

2p{z — px — gv} g

which is civenniserthed about the paraboloid 2x = y® - 2% js the enveloping cviinder
which tonekes it along jts section by the plane y = 1 - 0,

The equation is of Clairaut type with complete integral

AR

r=ax =+ by ! T (19
b quation (14) has the form
2x oyt R (20}
so that equations {16) become, in this case
a h -1
2 7 -—2_1; -2z
which give the relations ’ .
b 1
¥oero— s I (2D
- a a

Fliminating x between equations (19) aud (21}, we have
aby? = 2b% — ahz® — Zhz B 1 = 0
ind eliminating v and z from this equation and the cguations (2t), we find that
h— @i -1} =0

~u that the relation £ -~ @ defines a subsysiem whose envelope is a surface of the
rwjuired kind,  The envelope of the subsystem

2x = s 1lg® - 2az -1 =0
is obviously

2o 2x oy b (22)
The surface (20) touches the surface {22) where
(1P -0
sroving the stated result,
PROBLEMS

l.  Find a complete integral of the cquation p*x - gy = z, and hence derive the
eguation of an integral surface of which the line y =1, x 3+ z=01is a
generator,

2. Show that the integral surface of the equation

HE =g = 2px gy
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which passes through the line x = I, y = Az 4 k has equation
{y — kxp = 221 + Ix — 1}
3. Show that the differential equatien

2xz 4 g e xlxp - )
has a complete integral

and deduce that
x(y = AP = Mz — kxP)

is also & complete integral.
4. Find the complete integral of the differential equation
xﬁ{i L ‘?} — ( }, - Z){f

corresponding to that integral of Charpit's equations which involves only
g and x, and deduce that LY

(z + hx = kY = dhx(k — ¥)
is also a complete integral.
5. Find the integral surface of the differential equation
(}< - zq)’-' - j—’{; b [,2 N qz)
cireumseribed about the surface 8% — 7% = 2y,

6. Show that the integral surface of the equation 2){f - pf) = pg which is
circumseribed about the cone X + 28 = 3® has equation

2= Ayt Ly + 1)
3. Jacobi's Method

Another method, due to Jacobi, of solving the partial differential
equation

Flxyzpq) =0 (1)
depends on the fact that if
U(x,y,z) = 0 2)
is a relation between x, y. and z, then
Uy ty
e o — e B 3
P Uy 1 Uy &
where u; denotes du/dx; (i = 1, 2, 3), If we substitute from equations
(3} into equation (1), we obtam a p&rilai differential equation of the type
PRGN AR (4)

in which the new dependent variable « does not appear.
The fundamental idea of Jacobi’s method is the introduction of two
further partial differential equations of the first order

glx, .20, g, l5,a) = 0, h(x.y.z, 0.1 U5,y = 0 (5)
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involving two arbitrary constants & and b and such that:
{«) Equations (4) and (3) can be solved for u, u,, uy;
(h) The equation
di~ u, dx = u,dy - uy du (6)

obtained from these values of u,, uy, 15 is integrable.

When these functions have been found, the solution of equation (6)
containing three arbitrary constants will be a complete integral of (4).
The three constants are necessary if the given equation is (4); when,
however, the equation is given in the form (1), we need orly two arbitrary
constants in the final solution. By taking different choices of our third
arbitrary constant we get different complete integrals of the given
equation.

As in Charpit’s method, the main difficulty is in the determination of
the auxiliary equations (5). We have, in effect, to find two equations *
which are compatible with (4). Now in Example 4 of Sec. 9 we showed
that g and & would therefore have to be solutions of the linear partial
differential equation

dg dg dg dg
flo'x —f oy oz -t oy fyau fagu_sﬂo M
which has mbs:dlary equations
dx dy dz  dwy  du,  du

foo S So S S S

The procedure is then the same as in Charpit’s method.
To illustrate the method we shall solve Example 7 of Sec. 10 in this

way, Writing p = —u/us, § = —uafuy, we see that the equation

X =gy =z

(8)

becomes
Xy byl - oz e 0

so that the auxiliary equations are

dx dy  dz  duy  duy,  duy
2ux 2wy 2wz il —ud
with solutions
Xu; = a yus = b
whence
(a)* (’b')"*’ a+ [J‘)§
= =} Wy = |—] ty =
1 X 2 7 3 ( z
so that

u= 2Aax)* +2(by)* + 2{a + bz}t ¢

Writing b = 1, ¢ = b, we see thal the solution ¥ = O is equivalent to the
solution derived in Sec. 10.
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The advantage of the Jacobi method is that it can readily be genera-
lized. If we have to solve an equation of the type
.f'.l(xlsx‘as- v ,'Yf!ﬁlul*‘ I B 0 (9)
where w, denotes odujox, (/= 1,2, ... ,#n), then we find »n —1
auxiliary functions /s, fo, . . ., f, from the subsidiary equations
dyy  dx, o dx, dwduy du,
f:zl j*ai f‘»” mif.‘fl N_ﬁf.z: Mfln

involving n — 1 arbitrary constants.  Solving these for uy. 1y, « . ., Uy,
we determine u by integrating the Pfaffian equation

the solution so obtained containing # arbitrary constants.  On the other
hand, Charpit’s method cannot be generalized directly.

PROBLEMS

i. Solve the problems of Sec. 10 by Jacobi's method.
2. Show that a complete integral of the equation

(' Qi By 5#)
By ép ! az
is
u o= oax - by 4 Oabhz — o
where a, b, and ¢ arve arbitrary constants and f{a,0,0) -~ 0,
Find a complete integral of the equation
éu
ax

et

Oy Ou Gu du

i

v &z 6x ey e-

‘QJ’

3. Show how to solve, by Jacobi's method, a partial differential equation of
the type

f x,@,fﬁ) = o(ll‘g_aﬂ,wcﬂ)
‘ ay éz) O\ & ez

and illustrate the method by finding a complete integral of the equation

5
2x®

‘anf it o O ( du )2
ax! & ay = \ dx )
4. Prove that an equation of the " Clairaut™ form

ot Cu Gt B _‘31.’ Su 311!)

Xk }:5 ZE R‘ e

— s

is always soluble by Jacobi’s method.
Hence solve the equation

oo

(6u  du 55{) s . 61(‘)
R I B — |
Ldx By Bz
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14. Applications of First-order Equations
The most important first-order partial differential equation occurring
in mathemaltical physics is the Hamilton-Jacobi cquation

és o8 as ) 0

as

TR ) M

appropriate to the Hamiltonian H{gi.gs. . . . prpe. o . ) of
a dvnamical system of n generalized coordinates ¢,, ¢, . . . .4, and
the conjugate momenta py, ps, . . ., p,. This is an equation in which
the dependent variable §'is absent. so it is of the type (9) of Sec. 13.
From the considerations of that section we see that the equations of the
characteristics are

e _dy A
1 o/ cp, GH|cp,
ey
C —(6H]dq,) - —(8H/[dyg,)
1.¢.. they are equivalent to the Hamiltonian cquations of motion
dg, oH dp, aH :
dr - p, dt g, i T - S
A madified form of equation (1) is obtained by writing
S = Wt - S,
e then find that
' as, 85,
Hlg, ..., g, -« s —=} =W 4
(\ql b a(/, a(]”.} )

Suppose, for example, that a system with two degrees of freedom has
Hamiltonian
P/‘?.rz - Q‘NUE i' E' 1]

H - 5
XY Y Y (5)

here P, X, £ are functions of v alone and @, ¥, y are functions of ¥
~one. Then equation (4) becomes

WPp, = Op) — (5 — ) = WX — ¥)=0
i one of the characteristic equations is

:{:‘-‘:— dP‘P -
B e

= solution
pe= (AWK — & - a))
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where @ i1s an arbitrary constant.  Similarly we could have shown that
g, - POVY by

where A is an arbitrary constant.  Thus since p, is a function of x alone
and g, is a function of y alone, we have

S em o W WX - E {,)3!- dy - {2( WY — o - b)}" (f_l-’
showing that a solution of the Hamilton-Jacobi equation can always be
found for a Hamiltonian of the form (5).

First-order partial differential equations arise frequentiy in the theory
of stochastic processes. One such equation is the Fokker-Plaick
equation’

or @ P
mé*; i f’)) "é*; (P\') - D ""é“{a (6)
which reduces in the case D = 0 to the first-order linear equation
P, oP .

The physical interpretation of the variables in this equation is that P is
the probability that a random variable has the value x at time 1. For
example, P might be the pl()bahllll\’ distribution of the position of a
harmonically bound particle in Brownian movement or the pmhdb:ht"
distribution of the deflection x of an electrical noise trace at time 7.
It should be observed that this equation (6) is valid only if the random
process has Gaussian distribution and is a Markofl process.

Probably the most important occurrence of first-order equations is
in the theory of birth and death processes® connected with bacteria.
Suppose, for example, that at time ¢ there are exactly » live bacteria
and that:

(a) The probability of a bacterium dying in time (1, 1 -- 81) is g, 015

(hy The probability of a bacterium reproducing in time (¢, 1 + 1) is
A, OF;

(¢) The probability of the number of bacteria remaining constant in
time (2, 1 = dryis (1 — &, &1 — p, 81);

(d) The probability of more than one birth or death occurring in
time (4, 1 = &) 1s zero.

If we assume P (1) is the probability of there being n bacteria at time 1,
then these assumptions lead to the equation

Prz(z f‘)f) G ;'n -IPn—l({) ot - M I'an--i---l(-f) o - {1 o ;’n of — My ot }Pn(t)

* For a derivation of this equation sec 8. Chandrasekhar, Rev. Modern Phys..
15, 33 (1943).

W, Feller, “"An Introduction to Probability Theory and Its Applications™
{(Wiley, Mew York, 1950), p. 371,
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which 1s equivalent Lo

~ )'n-flPrrwl{ f) _; n"ln}an»l(.’) o (‘?'n J’UH)PM(() (8)

In the general case 7., #, would depend on »n and ¢; if we assume that
the probability of the birth or death of a bacterium is proportional to the
“umber present, we write
Ly e HE, == R (9
where 4 and p are constants, and equation (8) reduces to
aP“ . i | ’
wé;w = A(nVl' o l-)Pn l(!) """""" () T JH’)HPN(() s 1”'(” e l)i u-H('t)

<rd if we introduce a generating function ®(z,/) defined by the relation

)]
> see that this last equation is equivalent to the first-order linear
.<tation

e e R L

~hose solution is readily shown (by the method of Sec. 4) to be

— Az
_— e‘””““} (10)

1ere the function fis arbitrary.  If there are mr bacteria present at

“ionee at time ¢
. W1 — elimty Z(A - ety
O — 2 . I ;
| o AT (] — ety

i~ the coefficient of z* in the power series expansion of this function.
¢, then @ — 1 as 7 -» oo, so that the probability of ultimate
nction 1S unity.
.milar equations arise in the discussion of trunking problems (see
b. 4 below), in which 4, == 4, 4, = ng, and in birth and death
slems governed by different assumptions from those we have made
_ o (cf. Prob. 3 below).

£



84 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

PROBLEMS

1. v be assumed that the rate of deposit or removal of sand on the bed of a
v is af fvféx), where a is 4 constant and ¢ 1s the velocity of the water in the
ction.  If #, k denote the heights, above an arbitrary zero level, of the

the sand in the bed and of the water surface, respectively, show that the
m of 4 is governed by the first-order equation

) a); 6;}
R S A
(h ) y " 5 0

where m is a constant.  Assuming / to be constant, show that the general
solution of this equation is
N mt

ey T =

where the function [ is arbitrary.
Iy = oy €08 (2wx{2) at ¢ — 0, find the relation between 5 and x at time 1.

2. Show that the general solution of the modified Fokker-Planck equation (7) is

A e
P f (xe)

where the function £ is arbitzary.
Show further that a solution of the full equation (6) is given by

2.3h

itk €7 | Y

P o Q (XE N )‘,,J
. 24

where Q(§,7) is 2 solution of the equation

20 2Q

3. The individuals in a competitive community breed and die according to the

laws:

{a) Every individual has the same chance 2 or of giving birth to a new
individual in any infinitesimal time interval or;

{b) Every individual has the chance {x - flr — 1)}dr of dving in the
interval &¢, where n is the total number of individuals in the community.
(A%, and # are nonnegative constanis, and the chances of birth and death
are independent of cach other). If P,(r} denotes the probability that at time
¢ there are # individuals in the community, show that the probability-generaling
function satisfies the equation

ah

[ am 32
af

={z — 1) 1(/.4- -~ ) i iz g

Show that if = = 0 and A and § are positive, it is possible for the probability
distribution of the number of individuals to have a stable form (independent
of 1) with zero chance of extinction.  Find P,(r) explicitly in this case, and show
that the mean number of individuals is then

i
=exp (=i

© 4. The probability distribution of telephone conversations carried on over a
certam number of lines may be thought of as governed by the laws:
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{my 1fa line is occupied, the probability of a conversation which started at
time ( = 0 ending in the inteoval (7 ard is pde, where o §s a constant;

(hy The probabiiity of an incoming call in the interval (7, r - d7) is 2oy,
where A Is a constant;

tey  H aris small, the probability of two conversations stopping in time ot
is nu;ligible

£ P,ir)is the probability that o fines are being used at time 7 and P{z,¢) is the
Coucspondmg probabitity-generating function, show that

2D [ G|

a T l}|?‘3 A

If mr lines are occupied at 1~ 0, show that at time ¢

|

@) =41 -z - Dem' 7 exp {j—;(z — 1yl — e“!’f)j

MISCELLANEQOUS PROBLEMS

Show that any surface of revolution whose axis passes through the origin
satisfies the equation

i v HY
u, v, W 6
Pouy By Wy

where it = x - zp, r V- Zq, W T Xg -~ yp.
Show that the integral surfaces of the differential equation

oz
(z = -3z - xy— (x4 3 =0
cf‘v N
are of revolution about the line x =+ -3y = z, and find the integrat surface
through the curve
O - x —ydz2a

H the expression
()’2 s zydx b (xP s r) dy
is an exact differential in x and y, show that 7 = 2xy L f(x + y), where fis
arbitrary, Find fif z = 2y + | when x = 0.
The equation P dx®  Qdxdy - Rdy® = 0, in which P, (, R are functions of
x and p, represents the projection on z - 6 of a network of curves on a surface
ulx,),z) = 0. Show that the curves are orthogonal if
P{Hﬁ oty = Qua, - R(ud i:‘;’) = )
Find the partial differential equation of the first order of which a complete
integral is
(x —aP -+ (y —~ by = ooty

where a, b arc constants,

Prove that another comp lete integral can be Tound which represents all
planes muking an angle ¥ with the plane z - (.

Find the family of surfaces which represents the solution of the partial differ-
ential equation
¢z ér

{x "}—é;"— (y + z);;;-r bz

and obtain the integral surface which contains the circle % + y? = o z = g,
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16.

1t.

12.

13.

14.

15.
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Find the equation of the integral surface of the differential equation

dz 3z
o 2 .. I e NV A T
X T ¥3x ¥ o 2x ¥

which passes through the parabola x = 1, ¢ -z - ¥
Solve the eguation ‘
p —glx -t ¥}~z

and determine the equation of the surface which satisfies this equation and
passes through the curve

x v iz- 0, x — 2
Show that the integral surfaces of
(xp ~ ygha® - F =) - dxt
are generated by conics, and find the integral surface through the curve
X - 2z,xF 0 - dgh,
Fing the general solution of

du die
v

- 4
dx ay

in the domain 0 -~ v - x. Find the solution which equals x wes v = dx.
Find the general integral of the cquation

o

z a-
o (e oy -t s = gz

[ | Y S A
il 0 n:
147 ) i 7

o
a<

and deduce the equation of the integral surface which passes through the curve
2x oz b 2% 2y -z =4
Prove that for the equation
ziopx gy — |- pgatt -0
the characteristic strips are given by
1 ) 1
"Bo G VT T et
p o AB CohHe, g = BtA - De'§
where 4, B, C, D, and E are arbitrary constants.  Hence find the integral
surface which passes through theline z = 0, x = p.

X , z:: E— (AC = BD)et

Find a complete integral of the equation
A 1z (ol S P Ap - U — ) — At - ¢
Show that the characteristic equations of the differentizl equation

igf -+ 1)z? == 2pxz + &F

have an integral gz - ax, and find the corresponding complete integral of the
differential equation, showing that it represents a set of conicoids of revolution.

The normal tca g%vm surface at a variabie point P meets the coordinate ptanes
XOYand YOZin A and B, respectively. If AB s bisected by the plane ZO X,
show that the surface satisfies the differential equation

x 2y
;=1 5

£ g
Find a complete integral of this equation,
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The normal to a given surfuce at a variuble point P meets the sphere
A% y® 22 = | in the points A and B I AR is bisected by the plane
= 0, show that the surface satistics the differcatial equation

Apt gt opx gy 0

Find a complete integral of this equation.
Show that the characteristic cquations of the differential equation

zoooxp — gt xpg 0

have an integral ¢x - «, and find the corresponding complete integral of the
differential cquation.

Find a complete integral of the equation p°x gy = 2z, and hence derive the
cquation of an iategral surface of which the line v - 1. x 1z 05 a
generator.

Find the complete integral of the differential eguation
,112,Y Cpgy o 2pr x

corresponding to the integral of the characteristic equations involving g and
1 alone, in the form

Deduce the integral surface through the line v - 1, & = 2.

Show that a necessary and sufficient condition that u surface should be
developable is that it satisfies o differential equation of the form f(pg) 0.

Deduce that & necessary and sufficient condition that a surface should be
developable is that its second derivatives rlx,y), six,y), fx,v) satisfy the
equation pr - 55

Show that the only integral surfuces of the differential cquation
9z - xp — 2vg) - x - 0
which are developable are the cones
(z - ax)®  2vix @ 8
Find the infegral surfages through the curve 7 - 0, X% - 21 = Q.

At any point £ on a surface the normal meets the plane z =~ 0 in the point N,
Show that the differential equation of the system of surfaces with the property
that OF? -« ON?, where O is the origin, is

2" Y Apx gy = oz

Obtain a complete integral of this equation, and hence find the two surfaces
with the above property which pass through the circle x* - 2% -- [, y =0,

If any integral surface of a partiul differential equation of the first order
remains an integral surface when it is given an arbitrary screw motion about
the z uxis, prove that the cquation must be of the form

Flxp = vg, xg ~ ap,a® )% =0

If a differential equation of this type admits the quadric

ax® byt o oert o

as an integral surface, show that the characteristic curves which lie on this
quadric are its intersections with the family of parabaloids z = kxj.



Chapter 3

PARTIAL DIFFERENTIAL EQUATIONS OF
THE SECOND ORDER

In the last chapter we considered the solution of partial differential
equations of the first order. We shall now proceed to the discussion
of equations of the second order. In this chapter we shall confine
ourselves to a preliminary discussion of these equations, and then in
the following three chapiers we shall consider in more detail the three
main types of linear partial differential equation of the second order.
Though we are concerned mainly with second-order equations, we shall
also have something to say about partial differential equations of order
higher than the second.

I. The Origin of Second-order Equations
Suppose that the function z is given by an expression of the type
z o= fluy -+ og(e) = ow ()

where fand g are arbitrary functions of v and v, respectively, and u, v,

and w are prescribed functions of x and y.  Then writing
z oz &%z 0%z 0%z
— e s = ey y o= § o= ey ! o= — 2
P 5% 7 oy gx? dx dy ay* @

we find, on differentiating both sides of (1) with respect to x and y,
respectively, thal
p=flwu, g0, +ow,

q :“:ff(u)uh’ - g,(l")"-‘v + Wy
and hence that

r== j ”(H)H:i -+ g”(r)l":lr - _fl.(u)uxr - g’(l.)['mz = W
s = [, + g (@, - 00U, — g0,y v Wy
o G g EE i O,

We now have five equations involving the four arbitrary quantities /',
88
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“ g g" 1f we eliminate these four quantities from the five equations,
«¢ oblain the relation

Py u, r 0 0

g — Wy, u, r, 0 0

B Wy, Wy - s 2 == () (3}
§ o W, Uy ey ., L,

Py, Uy, Lo i, v '

‘hich involves only the derivatives p, g, r, s, t and known functions of
~and y. Tt is therefore a partial differential equation of the second
rder. Furthermore if we expand the determinant on the left-hand side
fequation (3) in terms of the elements of the first column, we obtain an
Juation of the form
Rr+8s =Tt +Pp- Qg=W (4)
here R, 8, 7, P, Q, Ware known functions of x and y.  Therefore the
slation (1) is a solution of the second-order linear partial differential
juation (4). 1t should be noticed that the equation (4) is of a par-
cular type: the dependent variable = does not occur in it.
As an example of the procedure of the last paragraph, suppose that
e f(\ ok a}‘) o g(x ..... - a},’) (5)

here f and g are arbitrary functions and ¢ is a constant. If we
flerentiate (5) twice with respect to x, we obtain the relation

iile if we differentiate it twice with regard to 3, we oblain the relation
( o (?Qfl L aﬁt‘(’r"
that functions = which can be expressed in the form (5) satisfy the
rtial differential equation
f== o (6)

Similar methods apply in the case of higher-order equations. It is
dily shown that any relation of the type

P AT M

ere the functions f, are arbitrary and the functions v, are known,
ds to a linear partial differential equation of the nth order.

“he partial differential equations we have so far considered in this
tion have been linear equations. Naturally it is not only linear
ations in which we are interested. In fact, we have already en-
ntered a nonlinear equation of the second order; we saw in Example

function /' must be a solution of the second-order nonlinear equation
Ft— 5% =)
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PROBLEMS

1. Verify that the partial differential equation

& 2 2

axt é}i X
15 satisfred by

1
[ ¥ e B Y -
z xg){} X) %y — X}

where ¢ is an arbitrary function,

2. If w=f(x <+ 0y + glx — iy}, where the functions f and g are arbitrary,
show that
2y Ry

Sx¥ a‘};
3. Show that if fand g are arbitrary functions of a single variable, then

uo=flx —or - i) ol — ot — iy

is a solution of the equation .
o Fu 1 Py
it et el
provided that o® — 1 — 1%/c2
4. If

= f® =) b pe® )
where the functions f, g are arbitrary, prove that
2 72

2
L]
8]

|

= 4_}(2

15

Qul o

i
x

jotl

X

5. A variable z is defined in terms of variables x, y as the resuit of eliminating ¢
from the equations

z o= tx 4 3f ) - gl
O =x 4y -+ gn
Prove that, whatever the functions fand g may be, the equation

vt 52 =0
1s satisficd.

2. Second-order Equations in Physics

Partial differential equations of the second order arise frequently
in mathematical physics. In fact, it is for this reason that the study of
such equations is of great practical value. The next three chapters will
be devoted to the stud} of the solution of types of second-order equation
occurring most often in physics. For the moment we shall merely
show how such equations arisc.

As a first example we consider the flow of electricity in a long insulated
cable. Wae shall suppose that the flow is one-dimensional so that the
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current 7 and the voltage F at any point in the cable can be completely
specified by one spatial coordinate x and a time variable . If we
consider the fall of potential in a linear element of length 4x situated
at the point x, we find that
. o of
—0E = iR ox + L dx — (hH
ot
where R is the series resistance per unit length and L is the inductance
per unit length.  If there is a capacitance (o earth of C per unit length
and a conductance G per unit length, then
. . . OF
8= GEdx - Cdx— (2
at
The relations (1) and (2) are equivalent to the pair of partial differcntial
cyuations
oF 9i

di JOF
5o T OE+C52=0 (4
Differentiating equation (3) with regard to x. we oblain
*FE or o

oxt | ax 5}(817_0 ()

and similarly differentiating equation (4) with regard to ¢, we obtain
Al oF *E
— =  C— =0 6
dx 01 ot ar (6)
Eliminating ¢i/éx and ¢%/éx ¢t from equations (4), (5), and (6), we
find that £ satisfies the sccond-order partial differential equation
0% % dé
R P o S LG)— ~ RG
5yt C ar (RC G) 3 RGo (7
Similarly if we differentiate (3) with regard to ¢, (4) with regard to x,
and eliminate ¢*E/dx dr and 6E/¢x from the resulting equations and
equation (3), we find that / is also a solution of equation (7).
Equation (7), which is called the telegraphy equation by Poincaré and
others, reduces to a simple form in two special cases, If the leakage to
ground is small, so that ¢ and L may be taken to be zero, equation (7)
reduces to the form
¢ 194
ox* kot
where k == (RC)™! is a constant. This cquation is also somctimes
called the telegraphy equation : we shall refer to it as the one-dimensional
diffusion equation.

(8)
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On the other hand, if we are dealing with high-frequency phenomena
on a cable, the terms involving the time derivatives predominate, If we
look at equations (3} and (4), we sec that this is equivalent to taking G
and R to be zero in equation {7}, in which case it reduces to

7 2 .
EE T ®
where ¢ = (LC) % This equation is sometimes referred to, in this

context, as the radio equation; we shall refer to it as the one-dimensional
ware equaltion.

A simple partial differential equation of the second order, different
in character from either equation (8) or (9), arises in electrostatics. By
Gauss’ law of electrostatics we know that the flux of the electric vector
E out of a surface S bounding an arbitrary volume ¥V is 4~ times the
charge contained in V. Thus if p is the density of electric charge, we
have

'ﬁ E-ds = dn ‘1 pdr
S Jv

Using Green’s theorem in the form

‘A'E-ds: | divEd

W1

and remembering that the volume V is arbitrary, we see that Gauss’ law
is equivalent to the equation

divE = 4np (10)
Now it is readily shown that the electrostatic field is characterized by

the fact that the vector E is derivable from a potential function ¢ by the
equation

E = —grad ¢ (In

Eliminating E between equations (10) and (11), we-find that ¢ satisfics
the equation

Vi dmp =0 (12)

where we have written V2 for the operator div (grad), which in rect-
angular Cartesian coordinates takes the form

a* 72 a?
et ae T (13)

Equation (12} is known as Poisson’s equation.  In the absence of charges,
p 15 zero, and equation (12) reduces to the simple form

Vi =0 (14)

This equation is known as Laplace's equation or the harmonic equation,
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s+ are dealing with a problem in which the potential function ¢ does
shary with =, we then find that V' is replaced by

& o°
Y‘.:l = FOUSURRE —
R AR i (13)
~J that Laplace’s equation becomes
Vid = 0 (16)

v which we shall refer o as the two-dimensional harmonic equation.
Fhe Laplacian operator V2 occurs frequently in mathematical physics,
“Iin a great many problems it is advantageous to transform from
srtesian coordinates x, y, z to another orthogonal curvilinear system
-en by the equations

wy == (X3, uy == U N, 1,2), 1y = (X, 1,7) (17

-2 transformation of the Laplacian operator in these circumstances is

L effected by the aid of vector caleulus,® which shows that in the
. i, ity SYStEm

., I (2 hh al/') 3 ( B, aV) 3 ( By 8V)}

i G\ e

e By, Wéﬂ: f, 5;? J
(18)
aere
: oxy” i ilm ; i m_ﬁ-m)z | :
0o (W) (au_,,) (\a”é f=1,2,3 (19)
PROBLEMS

Shenw that Maxwell's equations

divE — 4mp, divH = 0

é i 1 2E
cur]ELflm;ﬂy curlHk-éﬂ-‘--_m;w
oo ¢ o ¢f

governing the behavior of the electric and magnetic field strengths E and H
possess salutions of the form
[ 6A .
H = curl A, E = — - — — grad ¢

-

¢ of
where the veetor A and the scalar ¢ satisfy the inhomogeneous equations

1 &A  dn 1 ¢
R e R 1A Vi v —— - dnp =
vA et ot ¢ i ?
respectively.

4

1. A heavy chain of uniform line density is suspended vertically from one end.
Tuking the origin of coordinates at the position of equilibrium of the lower

- H.
]

Lass, “Vector and Tensor Analyvsis” (McGraw-Hill, New York, [950),
-34

A
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(free) end and the v anis along the equilibrium position of the chain, pointing
vertically ppward, show that in small oseillations about the cquilibrium
position the herizontal deflection v of the ehain satislies the equation

2y ¢ fy
IR A B
oY ey 2y,
where ¢ s the acceleration due to gravity,

By changing the independent vagiubles to ¢ and &
that this cquation is equivalent to

%]

|

where £ - dxly, show

1

Plane sound wuves are being propaguted in g gas of normal averuge density
pp contained in a pipe whose eross-seetiona] ared A varies slong its length, 1
;. p denote the pressure and density at any point ip the plane whose coordinate
is o and if during the motion the plane gormally al x is displaced to x5, show
that if the disturbance is small,

Az ap [ e
Pis Y WET:', [ l} 7;{,(4:)1

Henee show that £ satisfies the equation

os 2 ° {L 2 {_,13)l

ar* v |4 dy

where ¢~
WA -

dnfidp.
Aget?, show thar the cquation posscsses a sofution of the form

o, where

5
Y |
A
= 12y
o a k;A- 5 -
I P

)

S
ind

(5]

1
and that if A = Ay 1 it has a solution & = x'=%¢ where
a2y
i

- .
i~y \ag e,

v

|

Jd—

[
o

o o
Show that in eylindrical coordinates p, 2, ¢ defined by the relations
X = peosd, v psing, o=

Laplace's equation V3 - 0 takes the form
L A

6'!02 o ap pg 6’9});3 ar

[

5, Show that in polar coordinates r, 0, ¢ defined by the equations

x o orsinfeos é, y o= rsin i sing, z = Fcos
Laplace's equation V*I¥ = 0 takes the form
A i IO 17 P
""-",(Z“"-"'T._ AR m(-‘imoﬁ) w5 e <Y
FoL oy ar ) rreinft el M Fesin® i ad=

3. Higher-order Equations in Physics

The differential equations in the physical problems we have so far
considered, and indeed most of those considered in a first course, are all
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second-order equations and are all linear. 1t is therefore significant
to show that not all physical problems lead (o partial differential
equations which are either linear or ot the second order.

For example, if we consider the state of stress in a two-dimensional
solid," we find that it is specified by three stress components o,, o,, 7.,
which satisly the equilibrium conditions

o5 or

.—._._-_r_ ,:,_ il "_'” P 1
gx ay pX =0 M
o+ o

ay o f Y=0 (2)

where X" and Y are the components ol the body force per unit mass.
Suppose, for simplicity, that there are no body forces, so that we may
take X and Y to be zero; then it is obvious that the expressions
e 7 3% :
O-:r == ?2 ? Ta‘y o ma__—— * Gy - "_2 (3)
'y X ay ox
satisfy the equilibrium equations for any arbitrary function #.

So far we have not specified the nature of the material of which the
body is composed. I the body is elastic, i.e., il the relation between
the stresses and strains is a simple generalization of Hooke's law, then
it is known that the components of stress satisfy compatibility relations
of the form (» denoting Poisson’s ratio)

ol &2 ar
—_— gy — - T g e . ooy T
ayg 'L'TJ 1(0": Gy)f o2 e I(Gr ! G?:’)f Bl oy 5{}’ (4)
Substituting from the equations (3) into equation (4), we see that ¢
must satisfy the fourth-order linear partial differential equation
ot ot ¢l
__f_:_g_._____._”qs‘.i___;—,..() (%

-1 ze a)‘ﬂ ay-i

which may be written symbolically as
Vig = 0 (6)

Because of its relation to Vig == 0, this is called the rwo-dimensional
biharmonic equation.  The same equation arises in the discussion of the
slow motion of a viscous fluid.?

If, instead of assuming that the selid body was elastic, we had
assumed that it was ideally plastic, so that the stresses satisfy a Hencky-
Mises condition of the form

%Ux: - E’JH 2 "—.l‘_;;.; = k2 (7)

YA, E. H. Love, “A Treatise on the Mathematical Theory of Elasticity,” 4th ed.
iCambridge, Londen, 1934), p. 138,
2 H. Lamb, “Hydrodynamics,” 6th ed, (Cambridge, London, 1932), p, 602,
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instead of equation {4), we find thal ¢ satisfies the second order non-
linear partial differential equation

4.

Bp @b\ 26\,
FEI TR e e

PROBLEMS
Show that

Vihaop) ATl 4 “f“{\“'"i“’)
AR AN E Ay L7

and deduce that if ¢, wy, vy, yy,are arbitrarysolutions of Vi 0, the function
o Xy Yo iy iy
is a general solution of Ty = 0

Tranform the equation T1¥ — 0 to plane polar coordinates » and 7, and show
that if 1" is a plane biharmonic function which depends on 1 alone, then

Voo optloge « o logr o oo

where ¢, ¢, 5, ¢p are constants,

Prove:
{a) THEY = T < dy - 4 2D
1
£ tayf
b 2('_,_’_)fm__{; -;)
(b Vi ‘! i ; E;'\! Viy

Deduce that if Ty = 0, then Vi) = 0,
Verilv that ¢ — {1 - Sxje~ 4% is a solution of the biharmonic equation
g3 - 01f £ fs a constant,

Hence derive expressions for components of stress o, &, r,, which satjsfy
the eguilibrium and compatibility relations and are such that all the com-
ponents tend o zero as x - v and g, = P €08 (8y), T, = O when x =

Show that the equations of plastic equilibrium in the planc are eguivalent to
the equatjon

# PFEI S [#rey P70
ax oy Tt e

and verily that ¢; = ¢,v Is the only solution of this equation of the form f(y).
Taking =, =~ —kyla, caleulate 6, o,

Linear Partial Differential Equations with Constant Co-
efficients

We shall now consider the solution of a very special type of linear
partial differential equation, that with constant coefficients. Such an
equation can be written in the form

HD.D')z = f(xy) (D
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rere A(D,D') denotes a differential operator of the type
HD.D) - XX, DD (2)

-~ which the quantities ¢, are constants, and D - ¢/dx, - didy.
The most general solution, ie., one containing the co;recl number
“arbitrary elements, of the cor;cspoz&é;ng bo;ﬁo‘sﬁ{:ﬂmus linear partial
‘Terential equation
HD.D)z —0 3

called the complementary function of the equation (1), just as in the
-orv of ordinary differential equations. Similarly any soiuiaon of the
sation (1) is called a particular integral of (1).
ys in the theory of linear ordinary differential equations, the basic
sorent is:
theorem L. /f w is the complementary function and =z, a particular
cral of a linear partial differential equation, ihen w - -z, is a general
wion of the equation,
The proof of this theorem is obvious.  Since the equations (1) and (3)
. of the same kind, the solution « - =, will contain the correct number
arbitrary elements to qualify as a general solution of (I).  Also
DDV =0,  F(D,D)z = f(x.p)
“hat F(D,DYu -+ ) = f(x,))
wing that & 4- 2y is in fact a solution of equation (1). This com-
.¢~ the proof.
\nother result which is used extensively in the solution of differential
Anens s

[heorem 2. [f g, s, o . ., i, are solutions of the homogeneous
o partial differential equation !{D DYz == 0, then

< cu,
i'::l
re the ¢,’s are arbitrary constants, is also a solution.
The proof of this is immediate, since

FD,DYeu,) = ¢ F (DD,
FD.D") M — S F(D.D),
il
¥
anvoset of functions ¢, Tiaeref'@re

F(D.D') N e, == w(z) DY,
#eal

= l ¢, F(D, D",
re]

=0




98 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

We classify linear differential operators F{D,D') inlo two main types,
which we shall treat separately. We say that:
(@) F(D.DYis reducible if it can be written as the product of linear
factors of the form D - ¢D" -+ b, with 4, b conslants;
(by F(D,D")is f‘f‘r{)du{'f’bz’e il it cannot be so writlen.
For example, the operator
D — D
which can be written in the form
(D + DYD — D)
18 reducible, whereas the operator
D —p

which cannot be decomposed into linear factors, is irreducible,

(a) Reducible Equations. The starting point of the theory of reducible
equations is the result:

Theorem 3. Jf the operator F(D,D') is reducible, the order in which
the linear factors occur is unimportant.

The theorem will be proved if we can show that

(QD auD ‘l}”)(yDTi“D W:\)

= (2,0 = 3,00 + yYo,D + 5D+ ) {4

for any reducible operator can be written in the form
F(D~DI) - H(er - ffj?’Df o '}"T) (5)
F=1
and the theorem follows at once. The proof of (4) is immediate, since
both sides are equal to
o DY - (af, — 0,0 )DD L BAD L (va, + a)D
+ (7, F D
Theorem 4. [f2,D — . D" + v, is a factor of F(D, D'y and $.(&) is an

=

arbitrary function of the wng!’e variable £, then if =, 0,

oot
i, = exp (w £ ) H(B, x — 1)
%, 4

is a solution of the equation F(D,D') z = . %
By direct differentiation we have

DMT e p— Li U, + {37 exp ( - I}Z\) (,25!(?.})?'-\- ki ﬁfj")
= | ;

L, L »
D'y - A WP _
Hy == — 0, exp - ? : (;‘Jr-\ - xrj)

\ r

so that (a2, D 3 5, D" + »)u, =0 Gl
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+ by Theorem 3
, ‘
AD.DY, =TI D 3.0 = 0{(2.D = i, D =7y, (D)

»rime after the product denoting that the factor corresponding to
ris omitted. Combining equations (6) and (7), we see that

DD, ~ 0
oI proves the theorem.
By an exactly similar method we can prove:
Theorem 5. [f §.D" -y, is a fuctor of F(D,D") and (5} is an

-

< eary function of the single variable &, then if p, =0,

= exp (—5) )

“wolution of the equation F(D,D'") 2=0,

I the decomposition of F(D,D’) into lincar factors we may get

tiiple factors of the type (=D — #,.D" -1- ). The solution corre-
“onding to a factor of this type can be obtained by a simple application

Theorems 4 and 5. Forexample, if # = 2, we wish to find solutions

the equation

(0, D — 3,0 =)z =0 (8)
we fet
Z = (0,D  §,D = 2,)=
n (a,D = 3. D =y )2 =0

ivhr according to Theorem 4 has solution

~r

$e>\p( w;.;.m,)qf)(ﬁ X, y)

0. To find the corresponding function = we have therefore to
nve the first-order linear partial differential equation
oo 8z
G e e 1‘f?_ J— --':— w7 oam 1, N LY 9
r a‘\_ { i a’V i qs( }) ( )
-ing the method of Sec. 4 of Chap. 2, we see that the auxiliary
uations are
de dy f‘f:

s p}r TR q');( )) N xr}')

h solution

fox — oy =
~abstituting this in the auxiliary equations, we get the
dx dz

x, - :jrz - e et qsr(cal}
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which is a first-order linear equation with solution

o -I— 'iqﬁ,,(('l)‘\' : (’,3} ¢

%,

ARV

Equation (9), and hence equation (8), therefore has solution
T e ) - opdfy - a)le
where the functions ¢,. 1y, are arbitrary.
This result is readily generalized (by induction) to give:
Theorem 6. [f (2, D - D" — ) (%, 7 0) is « factor of F(D,D")

and if the functions &, . . . . ,, are arbitrary, then
i ¥ -
VXY UL ,
exp R R )
. A

is a solution of F(D,D"Yz=0,

Similarly the generalization of Theorem 5 is:

Theorem 7. [/ (7, D" - )" isa facior of FUD,D'Y and if ihe functions
Bris o - oy Boaare arbitrary, then

exp ( - ﬂ,l) Z Xl (7))

N " b ]

is a sofution of N(D,D)z = 0.

We are now in a position to state the complementary function of the
equation (1) when the operator F(D,D’) is reducible.  As a result of
Theorems 4 and 6, we sce that if

FD.D'Y - TL (D - p.D vy (10)
Pt

and il none of the «,'s is zero, then the corresponding complementary
function is

g ;e N )
. ~ . i &1 b,
o 2ex ( ) 2ol (A — w, v Il
. P : o{r J ‘L_‘l fi’.(l ¥ r ) ( )
where the functions ¢, (s=1, ... ,n r=1,...,n) are arhi-

trary. I some of the «'s are zero, the necessary modifications to the
expression (11} can be made by means of Theorems 5 and 7. From
equation (10} we see that the order of equation (3) is my -+ mp +
- m,; since the solution (1) contains the same number of arbitrary
functions, it has the correct number and is thus the complete comple-
mentary function.
To illustrate the procedure we consider a simple special case:

Example 1. Solve the equation
. . 2.
#x P &

T N i e ey
dxt ay* ax® 8yt
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i the notation of this section this cquation can be written in the form
(D DD DR 0
= that by the rule (11) the solution of it is
LT E R O IRt S I V'Y BN U R ¥ & S |
shere the functions ¢;, .. 1y, v, are arbitrary,

Having found the complementary function of equation (1), we need
only find a particular integral to complete the solution.  This is found
by a method similar to that employed in the proof of Theorem 6. If
we write

= 1D 25D - ) (12)

then equation (1) is equivalent Lo the first-order linear equation

oz , oz L
% g\T B 67"] R P —f (N,‘}'_)

a particular integral of which can easily be found by Lagrange’s method.
Substituting this particular value of =, in ([2), we obtain an inhomo-
ceheous equation of order 17— 1. Repeating the process, we finally
airive at g first-order equation for = To illustrate the process we
consider:

Example 2. Find tive solution of the cquation

& 2

8y

k7]
1y

¥

i
P ¥

This cquation may be written In the form
(D puh D ox -y

so that the complementary function is

gyl v =By -1
where &, and $, are arbitrary.  To determine a particulur integral we write

(D - DY (13
Then the equation for =) is
(D = DYz =y
which Is a first-order lincar equation with solution
ool flyoon

where fis arbitrary.  Since we ure secking only a particular integral, we may take
¢ 0. Substituling this value of =y into {13}, we find that the equation for the
particular integral [s

food &

éx ay

E]

o —

which has solution
g b =P flx -0
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in which /s arbitrary.  Taking /0 we obtain the particular integral

o

o= odxte )¢
Hence the generul solution of the equation may be writien in the form
B (E SN L NI D SR NSOy
where the functions &, and ¢, are arbitrary,

(h) Irreducible Equations.  When the operator F( D, D) is irreducible,
it is not always possible to find a solution with the full number of
arbitrary functions. but it is possible to construct solutions which con-
tain as many arbitrary constants as we wish. The method of deriving
such solutions depends on a thecorem which we shall now prove. This
theorent is true for reducible as well as irreducible operators, but it is
only in the irreducible case that we make use of it.

Theorem 8. F(D,D)e " . Fla,h)e 1

The proof of this theorem follows from the fact that F(D,D') is made
up of terms of the type

c,.Dp”

and Dr({,qr Ahz,n) — ar(,rr --.(m, D’S(E,n ﬁ{-ijy) - bs()aa'—by
s0 that (("_\D"D’-")({ﬂ '".-W) .- (.N(‘,i‘bs(',rz.pp;y

The theorem follows by recombining the terms of the operator F(D, D).
A similar result which is used in determining particular integrals is:
Theorem 9. F(D, D'}y e" "d(x )} —= e RD — a, D' + byd(x,)).
The proof is direct, making use of Leibnitz’s theorem for the rth

derivative of a produet to show that

Died) - X DD )

o

; v N
— r( : rC”Uﬂ Dir (;6
U

= (D 4 a)d

To determine the complementary function of an equation of the type (1)
we splil the operator F{ D, D) into factors, The reducible factors are
treated by method (#). The irreducible factors are treated as follows.
From Theorem & we see that e**~" is a solution of the equation

FD,D)z == (14)
provided I{a,b) =- 0, so that
o= N coexpla,.x - b,y (15)

.
in which a,, ., ¢, are all constants, is also a solution provided that a,,
h, are connected by the relation

Fa,b)=0 {(16)
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- this way we can construct a solution of the homogeneous equation

<)containing as many arbitrary constants as we need.  The series (15}
ced not be finite, but if 1t is infinite, it s necessary that it should be
siformly convergent if it has Lo be, in fact, a solution of equation (14).
“he discussion of the convergence of such a series is difficult, involving
~ it does the coeflicients ¢, the pairs («,.0,), and the values of the
ariables x and 3.

Pwample 3. Show thar the equaticn

#r 1 a:

wwesses selutions of the form
6
N o, c08 (nx s e P
i A

This follows immediately from the fact that 77 *' is a solution only if

a2

b
@~ =
A
-1 1his relation is satisfied if we takea — i/ b knt,
To find the particular integral of the equation (1) we write it sym-

“heally as

I ‘
A WA 17
o ) a”
A can often expand the operator £ 2 by the binomial theorem and then
erpret the operators D!, D! as integrations,
lxample 4. Fiid @ particular iniegral of the vquarion
(D = DY 2y —

W put the equation in the form

Csaowe can write

When f(x,3) is made of terms of the form exp (ax -+ £)), we obtain
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(as a result of Theorem 8) a particular integral made up of terms of the
form

I ex C by
Flah) X {ay i

except if it happens that Fa,b) - 0.
Example 5. Find a particular integral of the equation
(D% - Dz = g
In this case F(D, DYy = D* — D', g ~ 2, and & - 1, s0 that Flab) = 3, and

the particular integral is
1ot

In cases in which Fla,b) = 0itis often possible to make use of Theorem
9. Tf we have to solve
F(D, DNz == cpr i

where ¢ is a constlant, we let

- “,C)u-r-r.?:g;

then by Theorem 9 we have
HD +a, Dby e {18)

and it is sometimes possible lo obtlain a particular integral of this
equation.

Example 6. Find a particular iniegral of the cquation

(D2 - Dz o ov'
In this case F{D,DY = D* - D', g =1, b -] and Fla,h) = 0. However,
FD va, DV -8y =(D 1P (D 1)=Dp*+2D D
and so equation (18} becomes in this case
(D? 22D — D)w =1

which is readily seen to have partieular integrals $x and -p. Thus dxe® and
—ye? ¥ are particular integrals of the original eguation.

When the function f(x,y) is of the form of a trigonometric function.
it is possible to make use of the last two methods by expressing it as a
combination of exponential functions with imaginary exponents, but
it is often simpler to use the method of undetermined coefficients.

Example 7. Find a particular integral of the equation
(D2 — Dz = Acos{lx 4 my)
where 4, [, m are constants.
To find a particular integral we let
z oo eos Ux & my) 4 epsin Ux - )

and substittite in the left-hand side of the original equation, Equating the
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coeftictent of the sine to zere and that of the cosine to A, we obtain the equations
meyp - Pe, =0
~ ey - oawe, - A

for the determination of ¢, and ¢,.  Solving these cquations for ¢, and ¢,, we obtain
the particular integral

A . , 3
L GET fmsin Ux — no) HPcos e - suny}
N )
PROBLEMS
1. Show that the equation

52 ¥ a}‘ 621’

A ¥ A S

art 2T

possesses solutions of the form

an
S et eos (xx ~ £,) s (o - &)
=1

where ¢,, 4, £,, 4, are constants and w? = o2¢* — k%
2. Solve the equations
(@) ¢ 5 20 =t
hy r— s tlg~z=x
(&) rts—2—-p-—-2=0

frd

Solve the equation

i &z &z &z )
MR N L DT
axs ax* 8y 8x B? ay

4. Find the solution of the equation
\"'112 Lo X cOs }',
which tends to zero as x — «© and has the value cos y when x = 0,

5. Show that a linear partial differentizl equation of the tvpe

ar-—ﬁr«
Z P Flxaw
TodxT gy’ -

-
may be reduced to one with constant coefficients by the substitutions
§ o= log x, i o= log y
Hence solve the equation
X =% - xp — vy = logx
A
5. Equations with Variable Coefficients
We shall now consider equations of the type

Rr+ 85 o Tt — f(x,2p.9) = 0 (1
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which may be written in the form

Lo flepopg) — 0 (2)
where L is the differential operator defined by the equation
532 o2 2
Lo R T (3)

— T
A gx oy oy?
in which R, S, T are continuous functions of v and v possessing con-
tinuous partial derivatives of as high an order as necessary. By a
suitable change of the independent ‘variables we shall show that any
equation of the Llype (2) ¢can be reduced to one of three car mn.'caijorms
Suppose we change the independent variables from x, 3 to &, 4. where

F=8xy) oy = lxy)
and we write z{(x.)) as {(&,); then it is readily shown that equation (1)
takes the form

_ 2 3
A{E;I’EU) pet ZB(*;W;J!N?M) a& a

‘ 27 e e s
AUrn,) == Pl F(E,0.0.0) (4)
where AQur) = Ru* - Sur -+ Te? (5
By rrostig,ty) == Ruguy = 18y + uary) + Toprs {6)

and the function £ is readily derived [rom the given function /.

The problem now is to determine & and # so that equation (4) takes
the simplest possible form.  The procedure is simple when the dis-
criminant $% — 4RT of the quadratic form (3) is everywhere cither
positive, negative, or zero, and we shall discuss these three cases
separately.

Case {g): 8% —4RT > 0. When this condition is salisfied, the
roots 2, 4, of the cquation

Re? 4 Sz T'=10 (7
are real and distinct, and the cocflicients of 62/25* and &(/gs? in
equation (4) will vanish if we choose £ and 4, such that.

g8, ¢f iy . Oy
R S ey
ax ay o ay
From Sec. 4 of Chap, 2 we see that a suitable choice would be

""" = i), i = folv ) (8)
where f, == ¢, fy = ¢, are the solutions of the first-order ordinary
differential equations

gl = 0, 4%mgmﬁ=0 9)

respeetively.
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Now it is easily shown that, in general,
AELENA ) BEAE ) = ART — S, = &7 (10)
so that when the A’s are zero
B e (8% - ARTWE 50N

and since 8% - 4RT = 0, it follows that 8% = 0 and therefore that we
may divide both sides of the equation by it. Hence if we make the
substitutions defined by the equations (8) and (9), we find that equation
(1) is reduced to the form

agé‘: T g
Wai‘ af', I 96(:’1/’511:_’1:)!) (11)
Example 8. Reduce e egnation
L , &
Ty R AT e
FIe &y

In this case R =1, .5 =0, T - —2? s0 that the roots of equation (7) are -x
and the equations (%) are
dr

E x —0
[iy

X3

s0 that we may take & = v - Jx% 5 = v - lx%
the equation takes the canonical form

7 ! (ag ¢ )
or dy  AE - \NEE @

Case (b): 8% —4RT =-0. In such circumistances the roots of
equation (7) are equal. We definc the function & precisely as in case (a)
and take » to be any function of x, v which is independent of £, We
then have, as before, 4(f,.&,) = 0, and hence, from equation (10,
B(£..8, m) = 0. On the other hand, A(y,n,) % 0; otherwise #
would be a function of & Putting A(4,,5,) and B equal to zero and
dividing by A4(3,.;,), we see that the canonical form of equation (1) is,
in this case,

It is then readily verified that

ft]

0t .
= = BE L) (12)
ar,“
Example 9. Reduce the equation
&%z . 5'—'%' Ei: 0

ax2 - WET a_‘fi

to caneaical form and hence solve it
In this example R = 1, 8§ = 2, T - |, so that it is case (h), with

in place of equation (7). We thus have 2 = —1, so that we may take I == x — J,
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n o= X -y, We then find that the equation reduces to the canonical form
s

al'i:“)‘

=0

which is readily shown to have solution
Lo yfléEr 1 fuld)
where the functions f and f, are arbitrary. Hence the original equation has
solution
z=(x - Wfilx —1) = flx =¥

Case (¢): S* —4RT <2 0. This i1s formally the same as case (a)
except that now the roots of equarion (7) are complex. [ we go through
the procedure outlined in case (@), we find that the equation (1) reduces
to the form (11) but that the variables &, % are not real but are in fact
complex conjugates, To get a real canonical form we make the further
transformation

a=8EA ), F by — 8

and it is readily shown that

a2 1 j82r 6%
i (- =)

gfay  4\d2 @
so that the desired canonical form is
' 2L 0% o
= 5 w(x’f’jJ’é,Clblﬂl) (13)

do? gt
To illustrate this procedure we consider: '

Example 10.  Reduce the eguation
) Fr o, 8%

PO
to canonical form. '
In this instance 4 = ix, % = —ix, so that we may take & = iy = jx%
w = —iy -+ 4x% and hence » — §x% 8 = 1. It is left as an exercise to the reader to
show that the equation then transforms to the canonical form
aor @ | &g
Ful g Zuox

We classify second-order equations of the type (1) by their canonical
forms; we say that an equation of this type is:
(@) Hyperbolic it §* —4RT == 0,
{h) Parabolicif 5% —4RT =10,
(cy Ellipticif 8% —4RT == 0.
The one-dimensional wave equation
oz 0%z

axt gy

v

33
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- fisperbolic with canonical form

¢ 0
g5 dy
e one-dimensional diffusion equation
o'z o:
ax* gy

~arabolic, being alrcady in canonical form, and the itwo-dimensional
monic equation

2u &’z
o g
- eliptic and in canonical form.
PROBLEMS

Show how to find a solution containing two arbitrary functions of the equation
< flea
Hence solve the equation
s dxy -]
Show that, by a simple substiution. the equation
Rr P H

van be reduced 1o o linear partiol differential equation of the first order, and
outline w progedure for determining the solution of the original equation.
Hustrate the method by finding the solutions of the equations:

RINER Y 3/) P2y
EE g el
Il functions R, £, Z contain v but not x, show that the solution of the
Juation

Re Pn 2z W

i be obtained from that of a certain second-order ordinacy differential
vqaation with constant coefficients.

Hence solve the equation

oot Dp oy e

Ruduce the equation

( ) gr
"o ”a""l')
v eanonical foem, and find its general solution.
educe the cquation
NN Pkt , P viar Ktz
¥V - 2xy K el e e
A dx dy ay* X ax v ody

©o canonicul form, and hence solve it
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6. Characteristic Curves of Second-order Equations

We shall now consider briefly the Cauchy problem for the second-
order partial differential equation

Rr - 8s & Tt [{xyz,pg) = 0 (h

in which R, S, and 7 are functions of x and v only. In other words, we
wish to consider the problem of determining the solution of equation (1)
such that on a given space curve I it takes on prescribed values of z
and ¢z/8n, where 1 is distance measured along the normal to the curve.
This latter set of boundary conditions is equivalent to assuming that the
values of x, y, z, p. g are determined on the curve, but it should be noted
that the values of the partial derivatives p and g cannot be assigned
arbitrarily along the curve. For if we take the freedom equations of
the curve ' 10 be

x == Xo{7h 1o palr), 2 == {7} (2)

then we must have at all points of T' the relation

Zo = Pole - Gotly {3)

(where 2, denotes dz,/dY, ete.), showing that p, and g, are not indepen-

dent.  The Cauchy problem is therefore that of finding the solution of

equation (1) passing through the integral strip of the first order formed
by the planar elements (\ﬁ 3 orZsP 0] 0) of the curve F.

A vvery point of the integral strip py = py(r), g, = gol7), so that if

we differentiate these equations with respect to 7, we obtain the relations

Po = Ity - Sy qo = by Tify (4
If we solve the three equations ([) and (4) for r, s, £, we find that
$ 5 t 1
AV VA W
where
S T 7 R S T
Ny = 0 —Pg |, ere. and Ao | 2y Vo 0
| €4 Ho = {y | 0 Fy o

If A 0, we can therefore casily calculate the expressions for the second-
order derivatives rq. sy and 1, ,along the curve I'.

The third-order partial differential coefficients of z can similarly be
calculated at cvery point of I' by differentiating equation (1) with
respect to x and y, respectively, making use of the relations

e

Fo m Zale — 7 wreo
etc., and solving as in the previous case.
Proceeding in this way, we can calculate the partial derivarsives o
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every order at the points of the curve I'. The value of the function -
ar neighboring points can thercfore be obtained by means of Taylor's
theorem for functions of two independent variables. The Cauchy
problem therefore possesses a solution as long as the determinant A
does not vanish. In the elliptic casc 4RT — 5% == 0, so that A # 0
always holds, and the derivatives, of all orders, of = are uniqucly
determined. It is reasonable to conjecture that the solution so obtained
is analytic in the domain of analyticity of the cocflicients of the differ-
ential cquation being discussed: constructing a proof of this conjecturce
was one of the famous problems propounded by Hilbert.  The proof
for the linear case was given first by Bernstein; that for the general
case (1) was given later by Hop{ and Lewy.

We must now consider the case in which the determinant A vanishes.
Expanding A, we see that rhis condition is equivalent to rhe relarion

Ry = 8xovy = T -0 (5)
If the projection of the curve I' onto the plane = == 0 1s a curve y with
equation
{x) — (6)
then we find that, as a result of differentiating with regard to -,
Eota b &y 0 (7)

Eliminating the ratio X,/ between equations (5) and (7)., we find that
the conditidn A «= 0 is equivalent to the relation

A(£,8) -0 (8)

where the function A is that defined by equation (5) of fSec. 5. Acurve

~in the xy plane satisfying the rclation (8) is called a characteristic
hase curre of the partial differential equation (), and the curve 1" of
which it is the projection is called a characteristic curve of the same
equation. The term characteristic is appii=d indiscriminately to both
kinds of curves, since there is usually little danger of confusion arising
as a resulr.

From the arguments of Sec. 5 it follows at once thart there are two
families of characteristics if the given partial differential equation is
hyperbolic, one family if' it is parabolic, and none if it is elliptic.

As we have defined it, a characreristic is a curve such that, given values
of the dependent variable and 1ts first-order partial derivatives art all
points on it, Cauchy's problem does not possess 2 unique solution.
We shall now show that this property is equivalent to one which is of
more interest in physical applications, namely, that if there is a second-
order discontinuity at one point of the characteristic, it must persist at
all points.

To establish this property we consider a function ¢ of the independent
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variables x and y which 1s continuous everywhere except at the points
of the curve ¢ whose equation is

Hauyy oo (N
where ) is any function (not nccessarily the function & defined
above) with as many derivatives as necessary. 10 P, is any point on
this curve and P and £, are neighboring points on opposite sides of
the curve (cf. Fig. 19), then we define the d.'smnm;'mn of the function ¢
at the point £, by the eguation

[¢]p, = lim (£ — d(P.) (10)
ENEER O
If the element of length along the directed tangent to the curve C at
the point £, is do. then the tangen-
TJ‘ « tial derivartive of the function ¢ is
defined to be
dé  df od :

S es o COS (LX) 5 Cos (o)
do "oy COS L) gces o)
and it is readily shown that this is

equivalent to the expression

db B,E(P) — BELPY

s Ef( Py) A ;(‘Pn)}i (dh

l The tangential derivative at P, is
7 . therefore continuous il the expres-
sion on the right-hand side of this

Figure 19 equation is continuous at P, and

we say that de/de is continuous on
the curve C if this holds for all points P{, on C.

Now lct us suppose that the function z(x,v) is 2 solution of the
equation (1), where, for simplicity, we shall suppose that the function f
is linear in p and g. We shall assume in addition that the function
z{x,1) 1s continuous and has continuous derivatives of all orders re-
quired except that its second derivatives are not all continuous at all
points of the curve ' defined by equation (9).  In particularitis assumed
that the first-order partial derivatives -, and =, have continuous tan-
gential derivatives at all points of the curve €. 1t follows immediately
from equation ([1) that if the tangential derivative /= /dw is continuous
at the point P, so also is the expression

:.f\;'é:y( Pl‘ﬁ) """ :ue‘ui:.r( Pﬂ)
Now another way of saying that a function is continuous is to say that
its discontinuity is zero at the point in question. We may therefore
wrile
[:‘-“."];'ﬂ(P[l) - [:x?-‘]EJ‘( P[)) T O
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4y vonsidering the other tangential derivative dz,/do. we may similarly
~rove the rdat:on

[ JePy - [= J60r0 - 0

el L] [
Py EAPOEAPY EPY (12)

and hence that

Letting each of the ratios in the equations (12) be equal to 4, we may
-rite these equanions in the form

[:.r.r] ) ’;E;) (})* iz.w} - f‘f(i)ﬂ)é‘f(*pﬂ) [thaa] - ;Ei(Pl)) {13)

If we now transform rhe independent variables in our problem from
and y to & and », where & is the function introduced through the curve
“and # is such that, lor any function w(.a), dypjde — 8y/dy. The
.uantity 4 occurring in equations (13) will then be a function of 5; alone;
-2 shall now proceed 1o determine that function.

Since

[ R SO S T
ey 7Y 2 B .'?IJ' -‘_x,r;"!f { i

«nd since z; and =, are continuous (a result of the continuity of =, and
sy and z, and z,, are rangential derivatives, we find that [z,,], which
~v definition is equal to

. . B

lim i-‘.z'q'(‘p‘.l) ’ ",rr(PZ)}

By byepy
~educes 1o

lim (2 PSPy — 2 PSP

TN N

o that [zre] = (25K Po) (14)

% comparison of Lqudll{}n (14) with the equations (13) shows that the
1lue of the quanuly 2 occurring In these Lqu‘iﬂ'om o [z]. We
zan by assuming that there was a discontinuity in at least one of the
‘\&()nd derivatives; so 4 cannot be zero, and hence neither can [z
© the point P,.
If we transform the equation to the new variables & and », we get the
_quation (4) of Sec. 5, and applying the above argument fo i, we see
il

[2:04(5,8,) = 0

A(ELE) = 0 (15)

1d thereby proving that the curve C is a characteristic of the equation.
“ we differentiare the transformed equation with regard to &, take
_quation (15) into account, and note that only the terms in z; and
. can be discontinuous, we can use a similar argument to show that

23{53:?59;?]11?}#)[255:;] {As{gazﬁsy) - F$}[ZEE] =

Towing that
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Remembering that [2] is 2 and that 4 is a function of 5 alone, we see
that this last equation is cquivalent to the ordinary differential equation

o i)
- Aerd
dy S

which has a solution of the form

e

’ |

) = Ay) exp | g(<) dl_“;[

Yy
So far we have considered only single characteristic curves: now lu
us consider briefly all the characteristic curves on un integral surface &

of the differential equation {1). If the ¢cquation 1s hy pu’hollc at all
points of the surface, there are two one-parameter families of character-
istic curves on X It follows that two integral surfaces can rouch only
along a characteristic, for if the ling of contact were not a characteristic,
it would define unique values of all partial derivarives along its length
and would therefore yield onc surface, not the postulated two.  Along
a characteristic curve, on the other hand, this contradiction does not
oceur.  In the case of elliptic cquations, for which there are no real
characteristics, the corresponding result would be that two inregral
surfaccs cannot touch along any line.

PROBLEMS
1. Show that the characteristies of the equation
Rr Sy, Tr- ‘['(.\‘..1', :',Ir?,q)
are invariant with respeet to uny transformations of the independent variables.
2. Show that the churacteristics of the second-order equation

&z 2 i

A= IB e e o FEx 0T p00)
AN dy @y &y A
are the same as the projections on the xi plane of the Cauchy char:cleristics
of the first-order equation

;‘l‘,u'2 + 2Bpy - (1(‘,1'l -0

3. In the one-dimensional unsteady flow of u compressible fluid the velocity » and
the density p sutisly the equations
i 1 ap 0 ap 20 2

AT CpAx ) ot Max TPy T

If the law conneeting the pressure p with the density p is p — kg%, show that

u au ac ar de e

_ — . 2r - 0_ 2 - . 24— — 0

3t ax 2x gt ax oy
where ¢* - dpfdp.  Prone that the characteristics are given by the differential
equations dx = (v ¢) Jr and that on the chaeacteristics # - 2e are constant,
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If there is a family of straight characieristics x = nw satisfying the differ-
ential equation dx/dr = u - ¢, prove that

1o e e g € = i o

3r o s
where « is a constant, Determine the equations of the other family of
characteristics.
In two-dimensional steady flow of compressible fluid the velocity (1,1 and the
density p satisfy the equations

an Au 5 O
PP LN
pu ox i ay dx 0
ar ér d
U e e Pl e e 2 fP
ix 2N ay

4 7
mam:;(“!") *(:;:lﬁhp_) ....... 0

should be a Chariwtcrlstlt e, such that e, ve, ps are not umqudy duummed
along 1t, s that

¢ ¢ T L et oy
(i, — 5 nd, — vE)* — (5 — ) =0

Show that the second factor has real linear factors if, and only if,
#* — tF = ¢h Interpret these results physically.

Characteristics of Equations in Three Variables

The concept of the characteristic curves of a second-order linear
Cferential equation which was developed in the last section for
suations in two independent variables may readily be extended to the
e where there are n independent variables.  In this section we shall
~ow how the analysis may be extended in the case # = 3. The general
-~ult proceeds along similar lines, but the geometrical concepls are
e easily visualized in the case we shall consider.
\\-'e suppose that we have three independent variables x;, x,, x; and
¢ dependent variable », and we write p,; for ¢%/dx, dx,, p, for
- ¢x,. The problem we consider is that of finding a solution of the
“ear equation
3 3
L(H) = “_\. a,pi = l b.[’i ey == 0 (])
| tes |
which i« and di/dn take on prescribed values on the surface S whose
calion is

F ) = 0 o
e suppose that the freedom equations of § are

X, o= X (T]:Tu) [ = l, 2’ 3 (3)
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then we may write the boundary conditions in the form
= Firnry),  dujon — Glry,7y) (4)
the bar denoting that these are the values assumed by the relevant
auantity on the surfacc 5.
From equation (2) we have the identity
’, g ,
AN A a\(
R e dry - d‘r,) —0
ey, o7
so that equating 1o zero the coefficients of dr, and . we have

5

MNP, =0 j—=1,2 =)
= |
where 0, =5 df [dx,, P, » 0x,/dr,. Solving these equations, we find
that
N A O .
T = = S = p SAY 6
1,7, 5, oW (6)

where 3, denotes the Jacobian &(x,x;)/0(ry,7,} and the others are
defined similarly.
Taking the total derivative of i, we find in a similar way that

dii= X S ppydr,

i -1
from which it follows that the first of the conditions (4) is equivalent to

Sor, g_F (7)

The second condition gives
B

i Pt == GEOT - of + o) (8)

Fquan()ns (7y and (éx) are sufficient for the determination of p, P2 Ps
ar all points of rhe surface S, it being easily verified thart the determinant
of their coefficicnts does not vanish.

We can determine the second derivatives of u at points of S by
applying the same procedure to p, (the value of p, on S) as we have just
applied to 7. We obtain the pair of equations

....... “ ojt;
\) — Py e 2
r:-i P”pir a'rj j 19 = (9)

for each value of 7. This pair of equations is not sufficient for the
solution of p,y, p.s, P so that we add the equation

z Ay Pip = ‘:'." (10)

where 2, is a parameter in terms of which all the p,, are expressed
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linearly and the »’s are numerical constants chosen in such a way as to
ensure that the dererminant

PII P21 ]):H ‘

A= 1P, Py Py

: (1)
| % %y Xy 1

IS NONzero. !

Suppose now that the quantities p/, constitute a ser of solutions of
the equations (9); rthen

-l

1 P Yoy < Pl 5 = Pis
so that Do =l Pz P P 7D

Al Az A3
which can be written in the form

P P:j IRy (12)
where the p, are constants. Now p,; = p,, and p;, — p/,, so that we
must have

f}z-\J N pJ‘AE' (13)
But p.fp; = A,/3; = 9,fd, so that p, = ud,, where p is a constant,
and from {6) A; — 0,/p. Therefore g, A = 44,6, where 4 — pfp 15 a
constant.
Hence we find

Pis = P 280,

the value of Z being given by

boNanhe - Nagpl 4+ Shp+ou=0 (14)
Pl I i=r
as found by substituting in the differential equation (1).  This equation
has a solution for 1 unless the characreristic function

(h == :. aij{ja.(jj (15)
¥
vanishes, i.e., unless /is such that

:‘\ﬂ af 8)‘
> @ ax e — 0 | (16)

When @ =£ 0, we can so[ve equation (14) for 4, so that then all the
second derivatives can be found and the procedure repeated for higher
derivatives of ¥ on . The complete solution can then be found by a
Tavlor LXpd]‘Jbl()I’l
The LquIl()n (16). i.e., @ = 0, defines the characreristic surfuces. 1f
Flxixgxg) is a SOIU[!OH of (16), then the direction ratios (3y,95,95) of
the normal at any point of the surface salisfy
a0, =10 (17)

LF R At
r,J
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which is the equation of a cone. Therclore at any point in space the
normals to all possible characterntic surfaces through the point lic on a
cone. The planes perpendicular to these normals therefore also
envelop a cone’ this cone is called the claracteristic cone through
the point.  The characteristic cone at a point thercfore touches all
the characteristic surfaces at the point.

Now according to equations (8) of Sec. [3 of Chap. 2, the Cauchy
characteristics of the first-arder ecquation ([6) are defined by the
equations

ey, edn,

ETYFTY ey oo Bl PRARR
abfaa, o d,

K
The mtcérdl% of these equations satisfying the correct initial conditions
at a given point represent lines w hich are called the hicharacterisiics of
the equation (1). These lines in turn generate a surface, called a
conoid, which reduces, in the case of constant ¢,,'s, to the characteristic
cone,

We may use the quadratic form (15) to classify second-order equations
m three mchLndcnl variables:

(a) 1f @ is positive definite in the o's at the point P(x.a5a0), the
characteristic cones and conoids are imaginary, and we say that the
equation is ¢flipfic at P,

(h) If @ is indefinite, the characteristic cones are real, and we say
that the equation is fivperbolic at the point.

(¢) If the determinant

iy s, a, |
thy iy o
s oy iy

of the form @ vanishes, we say that the equaticu is parabolic.

This classification is in [ine with the one pu: forward in Sec. 5 for
cquations in two variables and has the advantage that it is xt,dd[[\
generalized to equations in » variables,

PROBLEMS
1 Clussify the equations:
) ., i, -H.
thy u,, ., .,
0 N T | I TR
(y w,., 2w, 4. Qiva, - 2,
() te,, o by, e - 2u, -0

Tn solid geometry this second cone is called the reciprocal cone of the first
See, for example, R. ). Bell, “An Elementary Treatise on Coordinate Geometr
of Three Dimensions,” "d cd. (Macmillan, London 193h, p. 92,
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=]

Determine the characteristic surfaces of the wuve eyuation
., 1 i

Show that the bicharacteristics are strasght lines, and verify that thev
generate the characteristic cone,

8. The Solution of Linear Hyperbolic Equations

Before describing Riemann's method of solution of linear hyperbolic
quations ol the second order in two independent variables, we shall
rieily sketeh the existence theorems for two types of initial conditions
¢ the equation

32—
a-

¢x ¢

N A G =R §

Juch. as we have seen, includes the most general linear hyperbolic
-quation, In the first kind of initial condition the integral surface is
stined by 1wo characteristics, one of each of the two families of
Jharacteristics on the surface; in the second kind (which corresponds
o Cauchy’s problem) the integral surface is defined by one space
_tive which nowhere touches a characteristic curve, p and ¢ being
“oeeribed along this curve,
For both kinds of initial condition it is assumed that the function
LT, i) is continuous at all points of a region R defined by = <7 x
vy oo for all values of X, v, 2, p, ¢ concerned and that it
mu a Llp\thU’ condition
VI — s png) T Mz, o
P P g aql)
:11 bounded subrectangles r of R.
foitial Conditions of the First Kind. 11 o) and #(v} are defined in the
penintervals {=,7), (.0), respectively, and have continuous first
ernvatives, and i (4,5,) is a poinr inside R such that «(£) — #(4), then the
snven differential equation has ar least one integral = = y(v,1) in R
-hich takes the value o{x)on 1 4 and the value (1} on x —- &
Tritial (mrc!mnm of the Sccond Kind. 1T we are given (x,3,2.p,9)
~enga strip Cpone, we have v - v(4), ete, 1 (erms of a single para-
wier 2o and i CL. is the projection of this curve on the vy plane. then
o oeiven equation has an integral which takes on the given values of
v dlong the curve €. This integral exists at every point of the
2o Rowhich is defined as the smallest recrangle completely enclosing
woenrve O,
For proofs of these resulis the reader is referred o D. Bernstein,
[aistence Theorems in Partial Diflerential Equations,” Annals of
“lathematies Studies, no. 23 (Princeton, Princeton, N.J., 1950).
We shall now pass on to the problem of solving the general linear
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hyperbolic equation of the second order. The method, due to Riemann,
which we shall outline. represents the solution in a manner depending
explicitly on the prescribed boundary conditions.  Although this
involves the solution of another boundary value problem for the
Green's function (to be defined below), this often presents no great
difficulty.

We shall assume that the equation has already been reduced to
canonical form

LE) = [ x) (1)
where L denotes the linear operator
2 3 8
m - a""ar"""\:_ hméjm o (2)

Now let w be another function with continuous derivatives of the firse
order. Then we may write

0%z Gt g 4 @ 2 ow
e oy "oy oy h ay {”MBM{) oy (\: mém{m)
wa Si + Z a(;:.) "39{ (awz)
LTI
so rhat Wiz — M == %EE -k aa—t/ (3)

; | .
WLGI‘G H s tLe {3p€i”el{'{3i‘ CL?[;?%QJ l’)}’ J[L“:Z ?€E3§§Oﬁ

g glen)  dthw)

M 5 5)! ........... 5 a}, “oew @
and U= gwz — z ow , Vo= bz +w Ej: (5)
a ox

The operator M defined by equation (4) is called the adjoint operator

to the operator L. 1T M = L, we say that the operator L is self-adjoint.
Now if I" is a closed curve enclosing an area X, then it follows from

equcm{)n (Hand a sildlgiaifomdz"d use of Green’s theorem? that

= ’ {Ucos () — Veos (ny)jds  (6)

o

where # denotes the direction of the imvard-drawn normal to the curve T,

1P, Franklin, “Methods of Advanced Caleulus™ (McGraw-Hill, New York, 1944),
P 201,
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Supposc now that the values of = und ¢z'dy or /8y are prescribed
nyeacurve Cin the vy plane (ef, Fig, 20y and that we wish to find the
.ution of the equation (1) at the point F(:4) agreeing with these
—undary conditions.  Through 77 we draw 774 pdtalkl fo the v axis
o eutting the curve Cin the pomnt 4 and £8 parallel to the - axis and
asung Cin B We then take the curve 17 to be the closed circuit P4 BP,
dsinee dy = Qon PBanddy - O on P, we have immediately from
Jdtion (6)

| (wls — zMw)dv dy — (Ldy = Vdy)y - ' Lody Vdy
. RAN: Jop it
o integrating by parts, we find  AY
ol \
: A Pi&m
‘ Vdy = [zu]f
AN
3 { an
SRCEL
‘hat we obtain the formula
N ou B ™—C
g [zw]y - ' Z(b&t'—T)
PERAN X
v ow o
AN 'N - ‘ aw — 3 ) dy Figure 20

— | (Udy — Vdv) - ’ ’ (wlz M) dx dy

“ar the function w has been arbitrary,  Suppose now rhat we choose
“etion wiv,y:$,,) which has the properties

M = ()

ow
= — blxh when 3 = 4
a'\,. ., =
a\l'
— == gl when v — &
a}‘ .

wo— 1 when v = : & oEE g

ttunction is called a Green's function for the problem or sometimes
snann-Green function,  Since also Lz = £, we find that
N T 0w o- )

[zw] , - an‘:(a dy — bdy) lu( "é"ff dy —w P dx

" ! (wfydxdy (7)
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which enables us 1o find the value of = at the point P when 0z/8x is
prescribed along the curve C. When z/8y is prescribed, we make use
of the following calculation

© 6o oz w)

EUPEEN I

‘ !]:
A i | dx dx + &}' d} ,i

to show that we can write equation (7) in the form

~ ™ . a 6: .
[2]p = [ow]g — ‘ wz(a dy — bdx) - ’ FR N \*-‘a—yf/)ﬁ}

Jin - mi“ ax

= j ; (wfYdxdy (8)

Finally, by adding equations (7} and (8), we obtain the symmetrical
resul[

“

{zlp == H=w] | + [2w]pt — L ., wx(a dy — b dx)

1 ez oz L 1 fow aw
‘ " * w2.i,-uf““%.8xd 7Md1]

[ wnaxay @

By means of whichever of the formulas (7), (8), and (9) is appropriate
we can obtain the solution of the given equation at any point in terms
of the prescribed values of z, p, and ¢ along a given curve . We
shall find that this method of Riemann’s is of particular value in the
discussion of the one-dimensional wave equation. A reader seeking a
worked example is referred forward to that section (Sec. 3 of Chap. 5).

PROBLEMS
1. If L denotes the operator
- - 7 )2

and M is the adioint operator defined by

My = DU P ST AR A0 L g,

ax? dx éy ay? ax ay

show that!

‘ ’ (whe — sMuydx dv - | Tl cos (ix) - ¥ cos ()} ds
R JU :

' This equation is known as the generalized form of Green's theorem,
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where T is a closed curve enclosing an area X and

2z af R L Siv)

U= Rw P a A ©Pow,
'z éz i

V=3S8w— : Tw o z (ﬂ i Qow
éx ay dy

17 R, 48, = P35S, + T, = @, show that the operator L is self-adjoint.

(]

Determing the solution of the equation s = f (.x,1) which satisfies the boundary
conditions z and ¢ prescribed on a curve C.

3 Obtain the solution, valid when x, v .- 0, xy = 1, of the differentiar equation

&2z f

such that = = 0, p = 2¢/{x - 3 on the hyperbola xy - [,
4. Prove that, for the equation
72z
Bx dy

-
Eg
=

the Green's function is

Wi,y = oV (x - O — )

where Jy(z) denotes Bessel’s function of the first kind of order zero,

2

Prove that for the equation

&z 2 ﬁz)
; A
dx ey x —y\éx 8)'(

the Green's function is

. (x + pH2xey = (5 — plx — 1) = 25
wlxyiEn) = Py - G ‘)3( ) &
; (£ -

Hence find the solution of the differential equati()n which satisfies the
conditions 7 = 0, &/éx = 3x*on y = x.

= Separation of Variables
A powerful method of finding solutions of second-order linear
-~ual differential equations is applicable in certain circumstances,
- when we assume a solution of the form

2= X(x)¥(1) (1
- the partial differential equation
Rr = 8s ~ Tt +Pp - Qg + 4z = F {2)

- possible to write the equation (2) in the form

1 .
/(D)X = < (D) 3)



e
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where [ (D), g(D') are quadratic functions of D - ¢/dx and D' = é/dy,
respectively, we say that the equation (2) is 5eparah[e in the variables
x,y. The derivation of a solution of the cquation 1s then immediate.
For the left-hand side of (3) is a function of v alone, and the right-hand
side is a function of y alone, and the two can be equal only if each is
equal to a constant, 4 say. The problem of finding solutions of the
form (1) of the parllal differential equation (2) therefore reduces to
solving the pair of second-order linear ordinary diflerential equations
DY S0X, gDyY =iy (4)
The method is best illustrated by means of a particular example.
Consider the one-dimensional diffusion equation

aiz 1 ¢z -
koo )
If we write C
- = X)7(r)
we find that
I 2 X 1 dT

X de kT dr
so that the pair of ordinary equations corresponding to (4) is
d:x dT
—— << AX
dx® ’ dr

so that if we are looking for a solution which tends to zero as ¢ -0,
we may take

= KkiT

X =~ A cos (nx — &), T — Be "
where we have written —p® for 2, Thus
Hxd) o, cos (ny - )e "
where ¢, 1s a constant, is a solution of the partial differential (3) for
all values of v, Hence expressions formed by summing over all values
of n

(x,1) = < ¢, cos {nx oo (®)

0
are, formally at least, solullons of equation (5). It should be noted
that the solutions {6) have the property that - — 0 as / — 2 and that

:[.\',O) - £ ¢, Cos (”'\‘ - ‘U.’z) (7]

W= )
The principle can readily be extended to a larger number of variables.
For example, if we wish to find solutions of the form
o= X YT (&
of the equation

R R T i
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e note that for such a solution equation (9) can be written as

12X 1 d?Y 1 (T
X dx? Yovi o AT e

-0 that we may take

E1y 2y
{f:__ AT d®\ . o

dr Cde? o 12

~rovided that

2ot =

Hence we have solutions of equation (9) of the form

F

X e
Ao ) — S S ¢, 008 (Ix g ycos (my = e,)e” SO R (1)

1= 0 -l
PROBLEMS
Bv separating the variables, show that the one-dimensional wave equation
S W
AN G IS

has selutions of the form A exp ( - jnx - iner), where 4 and s are constants.
Hence show that functions of the form

. rret | rx
Y Z. 4, cos =0 B, sin — : sin —

where the 4,75 and B,"s arc constants, satisly the wave equation and the !
houndary c()mlm()ﬂs (J iy =0, ztag) ~ O forall 1, ;
BBy sepurating the variables, show that the equation Y51 -~ 0 has solutions of

the form Aexp( vy dnyy, where A and g oare constants,  Deduce that

functions of the form

Hix,v S A, '511‘1——5 x 00 ywa

where the A's are conslants, arc plane harmouic functions satisfying the
conditions Ve, = 0, Floa) - 0, Vixy) —-0as x — .

Show that if the two-dimensional harmonic equation V51 = 0is transformed
to plane polar coordinates r and #. defined by x =- rcos b, v = rsinf it takes
the form
&1 er | &2y
N )

=0

od deduee that it has solutions of the form (Are 0 Br e -9 where A, B,

ard ¢ are constants, 5
Determine Jif it satisfies Vi Gin theregion 0 < r < @, 0 « # = 2w and

<ilisties the conditions;

t) Foremains finite as r - 0

iy Vo > e, cos (af) on e o--od.
r




126 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

4. Show that in cvlindrical coordinates p, 2, ¢ Laplace’s equation has solutions of
the form Ripie -2 ¢ where R{p) is a soluilen of Bessel's equation

d*R 1 dR S
T e d (m p:)R = 0

H R = 0asz - » and is finite when p - 0, show that, in the usuat notation
for Bessel functions' the appropriate solutions are made up of terms of the
form J, (p1phem 2 =ind,

5. Show that in spherical polar coordinates r, €, 6 Laplace's eguation possesscs
solutions of the form

{ B .
ii.-l."”' - m!l‘ cos e - fmd
where A, B, m, and » are constants and My satisfies the ordinary differential
equation
A v wt

B U A e

(1 — =) “(}"{";";; g I [ 0

10. The Method of Integral Transforms

The use of the theory of integral transforms in the solution of partial
differential equations may be simply explained by an example which
possesses a fair degree of generality. Suppose we have to determine a
function u which depends on the independent variables xy, «s”. . ., X,
and whose behavior is determined by the linear partial differential
equation

7 du : '
a(\l} L b(xy) P olxpu = Lu = [{xpxq . . .0 D
X

in which Lisa h‘near differential operator in the variables x,, . . ., X,
and the range of variation of xyis « < xy < g, IF we let

HExs, . . . X, B (X, Xe « .., x) K(EX) dxy u (2)
then an integration by parts shows that
' a"u : . ou ) _
I i (\1} e = b{xy) o, - c‘(al)afj K(&,x,) dxy
: s J e
= g{Exg . LX)+ 1 "3 - T\‘](bK) 4+ CK;- dxy

_ i ¢ | ]
where  g{fxq .. . LN, = [aﬂa“;mi(( Xy) Hou bK o (aK)j]
. -1 o L =1

If therefore we choose the function K(%,x)) so ihat.

a)(gK) __________ i{bK)*L{KiAK . (3)

M. Golomb and M. E. Shanks, “Elements of Ordinary Differential Equations™
(McGraw-Hill, New York, 1850), p. 298,
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~here 4 is a constant, then multiplying equation (1) by K(£,x,) and
niegrating with respect to x; from = to #, we find that the function

Wi, .o.o.Lx,), defined by equation (2), satisfies the equation
(L= Di(Exe oo x) - FlEv,, a0 (4)
chere F(Sva . ) = fE N o) - g(Ex., ..y, [ being

lefined by an equation of type (2).

We say that i is the integral transforin of u corresponding to the kernel
wt7vy). The effect of employing the integral transform defined by the
~quations (2) and (3) is therefore to reduce the partial differential
suation (1) in g independent variables xy, v, .- . ,.x, to one mn

1 fﬂdeL]ldLnt variables vy, . . ., Y and a parameter &. By the
accessive use of Integral transforms of this “ype the given partial
-tferential equation may eventually be reduced to an ordinary differ-
sotial equation, or even to an algebraic equation, which can be solved
~asilv. We are, of course, left with the problem of solving integral
.juations of the type

i

ﬁ(f;ng B ;--\_n) e ”(xlsx’_.’) v !-\‘»)K(é:axl) dxl
w X
“we are to derive the expression for u(xy,v,, . . . ,x,) when that for
0 EX,. .. .o.x,) has been determined.  For certain kernels of frequent

e in mathematical physics it is possible to find a solution of this
~quation in the form

WXLXe, o) = | E e L xS dE 5
s relation of this kind is known as an inversion theorem,  The inversion
zeorems for the integral transforms most commonly used in mathe-
“auical physics are tabulated in Table 1. These theorems are not, of
urse. true for off functions w, for it s obvious that some «’s would
the the relevant integrals divergent. Proofs of these theorems for
: classes of functions most frequently encountered in mathematical
wvsics have been formulated by Sneddon;' those appropnatn to
der classes of functions have been given by Titchmarsh.?
The procedure to be followed in applying the theory of integral
~wnsforms to the solution of partial differential equations therefore
sists of four stages:
) The caleulation of the function f{£,x, . . . ,x,) by simple
cgration;
=7 The construction of the equation (4) for the transform #;
1 The solution of this equation;
} The calculation of & from the expression for @ h\ means of the
‘?ropraatL inversion theorem.

[, N, Sneddon, “Fourier Transforms™ (McGraw-Hili, New York, 1951).
- £ . Titchmarsh, “The Theory of Fourier Integrals” (Oxford, London, {937).

[
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Table I. Inversion Theorems for Integral Transforms

Name of

3 £x gy =
transform (2.%) NS Gno) Hix)
i . f 1 5
Fourier (=, — ' {(—x,%) —— ¢~
N 2 \ 2
—— = o i /3 N
Fourier cosine . (0,2} /\/; cos (fxy (0, x) /= cos (éx)
; ™ ' oo

! 3 ‘ 2
Fourier sine (0,x) A/£ sin (5x) (0, vy f sin (£x)
T | T

i 1
. . . . S -
Laplace (0.50) | e REY =0 (y —da,p —im) | ooty e
voaTl
| |
- | & - . 1 =
Mellin L (0, x) xil oy —dw, o i) e
i Lt
. ‘\zx;
Hankel o0, ) xSl e (0, ) ‘ EJ(Ex)
To illustrate this procedure we shall consider:
Example 11, Derive the sohdion of the equation:
2y [ 8 Y
ot ro2r @ azf
Jor the region r = 0, 2 = 0, satisfying the conditions:
n v—=20 as z — wand as r — o
iy V=fn onz=0r=0
1f we introduce the Hankel transform
[l 5
Vo= ' FVr, 2 o Er) dr
Jo
then, integrating by parts and making use of (i), we find that
fe Ry ey -
1 { E s { rJglérydr = 51
because of the fact that J(ér) is a solution of Bessel's differential equation

i 1vdr
a ra
Hence the equation satisfied by the Hunkel transform ¥ is
ave

where, as a result of the boundary conditions, we know that V—+0asz » o and

0

F=0
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that = f(&y on = = 0. f(%) denoting the Hankel transform (of zero order; of
rr).  The apr-opriate solution of the equation for V' is thercfore
V= fiiye

From the inversion theorem for the Hankel nansform {last row of Table i) we
Enow that
Virz) - ' s

L0

Ve oy iey df

«» that the required solution is

Virz) — [ S (Fe () dF
il
I7 the form of f{#) is given explicitly. F(5) can be calculated so that ¥ir.z) can be
‘brained as the result of a single integration.

The method of integral transforms can, of course, be applied to
snear partial differential equations of order higher than the second, as
s shown by the following example: -

Example 12.  Deterniine the svlution of the cquation

ikt

&z
EPTr R
- x o w, y oz 0) satisfying the conditions:
= gnd its partial derivatives lend (o cero gs x -+ =,
o — flx), dzfdy = 0 on ;= 0.

In this case we may take

| T )

Z{5y) = = [ olx,viets dx

” Viz ).

- which, as a resuit of an integration by parts taking account of (i}, we have
1 = &

ety =&

1

z

N 2

a —

“sat the equation determining the Fourier transform 7 is

A2z
- =0
ae "

L =F(), dZldy = 0 when v = 0. Therefore
Z = F(§) cos (§71)

ne inversion theorem for Fourier transforms (first row of Table 1} we have
() = — {” Z(E e d:
2xy)y = —=—= (30 TR [
J \'2:7.: S
.t nnally
1 [ N .
o,y = TR [ F{&) cos (F e~ gF
" Vin . w T

.2 Fe3) is the Fourier transform of f(x).
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PROBLEMS

The temperature # in the semi-infinite rod 0 < & <« i determined by the
differential eguation
# Fels F4
K
or gx-
and the conditions

(iy 6 =0 whent =0, x »0
(ii) 4 = 0, = const. when x =Qand ¢ >0

Making use of sine transform, show that

2 (% sin{ix) i
Blx,1) = =4, (] — emxE) gt
™ o Jo = )
If in the last question the condition (ii) is replaced by (%) 8/dx = —u, a
constant, when x = 0 and 1 = 0, prove that
Zu [ Loi(H r}
Hx,ty = — (1 — =iy g¢
ol

Show that the solution of the equation

9z ¥
gx  art
which tends to zero as 3 - - <« andwhich satisfies the conditions
(1} z - flx) when y — 0, x >0
iy - = @ when y 2= 0, x = 0
may be written in the form
el -
| feer i
Evaluate this integral when f{x} is a constant &.

The function ¥(#,0) satisfies the differential equation

PV 1V 1@y

FEEr ;’EZO

in the wedge-shaped region » =0, [8] < = and the boundary conditions

V= f(rywhen 6 = =z Show that it can be expressed in the form
1 1% Ccos (£8)
I i
Vi) = 5 ‘_m e O
where féy = ’ [l dr
Jo

The variation of the function z over the xy plane and for 1 2 0 is determined
by the equation

2

a4

r4
;Z

Viz=

Tl —
s
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H,whent =0, - = [ (xp)and 2272 0, show that, at ans subsequent time,
l I ¥ o e ‘
ey - ‘ ' Fiiogcosicr v 20 Bpe 0 ands dy
=Ll £
. I o
where Fwy - 5o 1 Fivade " Oy dy

[1. Nonlinear Equations of the Second Order
It is only in special cases that a partial differential equation
Fleyopgrst) =0 {hH

of the second order can be mntegrated. The most important method of
solution, due to Monge, is applicable to a wide class of such equations
but by no means to them all. Monge’s method consists in establishing
one or two first integrals of the form

IRVAG) 2)

where £ and 4 are knows functions of v, v. z, p. and ¢ and the function
is arbitrary, L.e.. in finding relations of lhe %vpt (2) such that equation (1)
can be derived from CC]U.dl!{)l] (2) and the rclations

I T T N VI AR A 3 H- S I I A R (3}

e mbsy s ot s fUENE g - S Bt (4)

obtained from it by partial differentiation.

[t should he noted at the outsct that not cvery equation (i} has a first
mtegral of the tvpe (2).  In fact by eliminating /(%) from eguations {(3)
and (4}, we sec that any second-order partial gifficrential equation which
possesses a first integral of the type (2) must be expressible in the form

FoE Sy = Ty Uyt ) = 1 (5)

where R,, S, Ty, U, and ¥, are functions of v, v, =, p, and ¢ defined by
the rclations
oE) a(:,u) a0 ) (&)

R[ T a(f!} 1 . (f 8{[} 11 v 8{)(‘{!) - f? a(:sg) (6(1)

2 R TS elE a{_.f,i;)’

R ! RPN b
R VRS R AP P R e ()
) e 5,1) . a(w,f;) o oEs) 8{~Jz) :
- LA F- e [ L be
g e Taps a7
The equation (5) therefore reduces to the form
o Sys TV (7

if and only if the Jacobian £ 4, -- £, vanishes identically, An




132 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

equation of the tvpe (7) 1s nonlinear, since the coefficients R, S\ 7. ¥
are functions of pand g as wellasof v yoand 20 It has a certain formal
resemblance to a lingar equation, and for that rcason is often referred
to as a quasi-fnear equation; 1t s also called a wniforni nonlinear
equation, An equation of the type (5) is, by contrast, known as a
nonuniform equation.

We shall assume that a first integral of the cquation

Rr Sy 10 Ul -8 - 1 (8)
exists and that it is of the form (21 Our problem 15, huving postulated
115 existence, to cstablish a procedure for finding this first intcgral.

For any function = of x and y we have the rclations
dp - rdv +sdy, dg ~sdy - rdv (9)
so that eliminating 7 and ¢ from this pair of cquations and equation (8),

we see that any solution of (8) must satisfy the rclation
Rdpdy - Tdydx ~ Udpdy — Vdydy = s(Rdv* -- Sdxdy = Tdx*
- Udpdy -- Udg dy) (10)

If we suppose that
Hoyopmg) - e X3 Ipg) - e

are two integrals of the set of equations

Rdpdy - Tdgdy -Udpdg — Videdy =0 (I
Rdy* - Tdx® = Udpdy = Udgdy — Sdydy (12)
) dz - pdx - gdy (13

then the cquations
ds- 0 dy =0 {14)

are equivalent to the set (11) to {13). Eliminating - [rom equations
(13 and (i4), we get the pair

k3

oA A |

IR N ) 5

dp = o dx Uarng)  8cgl ;‘(h o
Ljacn ey 1, R

W Thaey  aep )T 1o

where R T,, U, are defined by the equations (6).  Substituting for dp,
dy from these equations, we sec that

- g f - Tl R 1 2 I Eagss}/)
v dgdy g LI'I T g

o5 - BlEm) A5 15/ dv

g T W T e

R
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1 relation which is equivalent to the eqlation

Rydyt T dx* + Updpdy - Updydy - S;dvdy (17
Similarly we can show that
Ridpdv - T dgdx 5 Udpdg - Vydvdy--0 (18)

Comparing equations (17) and (18) with (11) and (12), we see that

R, - S, T o U, ¥ 0

R 5 T
;0 that the equation (8), which we have to solve, is equivalent to the
xquation (3), which we know has a first integral of the form (2). The
first integral (2) is therefore derived by making one of the functions ¥
obtained from a solution % = ¢, of the equations (11) to (13) a function
of a second solution &, The procedure of determining a first integral
of the equation (8) thus reduces to that of solving this set of equations.
in many cases it is possible to derive solutions of these equations by
nspection, but when this cannot be done, the following procedure may
re adopted. From equations (I1) and (12) we obtain the single
>quation

Rdy* - (S + Adedy —Td<* + Udpdx | Udgdy + ARdpdy
+iTdgdx + iUdpdg -~ O

where 2 is (for the moment) an undetermined multiplier, and it is readily
»hown that this equation can be written in the form

Wy - AT dx - AUdp)ARdy -- Udx + iU dg) -~ 0 (20)
arovided that 1 is chosen to be a root of the quadratic equation
AART + UV) © AUS - U2=10 (21

Apart from the special case when S* = 4(RT — UV), this equation
vill have two distinet roots 2,, 75, and the problem of solving equations
[1) and (12) will reduce to the solution of the pairs

Udy - ATdx \ 3Udp =0, AR My = Udyx - AUdg— 0 (22)
and
Ldy - 2, T dx -= 2,U dp == 0, ARdy + Udy +2Udg =0 (23)

o= AE), g = fo(E)

vhich can often be solved to determine p and ¢ as functions of x,
ind . When we substitute these values into the equation

I,

o

dz == pdx -+ gdy



134 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

it is found' that this equation is integrable. The integral of this
equation, involving two arbitrary functions, will then be the solution
of the original equation.

When it is possible to find only onc first integral 5 = f(£). we obtain
the final integral by the use of Charpit's method (Sec. 10 of Chap. 2).

Example 13,  Solce the equation

[ 2=

poods b - =

For this equation we have, in the above notation, R = |, § =4, T =1, U/ =1,
¥ =2, so that equation (21} becomes

P41 =0
with roots 2, = —1, 2, = —[. Hence equations (22) become
3dy —dx — dp = 0, dy —dx + dg =0
leading to the first integral
Wy—x—-p=f—xtg (24)
where the function fis arbftrary. Similarly equations (23) reduce to
dy —dx —dp =0, dy —3dx <-dg =0
and vield the first integral
¥ 3x ¢ g =gy —x —p) (25)

the function ¢ being arbitrary.
Tt is not poxsnble to solve equations (24) and (23) for p and g; so we combine the
general integral (24) with any particular integral of (25), e.g.,

y—=dx g =0 (26)l
where ¢} is a constant.  Solving equations (24) and (26), we find that
g o= = 3x — 7, p=3—x—f2e+ o)
from which it follows that
dz =3y —x — f(2x 4+ cdidx +{c; - 3x - y)dy 2N
and hence that
7= 3y - 3(aE - P F(2x — o) oy ooy (28}

where ¢, is an arbitrary constant. Equation (28) gives the complete integral.
To obtain the general lnttgrdl we replau. ¢y by ¢, e by G(c), where the function G
is arbitrary, and the required integral is then obtained b} eliminating ¢ between the
equations

z=3xy —3x2H) L FQ2x = o) - oy — Gig)

0 =FQ2x+0¢)—y— G

It was mentioned above that in a greal many cases it is possible to
derive solutions of equations (11) and (l”) directly. -This is particularly

! For a proof that this equation is always integrable sec A. R. Forsyth, “A
Treatise on Differential Equations™ (Macmillan, New York, 1885), pp. 365-368,
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so in the case of uniform equationsin which = 0. Forsuch cquations
the pair of equations (11) and (12) reduces (o
Rdpdv Tdydy Vidvody (11
and Rdy* - Sdvdy Tdy* =0 (127
We shall illustrate the solution of thesc cquations by the particular
example:
Example 14, Solve the equarion g™ 2pgy - pir -0,
In this cuse the cquations {117} and (127) become
g dpey prdgde 0 (i}
(pdy —qevi* =0 (i}
From equation (i} and equation (13} we huve «: = 0, which gives the integral
> ¢y From equations (i} and (i) we have ¢ dp - pdy, which has sofution
7 g We therefore have the first integral
poogf)
where the funetion fis arbitrarv. We cun regard this as 4 linear equation of the
first order and sobse it by Lagrange™s method.  The auiliary equations are

iy ody o d

| “ﬁf‘{:]i 0

-

with integrals = = ¢y, 1 -~ xf(¢y) — ¢, leading to the general solution
v »\:['(2“) . ‘5‘,(:)

where the functions fand g are urbitrary.

PROBLEMS

1. Solve the wave equation ¢ by Monge's method.

[g*)

Show that if a function = satisties the differentinl equation

#-oar 2o g

T E ev e ox
it is of the form ffx -~ glvH], where the functions fand v are arbitrary.

3. Solve the equation
Hgs — pty - pg?
4. Solve the equation
) py = xps — gr)
5. Sohe the equation
syt 2pys o apt e plo- gs
6. Find an integral of the equation
et — P 2l — e~ Ipgzs o2l R b pRt - gt = 0
involving three arbitrary constunts.
Verify the result and indicate the method of proceeding to the general
solution,
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MISCELLANEOUS PROBLEMS

The equation =®  3xyz & = 0defines z implivitly as a function of & and .
Prove that
e T 3y

The variables x, y, and z are refated through the equations
AW — ey =g @) sz e ar s af ) - oeg (@) — i - g(0)

Show that, whatever the form of the functions fand y,

. 9z
T 5 m(vt 3)) e a_r_
In plane polar coordinates the equations of equilibrium of an clastic sotid
become
1 Erm — g Or,y 1 dog 27
i _____.-mn{} L T A
+ p + ,

r ar roGf r
Show that these equations possess a selution

A _ @ iaw")
B A ]

Zan

ar
-

1@
"

i —
(oY)
Z
£
Q)§
R

It can be showa that the compatibility conditions lead to Viyp = 0; verily
that w = (dx + By is a solution of this equation, and caleulate the
corresponding Lomponent:, of stress,

In plane polar coordinates the Hencky-Mises condition is
(5, — 0a)® + 47 = 4k
Show that the shearing stress 7,4 satisfies the equation

Bry 3dny 1, 2 @

F U P R Y
ort - or 2 e ~ 2 % irlk Tra)t

Determine the solution of this equation of the form £ (r) and satistying the
boundary conditions 7,y = —konr =a, 7y =k onvs =&,

Find the general solution of the equation
xys —xp o yvg —z =0

and determine the solution of this equation which satisfies the conditions
z=x"and p o= 0 when y =

Solve the equation
(x — 3 — 2xps + %) == 2x0(p — @)
Find the general sclution of the equation
v i 4 = Bxy
Find also the particular solution for which z = y* and p = 0 when x = 0.
Show that the linear equation

Shap by ez -d=10
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may be reduced to a first-order equation if

oa
— bah —¢ = 0

oy
Use this method to find the solution of the equation
s pet —g =0
Appell's first hypergeometric function of two varlables is defined by the
double power series

-

o ™ d““ (= m_n(‘}m e
Fi(oudf7unx,y) = Z Z e Dl Xy

welal(y
=00 =0 ()i n

where (), = (o — 1)+ + - (= + r — 1), Show that this function is a solu-
tion of the sccond-orécr linear partial differential equations
x(l —x)r o vl —x)s = { = (e + 8 1 Dxlp — Byg —affz =0
W =30 x( = s =y — (2 4+ 5 Dvlg — Bxp —afiiz =0
Shaw also that Appell’s second hypergeometric function

o u

et g
Folasf 0y e, = Z Z @?Mxm}'n
‘ )

Poepy’ Rt
is a solution of the second-order equations
xil —x)r —xys +{ — (2 = f l)x}p — fyq — ofiz =
M1 = = xps H {7 — (x4 B4 Dylg — dxp — afz = 0
Express the equation
div (« grad 1) = 0

where « and ¥ are scafar point functions, in cylindrical coordinates p, ¢, z. 1
« = u/p, where g4 is a constant, Use the method of separation of variables 10
obtain a sofution of the above equation independent of z and periodic in ¢.
Show that the equation

ahyp

ar*

v 21}_1 -

has solutions of the form = S(6,¢)R{r.f), where r, i, ¢ are spherical polar
coordinates and

1 9 ( . 6’5) [ 228
. i R N _
anda N3] e Mt DS =0
1 éf, GR) win - 1) R
= T e - ——— R = .
r op 3 = Ere

# being a constant intcgcr. Verify that the last equation is satisfied by the
function

)‘" [f =0+ gr =0
! r J

where the functions fand g arc arbitrary.

fl a
R(r,t) = #7 (— ~

ror,
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Schradinger’s equation for the motion of an electron in a central field of
potential F(r) s, in atomic units,
T2y o AW - Fike 0
where B s aconstant. By transforming this equation to polar coordinates
F, #, ¢, show that it possesses solutions of the form

1
Voo R{r1St,4)

where S(fh4) is defined in the same way as in the last problem and R is a
solution of the ordinary differential equation
d*R
ofr*

Coordinates £ and « are defined in terms of x and ¢ by the cquations

= 2N - ey da(e - 1RO

X = g cosh 5 ¢0s 1), v = asinh £sin y

and r is unaitered. Show that, in these coordinates, Laplace’s equation
V2 = 0 takes the form

i A S G
- at(eosh? £ —cost ) = — 0

and deduce that it has sotutions of the form f (75)f (e -+?, where 7 is 2 constant,

FEE I

flx}is a solution of the ordinary differcntial equation

g‘:ﬁf G 1Bgos 2y —= 0
G is a constant Of separation, and 32¢ = --a%*
Show that if
A o=\ Eicos d, P ST,-sina,ﬁ, D= 3E =

Laplace's equation assumes the form

2 (hav) 8 ( aV‘) N
A A | '

Fe Ll B el Yol

i\
Deduce that it has solutions of the form F(3)F ()¢ 7 where F(x) is a
solution of the ordinary differential cquation

;1

dAFdF né
X -4-(12- )F:O

dx 4x
/(5 and FEyare the Fourier transforms of flxyand g(x), respectively, prove
that

e s

Fls)e( e 5 s ' slf (x — u)ddu
o, .

. — % =

Hf the function z{x.y} is determincd by the differential équation
dz i
e ?

forx =0, =%« vy o and if z == f(y) when x = 0, show that

i S
ey = —= frEe T
. v 2e

- F

where [(¥) is the Fourter transform of £y,
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Making use of the result obtained in the last problem, show that

} PO
ey = —== | fle VTV gy
Vo4 ’

X J =
The function w(x,1) is defined by the equations

() v =[xy —w oy w0
Jy

(is)gT -0 y=0

Show that it can be expressed in the form

;= [ Fli
# |
s

- .-

e " cos () dy

i
™
where
e

|
Fé = — ’ dx " [l e cos () dy
U=

Show that the solution of the diffusion equation

32 o
e T 0<x=a >0
axs et

which satisties the conditions

Loaf

()— =20 when x = 0

dx
(i) 6 =1, - const, when v — g

(itiy & = 0 when ! = 0,0 < v <7 a
can be written in the form
Oy i ot cosh {x\ £) ds

L N, coshia™ &) £
Hence show that

s . £l . 4
i = ﬂg T (_.—_]) C)_(T )2 ttia? CcOs (—f _%)_"'\
G

13%

=0
The free symmetrical vibrations of a very large membrane are governed by the
equation
Fz  lez 1¥%: 00
_— v e =y Ty [ ' N 2
or b B oo ‘

with z = f{r), dz/0t = g{r) when { = 0. Show that, for r > 0,
sl . ) 1 v 3(',— . )
zlr 1y = ‘. {5y cos (Set)My(Eryedf p FCE) sin (Serply(éry df
Jo

o'

whcrej"'(f),‘{'(f) are the zero-order Hankel transforms of £ (r), g(r), respectively,

The potentiat ¥(p,z) of a flat circular electrified disk of conducting material
with center at the origin, unit radius, and axis along the z axis satisfies the

differential equation
23 S S ap

TR 2

=0
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{p 20,z = 0} and the boundary conditions

iy ¥ -0 asz, p - F
(i) Vo= 1, =0 0«p 1

av
(i) =— =0, z=0 ol

Prove that
Vig,z) = Fi&ye e J(5p) ot
Jo
where the function fsatisfies the relations

| " rodizds = vy 0p
. G
DI dE =0 o

w

Verify that £(£) = (2V/ sin £)/(=£) is a soiution of these equations, and hence
evaluate ¥ip,z).



Chapter 4

LAPLACE'S EQUATION

In the last chapter we saw how second-order linear partial differential
equations could be grouped into three main types, elliptic, hyperbolic,
and parabolic.  The next three chapters will be devoted to the considera-
tion in a little more detail of examples of equations of the three types
drawn [ron1 mathematical ph\’bltb We shall begin by considering
Laploce’s equation, Y2y - O, which is the elliptic equation occurring
most frequently in ph}smal problems. Because the function y, which
occurs in Laplace’s equation, is frequently a potential function, this
cquation is often referred to as the porential equation.

{. The Occurrence of Laplace’s Equation in Physics

We saw in Sec. 3 of Chap. 3 that problems in electrostatics could be
reduced to finding appropriate solutions of Laplace’s equation V2 = 0.
This is typical of a procedure which is adopted [requently in mathe-
matical physics.  We shall not give such a derivation for the most
frequently occurring physical situations, but sincein discussing Laplace’s
equation it is us;fu[ to be able to illustrate the thuor} with FL{LFLI'ILC to
physical problems, we shall summarize here the main relations in some
of the branches of physics in which the field equations can be reduced
o Laplace’s equation.

(e} Gravitation. (i) Both inside and outside the attracting matter
the force of attraction F can be expressed in terms of a gravitational
poiential y by the equation

F = grad ¢

(ii} In empty space y satisfies Laplace’s equation $%y -= 0,

(iii} At any point at which the density ol gravitating matter is p the
potential v satisfies Poisson’s equation N2y — —-dap,

{iv) When there is matter distributed over a surface, the potential
function y assumes different forms . y, on opposite sides of the
surface, and on the surface these two functions satisfy the conditions
ij’,,"& S04
on on
141
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where a is the surface density of the matter and » is the normal to the
surface pointing from the region 1 into the region 2,
(v) There can be no singularitics in ¢ except at isolated masses.

(hy frrorational Maotion of a Perfecr Fluid. (i) The velocity q of a
perfect fluid in irrotational motion can be cxpressed in terms ol a
velocity potential iy by the equation

q - -grady

(iy At all points of the fluid where there are no sources or sinks the
function w satisfies Laplace’s cquation V3 - 0.

(iii} When the fluid is in contact with a rigid surface which is moving
so that a typical point P of it has velocity U, then (q  U) n -0,
where n is the direction of the normal at P. The condition satisfied by
yis therefore that

&y

5 (U m
at all points of the surface.

(iv) I the fluid is at rest atinfinity, ¢ -+ 0, but il there is a uniform
velocity F7in the = direction, this LOI]dlll()n is replaced by the condition
yo~ —Vzas - - w.

(v) The function y has no singularitics except at sources or sinks.

(¢} Elecirosiatics. (1) The eleatric vector E can be expressed in
terms of an clecirostatic potentiaf w by the equation F - —grad y.

(ii} In empty space y satisfics Laplace’s equation $2yp - 0.

(iii) In the presence of charges i satisfics Poisson’s equation Vi =
—4=p, where p is the density of electric charge.

(iv) The function ¢ is constant on any conductor.

(v} If s the outward-drawn normal to a conductor, then at each
point of the conductor

oy
on
where ¢ is the surface density of the electric charge on the conductor.
The total charge on the conductor is therefore
1 [y A4S
4z ) oon
where the integral is taken over the surface of the conductor.

(vi) With a hmtc system of charges the function y =0 at infinity,
but if there is a uniform field F, in the = direction at infinity, thtn
Yo~ —Fyzas - o

{vii) There can be no singularities in ¥ except at isolated charges,
dipoles, etc.  Near a charge g, 4 — g/r is finite, » being measured from
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‘he charge. Similarly in the neighborhood of a dipole of moment m
g vacuum g — (m o x)/r? s finite,

ty Dicleciries. In the presence of diclectries the electrostatic
notential o defined as in (i} above satisfies the conditions:
(i} In the presence of charges div{x grad y} = —d=p, where « is
the dielectric constant.
(i) If we have two miedia in contact, we have two forms 4, y, for
‘he potential on opposite sides of the surface, but on the surface we have
oy oy
[ Tl i < ?H_ Y '67
where 4 1s the common normal.
{iii) At the surface of a conductor ¢(v) is replaced by the equation

= 477 [

() Magnetosiatics. (1) The magnetic vector H can be expressed in
werms of a magnelostalic potential v by the equation H = —grad 4.
(iiy 1 g is the magnetic permeability, ¥ satisfies the equation
div (y grad ) == 0
which reduces to Laplace’s equation when g is a constant.
(iii} At a sudden change of medium
oy A

n T Ay fl —" == g ——
k ) Yan "% on

(iv) In the presence of a constant field 7, in the z direction at infinity
we have g ~ — Hyoas o — o,

{(v) In the neighborhood of a magnet of moment m in a vacuum
- - m - 1){r? is finite, » being measured from the center of the magnet.

( [y Steady Currents. (i) The conduction current vector j may be
derived from a potential function y through the formula
j— —agrady
where o is the conductivity.
{i1y The function » satisfies the equation
div (o grad 4) = 0
which reduces in the case o = constant to Laplace’s equation,

(iii) At the surface of an electrode at which a battery is providing
charge at a definite potential the function 4 is constant. I the total
current leaving the electrode is 7, then

- By

g—dS - —i

J ol
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(iv} Atthe boundary between a conductor and an insulator or vacuum
there is no normal flow of current, so that

ay
on

(2) Swince Wares on a Fhid. The velocity potential v of two-
dimensional wave motions of small amplitude in a perfect fluid under
gravity satisfies the conditions:

() v 0

iy @*jort —g(oypfdy) O on the mean frec surface, v being
measured to increase with depth;

(1il) Jy/dn — 0 on a fixed boundary.

(1) Steady Flow of Hear. In the case of steady flow in the theory of
the conduction of heat the temperature ¢ does not vary with the time.
It satisfies the conditions:

(i div (x grad ¢) — 0, where « is the thermal conductivity, or
Va3 - 0if « is a constant throughout the medium;

(i) dp/@n — 0 there is no flux of heat across the boundary;

(i)  Gp/on - By - yy) - O, where fi is a constant, when there is
radiation from the surface into a medium at constant temperature

]ff‘l)'
PROBLEMS

b Prove Gauss™ theorem that the outward flux of the force of atiraction over
any closed surface in a gravitational field of force is equal to —d« times the
mass enclosed by the surface.

Deduce that () the pmcmial cannot have 2 maximum or & minimum valye
at any point of space unoccupied by matter: (h) if the potential is constant
over a closed surface containing no matter, it must be constant throughout the
interior,

2. The function v, is defined inside a closed surfuce S: the function vy is defined
cutside S, and Y8y, - 0. What other conditions must be satisfied by v, and
wp i order that they should be the internal and external gravitational
potentials of a distribution of matter inside § of density Uy [d=?

Yerify that the conditions are satistied by the potentizl of a uniform sphere

o

4 2., 24 2
[ a:rpT ) w, — Sp (3t — )

3. Find the distribution which gives rise to the potential

where 7 = ¥ F
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4. Find a distribution which gives rise to the potential
[lzlog R R -1
f=log R - ;;}(5 9RS 4RY R

Ui

a3 o

where R% - X% 47
5. Find the dissnibution of clectric charge whicly gives rise to the potentind
0 x -0

e @ W b e —ae 2ty 0

g

and caleulate the total churge present on the plane v - 0.
6. Show that the velocity potential
i E ;xafii..;: cos

satisties uil the conditions associtated with the rectlinear motion of « sphere of
rudius ¢ moving through a perfect incompressible fluid which is moving
irrotationally and is at rest at infinity,

2. Elementary Solutions of Laplace’s Equation
If we take the function ¥ to be given by the equation

i i
T = =T < . = : (D
i 3 (“ A } ..... = {}<
where ¢ is a constant and (v',)",2") are the coordinates of a fived point,
then since

O 9 YD) e
cx r—rf '
Pty g gl — X
o r — rf \ r—r | et
it follows that
Vz!ﬁ, w0}

showing that the function (I} is a solution of Laplace’s eguation
except possibly at the point {(x',3",="), where it is not defined.
From what we have said in (¢) of Sec. 1 it follows that the function

v piven by equation (1) is a possibie form for the electrostatic potential
corresponding to a space which, apart from the isolated point {x",)".2"),
s empty of electric charge.  To find the charge at this singular point
we make use of Gauss' theorem (Problem [ of Sec. 1), If S is any
~phere with center {x",1",2"), then it is easily shown that

C Oy .

‘\ =~ s . — drrg
from which it follows, by Gauss’ theorem, that equation (i) gives the
solution of Laplace’s equation corresponding to an electric charge -Hg.
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By a simple superposition procedure it fellows immediately that
N e (2)

“odror)

1 L

i

is the solution of Laplace’s equation corresponding to »n charges ¢;
situated at points with position vectorsr, ¢/ - [ 2, © . . ..

[n electrical problems we encounter the situation where tweo charges
—¢ and —q are situated very close together, say at pointsr andr” '
where o' - (Lnnna. The solution of Laplace’s equation corre-
sponding to this distribution of charge is

g il

r—r Jror-or

Y-
Now
I {
F—r —or]  r--r
R - xy Ly - vy + a0z )
|l‘ _ r"t:s

o = O(a®)

so thatif ¢ — 0. ¢ - = in such & way that gg — 4. le., an electric
dipole is formed, it follows that the corresponding solution of
Laplace’s equation is

v -x) +ny - ) —nlz —2)

Yo T

— 3

a result which may be written in other ways: I we introduce a vector

m = - p(lann), then

m-{r —r)
—— {4)

For

Also since
g 1 X v

EN roor - rrp - ele

it follows that {3) may be written in the form
I @ 0 ¢ !
T i— —1"'!?7_*'—:H_-, s 5
roor ( ax’ ) g ) roor )
In reality we usually have to deal with continuous distributions of
charge rather than with point charges or dipoles. By analogy with
equation (2) we should therefore expect that when a continuous distri-
bution of charge fills a region ¥ of space. the corresponding form of
the function ¢ of (¢) of Sec. [ is given by the Stieltjes integral!
T dg
g | —_ (6)

Jrr—r

we=:(m e grad”)

! For a discussion of the analytical properties of such Stieltjes potentials the
reader is referred to G, €. Evans, Fundamental Points of Potential Theory, Rice
fnst. Pamph., 7 (4), 252-293 (October, 1920,
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where ¢ is the Stieltjes measure of the charge at the point r', or if
p denotes the charge density. by
oA ) ol
w(r) - f f _ (7
Jrfe -
By asimilar argument it can be shown that the solution corresponding
to a surface 5 carrying an electric charge of density o is
. [ a(r')y dS’
wr) = ! e

Jir 1]

(8)

Example 1. Ifp - 0 and wir) is given hy equation (7), where the volunie 'V is
honnded, prove that
lim ryp(ey = M

e

whepe M = ( plryd=
iy
Let ry, #, be the maximum and minimum values of the distance [r — r'| from the
point r 1o the integration points r' of the bounded volume V. Then by a theorem
of elementary calculus
M ”n p(l") d’ . M
FooJdrr -] ok
an equality which may be written in the form
o r
(-) A < rpl(e) (_) M
ry ey
Now as ¢ -- =, rfr; and rr, both tend to unity, so that
lim rp(r) = M

F=7

PROBLEMS

1. Prove that » cos § and r=2 cos & satisfy Laplace’s equation, when #, 4, ¢ are
spherical polar coordinates.

An electric dipole of moment 4 is placed at the center of a uniform hollow
conducting sphere of radius & which is insulated and has a total charge e,
Verify that V, the potential inside the sphere, and ¥, the potential outside the
sphere, are given by

. e meost o opr e
Vo= e e -z 008 0 Vy = -

i 2 3 * 3]
a ! a r

where r is measured from the center of the sphere and # is the angle between
the radius vector and the positive direction of the dipole,

2. A surfuace § carries an electrical charge of density o In the negative direction
of the normal from each point P of § there is lacated a point P at a constant
distance 4, thus forming a parallel surface §;,  Assuming that corresponding
points £ and £ have the same normal and that corresponding elements of
area carry numerically equal eharges of opposite sign, show that the potential
function of the system is

N 1
Js Ur —-r| Jr-r - /m

Y= } a(e’y d§”
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Bylettingh -0.p - s insuchawaythatok - # everywhere uniformly on
S, obtain the expression

QF-’

" uin £
' cnr T r =3 j‘dS’
s r-r7

for the potential of an electrical double fayer.
3. A dosed equipotential surface § contains martter which can be represented by
a volume density o, By substitmting ¢ — J¢r — "' in Green's theorem!
,.

i LA 3!;“) e .
J.\' (f# Fri ’f’g_ﬂ_ 45 b’l_(’i- Vi - g V) o
prove that

‘A4S [ afrde
[(G) B [
Jsven) e — 1] Jylr —r]
Deduce that the matter contained within any closed equipotential surface §
can be thought of as spread over the surface § with surface density

H

4= 2n
at any point.?

4. By applying Green's theorem in the above form to the region between an
equipotential surface 5 and the infinite sphere with 3 = |r — |7t and
the potential of the whole distribution of matter, prove that the potential
inside & due to the joint effects of Green's cquivalent layer and the originat
maiter outside .S ts the constant potential of §,

5. Show that

~
Jefe -] T Ve )

irrespective of whether the point with position vector r is insjde or outside the

volume ¥ or on the surface bounding it.

. ('.W)i

6. Prove that the potential

P[’r') d,,_v
e

ylry =

e

and its first derivatives are coniinuous when the point P with posilinn vector v
lies inside or on the boundary of .
Show further that ¥ = —4mp if Pe Pand that V3 = 0 P¢ V.

3. Families of Equipotential Surfaces
If the function w(x,y,z) is a solution of Laplace’s equation, the one-
parameter system of surfaces
wlxp.z) = ¢
is called a family of equipotential surlaces. It is not true, however,
that any one-parameter family of surfaces
Sz =c (h)

UH. Lass, “Vector and Tensor Analysis™ (McGraw-Hill, New York, 1930}, p. 118,
* This distribution is known as Greern's equivalent lqver.
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s a family of equipotential surfaces.  This will be so only if a certain
sondition is satisfied, we shall now derive the necessary condition,

The surfaces (1) will be equipotential if’ the potential function 4 is
ronstant whenever f(v.1z) is constant,  There must therefore be a
unctional relation of the type

yo= I e (2)
setween the functions « and /. Differentiating equation (2) partially
vith respect to v, we obtain the result
ax  df ov )

ind hence the relation

oty dUF (87 dF &
a gl g @
Tom which 1t follows that
iy = F7( [ Ygrad /) 4 FOOVY (5)

Now, in free space, V¥ - - 0, so that the required necessary condition
~ that
ALY (6
(gad Y F())
lence the condition that the surfaces (1) form a family of equipotential
urfaces in free space is that the quantity
v
arad /

» a function of falone,
[f we denote this function by #( /), then equation (6) may be writlen

N

dir oy dF‘k
e z(f);g};_ ......... 0

‘om which it follows that
dF

T
here 4 1s a consiant, and hence that
y— A}'{,wfww d[ 4 B (7)

here 4 and B are constants,

e 4o IRV

Example 2. Show that the surfaces

7 2

a ' 7
AT e 3T e DT e XY

wr forn a family of equiporendial surfaces, and fid the general forns of the corvespond-
v potential function,
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In the notation of equation (1)

50 that grad £ 26" - 7 2P 3y R

Hence Voo —xd 2y

and

grad f

4
R E R e Ry

s0 that V3 |grad f|* — f), where (/) — 5/(2f), The gien set of surfuces
therefore forms a family of equipotential surfaces.
Substituting 3/(2/) for x(/) in equation (7), we find that

e Af’)z - B

from which it follows that the required potential function is

yoms Ax(® - 0 i B

where 4 and B are constants.

1.

PROBLEMS

Show that the surfaces
(xF = % — 2a%a® — ) et e

can form a family of equipotential surfaces, and find the general form of the
corresponding potential function.

Show that the family of right circular concs

X2t = e
where ¢ is a parameter, forms a set of equipetential surfaces, and show that the
corresponding potential function s of the form A log tan 14 - B, wherc A and
B are constants and 7 is the usual polar angle.

Show that if the curves f{x,y) — ¢ form a system of equipotential lines in free
space for a two-dimensional system, the surfaces formed by their revolution
about the x axis do not constitute a system of equipotential surfaces in frec
space unless
1 («V) , f(‘af)“ (af) l
viap) Civex] o Yo/ |
is a constant or a function of ¢ only,
Show that the cylinders x* -~ 1* . 2¢x for a possible set of equipotential

3

surfaces in free space but that the spheres X3 '1"3 - % = 2¢x do onot,

Show that the surfaces
=2tk -0 =0
where a is fixed and ¢ is a parameter specifving a particular surface of the
family, form a set of equipotential surfaces.
The cylinder of parameter ¢ completely surrounds that of parameter
g, and ¢y @ > 0. The first is grounded, and the second carries a charge
£ per unit length.  Prove that its potential is

((11 - a)((:z - a}

o E 08 e e
°F (e, — ales — @)
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4. Boundary Value Problems

[ Sec. 1 of this chapter we have scen that in the discussion ol certain
physical problems the function i whose avalytical form we are seeking
must, in addition to satisfving Laplace’s equation within a certain
region of space V, also salisfy certain conditions on the boundary § of
this region. Anyv problem in which we are required to find such a
function 4 is called a boundary ralue problewt for Laploce’s equarion.

There are two main types of boundary value problem for Laplace’s
equation, associated with the names of Dirichlet and Neumann. By
the interior Dirichlet problen we mean the following problem:

If is a continuous function prescribed on the boundarv S of some
finite region ¥, determine a function y(v,1.z} such that T2 - O within
Pandy — fon S

[n a similar way the exierior Divichler problent is the name applied to
the problem:

If /is a continuous function prescribed on the boundary S of a
inite simply connectled region F, determine a function y(x,),z) which
atisfies V8 - 0 outside 1 and is such that 3 == fon 8.

For instance, the problem of finding the distribution of temperature
within a body in the steady state when each point of its surface is kept
ata pre%cribed steady temperature is an interior Dirichlet problens,

while that of detelmmm0 the distribution of potential outside a body
= hose surface potumdl is prescribed is an exterior Dirichlet problem,

The existence of the solution of a Dirichlet problem under very
ceneral conditions can be established.  Assuming the existence of the
-vlution of an interior Dirichlet problem, it is a simple matter to prove
s unigueness,  Suppose that ¢, and i, are both solutions of the interior
hirichlet problem in question.  Then the function

o n

“ust be such that ¥ =~ 0 within }and ¢ -~ 0on S5, Now by Prob. |
'Sec. | of this chapter we know that the values of ¢ within F” cannot
weed its maximum on S or be less than its minimum on S, so that we
wust have g O within ¥ ie. vy = 1y, within Poo 1t should also be
~served that the solution of a Dirichlet problem depends continuously
1 the boundary function {¢f. Example [ below).

On the other hand, the solution of the exterior Dirichlet problem is
ot unigue unless some restriction is placed on the behavior of y(xvp.2)

v~ . In the three-dimensional case it can be proved! that the
lution of the exterior Dirichlet problem is unique provided that
¢
IEJF"('\‘:\"'I'J:)F = 7

" See Seg, 8.



132 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

where (' is a constant. In the two-dimensional case we require the
function » o be bounded at infinity.

In cases where the region V is bounded the solution of the exterior
Dirichlet problem can be deduced from that of a corresponding interior
Dirichlet problem.  Within the region }*we choose a spherical surface
C with center O and radius . We next invert the space outside the
region }* with respect to the sphere ' i.e., we map a point P outside V'
into a point 1T inside the sphere " such that

OP - OT1 = ¢*

In this way the region exterior to the surface S is mapped into & region

Figure 21

V* lying entirely within the sphere C (cf. Fig. 21). It can be casily
shown that if
2

SHI = o

J(F)
and if »*(I1) is the solution of the interior Dirichlet problem
‘:‘EQ}* - O “’i{h{;} V*, 2;'}* .::.::.';_f‘*{]—i) f‘or El ¢ S*

then Yl P) = gﬁ (1)

is the solution of the exterior Dirichlet problem

Lebesgue has shown by a specific example that in three-dimensional
regions whose boundaries contain certain types of singularities the
Dirichlet problem may not possess a solution assuming prescribed
values at all points of the boundary. Consider, for example, the
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potentml due to a charge Az on the segment 0 <7 z =2 [, x — y =0
[tis readily proved by the methods of Sec. I that the quutsm p()[f,l'ltlcﬂ is
N 2
14'”(“\‘:}.3:) . e -
R el b

which can be expressed in the form
yolv,nz) = olog (a4 p9)

where yy(x,1,2) is continuous at the origin and takes the value [ there.
The second term takes the value ¢ at each point of the surface whose
equation is

(2 - },2) el
which passes through the origin whatever value ¢ has.  In other words,
any equipotential surface on which 4 -1 - ¢ passes through the
origin, so that the potential at the origin is undefined.

The second type of boundary value problem is associated with the
name of Neumann. By the interior Newmann probiem we mean the
following problem:

If /'is a continuous function which is defined uniquely at each point
of the boundary S of a finite region F, determine a function (x,v,z)
~uch that V3 — 0 within } and its normal derivative @y/on coingides
with f at every point of §.

In asimilar way the exterior Newmani problem is the name given to the
sroblem:

If £is a continuous function prescribed at each point of the (smooth)
~oundary S of a bounded simply connected region ¥, find a function

a7 satistying 2y = 0 outside Fand dy/dn — fon S,

We can readily establish a nccessary condition for the existence of the
-olution of the interior Neumann problem. Putting a = grad % in
Lrauss” theorem

a, dS = l div a dr
-

o 4

¢ find that

_— " Oy
| vy e~ | Zhas
“ow on the boundary
a_n = f{P) Pes
1 that ' Vi dr o= ’ (P ds
Jr Jy

“enge if V3 - 0, we have

(M)
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showing that a necessary condition for the existence of a solution of the
prob cm is that the integral of f over the boundary § should vanish.

Tt is possible to reduce the exterior Neumann problem to the interior
MNeumann problem just as in the case of the Dirichlet problems (see
Prob. 3 below).

In the two-dimensional casc it is possible to reduce the Neumann
probiem to the Dirichlet problem. Suppose that a selution i of the
Neumansn problem

) i =0 within §

897

1i P forPeC
exists and is such thal 3 and its partial derivatives with respect to x, p
can be extended continuously to the boundary C of the plane region S.
We can now construct a function & which, within S and on C, satisfies

the Cauchy-Riemann equations’
dy  O0d dy de
ox  ay ey ox
so that - i$ s an analytic function of the complex variable x + 7y,

The function ¢ is therefore defined uniquely apart from a constant term.
Now it i1s well known that

dd  dy
ds  on
50 that i P, ¢ are two points on the boundary curve ¢, then
"0 :
SO) - HP) ';a g { Hs) ds 2)

Since, by an argument analogous to that leading to equation (1),

| f)ds =0

it follows that equation (2) defines ¢ on (" as a continuous and single-

valued function, and it is readily shown that if y is harmonic, then so

also is A Hence knowing the value of ¢ on €, we can determine <
‘tin 5. Using the Cauchy-Riemann equations then, apart from a

et term, we can determine the fusction 4 within 8,

v Churchill® has analyzed a boundary value problem of a

s crent from those of Dirichlet and Neumann, By the interior

" rvehien we shall mean the problem:

oo Math wind Phys, 33, 165 (1934).
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[f /15 a continuous function prescribed on the bounddr} S of a finite
rion V, determine a function y(v.v,2) such that V3¢ -~ Owithin ¥ and

dy

A T e f

on ( W/

every point of' S,

An exterior Churchill probient can be defined in a similar mansner.

PROBLEMS

1fyy, 4, are solutions of the Dirichlet problem for some region ¥ corresponding
to preseribed boundary values f1, fo. respectively, and if | f; ~ fi| ¢« alali
points of S, prove that [y, —~ v, | - ¢ atall points of V.

Deduee that if a given sequence of functions which is harmonic within ¥
and is continuous in Fand on S converges uniformly on S, then this secuence
converges uniformiy within .

Prove that the solutions of a certain Neumann problem can differ from one
another by a constant only.
Prove, with the notation of this section, that if
B
*(F1 (P} —r
[ (P} s
and if p*(II) is the solution of the interior Neumann problem
dp*

TI3* o 0 within ¥, P £ for 1 e 5*

then (P} = w*(11} is the solution of the exterior Neumann problem

) . dp .

Vi =0 ouiside ¥, — = [(Pyfor Pes
-

Prove that the solution »ir,4,¢) of the exterior Dirichlet problem for the unit
sphere

Vi = 0, 7 > 1, o= fifdyony = 1
is given in terms of the sclution #(rf,¢) of the interior Dirichlel problem

V=0, v o-f{0donr =1
by the formula

rirfd) = e (108

Prove that the solution wir,d.¢} of the interior Neumann problem for the unit
sphere

ayr
Vi =0, r = 1, % = f{id)onyr =1
PR

is given in terms of the solution er 8.4} of the last question by the formula

il

of
pir, 0y = I'fi'f,f}‘f_ﬁ)T 4 O

J0
where (' is a constant,
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6. Prove that the solution yirfié) of the interior Churchill problem for the unit
sphere
Ty = 0 reo 1

A Dy = flLs) onr - 1,k = -1

S

i
-
is given in terms of the function r(r%.4) defined in Prob. 4 by the formula
'l

wlrdd) = 1 w{rifgdt dt
e}

2

5. Separation of Variables

We shall now apply to Laplace’s equation the method of separation of
variables outlined in Sec. 9 of Chap. 3.

In spherical polar coordinates r, 0, ¢ Laplace's equation takes the
form
dy 20y 1 dty . Cotﬂap . ] a2y o 0
ort  ror  rPoR & 3 Psin?fagt
and it was shown in Examplc 5 of Sec. 9, Chap. 3 that this equation is
separable with solutions of the form

{A,J‘" - 1' O{cos Hesme (2)

where A, B,, m are constants and ©(y) satisfies Legendre’s associated
equation

lo— o (3)

I we take m = O, we see that equation (3) reduces to Legendre’s
equation
a0 do

? — e 5 — =} o
o 2p = np + 18 =0 (4)

(1 — u?)
In the applications we wish to consider we assume that 5 is a positive
integer. In that case it is readily shown® that this equation has two
independent solutions given by the formulas

[od" . ,
PA = gm0+ D) 5)

1 & on o d - |
1 ;43(—2*;?])(77;) P, aa(ir)  (6)

Qn(u) - Pn(?u) IOU "

where p == 3(n — 1) or in -1 according as n is odd or even. The
general solution of equation (4) is thus

@ = CTnPn(,“) “+ DriQF!(r“) (7)

L' For the proof of this and other results about Legendre functions see [ N.
Sneddon, “The Special Functions of Mathematical Physics™ (Oliver & Boyd,
Edinburgh, 1956), chap. 111.
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where C, and D, are constants. I a greal many physical problems,
zspecially those connected with concentric spherical boundaries, we
know on physical grounds that the function £ remains finite along the
polar axis -0, Now when i 0, ¢ I, and it follows from
:quation (6) that Q, () is infinite, so that it £} 1s to remain finite on the
polar axis, we must take the constant [, to be identically zero.! In
these cases we therefore obtain solutions of Laplace’s equation (1) of
he form

g — v} (4 e -‘E‘—l P {cos ) (8)
L r. ‘

In the general case in which s - 0 we find that when O < m -7 1,
:quation (3) possesses solutions ol the type

dnp, (u)

Pr(uy = (12 — D)= )
du"
O (1) — (1 — 1) a0 ,,(u) (10)
nﬂu'“
When == L[, OF(¢) is infinite, so that in any physical problem in

vhich it Is known that ), i.c., ., does not become infinite on the polar
ixis we lake P'(p) to be the solution of equation (3). In this way we
btain solutions of Laplace’s equation (1) of the form

a
LN
ln‘F’ — —_— ('4m?!
oo U s

rroe Bt YPM(cos e (11)

vhich may be writlen as

: Z (i) "[,.4,.1’,, (cos 9y -- Z (A, cosmd - B, sinmd) Prcos 0]]

o’

W wo |

(12)

We shall illusirate the above remarks by considering first a very
lementary problem in the irrotational motion of a perfect fluid.

Example 3. A rigid sphere of radins a Is placed i a streams of fluid whose velocity
u e wndisturbed state is V. Deterniiie the velocicy of the fluid af any potvt nft;’w
Ysturhed streatn,

Wemay take the polar axis (2710 be in the direction of the given velocity and take
wolar coordinates (r.#.¢) with origin at the center of the fixed sphere.

From Sce¢, 1(h) we see that the velocity of the flujd is given by the vector

~grad n, where

0y - 0
i) F .0 onr-a
ar
1) o~ = Vreos 0= — FrPy(cos ) asy —

L1t should be noted that this is not a/ways true.  As an example of a problem
1 which D, = 0 see Prob. 1 below,
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The axialiy symmetrical function

— BJg
Vo= Z (,“Iu!’ﬂ s ’,n.{ l) Pn (C‘OS H}

=4
satisfies (i3, Condition {ii} is satisfied if we take
B,
4 it g o= L
nAd,d (= 1) g 0

i, if B, = na®™ A, fin = 1), Asr - = this velocity potential has the asymptotic
form

o S AP, (cos B)
w8

/

s0 that to satisfy (ifly we take 4; — —¥ and all the other A4's zero.  Hence the
reguired velocity potential is
.
i
- [ — £
P V‘kr ‘ zrz}ces i

The components of the velocity are therefore
dy a®
g, = - Xy (l =3

cos i
ar | P )

I & ( a3‘) .
qﬂ——;w——--?’ ]-——ZF;; sin ¢

A similar problem from electrostatics is:

Example 4. A aniforn: insulated spheve of dielectric constant « and radius a
carrivs on its surface @ charge of density 2P (cos 8).  Prove that the interior of the
sphere contribules an amount

8223 xn
Qn = e + 0 4 1)

to the elecirosiatic energy.
The electrosiatic potential w takes the value w, inside the sphere and w, outside,

where by virtue of Sec. 1{d) we have:

(@ Vi =0, ¥, = 0

(i) s fniteat r = 059y = 0asr-» x;
(i1 wy =y, and x{fpfdr) — fyafdr = 4niP cosHon pr = a.
Conditions (i3, (i}, and the first of {ili} and the condition of axial symmetry are
satisfied if we take

foun f
i a nebl
B = A (g) P, (cos 8), Wy = A(-) P {cos £)
2y, W

J

and the second of {iii) is satisfied if we choose A so that

[?_if B T

a a

]A == 4rk

Hence the required potential function is

4ral 1y
¥y = '*_"“"“—‘—1(;) P, lcos Y

kN -E B -
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The encrgy due to the interior of the sphere & known from electrostatic theon to be

/o I
K mp{) K o a=i® H N L
= 1 ds - o~ Jre” b osin HP {cos fl) Picos iy Jf
g7 3(6!1. S7Gen w - 1pa” i o8 ) Piteos By«
and the result foliows from the known integral'

~ N

2 -
J_ ! PO e ST

A similar procedure holds when Laplace’s equation is expressed in
wiindrical coordinates (p.é,7).  1n these coordinates Laplace’s equation
ecomes

Loy 1 p%% &g

IR W) v = (13

and it was shown in Example 4 of Sec. 9 of Chap. 3 that this equation
possesses solutions of the form

R(P)() mz{, {rdh ( 14)

where Rip) is any solution of Bessel’s equation

d*R - LdR i
v orEr a _
Jpz o {,fp {”7 ;}2) R {]5)
In the usual notation for Bessel funclions the general solution of this
equation is

Ro= A, Jlupy - B,,Y.imp) (16)

where 4, and B, areconstants.  Thefunction ¥, (mp) becomes infinite
as p -~ 0, 50 that if we are interested in problems in which it is obvious
an physical grounds that ¢ remains finite along the line p — 0. we must
take B, = 0. 1n this way we obtain a solution of the type

=S N4 Jlmpw "o (17

i
1 I

For problems in which there is symmetry about the » axis we may
take # - 0 1o obtain solutions of the form

w— 3 A Slmpye f18)

In particular if we wish a solution uhzch is symmetrical about O=
and tends to zero as p —+ 0 and a5 = -+ 20, we must take i in the form
v — > A, Jlmple? (19)

i
Fxample 5. Find the potential function yip.z} in the region 0 =2p <11, £ -0
st g fhe comditions

) i 0 wsz = 1
1] o ) o p o
iy ¥~ flp) ap s = 0forQ <0 p |

P Sneddon, op. cit., equation (13,7).
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The conditicns (i) and (1} are satisfied i we take a function of the form
yip, o} S AT A pye T iz

where 7, is a root of the eyuation
Jfh 0

Now it is a well-known result of the theory of Bessel functions! that we can write
ey~ ™ AJ A p)

it

where A, pf )t p) dp (21)

2
(EREN) T
Hence the desired solution is {20, with A given by the formuba (2D,

The method of separation of variables can also be applied to Laplace’s
equation in rectangular Cartesian coordinates (x.y,2). 1t is readily
shown that the function

exp (iwx - igy 1 ) (22)
is a solution of ¥2y provided that

w2 g g2 {23)

The use of solutions of this kind is illustrated by:

Example 6. Find the potential fonction wx,v.o) in dhe region 0 < x < a,
O <y« b6 w2 <) ¢ saisfring the conditions
{0 w =0 oty -0, x ~a v =0, v =520
(ii) p o () onz -, 0l x e Byl b

The conditions {1y are satisfied f we assume

. HEX iy
\ Z oo SIN — Sin ? sinh (v, ,7)

where, because of eqﬂan(}ﬂ (23},

S
1 "
- o o o]
fain T A e i f}g) (-‘-4)

Now by the theory of Frurier series we can write

mmx . nay
(\ 1} > > jmu 5“}'_:— IHT

m—E B 2

where fon = i ’ Jlx, vy sin __%;’f sin i%— dx oy (25)

Thus 1o satisfy (iiy we aakc
A ma 7" f:rz I cosech {:'!m Wl
to obtain the solution

S 3

o . HmX . v
wix,v,2) = S ? [fron 810 —=sin ~—— sinh {3, ,2) cosech (3,.0)
i 4.1 pa 143 h .
m=1i=1

where f,,, and y,,, are given by cquations {25) angd (24), respectively,

LG, N Watson, A Treatise on the Theory of Bessel Functions” 2d. ed
(Cambridge, London, 1944), p. 576
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PROBLEMS
1. Ify1sa harmonic function which s zero on the cone # - » and takes the value
Sa,r? on the cone O~ 4, show that when = # - 3,
\3 jQulcos 1P icos 1) — P (cos 2)Q,icos 1)) R
L= e ; - I
¥ /_E] ' IKQ“(COS 23 P Acos /) - Poicos 2)Q,(cos ;‘fJf
"na=
1. A small magnet of moment m lies at the center of a spherical hollow of
radius @ in medium of uniform permeability ». Show that the magnetic
field in this medium is the same as that produced by a magnet of moment
3m/(| -~ 2p) lying at the center of the hollow,
Determine the field in the hollow,
3. A grounded nearly spherical conductor whose surface has the equation
. ol
roeEa {l : ‘S £nPylcos fJ)i
dereeeeeed| j
=z
is placed in a uniform electric field £ which is parallel to the axis of symmetry
of the conductor.  Show that 1f the squares and products of the ¢'s can be
neglected, the potential is given by
y FI]'“ (ot r.P 3)3{ no i :
‘al{ 552)(}‘) - (I} 1 Z lzﬁ | L 0 - 3‘":: JJ
N M2
#d]
> ‘—) Ph é] = 0
7!
. Heat flows in a semi-infinite rectangular plate, the end x - 0 being kept

at temperature ¥, and the long edges v = 0 and v = & at zer0 temperaiure.
Prove that the temperature at a point (x,y) is

. P 3*3\5

~ (2 L

46, < 1 L A2m - Dy
o e a ¢

=0
15 a function of r and @ satisfying the equation
N A %

arZ roor PERFE

0

within the region of the plane bounded by r = a, 7 = 5,6 = 0,6 = {=. ls
value along the boundary r = a is 84z — fiy, and (s value along the other
boundaries is zero,  Prove that

. (ri;b)én*‘z _ (!}’;r}in---‘z sin {4
Loy (@2 o ghiayinT2 (2p |

n=l1

L]

Ul

2o

3

b

Problems with Axial Symmetry

The determination of a potential function v (or a system which has
dal symmetry can often be considerably simplified by making use of
¢ fact that it is sometimes a simple matter to write down the form of %




162 ELEMENTS CF PARTIAL DIFFERENTIAL EQUATIONS

for points on the axis of symmetry. It is best mn such cases 1o use
spherical polar coordinates r, f, ¢ and to take the axis of symmetry to
be the polar axis ¢ - 0. Suppese that we wish to determine the
potential function (r,0.&) corresponding to a given distribution of
sources (such as masses. charges. elc.) and that we have been able to
calculate s value p(z,0.0) at a point on the axis of symmetry. [ we
expand {=,0,0) in the Laurent series

p(2,0.0) =

S (D
then it is readily shown that the required potential function 1s

y(r.f.¢) = Z [ A - ) P.(cos 1) (2)

for

) Vi =0

(i) y(r,0.9) takes the value (1) on the axis ol symmetry, since there
Pcosy—1,r -=z:

(i) 4(r,0,¢) s symmetrical about O~ as required.

The simplest example of the use of this method is the determination
of the potential due to a uniform circular wire of radius « charged with
electricity of line density e. At a point on the axis of the wire it is
readily scen that

2meda
1(2.0,0) - - —=e=
Nt e
27*1.’ \ (: )" ( i:) o=t d
| -.0.0) ,ﬁ' i o,
50 that {0 =
-, \()“ h(a 201 B
2 {(--1) E) T
where we have used 1hc notation (@), - afg - 1)+« (a -0 — I}

Hence at a general point we have
< (1), e )
{’?w’ N =2 (1) a P, (cos i) FoEld

!2:—1

(
2me > (I ) (-1 )" o Py, (€08 ) Fora

The solution of a direct problem of this kind presents Iittle difficulty.
Where the method is most useful is in the combination with that of
Sec. 5, as in the following example:

Example 7. A aniform ciredar wire of radins o chavged with electricity of fiae
density ¢ sprvoutids grodicded corcentie splicrical conditctor of radins ¢ Determine
the clectrical cllarge density ar any point ot the corductor.
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By the last result and the method of Sec., 3 we see that we take for the forms of the
potential function

) B [ (3)’ '.!' 1 l ,r"l (‘)Lw ' o . .
v ke 2O A GL s ) s e r

7

Vs 2m>2—: l{(_l)n% (g)f’--; _ (',l‘g)

o=

RITE l

}P.z,,(cos # Foooa

The boundary conditions

(i} T ony -
. 2y d,
() LS T i % ‘a’_f onr - a
¥ 7

yield the equations

( ), ¢ 2h ‘(’ Qi

CrEE) Al -0
"y g

A, — (n < DB, (‘) — (2n DO,
fram which it follows that
A4, =0, B, - (_,)?.Q ()
X
Hence when ¢ - ¢ -7 a,
-l2 N ‘r_’n, (.471—]_ ]

u! ia_iz a‘.’.u,,,‘.lii 1 1}

vy *-e\ (—1” P, (cos #)

it {)
The surface density on the spherical conductor is given by the formula
! ( a, )
7= ——
dr N B ol
s ( 25
I o
so that 7 Z by = )" 4 - 1) ﬁP_,,,(cos )]
A =1
PROBLEMS

L. Prove that the potential of a circular disk of radius @ carrying @ charge of
surface density o at a point (20,00 on its axis # = 0 is

Inofizt + @bt - 2]

Deduce its value at a general point in space,

F-J

A grounded conducting sphere of radius @ has iis center on the axis of a
charged circular ring, any radius vector ¢ from this center 1o the ring making an
angle « with the axis.  Show that the foree pulling the sphere into the ring is

0 i . gy
T z {n + 11 P, (cos =) P,(cos ) (;)

a=10



164 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

3. A grounded conducting sphere of rudius g is placed with its center at g pomt
on the axis of a circular coil of radius H at 4 distance ¢ from the center of the
coil; the coil curries a charge ¢ umiformly distributed.  Prove that if « is

small, the force of attraction between the sphere and the coil 15

e 0 3 I Ay
7 [' EAVEI 0(7“,)]

where [ = A% (%

4. A dielectric sphere s surrounded by a thin circular wire of large radius h
carrving a charge £ Prove that the potential within the sphere is

E X : 1y (2
_ \ { ”n 4 | 1"y : 2} (I_) P_i(‘((_‘@\' f,’)
b i L2l ) ullthy Vb

7. Kelvin's Inversion Theorem

It is a well-known result in the elementary theory of electrostatics
that the solution of certain problems may be derived from that of
simpler problems by means of a transformation of three-dimensional
space known as inversion in a sphere.  The points P, 11 with position
vectors r, p, respectively, are said to be inverse in a sphere S of center
with position vector ¢ and radius
@ 1 the points £, I, C are col-
linear and if’ ¢ is the mean propor-
tional between the distances CP,
Cll. We must therefore have

P

Figure 22 and @t = rp

This transformation has the property that it carries planes or spheres
into planes or spheres and carries a sphere §° into itself if and only if
S 1s orthogonal to 5.

We now consider the effect of such a transformation on a harmonic
funcrion.  If we write p == (£,2,0, v — (x,1n7), so that

. X a*y SR L

T

then by the well-known rule! [or the transformation of the Laplacian
operator it follows that

b, 0 gy ¢ ja* Oy @ [uat Oy
vl (5 slea) o fa  EY

I'P. M. Morse and H. Feshbach, “Methods of Theorctical Physies™ (McGraw-
Hill, New York, 1953), pt. I, p. 113,
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Now as a result of direet differentiations it is readily shown that
¢ (cF oy a 0° (rz ay &% 6- ( )
bl 2 Y Y
ox \r* ov roox?
so that since 1/r is a harmonic function, the rlght-hand side of equation
{2) reduces (o
i
“)

s

r-ﬁ ( ai az 82 ) (
N 51'? a-2
Hence we have Kelvin's inversion theoremi that if (£ ,5,{) is 2 harmonic
function of &, 5. ¢ in a domain R, then

a a*x o'y o'z ) a ('crzr}
- 3 i =y _ (3
. ( Cvls )

2T TR

@

is a harmonic function of x, y, z in the domain R’ into which R is
carried by the transformation (1).

By the principle of superposition of solutions of a linear partial
differential equation it follows from equation (3) that the functions

: o ( )d ?l(:f (A (%)cﬁ (4

ro.
are also solutions of Laplace’s equation for any function f(4) such that
the second of integrals (4) exists.

Kelvin's inversion method has been adopted by Weiss' to yield
solutions of potential problems which are neat and readily adaptable to
numerical computation.  For instance, suppose that ,(r) denotes the
potential of an electrie field having no singularities within r = « and
that a grounded conducting sphere S of radius « is then introduced into
the field with its center at the origin. To deseribe the disturbed field
we must find a function y satisfying

(1) w(r) ~ wyr) for large values of r
(i) =20 ony = u
(iii) Vi =0 forr = q
By the above argument it is readily shown that the required function is
given by the equation
Z
o) = o) — 2y [5) g

The charge induced on the conducting sphere is

= — 1 I\ 12—}?)40’5

L |( %*fw"’) S — ay,(0)

Pl
.(I)

Wei e
(1947} 88, Proc, (ﬂ”lbrfdt Plil. Soc., 40, 259 ¢ 1944y Phil. Ma". {7) 38, 200

*
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where y,(0) denotes the value of y(r) at the origin.  Since wy(r) is
regular and harmonic within the sphere S, it follows from Gauss’
theorem that the first term on the right-hand side of this equation
vanishes, and we have

Q= - ay0) (©)

If the conducting sphere is not grounded but insulated, the solution is
a ‘wir a
w0 =) Ly (5) - ™
In the corresponding hydrodynamical problem we have to determine
a function ¢ satisfying the conditions
(D) w(r) ~ wy(x) for large values of r

Gy
(i) =0 onr=a

(11]) VZ?‘,‘) e O f'or I :}

#(r) = y(r) - ”"{ o (fj{) C;U ’M/ ¥y ( )dﬁ )

Condition (iii) follows from the fact that if y, satisfies Laplace’s

equation, then so do the functions (3) and (4).  To verify that condition

(i) is satisfied we expand wo(r) into a Taylor series near the origin.
We then find that as » — =,

[a 2

)~ (1) - w0) - — =

w(r) wol ) - vl ) or

showing that p(r) ~ w(r) as r = 2oc, To prove that condition (ii)
is satisfred we note that

(%%\)r_:a = (%ﬂ) n [“;“[5 Yo (iji;) - g*; (r- grad '?Po)] a

i’

ol

! 27 A A i?
Z[ ), [Tz %y (_):“T) ......... }2 (r . grad V’n)] r:mdﬂ
) ! I

e l:da}: { Wy (7; I‘)] di
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The results obtained by means of Kelvin's inversion theorem may be
eiven a (]leSl physical mtcrpludtlon through the language of the
method of ims ages well known in the elementary theory of electrostatics.
The “image system™ of the problem whose solution is given by equation
(3) is the distribution of electric charge which leads to a potential

41{0 ((;2

PROBLEMS

1. A grounded conducting sphere of radius & 15 placed at the origin in an ¢lectric
field whose electrostatic potential in the undisiurbed state is T4v,1,7), a
homogeneous function of degree # in x, 1. z. Show that the electrostatic
potential is now given by the equation

: PP R
q'——(l ”I)P (xn2)
Hence determine the electrostatic potential of the field surrounding a
grounded conducting sphere placed in a uniform electric field of strength E,

e

A point charge g is placed at a point with position vector f outside a grounded
conducting sphere of radius ¢, Find the electrostatic potential of the field,
and show that the image svstem consists of a charge —ga/f situated at the
inverse point a*fif*,

3. If the velocity potential of the undisturbed flow of a perfect fluid ¥, (x.y,27) 15 a
homogencous function of x, v, r of degree #, show that the velocity potential of
the disturbed flow due to the insertion of a sphere of radius a at the origin is

Znil
[ 1 —”—~£—I——~] Vylxpz

P o= : -
| I o

Deduce the velocity potential corresponding to the flow of a perfect fluid
round a sphere placed in a uniform stream.

4. A sphere of radius ¢ is placed at the origin in the fluid flow produced by a
point source of strength w situated at the point with position vector £ (f = a).
Determine the vc.locm p()tcnlldl and show that the image system consists of a
source nujf at the point £ = a*/f? and 2 uniform sink of line density wfa
extending from the origin to the point £,

8. The Theory of Green’s Function for Laplace’s Equation

We return now to the consideration of the interior Dirichlet problem
“ormulated in Sec. 4. Suppose, in the first instance, that the values of
and 8y/on are known at every point of the boundary S of a finite
wegion 1 and that V¥ == O within . We can then determine ¢ by a
«imple application ol Green's thtorcm in the form (Lass, foc. cit.)
a ) oy

-

~here X denotes the boundary of the region £2.
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If we are interested in determining the solution {r) of our problem
at a poinl P with position vector r, then we surround P by a sphere C
which has its center at £ and has radius « (cf. Fig. 23) and take X to be
the region which is extevior to C and interior to S.  Putting

, 1
Ve
and noting that
Vil = Vi —= 0
within £, we see that

[!’ LR
) S —
Jo |,#( on i’ |

e 1
- J.s W(r ) an e’ — 1|

1 oyl .
_ = dS =0 (2
r’— 1| onl € (2)
where the normals n are in the
directions shown in Fig, 23. Now,
on the surface of the sphere C,

1 | g 1 1
i~ ¢ e —1a &
Figure 23 . .
dS" = &*sin b di dop
PR Y O Oy Oy
and  (r’) = yr) 4 ¢ jsin F cos qué} sin f sin & Wéﬂj -~ cos f 52
Oy oy
a0~ (), + 00
50 that {"’)a ! dS’ — 4 - Ofe
so 1ha L HE) G ST — A = 09
I a )
and ' : Y 4s = Oe)

Je e’ — r]a—n

Substituting these results into equation (2) and letting ¢ tend to zero,
we find that

o) — || W) ey 2 e

il B Bt L Dl ] (3)

so that the value of ¢ at an interior point of the region ¥ can be deter-
mined in terms of the values of y and dy/9n on the boundary S.
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A similar result holds in the case of the exterior Dirichlet probiem.
+ this case we take the region L occurring in equation (1} to be the
gion bounded by S, a small sphere € mr{m;ndzﬁu P£.oand X7 a sphere
ith center the origin and large radius R (cf. Erg. 24y, Taking the
rections of the normals to be as indicated in Fig. 24 and proceeding
above, we find, in this instance, that

‘ R ayir'y 0 P
y(r) = Ol t’\ng“f“:”}f o
P vl
kg s 0

tting ¢ - - 0 and R — =, we sce that the solution (3) is valid in the
se of the exterior Dirichlet prob-
n provided that Ry and R*
“én remain finite as R — .
i explains the remark made in
¢ 4
Equation (3) would secns at first
ht to indicate that to obtain a
ution of Dirichlet’s problem we
ad to know not only the value
the function y but also the
ue of dy/on.  That this is not
fact so can be shown by the
roduction of the concept of a
een’s function.  We define a
cen’s function G{rar') by the
iation 1

- L — f ’ o
G(rx'y — H{rr’) . . (4)
cre the funciton Hirr') satisfies the relations
s & &\ \
("é"?_, 5“;,—2 = a:,—_}) h’{l‘-,l') =z ) {5)
1 Hrzr'y - w_lu_m_ =0 on S {6)
P
2n since, just as in the derivation of equation (3), we can show thal
o by dpay 06T
v g | (G T ) S ds (7)

ollows that if we have found a function G(r,r’) satisfying equations
(5). and (6), then the solution of the Dirichlet problem is given by
relation

.. 2Gir ")

Ly y X
W= — 4z '\ w(r) g 43 ®)
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The solution of the Dirichler problem is thus reduced to the deter-
mination of the Green's function Gir.r').

It is readily shown (Prob. | below) thar the Green's function G(r.r')
has the property of symmetry

Glrr,) — Girar)) (N

e, if P, and P, are two points within a finite region bounded by a
surface S then the value at P, of the Green's function for the point P,
and the surface S is equal to the value at P, of the Green's function for
the poinl P, and the surface 8.

The physical interpretation of
the Green's function is obvious.
If S is a grounded electrical
conductor and if a unit charge is
situated at the point with radius
vector 1, then

G(.l',l") = lfr H(Irsr’)

is the value at the point r’ of the
potential due to the chargeatr and
the induced charge on 5. The
first term on the right of this equa-
tion 1s the potential of the unit
charge, and the second s the
¥ potential of the induced charge.
Figure 25 By the definition of H{r,r") the total

potential G(r,r") vanishes on S,

We shall conclude this section by deriving the Green's function
appropriate to two important cases of Dirichlet’s problem.

{(ar) Dirichlet’s Problem for a Semi-infinite Space. 1f we take the
semi-infinite space to be x = 0, then we have to determine a function ¢
such that V¥ = 0inx 20, v = f{p.2)onx = 0, and v ~0as r -+ oo,
The corresponding conditions on the Green’s [unction G(r,r’) are that
equations (4) and (5} should be satisfied and that G should vanish on
the planc x = 0.

Suppose that Il, with position vector p, is the image in the plane
X =- 0 of the point P with position vector r (cf. Fig. 25). If we take

]

Hrry= — g

(10)

then it is obvious that equation (5) is satisfied. Since PQ = NQ
whenever ) lies on x = 0, it follows that equation (6) is also satistied.
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The required Green's function is therefore given by the equation
: 1 1
Grr') = o I (1)
r—r; p-r]
where, if r = (x,1,2), p == (—x,0,2).
The solution of the Dirichlet problem follows immediately from
equation (8). Since
aG{r,r’) a [ l
VX

on oy D N U P T

1 )
AR i D ER S b
it follows that on the plane x" = 0
oG(rry PAS
on [Py - (2 IR
Substituting this result and (r") = f(",z") into equation (8), we find
that the solution of this Dirichlet problem is given by the formula
f(v 2 dv ds 3
S R ERE U
(P) Dirichlet’s Problem for a Sphere.  We shall consider the interior
Dirichlet problem for a sphere, i.e., the determination of a function
w(r,0.$) satisfying the conditions
V=0 Pl (13)
v == f(lb) On ¥ =g (14)
The corresponding conditions on the Green’s function G{r,x’) are that
equations (4) and (5) should be satistied and that G should vanish on
the surface of the sphere r = 4.
Suppose that Il, with position vector g, is the inverse point with
respect to the sphere » = a of the point £ with position vector r {¢f.
Fig. 26). Then if we take

Hirx) — —

) — %T qul IJ B (12)

a of

rlp 'l

a?
PiRr oo

(15

A

it is obvious that equation (3) is satisfied, and il is a well-known
proposition of elementary geometry that if Q lies on the surface of the
sphere, PQ - (rfa) 1 Q. so that Lquatlon(6)1§ also satisfied. The Green’s
function appropriate to this problem is therefore given by the equation

] afr
F—-rl (& , (16)

G(r,r) ==
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G l oR i OR
N = - - — R
ow ar' FraE R or’ )
. :4 247
where K% = 5% — p® — 21" cos 9, R T Fgos B
re ¥
{(17)
and cos & = cos P cos 0" -+ sinsinf cos (¢ — &) (18)
oG o (a — %
Thus 5 BTy
and when " = g,
aG aG 2 L2
e L - (19)
dn or alrt -+ a® - 2ar cos )

Hence if 3 = f(f,¢) on r == ¢, it follows from equations (8) and (19)

Figure 26

that the solution of the interior Dirichlet problem for a sphere is given
by the equation

w(r,0,¢) =

a(@® —r? fﬂﬂdé’ ‘"”\ F (07" sin 0" ot (20)

4 Jy Ju (a~ L 2 — 2grcos @)F
where cos O is defined by equation (18).

Making use of the result of Prob. 4 of Sec. 4, we see that the solution
of the corresponding exterior Dirichlet probfem is

2 2 2 el N L G gy ,
ey~ L [ gy [ SOy

Joo 7 o (@® o+ #F — 2ar cos @)

The integral on the right-hand side of the solution (20) of the interior
Dirichlet problem is called Poisson's integral.  1U1s interesting to note
that Poisson’s solution of this problem can also be obtained by means
of the method of separation of variables outlined in Sec. 5. The
function

o

'P(I',G,Q‘Ll)) - 2—: (i);n {E(Amre €os ’”é = mn sin ;ﬂ(ﬁ)P’”(COq 6)‘ (22)

ro=0 M=
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is a solution of Laplace’s equation which is finite at the origin. If

this function is to provide a solution of our interior Dirichlet problem
then the constants A,,,, B, must be chosen so that
fhd)y = N (A, cos nid — B, sin md) P ?{cos )
p=0m=1{
It is known from the theory of Legendre functions that we must the
take
711 e
A - — ’ ' (0" SIVP (cos 0y sin 07 di” dd’

1., =
‘ 2z (=)l

- eyt [T
n - Din ! ' ' FU VP Heos 1y sin ' cos (me )y &’ dip’

(2 - Dy(n —m)!

} 0 EYVPY b f /)
7 5 'f ¥, EYPricos 97 sin 07 sin (mid") d67 dd’

Substituting these expressions into equation (22) and interchanging the
rders of summation and integration, we find thar

i) ’ { U0 sin & b’ do (23)
+here
: $ 20D ( P.{cos NP, (cos 67
vy
\ (( - m)IJ “(cos 0y Prcos 07) cos mid - cé’)]
4—* i = nn)! ' (00 . Y
From the well-known relations
L ’,’12 N (2n — DA"P,(cos O)
(I 2hcos @ = = L "
= . !
P lcos ©) = P, {cos NP {cos 'y — Z m)), PMcos b)
- )

= PP(eos 07) cos m(d -

here @ is defined by equation (18), we see that
a(aa o '.2) ’
== : 24
g (a® — 2ar cos B + £ (24)

substituting from equation (24) into equation (23), we obtain Poisson’s

lution (21).
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PROBLEMS

1. Suppose that P, and P, dare two points with position vectors r; and 1,
respectively, which lie in the interior of a finite region ¥ bounded by a surface
5. By applying Green's theorem in the form (1) to the region bounded by §
and two spheres of small radii surrounding £, and P; and taking w(r’) =
Glry 1), w'ir’) = G(r,r’), prove that
Gy = G{ra,r)

2. If the function w(x,¥,7) is harmonic in the hall space x = 0, and if on x =0,
y = | inside 4 closed curve C and y = 0 outside ¢, prove that 2my(x.p,z) (s
equal to the selid angle subtended by C at the point with coordinates (x,),2).

3. If wix,p,2) is such that V% = Ofor x 5> 0,9 = f(3)onx — 0, and y —~ 0 as
F w0, prove that
x [(* (v dy”
?"‘](x’_]"! z) - 2 'f: L ' ’MTZ
I L A
4. The function () is harmonic within a sphere § and is continuous on the
boundary.  Prove that the value of w at the center of the sphere is equal 10 the

arithmetic mean of its values on the surface of the sphere,
5. Use Green's theorem to show that, in a usual notation, if at all points of space

Vi = —dmp
where p is a function of position, and if ¢ and r grad ¢ tend 10 zero at infinity,
then
N
6 |24V
¥

9. The Refation of Dirichlet's Problem to the Calculus of
Variations

The interior Dirichlet problem is closely related to a problem in the
calculus of variations. It is a well-known result in the calculus of
variations® that the function %(x,y,z), which makes the volume integral

[‘ F('Y?)">3’Tf)’?/);r»w:.'s'rf)z) dr (1
« F

an extremum with respect to iwice-differentiable functions which
assume prescribed values at all points of the boundary surface S of T.
must salisfy the Euler-Lagrange differential equation
oF ¢ ‘ aF‘) 7 BF‘) d (BF)
gy Ox 0y, dy (awy, oz Ly,
It follows from this result that the function, among all the functions
which have continuous second derivatives in ¥ and on § and take or.
the prescribed values £ on S, which makes the integral

I(p) = L_(grad w2 dr {

Y

{2

tad

TR, Weinstock, “Calculus of Variations™ (McGraw-Hill, New York, 1952
PP 132135,
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wn extremum s the solution of the Dirichlet problem

V% = 0 within &, p= fon S ¢4
The Dirichlet variational problem. that of minimizing the integral ¢3;
subject to the conditions stated, and the interior Dirichlet probiem
are therefore equivalent problems,  [f a solution exists, then thev hasve
the same solution.

Since / 1s always positive, the integrals /(i) formed for admissible
functions y are a set of positive numbers which has a lower bound. from
which Riemana deduced the existence of a function making the integral
a minimum.’  ft was pointed out by Weierstrass that Riemuann’s
argument was unsouad, and he gave an cxample for which no solutoen
existed, but Hitbert showed later that provided certain limiting con-
ditions on 8 and on f are satisfied, Dirichlet’s variational pmbiem
always possesses a solution.  The value of th; method lees i the fact
that in certamn cases “direct methods.” i.e., methods which do not
reduce the variational problem to one in d]ﬁemu al equations, may
produce a solution of the variational problem more eas:ly than the
classical methods could proé;&e a solution of the mterior Dirichlet
problem. The variational method is also of great value in providing
approximate solutions, especially in certain ?E)Sitdl problems in which
the minimum value of 7 1s the object of most interest; e.g., in electro-
static problems, / is closely related to the capacity of the system.

10. “Mixed” Boundary Value Problems

n the problems of Dirichlet, Neumann. and Churchill the function
poor its normal derivative @y/8n or a lincar combination of them s
plc's{,libed over the entire surface S bounding the region ¥ in which
V4% 0. In "mixed” boundary value g}lobhms condjtions of
dificrent tvpes are satisfied at various regions of §. A typical problem
of this kind is fustrated in Fig. 27, In this problem we have to deter-
mine a function ¢ which satisfies

{1} Vi =0 within ¥
(i1} g o= f on 5
aij

=N on S,
{1173 P C 2

where 8, 8, -~ §, the boundary of V. and the functions fand g are
preseribed.

As an example of a boundary value problem of this type consider the
classical problem of an elecrrified disk.® If, in polar coordinates

"This is known as Dirichlet’s principle.

* G, Green, “Mathematical Papers” (Cambridge, Loadon, 18713, p. 172,
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(o:#.2), ylp.d.o) is the potential duc to a perfectly conducting uniform
thin circular disk of unit radius which is kept at a prescribed potential,
then the boundary value problem to be solved is

ey loyp &y 1 &% -

Y PR =Y 0
y o gl(p.d) onz=0,0-0p 1 (2)
f—%s == 0 onz—0,p =1 3

In equation (2) the function g(p) is prescribed.  This equation expresses
the fact thar the potential is preseribed on the surface of the disk, while
the equation (3) is equivalent to assuming that there is no surface
density of charge outside the disk. The problem is o determine p or,
more usually, to find the surface of the disk. It is also assumed
that » > 0 as Vi 22 — o0,
Suppose that

g(p#ﬁ) - G(p) COs H(tﬁ - !‘) (4)

Then we may write v = '(pz) cos
nip — &}, where

82\}‘ : } a\;.’ f'?2 6211;‘ B

et =5 — b - =10
ot pop  p° oz°
(5)
and
Ve Glpy onz=0,0-<0p-1
(6
i o =
Figure 27 = 0 onz=0p>=1 (7

The form (4) is more general than iI appears, since it is possible tc
derive a solution for functions of type g{(p,4) by a Fourier superpositior
of funetions of type (4).

To derive a solution of equation {5) we note that

¢ 1T (p1)

is a solution of the equation. By the superposition principle it follow:
that

~

V(e - | e g0 di (8

U

is also a solution for any arbitrary f(/) such that the integral on the
right exists.  Substituting [rom equation (8) into equations (6) and (7)
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we see that the function f(7) is determined by the pair of dual inregral
2quations

(k S (piydt = Glp) 0 -7p 2] (9)

WO

-

| e di =0 p (10)
LSO

Using the fact that

oy [ Gy
3) () -

we see that the total surface density » on the two faces of the disk is
v(p) €os m(d - &), where

-~

() = o2 |, O Ge0) (i

A general solution of the dual integral equations (9) and (10) has been
given by Titchmarsh.! It is found that

o 2 PGy dy

1 un.-] dN "1 . X i
| = | GO (1) ‘i}] (2
JoAS ] — 0

Substituting from equation (12) into equation (11), we then get the
cxpression for s(p).

Solutions of the dual integral equations (9) and (10} in various special
cases had been given prior to Titchmarsh’s analysis by Weber [i7 = 0,
Gip) constant], Gallop [n =0, G(p) = Jy{cp)], Basset [n =1, G(p)

Jilep)]. MacDonald [n arbitrary, G(p) = J {cp)], and King [n integral,
¢;(p) arbitrary]. In all the cases considered the analysis was difficuls
and long, but the surprising thing was that the final results were simple.
This suggested to Copson?® that we might give a simpler derivation of
*he solution by starting with a more suitable form of potential funcrion.
Copson took, instead of the form (8), the form

[ ot Ee’ d dy

O r

y = (13)
where r is the distance of a general point (p,é,z) from a point (p",¢,0)
on the disk. To give the correct boundary conditions on z = 0 we

- I'. €. Titchmarsh, “Introduction to the Theory of Fourier Integrals™ (Oxford,
“oo York, 1937), p. 334, The formof solution given here is due to 1. W. Busbridge,
Mo, London Math, Soc., 44, 115 (1938}

- E. T. Copson, Proc. Edinburgh Math. Soc.,, (iiiy 8, 14 (1947},
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must have o(p’,4) = s(p’) cos u(d" -~ ¢), where s(p’) 1s chosen so that
PPN cos (e’ - ) d’
s{p Y dp ‘ ; — ' e
Jo “uoNpE e g D cos () - )
= GUlp) cos n(d - ¢y (14)

when O < p -2 [
Now it is readily shown {cl. Prob. 1 belov.) that the inner integral has
the value

4 cos ”(C‘B - ;.) Mg z2re (ﬁ
(pp')" Jo Vip?r -t 1)
so that equation (14) becomes
4 [ _ A an
- [’ (Y du { - £ dr
pt Lo SOV (pE =Bt — 1)
) z o dy ] .
— ! YRRl o G
; L s{p M V" dp’ [n v = - (p)

Inverting the order of integration, we find that

o~

. cordr o s(phptt d
;p”(l(p) . ’ : (p)P 14
R e LR WL o
To solve equation (15) we let

0<p<l (15

]
S(p) = ' 3({’)_.:?,_‘___7 de 0<rp=il {16)
SroATpT s ot
and obtamn
PrSry dr
*pG@)—lUT”*)ﬁé 0 < p | (7

If G(p). G'(p) are continuous, it follows by a trivial ransformation of
the well-known solution of Abel's integral equation' (cf. Prob. 2 below)
that
W LES!
S(p) ;1_ ;1 1 () cir
LEpttdp oo g ?
It only remains to derive the expression for s(p) from this expression
for 8(p). W S(p) and its first derivative are continuous in any closed
interval [,1] for any positive value of 4 < |, then, by an application
of the solution of Abel's integral equation (Lf Prob. 3 below), we have

2 d ! iS(Z)d{

s{p) es - - prt— | e . 0-lp-l {19)

(18)

which solves the problem.

1 M. Bocher, " An Introduction to the Stady of Integral Equations™ (Cambridge,
London, 1929), p. 8.
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Hence we have:

Copson's Theorem. [If the potential on the surface of the circular disk
o=0,0<p < 1is G{p)cos (e — &), where ¢ is a constani, n is zero
or a positive integer, and G{p) is continuously differentiable in 0 << p < 1,
then if S(p), defined by (18), is continuously differentiable in [y,1] for
any posiive v < 1, the surface density of electric charge on the surface
of the disk is s(p) cos n{p — &), where 5(p) is defined by equation (19).

Example 8. Find the surface density of charge on a disk raised to unit porential
with po cxternal fleld.

Here 1 = 0, and Glp) = 1.
(@) Lual Integral Eguation Method, From equation (12) we find that
2sin¢
fO=27
so that, by equation (11),

1 M

s(o) = — | sin ¢ Jlpt) dt
= Ja

W

From the known value of this integral‘ we see that
1
O = A

(&) Copson’s Method.  From equation (18) we have

1 o [0 fdt 1
Sy =z | v s
k4 dp Ja Vpt — ¢ 27
so that, from equation (19}, we obtain the solution
. 1 o (1 tdt 1
S(p)mi:zm?l_’ L T g
vedp ], e e

Mixed boundary value problems occur in the theory of elasticity in
connection with “punching™ and “crack” problems. For a discussion
of these problems the reader is réferred to I. N. Sneddon, “Fourier
Transforms™ (McGraw-Hill, New York, 1951), Secs. 47, 48, 52, 54, 55,
where the dual mtegral equation approach is used, and to N, L
Muskhelishvili, ‘W(Noordhom Groningen,
1953), Chap. 13, where an approach rather similar to Copson’s method

15 used.

PROBLEMS
1. If nls zero or a positive integer and if both a and b are positive, prove that
(‘27.- einé d(f) 4 minfa by 12
o vVa& - b ~2abcosg lab)” L Vig®E ~ 0T~ )

where both square roots arc taken to be posilivc.

! Watson, “A Treatise on the Theory of Bessel Functions,” p, 405,
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2. If f{x) and [f(x) are continuous in the closed interval [0,4], show that the
solution! of the integral equation

. (gl de _
f(,\) = t", \—.M X -o4a
is
24 [t tfna
“g(l) B ;"2; {} \.Xz — {2

v

3. I fix) and £(x}are continuous in ¢ < x < &, prove that the solutien? of the
integral equation

[ gty dt .
Fx) = | vpma cixca
is
2d (" gD d
i ol MR

wE

4. A disk of unit radius is grounded in a uniform external field of strength E
parallel to its surface, Prove that the surface density of electric charge is
given by the equation

2Ep cos ¢
(RPN g

5. Show that in Gallop's cage n == 0, Gip) = Jy(cp) the problem of the clectrified
disk has a solution of the form

c o 1 [ 1cosien
alp) = 5;-7(1("9) bog (1 m}r_,df

1. The Two-dimensional Laplace Equation

In some problems of potential theory the physical conditions are
identical in all planes parallel to a given plane, say the plane z = 0.
In that case the potential function 3 does not depend on z, so that
dy/dz and ¢%y/2z? vanish identically, and Laplace’s equation reduces to
the form

By By
e a0 ()
If we introduce the operator
, L
Vi mg EE 2

I In the solution of Probs. 2 and 3 use is made of the {act that the solution of
Atel’s integral equation
(* u(§) ds
x) = —_— 0«<al
/‘(X) . (X _ ;:}l. -
sin(=iy d |7 fu)dr
w(x) = )——— ﬁf i
7 odx Jy (x — A
Cf. Bocher, op. cit., p. 8.
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we may write this equation simply as
\—fr," 0 (3)

We shall refer to equation (3) as the nvo-dimeinsional Lapluce equation.

The theory of the two-dimensional Laplace equation is of particular
interest because of its connection with the theory of functions of a
complex variable, We shall give a brief account of this relationship
in the next section. In the remainder of this section we shall indicate
how methods similar to those emploved in the case of the three-dimen-
sional equation yield informarion about the solutions of equation (3).

It is a well-known result of elementary caleulus' that if P{x,v) and
Of(x,p) are functions defined inside and on the boundary C of the closed
arca K, then

"0 oFP ' o
If, in this result, we substitute
3 By' B ar,‘.?
P - A "-a":";": bl Q a.\‘
and make use of the fact that
a?--' aif‘,‘ . a!',‘!
5{' { — é__‘;‘ d.\ ""é}";

where dy/9n denotes the derivative of y in the direction of the outward
normal to C, we find rhat

. b S ’ a!f”
..'JW) as - | ZLas (s)

Hence if the function y(x,)) is harmonic within a region K and is
continuous with its first derivatives on the boundary C, then

A al{'
Joan

This result is sometimes known as the theorem of the vanishing flux.

It is immediately obvious from equation (5) that the converse of this
theorem is also true; ie.. if ¥(x,1) is a funetion which is continuous
together with its partial derivatives of the first and second orders
throughout the interior of & and if

ds == 0 (0)

Jeo dn

where €7 s the boundary of any arbitrary region K contained in &, then
v 1s harmonic in K.

LR, P. Gillespie, “Integration” (Oliver & Boyd, Edinburgh, 1939). p. 54,
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-Similarly it follows from equation (5) that if Viy — 47 p throughout
K, then
[ dy r .
& ds = 4= 'lh plx, vy dS {7

Laplace’s equation in (wo dimensions when written in plane polar
coordinates r, 7 assumes the form

0 ] 6 / 6a~‘ 1 aii‘,'
so that if ¢ is a function of r alone,
d ( fn’;’
0

from which it readily lollows that
p=Alogr-i B

where 4 and 8 are constants, If we write
1 i
p — 2¢ log - (%)
-

with ¢ a constant, then Viy — O except possibly at the origin, where v is
not defined.  This solution has the property that if € is any circle with
center at the origin, the flux of y through that circle is —4=g. It
therefore corresponds to a uniform ling density ¢ along the = axis which
appears as a point singularity in the two- ~dimensional theory

In a manner similar to that employed in the three-dimensional case
(Sec. 2) we could construct potential functions of the type

i - i T ! ' C

wl(r) == J!. g(r'y log P ds (%)
where r == (x,1), etc. Because of this form of v a two-dimensional
potential Tunction is referred to as a logarithmic potential. [t is
readily shown that if ¢ has a continuously turning tangent and if
g(x’.v") is bounded and integrable, y(x,y), defined by (9}, is continuous
for all finite points of the plane including passage through the curve C.
I g(x',1) is continuous on €, which itself has continuous curvature,
then, in the notation of Fig. 28,

Oy 8?1] .
[Em Cenl, —2mglA) (10)

Oy 81;:1] -, r [8 1 } g
[an © on i L.-'(: ) on o8 ]r db o
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Similarly the potential of a doublet distribution on a line C is given
by an expression of the form

7
hr — ‘ ulr’ ) - ]O_ ~[——————- els’

[ cosi(n, ,
— { T (7_97) ds I 1
e P
If the tangent to the curve C turns continuously and if « is continuous
on C, then
o 2malA) pe g 2p(A) (12)

We shall now make use of these resulls to show how the interior
Dirichlet problem
Vi - - 0 within V, p=fon C (I3) 2
may be reduced to a problem in the theory
of integral equations, Il we assume that
, T cos(n, ,
pe) - |t SR g "

where the function ¢ is unknown, then it
follows from equations (12) that

yr = () A) ¢
so that from equation (13) Figure 28
cos (m, , :
) = | als) [ ] PRI
! 4

Il we write
cos (n,p)

” }
~& e g(s)) [———-—-—:| ke K(.\',S )
- 7 5 .
then the problem reduces to that of solving the nonhomogeneous integral
equation of the second kind

pl(s) + gls) =

for the unknown function u.

For a full discussion of the applications of the theory of integral
equations to Dirichlet’s problem the reader is referred to Chap. 7 of
Muskhelishvili's “Singular Integral Equations™ cited above,

~

(s)K(s,5) ds”

PROBLEMS

I. Prove that if  is continucus within and on the circumference of a circle and is
harmonic in the interior, then the value of ¥ at the center is equal to the mean
value on the boundary.
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2. Provethat if y is harmonie inside a region § and is continuous on the boundary
€, then w takes on its largest and its smallest value on €. Furthermore that
if 3 is not a constant, then it cannot have an abselute maximum or minimum
inside 5.

3. Show that if g, and &, are constants,

. .
H

w(rfl) = la, - ? (L) a, cosnfll - b, sinni
e \g !
ol
is a solution of Y3y = 0 in the interior of the sphere - a.
If ¥ = f(t)) when 1 = a, determine the constants and show that

2 e g 4
wrt) = L L7

ity

0

@ — 2arcos (I — () — r?

v

4. ¥ —0forx w0and ¢ = (1) on x = 0, show by using the method of
Fourier transforms that

~

?;J(X,}') = ‘ F( )(l*l o —is Uda

Mli =

A

where F{£) is the Fourier transform of f(y}.
DPreduce that

’4‘(\,}) “:Ev B f‘(y)d'r

Xy —

—

5. Reduce the solution of the exterior Dirichlet problem to that of an integral
equation.

6. By taking
i |
(r) = (s log -——— dy’
o= [ s
show that the soluticn of the interior Neumann problem
.. iy
Vi =0inside S, = =fonC
an
reduces 1o that of the integral equation

gls) -+ | K" \9)gls)y ds” = g(s)
where g5y - "f ) K(s'5) = l [ log lr _1 J

|2. Relation of the Logarithmic Potential to the Theory of
Functions

There is a close connection between the theory of (wo-dimensional
harmonic functions and the theory of analytic functions of a complex
variable.  The class of dndlvm functions of a complex variable
z = X — iy consists of the complex functions of z which possess a
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derivative at each point. It can be shown! that if ¢ and y are the
real and imaginary parts of an analytic function of the complex variable
X -+ {y, then ¢ and » must satisfy the Cauchy-Riemann equations

dp Iy dp Ay "t

iy dy i ay C 8y /
Now it can be proved that the derivative of an analytic function is
itself analytie, so that the functions ¢ and ¢ will have continuous
partial derivatives of all orders and, in particular, Schwartz’s theorem

7 0% 0y Py \
ax oy dvax Gy dy Oy ox )

will hold.  Combining the results (1) and (2), we then find that
Vi == Vip =0 (3

, the real and imaginary pairts of an analyvtic function are harmaonic
jrmcrrom. The functions ¢, y so defined are called conjugate functions.
The converse result is also true:  If the harmonic functions ¢ and
saiisfy I/w C c.rtfcl{]'-Rf(?mafm equations, then ¢ — iy is aim analytic funciion
uf Z o= <y
If utht.r (X, 3) or w{x,)) is given, it is possible to determine the
analytic function u —= ¢ — iy, for, by equations (I},
dl‘i‘ 8(5 8:;'

T o ae Al — i)

where ¢, = 3¢/0x, dy == dp/dr. Putting y — 0, we have the identity

du

=2 = ailz0) - 7dy(=0) (4)

from which w may be derived by a simple integration. If y is given,
then, in a similar notation,

du‘ . .
P = yu(z,0) = f(5,0) (5)
Example 9. Prove that the finction
g 5] ad T
¥ - 3

iv a harmonic function, and find the corresponding analytic function ¢ -= fip,
For this function
&b Ky 20 2xy

aua « further pair of differentiations shows that Vig¢ = 0. Puttingy =0, x — zin

! See, for instance, L. V. Ahlfors, “Complex Analysis” (McGraw-Hill, New York,
1953), pp. 38-40.
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these equations, we find that @){2.0) = 1 - = % &,02,0) = 0, 30 that
dhr 1
a4
dz =

from which it follows that

In the notation of vector analysis the Cauchy-Riemana equations (1)
can be writien in the form

_I‘é.d QS e (gr&é i‘) w k (6)

where k = (0,0,1) is the unit vector in the - direction, from which
we conclude that the sets of curves
¢ == constant and ¢ == constant inter-
secl oﬂiéoﬁonaiiv Also if s 15 a unit
vector in any direction and n is a unit
vector perpendicular to s measured anti-
clockwise from s {cf. Fig. 29), we get
the general results
8d Oy o oy ,

Fig{jre 29 P : 5 R 5 s 5 (7)

We consider now the application of these results to the motion of an
incompressible fluid in two dimensions.  If (i) denote the components
of velocity at a point (x,y) in the fluid, then if the fluid is incompressible,

1 5

du  dv ,

. 5;, -0 (8)
and

or  du

EE T ®

where { denotes the vorticity. [f, therefore, a fluid is incompressible,
it follows from equation (8) that there exists a function  such that

dy gy
U = 51_ v e (10)
and, from equation (9),
‘" — \—i%, {] 1)

If, in addition, the motion is irrotational, then

Vi - (12)
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On the other hand if the fluid is incompressible,

ar du .
|
IZR% a}‘ '
50 that there exists a function ¢ such that
3¢ 3 ,
== U Hé} (13
and
ou or .
P “a'*? = V5

If, in addition, the fluid is incompressible, then
Vid = 0 (14)

Hence for the irrotational motion of an incompressible fluid both y and
¢ exist and satisly Laplace’s equation, The function y is called the
stream function and ¢ the relocity potential,  From the equations (10)
and (11) we have immediately that

od  dy dh Gzp
dx &y ar  ox
so that the Cauchy-Riemann conditions are salisfied and
W= {15)
is an analytic function ol the complex variable r == x +- /. The
function w is called the complex potential of the motion.  Since
dw  dd o
BLE e —de ,'__
d-  ox ox
it follows that
dw o
Yot (16)
showing that
dw e
Ml ETe —q (17)
I

is the magnitude of the resultant velocity at a point in the fluid.

The stream function ¢ is constant along a streamline.

If the motion is steady, the pressure p at a point in the fluid may
be derived from Bernoulli’s theorem which states that along a streamline

E;J.2MV
Pu,‘i

is a constant whose value depends on the particular streamline chosen;
V denoles the potential energy in the field,



188 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

It is sometimes convenient to use relations of the kind

Z == w)
instead of w == f(z). It s readily shown that
1 e _
q' 1a'n'i (18)

Example 10, Show that the relarion
ool )

gites the motion of a Sfuid round a cviinder of radius a with ity orjgin flxed at rhe
origin in a streant whose velocity in the direction QOx is U.
Sc:pdmlmg the complex function

ax m‘)

5 :
Xt pE

| o ( at
d) R U.X‘(] ....... e Mz) N y o U}'([ _ M)

It follows therefore that 4 = 0 on the circle wmth equation x* — * - 4% and that at
a great distance from the origin # - U, & ~ 0, The given mmplcx potential
therefore satisfies the stated conditions,

Two-dimensional  problems  in
electrostatics can be tackled in a
similar way, In this case ¢ denotes
the electrostatic potential, so that

B the lines in the xy plane with equa-
tions ¢ == constants are the equipo-
tential surfaces. The lings y = con-
stant cut these lines orthogonally,
and so they must correspond to the

A lines of force. A potential function

¢ derived in this way could solve the

problem of the distribution of electric

force in a condenser formed by two

p=0 $=c conductors, one of which has equa-

Figure 30 tion ¢ = 0, and the other of which

has equation ¢ = . The charge

distribution in such a problem can be calculated easily. 1f o is the

charge density at a point. then

Ied 1 ay
T T

g === -
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by the second of equations (7).  Hence the total charge between 4 and
B per unit length perpendicular to the xy plane is
™I 1 ‘
g= | ods = (vn v (19)
SNl 441
a result which is of great use in the calculation of capacities.
For instance, if the normal sections of two infinife conducting
cylinders are given by the closed curves ¢ == ¢, and ¢ = ¢,, where
¢ - iy = f(x -+ {y), then the capacity per unit length of the cylinders is

1 : ,
An(cy — C3) f# y (20)

where the integral is taken round the curve ¢ — ¢, in the positive sense.

Ly
Plxy)
/ x
(—¢,0} 10,0} (el
Figure 31

Example 11, Awn infinite conducring cvlinder C of small radius a is placed parallel
to an infinite plane conducting sheet and at u distance ¢ from it Show rhat the
cquation

¢ g log

ic real) gives appr;oxr'ma tely {i:c’ equipotentials and lines of force If the plaie is grounded
and the cvlinder is ar potenrial —log (2c/a).

Show that the capacity of this system per dnit length {5 {2 log (2cfa)] ™

If

I —¢
¢ — iy = log =
¢

then writing z — ¢ = re'¥, 7 - ¢ = r'%, we see that

vy =~ 2¢, and ry = a, $0 Hmt

2c
¢ = —log "
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As we go round C in the positive sense, 7, changes by an amount 2=, while the
total change in fi; is zero. We therefore have

~

4}{/3;' - 2=

Substiuting these results in equation (20}, we get the answer stated for the capacity
of the system,

The main advantage of the method of conjugate funciions is that
the theory of conformal representation can sometimes be employed to
reduce one problem to a simpler one whosesolutionisknown. Toshow
how this may be effected we consider the transformatio

AL (21)

in which the function f(z) is an analytic function of =z, which maps
the z plane on to the { plane.! Since d = f7(z) dz, it follows that
any small element of area A4 in the = plane in the neighborhood of
the point z = ¢ becomes an element of area f'(¢) 2A4 in the neighbor-
hoed of the point { = f(«) turned through an angle arg f"(a). 1t can
also be shown that il two curves ¢, Cy in the z plane intersect at an
angle =, then the images 1), T'y of these curves in the { plane intersect
at the same angle, the sense of rotation as well as the magnitude of «
being preserved. For this reason the transformation (21) is said to be a
conformal transformation.

The importance of conformal transformations in potential theory
arises from the fact that il & - iy = f(x -~ {y) is a conformal mapping
which takes a function &{x,v) into a function ®(&,), then

T G e

ail \ox? gyl

i <1 P

22)

so that if 4=/dC is not infinlte, and if

oth 0%
L= ()
vt at

it foliows that
g0 gl
FE Y

so that the function ®(£,,) 1s harmonic in the £y plane.  Furthermore
any curve in the xv plane along which the function #(x.1) is constant is
mapped into a curve in the £; plane along which the function O(£7) is
constant.
If there is a charge ¢ at the point ¢ in the - plane, then the complex
potential is
wo=s —2glog(z —¢)

U tbid.. pp. 69-81.
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In the transformed problem the complex potential
W= —2¢glog d—z(g |
= dg LS

.......... 2qlog (L —7) — Q

where € is analytic at the point { = 3 == f{¢). In the transformed
problem there is an equal charge ¢ at the point { == y into which the
point z = ¢ is transformed.

In any two-dimensional electrostatic problem the potential function
for prescribed boundaries and distribution of charges in the = plane is
equivalent to the potential function for the transformed boundaries and

” o

z plane Figure ky) £ plane

cuarges in the { plane. If the solution of the problem in the { plane
is known, then by transforming back to the z plane we can derive the
solution of the original problem, We shall illustrate the procedure by
means of an example.

Example 12. Midway between the grounded conducting planes 0 = Lu/(2n) there
is placed at a distance a from the origin a point charge q.  Show that the lines of force
have polar equations

PR g? = Zka®r™ sin (nf)
where k 15 a paratierer,

Tf we make the transformation

o= 77 o r"?()i”&
ihen the boundaries 6 = - =/{2n) go into the imaginary axis & = 0 in the ¢ plane,and

T point Plg,0) goes into the point 1{a*,0). Now the solution corresponding to a
guint charge g opposite a grounded conducting plane § = O is rcadi]y seen to be
n

W) = 2g lUg—g{—:T
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Transforming to the original variabies. we therefore have the complex potential

-t 7

: 7
Wiz} 2glog mee—

'

I we write = re'?, then -
Dot T - g = 2iatrtsin () Re 0
So-gt Pt G - 2aMr cos )
where tan © 2€j}jr:(na(-f1?—)
Thus 3 - —2g%, so that the tines of force » — constant huve cquations of the

form
P — g 2™ sin (i)
where & is a parameter.

For a complete account of the theory of conformal mappings the
reader is referred to “Conformal Representation,” by Z. Nehari
(McGraw-Hill, New York, [952). In the application of the theory to
the solution of particular problems it will be found useful to consult
H. Kober’s “Dictionary of Conformal Representations” (Dover,
New York, [932).

PROBLEMS

1. Prove that the function
¢ = sinxcoshy = Zcos xsinh p - % -y 0 dxy
is 4 harmonic function, and find the corresponding analytic function ¢ — .

2. 1f the two-dimensionat motion of a fluid consists of outward radial flow from a
poiut such that the rate of emission per volume per unit time is 2mi, we say
that the point is a simple source of strength m. Show that the complex
potential of such a source at a point (a,h) is given by

w= —mlog(z — )
where ¢ —a - (b,
3. Show that the relation
22 g
W= — i Iogﬁ

pives the motion in the quadrant of a circle due to equal sources and sinks at
the ends of its bounding radii.

4.1 Suppose that the irrotational twe-dimensional flow of incompressible inviseid
fluid in the = plane is described by a complex potential f(z). If there are no
rigid boundaries and if the singularities of f(z) are all at a distance greater than
a from the origin, show that when a rigid cireutar cylinder z = a is introduced
into the field of flow, the complex potential becomes

>

w = =7 (3)

1 This is Milne-Themsan's circle theorem. See L. M. Milne-Thomson, Proc.
Cambridee Phil. Soc., 36 {1940).
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5. Prove Blasius’ theorem that if, in a steadv two-dimensional irrotational
motion given by the complex potential w - f{z), the hydrodynamical pressures
on the contour of a fixed cyviinder are repn.sented by a force (X,Y)and a
couple N about the origin, then

{ w2
Y — iy .gipf —) oz
o (cl:
(I'w

where the integrations are round any contour which surrounds the cylinder.
6. Show that the transformation
z = qilkw + 1 — &%)

determines the potential and stream functions for a conductor at potential
¢ = 0, of which the boundary is given by the freedom equations

= g(f — sin 0), y = all —cosf)

Show that at points where y is large and negative the field is uniform and of
strength (ak)™.

7. The motion of a sheet of liquid in the infinite strip of the z plane between the
lines y = O and v — @ is due Lo a unit source and a unit sink at the points
(0,a/3) and (0,2a/3), respectively, Prove that the motion of the liquid can be
determined by the transformation

2(coshmzfa) — 1

2coshmzfu) = 1

and find the pressure at any point on the x axis,

t3. Green's Function for the Two-dimensional Equation

The theory of the Green’s function for the two-dimensional Laplace
equation may be developed along lines similar to those of Sec. 8. If
we put

oy’ oy’
P - [ » - -
e €=v3

in equation (4) of Sec. 11, we find that

i R i "a-l,z‘«‘ aq;" az,z‘ alp'
'Lf AV ds -4 ' (“é""{“é“)}“ - a‘l' a}) dS = ‘ ¥ WCI'S' (1)
If we interchange  and v’ and subtract the two equations, we find that
" 5 - . gy’ , Oy’
‘A (Vi — ¥'Vip) dS [ (_w?}; vy )d'i (2)

Suppose that P with coordinates (x,)) is a point in the interior of the
region § in which the function w is assumed to be harmonic. Draw a
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circle I' with center /7 and small radius ¢ (¢[. Fig. 33), and apply the
result (2) to the region K bounded by the curves C and 1" with
1

y — IG ‘.._, -17!

Since both % and 4 are harmonic, it follows thag if 5 s measured in the
directions shown in Fig. 33,

.‘-i f, 'Iia ) I ; ]781{'; .
{_ ‘ J(- ) l_z‘['('\ ¥) on §O*Tr -t ]O““ér - rln }d‘& 0 Q)

Proceeding as in the three-dimensional case, we can show that

~

a1,
‘L‘lf*:""ém”l()gr—r,tdﬁ — Hi'i(\ 1/) O(E‘)

and that
\ I oy
log ——r = ds ‘
| e —rTon
where M is an upper bound of dy/dr.
Inserting these resulls into equation
(3), we find that
i 1 Gulxy
w(x,p) = . f Iogmmﬂ )

l “r—1 dir

-2aMelog e

w7

Figure 33 et i lx_lm_] !
lf('\ -:} ) a” EOC 11,! e r;; d.S (4)

analogous to equation (3) of Sec. 8.
Il we now introduce a Green’s function G{x,y;x",¥"), defined by the
eguations

P P 1
G('Y~,i.;'\. :}‘.) - H"(xa_.i‘ . ¥ ) - iog m (5)
where the function w(x,y;x",)") satisfies the relations
g @
(W -a}—z) wix,y 1y = 0 (6)
wx,px’y )y =loglr —rlon C (7

then just as in the three-dimensional case the solution of the Dirichlet
problem

vy — 0 within S, y— f(x,monC ®)
1s given by the expression

R A A
wep = o | py TN 4 ©)

where n is the outward-drawn normal to the boundary curve C.
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We consider two special cases:

{a) Dirichler’s Problem for a Half Plane. Supposa that we wish to
solve the boundary value problem \—fz; =0 for x 20, y = f{y) on
x=0, and v >0 as x > oo, If Pis the point (r}’) (x =0, I is
(—x,¥), and Q is (x,)"), then

on

oF

(cf. Fig. 25) satisfies both equation (6) and equation (7), since HQ = PQ
on x = 0. The required Green’s function is therefore

{(x +x )“ Ay =y

Glx,y:xy) = log

Glx,y'y) = 4 lo ) 10
ey = log s " (10)
Now on C
ool -
an o ax’, & 707 ) _3C2 L (J; . Jg’)!
so that substituting in equation (9), we find that
oo W d K
wxy) = ( L4y (11)

xJoo xz - (J, . }'.f)2
This is in agreement with what we found in Prob. 3 of Sec. 8 and Prob. 4
of Sec. 11.

(b)Y Dirichiet’s Problem for a Circle. In this instance we wish to find
a solution of the boundary value problem

Vig=0,r<a, w=f@)onr=a

We take P to be the point (r,8), @ to be (+',8"), and II to be the inverse
point to P and therefore to have coordinates (@%/r, 8) (cf. Fig. 26).
We see that
r-HQ
G(ro 0y =1
(r0:r',0") °8 7 TPp
is harmonic within the circle except at the point O, where it has the
right kind of singularity. Further, G vanishes on the circle r' = a.
We therefore have

G(r8:;r' 8 = tlog

a® + gt — 2rr cos (07 — B)
PRt 2rr cos (6" — )

Now on C
6 (G L o
on (E}r’, von @ —2arcos (0 —B) + r¥)
so that
a2 . ra ['27: f(gr) da!
wlr,B) =
wir) 27 Jo a® —2arcos (8 —0) + 7* 12

in agreement with what we found previously in Prob. 3 of Sec. 1.
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Equation (12) is known as Poisson’s integral solution of the two-dimen-
sional problem.

We shall conclude this section with a theorem about the two-dimen-
sional Dirichlet problem which has no counterpart in three-dimensional
space. It concerns the relation between conformal mapping and
Green’s function, Suppose that the function

e /(“)
maps the region S in the xy plane on the unit cirele in the we plane in
such a way that Jla) = 0. Then the function f must be of the form

f(:) — (Z o [;)(_)3(3)
where g is regular dndf Zy=1on C. Hence
log f(2) = log (z — &)~ glz)

vanishes on €, i3 harmonic in S, and has a singularity like log r, so that

og | f(z )] = =G (X, i)

On the other hand, log!_f(:)] is determined by G{x,1u,r), and
therefore so is Rg(z), and hence g(z) is determined within a constanl.
The problem of the conformal mapping of a region S in the xy plane on
the unit circle in the we plane is equivalent to that of finding the Green’s
function of 8, Le., to solving an arbitrary Dirichlet problem for the
region S.

PROBLEMS

1. Use Poisson's mttgrdl formuda to show that if the function 3 is harmonic in a
circle 5 and continuous on the closure of S, the value of v at the center of S
is equal to the anthmetic mean of its value on the circumference of S.

2. If the function w(x.} is harmonic within a circle of radius a with center the
origin, prove that

¥(x) 4 p(00) = R —

where C denotes the circle | 2| == @ in the complex = plane.
Deduce that every harmonic function w{x,y) is analytic in x and ».

3. If the function w(x,)) is harmonic in the interior of a region § and if 4 i3 an
interior point of .5 at which the value of y is equal to the least upper bound of
its values in .5 and on its boundary, prove that y is a constant.

4. Prove that if w(x, ¥ (f = 1,2, . . .} is a sequence of functions each of which is
harmonic in the interior of a finite region ¥ and continbous in .S and on its
boundary and if this sequence converges uniformly on the boundary of .5, then
it also converges uniformly in the interior of S to a fimit function which is
harmonic in the interior of S.*

5. Prove that if a series of nonnegative functions ,(x,1), harmonic in the interior
of .5, converges at some interior point of 5, then this series converges to a
harmonic function at every point of 5.

* This is known as Harnuack’s first theorem.
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Show also that the convergence is uniform in every closed bounded region
of 5.¢

Prove that if a noncenstant function p(x,»} s harmonic in the whole piane, it
cannot be bounded from above or from below (Liourille’s theorens),

MISCELLANEOUS PROBLEMS

Prove that if ¥, is a homogeneous function of x, y, 7z of degree » and
I I N -1
VM) = mim o 2n b DY, YR,
Deduce Kelvin’s theorem that if' ¥, is & harmonic function, so aiso is
P 2Fi—1 Vn
Prove that if b, is a hemogeneous function of x, y, z of degree » which
satisties Laplace’s equation, then
+5

areq KA

axf ape gr®
is a homogeneous function of degree n — p— g — s satisfying Laplace’s equation.
Prove that if ¥,{x,5,z) is a homogeneous rational integral function of degree
n, the function

-{1 e _M._rf_ vE o4 r V‘i _ H V(’C 7)
l 22n — 1} 242 - 12n - B R A
g2 o2 Ss
where P e o e

is a harmonic function,

A number of point charges e, are placed in positions having rectangular
coordinates (§,,9;,0).  Show that inside any sphere around O in which there
are no charges the electrostatic potential is given by

&€

‘#{x»}’: Z) Z o r Sn

2,
where S, = ¥ e P,
3 JE‘P};H_I r.( ;,)

o i : Epx oy o Gz

Pt ey s (e gl b (DY, = LT
Pkr

Show that if ¢ is a symmetrical function of &% »* and 2% then S, = 0 for

= 1, 2, angd 3.

Find expressions for the potential near O, correct to terms in r*, for:
(@) six equal charges ¢ at the six points (£a,0,0); (0,240} (0,0,49);
() eight equal charges —e at the eight points (3-b, 15, 2 ).

Show that 10 the order considered the electric intensities are the same if
8a% = 817 3% [Py = $(3p% — 1) and Py = 3548 — 3002 + 3) may be
assumed. ]

A mass a1 15 at a point whose displacement from the origin is a.  Show that
its potential at a sufficiently great distance r from the origin is

[ 1 1 vm

— . I . & . . H T S

I =@ V)t 5@ V)P = 5@ V) [

where ¥ is the vector operator with components #/éx, 8/3y, 3/éz.

t This 1s known as Harnack’s second theorem.
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Eight masses m are placed at the points &1, =1, =1, Show that at large
distances from the origin the potential is

Vo 8ym  ddyml*

5% 4t~ 2% — 3% 0 smalier terms
p

Fe ot
Deduce, or otherwise prove, that near the origin

B 1dym
o= o — —— [5x4 3 Y - 3% 4 smalier terms
V3R
6. Show that the gravitaljonal potential produced by a given distribution of
matier at a distant point P is given approximately by

Al A4 =~ B - — 3

V=g RS

where m is its mass, A, B, and C are its principal moments of inertia at its
mass center G, J is the moment of inertia about GP, and R is the distance GP.

Retative 1o polar coordinates with & as pole, the surfaces of equal density
arer = g + s(@)§y(6$) where e{a) is a small quantity whose square is negligible
and 8, is a surface harmonic of second order; the boundary of the matter is
the surface of equal densily given by a = &, Show thal the second term in the
cxpression for 1 reduces to

il Fa O]
u i .
= pla) C%d (ate) da j j 5, Py(c0s 87 sin 6 d8 dé
where 6" is the angle between r and R,
7. If the electrostatic potential of a system is given by

g 3

AG® E P L 2%z a1
x

show that the lines of force lie on the surfaces
x2 },2 4ozt = Bix? 4 '].2)2;3

8. The density at any point of a thin spherical shelt of total mass M varies
inversely as the distance of the point from a poiat € inside the shell at a
distance ¢ from its center ¢, Denoting QP by r and the angle POC by 6,
prove that the potential at an external point P is

M ‘%‘ _c_’)n P (cos 6)
[P, 2n 4]
=k

i

Prove that this resuit can be written in the form

2ve b xHu® ~ 2xpcos -y

M e Ix
"G {dx

and express the potential at a point inside the sheli in a simitar form.
9. A smalt magnet is placed at the center of & sphericat shell of iron of radii g and

b and permeability x.  Show that the ficld of force cutside the shetl is reduced
by the presence of the iron in the ratio

o o IR -1
[ .2 #z) (1 aS)]

"9 T/
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A neurly spherical grounded conductor has an equation
ro=dfl 0 e P,(cos ]

where ¢ is small.  Show that if' a point charge is placed at # == 0, ¢ =~ ¢~ o,
the total induced charge is
Noel

)

A grounded nearly spherical conductor whose surface has the equation

N l
—ail = > ¢ P, (cost)
A )

is placed in a uniform electric field £ which is parallel to the axis of symmetry
of the conductor.  Show that if the squares and products of the ¢'s can be
neglected, the polential is given by

Ea “(1 g f)(‘;’) 5} Picos 0)

v

i on po ajnrt
-3 Z (_’fr 1 Bt T 20 0 3 fu 1) (?’ Fulcos 0)]’ " 0

w2

A spherical conductor of internal radius # which is uncharged and insulated
surrounds a spherical conductor of radius @, the distance between their
centers being ¢, which is small. The charge on the inner conductor is E.
Show that the surface density at a point P on the inner conductor is

E {1 3¢ cos 0)
4z \@* M — @b
where ¢ is the angle that the radius through P makes with the line of centers
and terms in ¢ are neglected.

A pownt charge ¢ is placed at a point @ distant ¢ from the center O of two
hollow concentric uninsulated spheres of radii @, & (b = ¢ 7+ a).  Show that
the charge induced in the inner sphere is

cal — ¢

c b~ u

If & thin plane conducting disk bounded by two concentric circles of radii
a, b is placed between the spheres touching them along great circles in a plane
perpendicular (o O, show that if @ -7 ¢, the charge induced on the inner

sphere is approximately
_ 3ea® ( | ('3)
&\ 75

A grounded conducting sphere of radius a is placed with its center at the origin
of coordinates in a field whaose potential is

-
& = > AP {cos )
e
=1
Determine the charge distribution jnduced on the sphere, and show that the
total induced charge is zero.
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Prove also that there s a force acting on the sphere in the direction 0 - 0
of amount

N A, @
]

=1

Deduce the force on the sphere if the initial fiefd has intensity components

2y . Ey Ez
E, -—E(I-J)> E, ==, E, ==
a . a a
at the point {x,1,) referred to rectangular Cartesian axes, & being a constant.
15, That portion of a sphere of rudius ¢ lving between § - wand ¥ - = - 2 is
uniformly ¢lectrified with o surface density 5. Show that the poientiud at an
external point is

= il
4~rarr L()S:c Z {P,,, 1 (cos )y — Py, fcos x}](;} P, {cos 0}}

H

16, Fir9.¢) is the potential of an clectrostatic ficld in free space due to a given
charge distribution.  If there are no charges within r < « and if the volume
¢+ ais then filled with a homoegencous diclectric of diclectric constant
prove that the potential functions inside and cuiside the sphere become

2 - [
Vo = —— Firid) e, RV G,y df Fooa
= TIERT ‘
w—1 n P
i Virdig) = —— o~ Pl b} - e - o Viat 0y dt rea
=1 a (- Y a Ja

where # = wffx 0 P and v - ar.

17. A sphere of diclectric consists of a spherical core and # - 1 concentric layers,
the radii of the boundaries being «,, a5 . .+ ., a,. The dicleetric constants in
the # regions are ky, ki . . ., k,, where cach is constant throughout the
corresponding region.  Write down the equations which determine the
potential at any point when the sphere is placed in a uniform field of electric
{orce.

Deduce that when & sphere of radius g in which the diclectric constant k(r)
is a differentizble function of the distance r from the center is placed in a
uniform field, the potential at any point may be expressed in the form

AW < B cos 0

where 8 is the angle between the radius through the point and the direction of
the field and A(ry, Bir) satisfy the differential equations

di 1 dB dikA) 2 dkB)

dr  Pdr ey odr

together with certain boundary conditions which should be stated.

18, A solid sphere of radius 4 is composed of magnetizable matertat for which the
pumeabzlzty at the center is 4 and a1 the surface is unity,  When the sphere is
piaced in a uniform field H in the direction 8 = 0, the scalar potential inside
the sphere is of the form (Ar - Br¥) cosfi, wlzere A and B are constants.
Find the permeability at distance r (< g).
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Show that at a poim on the diametcr of svmmetry the magnetic induction is
of magnitude [2aH/5(a — r).

Show that the potential at external points due to a laver of attracting matter
distributed over the surface of radius a with surface dcnam S, is

Gt H
(2n = Lt

where §, is a surface spherical harmonic of degree n.
Show that a distribution of matter of surface density £z* over the hollow
sphere v — a produces a potential
dm ka*  dn ka¥(2:7 - X - )

3 r 15 o
in the surrounding space.

A uniform hellow conducting sphere of radius ¢ and conductivity @ and small
thickness ¢ has two spherical terminals of radius » and infinitc conductivity
with their centers at opposite ends of a diameter of the sphere. The terminals
are majntained at a constant potential difierence V. Show that the current
which passes is
2ratV
logda/k - 1)

Current flows through a medium of uniform conductivity # between two
nearly concentric splieres of radii b, a(b > @) whose centers arc a small
distance «q apart. The potential difference between the electrodes is V.
P'rove that the current density at the outer electrode is

aVqa 'lfl . 3ab® cos b}
~ayb | B —at

where # is the angle between the line of centers and the radius vector to the
pwint where the current density is specified.

A uniform infinite metal shect of conductivity , contains a spherical inclusion
of radivs ¢ and conductivity ¢,.  The current enters the medium by two small
electrodes of radius 9, whose centers ure on a diameter of the sphere al equal
distunces A .- g from the center of the sphere and on opposite sides of it
Show that the equivalent resistance is

| “ I ac\ N G)dn 3 »
"i';"(;"i ls - "i; o Z (2n ) ("’5 A 'O(ﬁ}

Pl SN

P =)
Ty —

C‘a

wherg A, = Zm(n e, 2n 5 D

A nonconducting pla.m lamina bounded by two concentric circles of radil
ay and a; (a, - a,) 15 charged with elu,muw to u uniform surface density
electrostutic units and made to rotate in its own plane with constant angular
velocity e about its center. A soft iron sphere of radius b (4 - ay) and
permeability j is placed with its center at the center of the lamina, Find the
magnetic intensity # at the center of the sphere, and show that at a great
distance from the sphere the field of the sphere is the same as that of a dipole
of moment
2raob¥a, — a)ix — 1)
clpe - 2)
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A sphere of radius ¢ is fixed in & perfect incompressibic fluid which is flowing
past it in such a manner that at a great distance from the sphere the velocity is
constant. A colared particle of flurd is started upstream at a point which lies
on the axis of the system, and its motion is obscrved.  if, while the particle is
upstream, its distance changes from 25 to 2, (measured from center) tn time 7,
show that the maximum value of the velocity of slip on the sphere is

3 S - @z, — @)
a7 %“ ") g OB Py, -

v dalz, — za)
::)]

v 3 Aeoyzy - By ooalzy -

A uniform solid sphere of radius ¢ and mass M is surrounded by perfect
incompressible fluid of uniform density p; the fluid is enclosed by a spherical
shell of radius b concentric with the solid sphere,  The system s set into
motion by an impulse applied to the shell, the initial velocity of which is .
Prove that the initial velocity U of the solid sphere is given by

{w 2rpa 20t - A, 2mpadh?

L - - - ; = —

| 3P - ah J b

A sphere of radius @ moves with velocity U/ ia a liquid of which the only
boundary is an infinite rigid plane. I the liquid s at rest at a great distance
from the sphere, show that its kinetie energy when the sphere is moving
normal to the boundary is

where 4 is the distance of the center of the sphere Irom the plane and terms of
order «'/d? are neglected.

A plane annuius of matter is bounded by concentric circles of radii 4 and
bih - a) and is of constant surface density o.  Show that its gravitational
potential at a point an its axis at a distance z from its center is

2l il - 22— (g? -+ AR

Obtain an expression for the potential at a point distant # (= a) from the
center.  Show that the direction of the attraction at a point in the plane of the
disk distant » { = #) from the center is in the plane of the disk, and obtain an
expression for its magnitude in the form of an infinite serics.

The potential near the origin of a distribution of matier on a circular plate is
given by the series
X AP (cos §)

9]

o

Show that the surface density at a point of the plate is

! -3, 1-3:5 .
‘gi/"l’*@—fw" s At ;

Show that if r = &° -+ x* — 20x cos 8},
G?' - .'\(1 3 1 1
1a2 > v 2x— (ﬁ) —
{e* - X7 = 2uxcosfhi ax 1r v

and hence expand the expression in ascending powers of 1/x.
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A line charge of density &7 is set along the v anis extending from x = [t
x == . A grounded conducting sphere of radius & { [} is placed with its
center at the origin.  Show that the surface density at any point {#.43 on the
spherg is

A sphere of soft fron of radius & and of uniform permeability y is placed with
its center at & point on the axis distant # from the center of a circular coil of
radius ¢ carrying a current /. If &8 -2 p* 2, show that the fickd at the
center of the coil is

; 'L\ in - )/1 aj!? l%
2. ‘rfg o -1 ail .
GTIC )Z[ H— Mn — I}'{ ) hr=1y
L H
a ( b |
. A e b
where 7 25" §f33 {:§

The functions y,{r} and y.{r} arc determined by the conditions:
(iy wp.r} is harmonic and regular outside the sphere S, o4, and
(1) ~apefry as v -+ v, where p {ry is harmonic;

(ily n(ry is harmonic and regular inside S

Gily  pary - oAy, and g (@ for) = i dpfary on S,

where ) and p; are positive constants.

Prove that

. rt S

pA0) = an (- ?A)»—vﬂ(” 7 AL 2 f vn(fféf) b
r S0 A

~1
pAr) - 2k (r) - k(1 - 2k) ’ polirys =1 i
0

where k- pafise, 1 #ysothat O & 7 L

A magnetic sphere of radius g and permeability » is placed at the origin in a
vacium in which the undisturbed magnetic field has potential F,(x,1,z), a
homogeneous [unction of degree o in x, and -, Show that the gntcntial
of the disturbed ficld is given by

1,

BT
—— Vx, vz} g
o e - | -
o= e
f : ;{(‘H _ ;)uiii—z / ]

A magnctic dipole of moment s s situated in a vacuum at a point with
position vector { outside a sphere of radius @ and permeability ;. Show
that the magnetic potential in the interior of the sphere is

2 me{r £} me*(/r - f)
p1 I (P €.” ) ‘u r — 1P

and determine the potential at an external point.

Jooafip 1Y ff

The irro{atiom stcady flow of a perfect fluid is symmetrical about the v axis.
If & = 32 - 721 show that the components of fiuid velocity in the directions
of x Lmd 3, respeciively, can be expressed in the form

[y [ dyp

[ A
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where the function (called Stohes” strecn fimction) satisfies the palrtia
differential equation
& (E_ 8#;‘) gtl E;;-‘) 0

dx 1 dx din \ s 2o

Show that the stream function

'y g
— Y @tysin® i
2r
where (r,0) are spherical polar coordinates, determines an irrotational flow
outside a rigid spherical boundary r -- a, the velocity at u large distance being
uniform and of magnitude U, and that
3{;'!!'2 R
i e e (@ - PP} sin® 0
! 46{2 }
determines a flow ingide the same boundary.  Find the vorticity in the interiol
flow.
Show by considering the continuity of velocity and pressure at r = g thai
the twe flows can coexist in the same liguid without a rigid boundary atr = a

Prove that the equation satisfied by the stream function in cylindrica
coordinates (x4}, with the x axiz as axis of symmetry, is transformed by the
conformal transformation

7= x =0 .:f(i_f), ¢ e

e/l awy 21 E‘g}‘) o
85{0_} o= 3?;((?} (?ij

v / ’

iy

Fie

nto

Show that
UPcosh & = sinh? & log tanh 18 sin®y

?15,’ = — -
a b E{)ga b —c
EP0 v b o
where x s = ccosh{f —m)

satisfies all the conditions required of a stream function which describes the
flow when a prolate s‘pémmid of semiaxes a = ¢ cosh §q, b = sinh &5 moves
with constant velogity U in the direction of its axis of symmetry through
unbounded liquid otherwise at rest.

I a conducting medium has the form of a circujar sheet of radius b and smal:
thickness 1, and if the electrodes are coplanar circles of small radii @ with thef
centers at the ends of a diameter, prove that the resistance between the
electrodes is approximately

2 1o 2h
Zog =2
el 5 o
Two sources each of strength s exist at the points z = = (c real), togethe:

with a sink —~2m at z — 0. Determine the complex potential of the fluid
motion on the assumption that it is two-dimensional, and prove that the

streamlines are the curves

(x4 = Pt = hay)

where 7 is a real parameter.
Show also that the fluid speed at any point Pis 2mc*/r rerg, Where ry, ry, and
ry are the distances of P from the sources and the sink.
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Four equal circular perfectly conducting clectrodes of snall radius are placed
with their centers at the corners of a square of srde « in an infinite sheet of metal
of thickness ¢+ and uniform conductivity #. One pair of apposite corners is at
one potential, and the other pair at a different potential: show that the
resistance between the pairs s

fog -
2t 29 (.

Show that the streamline that touches a side at the middle point leaves the
elecirode at an angle tan~! 1 with the side.

A line source is in the presence of an infinite plane on which is fixed a semi-
circular cylindrical boss of radius a, the line source being parallel to the axis of
the boss, If the source is at a distance ¢ { @) from the plane and the axis of
the bogs, find the velocity potential of the fluid motion.  Show that the radius
to the point on the boss at which the pressure is 4 minimum makes an angle 6
with the radius 1o the source, where

tanf - ———
-t
A lpng cireutur cytinder of radius ¢ is fixed with (ts axis paraliel to. and at a
distunce ¢ from, an infinite plane wall. The space outside the cylinder is
filied with liquid, and there is a circulation « about the cylinder.  Prove that
the resultant of fluid pressure on the cylinder is a force toward the wall of
nugnitude
KB’D
4 y 2 o— i

A ¢vlinder whose normal section s the ellipse x%a® - )#B* == 1 moves in an
infinite fluid «at infinity. Find the appropriate » functions when: (a) the
cylinder (s rotating about its axis with & constant angular velacity m; (b} itis
moving with a constant velocity of translation perpendicular to its axis;
(¢} the cvlinder rotates with constant angular veiocity about a line parallel to
the axis and passing through the point (x,,1y).

If at any moment the axis of rotation is transferred from the axis of the
cylinder to the parallel line through (xg,1g) without aliering the angular
velocity, show that the increase of the kinetic energy of the fuid is

Lmpoa®xs + b%E)
per unit length of axis.

A uniform stream of incomprcssible perfect liquid is disturbed by an infinite

strip placed broadside on to the stream; the stream is in the direction Qy, and

the strip ou,upms the region p = 0, [ x| < a. By using the transformaticn

22 = 22 — g or otherwise, find the w function for the disturbed motion,
Prove (a) that the ve Iocny at a point on the axis Oy is

BRTIRY
{2
SR

where Vis the velocity of the undisturbed stream, and (&) that the equation of a
streamiine is

(8-

v
e

=1

%

where 2 1s a constant.
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Show that the transformation = 2} maps the part of the - plane to the
right of the purabola x L-’ an the part of the { plane to the right of the
ling & 4.

Henge, or otherwise, show that the complex potential

Bty -l

(e

bl

i (L -

is compatible with the parabola as boundary and represents a flow which is
uniformly in the -x direction, as « -« in the presence of the parabolic
obstacle,

Show that the transformation s - sin (#2/2a), where - - % i, w — 0 ir,
transforms the region § in the z plune, defined by v - a, o 0, into
the upper half of the wplanc.  State which portions of the « axis correspond to
each of the three lines bounding S.
Show also that the transformation w -~ log{(z - Dz )} transforms the
upper half of the z plane into the infinite strip 0 == ¢ - =7 of the w plane,
Deduce, or show otherwise, that the imaginary part of

sin (=2 -1
; ]

satisfies Laplace’s equation in the region S and is equal to zero ¢n the infinite
boundarics and to ¥, on the finite boundary of §.

Show that the conformal representations ¢ ¢* “and {  coshwz/b can be
used to map an infinite strip of width & in the z plane and a semi-infinite
strip of the same width in the 7 plane, respectively, onto the upper half of a
7 planc,

Find the velocity ?otentéal in a semi-infinite strip bounded by x - 0, 3 - 0,
v b due 1o the existence of 4 source at the origin from which a volume =1
of liquid flows into the region per unit time.

Two semi-infinite conducting plates ¥ e 0, x <= 0 and ¥y g, x o & are at
potentials O and V), respectively.  Show that the electrostatic field in their
neighborhood is given by the complex potential function s, whose real part is
the electrostatic potential ¥, wherc

2nz 2oiw 2w
I Vs

Prove that the line of force passing between the extreme edges of the plates has
the form of a cycloid,

Show that the domain outside the circle |2] - @ in the Z plane is transformed
into the domain outside a circular arc of equal radius in the > plane by the
conformal relation

o actin { £ et ‘}2

- aeE Ve e

where the circular arc subtends an angle 4= at its center,  Show atso that 2/Z
terds 1o sin = at infinity,

A ¢y linder whose section is the above circular arc is placed in a stream of
fisid in which the velocity at a great distance from the alinder is V. This
velocity is perpendicular 1o the generators and makes a p()sltm angle 7 with
the radius from the center to the mlddlc point of the arc. If in addition there
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15 a circulation & round the cylinder in the positive sense, show that the
complex potential ¢ can be derived from

= Vsiny [ Zem'd

bv eliminating Z between this cyuation and the above relation.
Prove that the velocity at the upper edge is finitc when, and ouly when,
k = 2mgV{sing sin{2z -]

In the ¢conformal transformation
( ay” (: ¢
L oal A

aand ¢ are real and positive, and ¢, 7 are connected with ry, r,, 0 by the relations

£ Y ("1 ' JU ol ©c_n P
T C Fo

Wy

—w <2 § < w  Show that the transformation transforms the region outside
1}1&. f]gl.llu. formed b) WO minor ares (0 = =) of orthogonal ¢ircles through

where ry, ry are the distances of the point z from the points ¢ and

the region Outside the circle Lf - a.

Hence show that if & conducting cylinder whose normal section is formed
by these arcs is freely charged with electricity, the density at any point of the
ar¢s is proportional to

rl ! f';' 4 (."]t" . f‘;) ...... L

Prove that the transformation

y "

(]r, we A H ...... r:ﬁg g" o, I

L!-‘ o]
where 7, are real numbers such that 7. <z, |, méaps conformally the interior
of a polygon of # sides with exterior angles =, in the { plane ({ ~ & -+ i)
onto the upper half of the = plune, W hat emendations are necessary if 2
vertex of the polygon corresponds to the point at infinity on the real axis in the
z pla ne?

infinite s:rlp bounded b) £ =0, z, o s OO the upper half of the
7 plane,
In the plane of two-dimensional motion, liquid flows from a vessel whose sides
are defined bv

¥ o s 0 yoe - mx =0 x =0

where m -« tan (w/2n).  If the internal angle of the vessel is =/, obtain an
equation giving implicitly the complex potential of the liquid motion.
Fluid is introduced to the half space z = 0 through a circular aperture r < @
of the rigid plane z .- 0, State the conditions to be satisfied by the velocity
potential in these circumstances, and show that it may be expressed in the form
o fPsinEa) L, .
L [- ._.._E_Lg & S5y dE
L] s
where 3 is a constant.  Hence determine the components of the velocity at any
point in the fluid.
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Two axially symmetrical functions ¢4(p,2), ¥4(p,2) satisty the conditions
iy ¥, =0,z<0; Vi, =0,z 0

on_ T

~ forz =0,p <1
a9z dz

iy oy =y and
(iii) %, —~0 as p? 4 22— @

{iv) L0 forz =0, e 1

az
Wy e
V) et - as z -» o
() = Y $ 2 -
Show that

o0 i)
Y= { §AGe=So(Sp) df, yy = w = Uz f EB(S)e ) yfép) d
0 ]

v

where « is a constant and

f HAE) ~ BEV ) de =k p <1
1]

Py

l E1AE) + BOVE)di = U p < 1
JO

* ol
' EAET(Ep) e = 0 g =1

o

Verify that these conditions are satisfied by choosing

o rsiné UL o wsiné  UJH
A = 5 S B = - 3k

and that

] -] e e
82 § pmo 87 { pwt R | 4 1)



Chapter 5

THE WAVE EQUATION

In this chapter we shall consider the wave equation

which is a typical hyperbolic equation. This equation is sometimes
wriften in the form

where [7]* denotes the operator
82 82 62 1 2

oxt g et o
If we assume a solution of the wave equation of the form
== 1_{’1(',’("}'52)3:7‘ bt

then the function 1" must satisfy the equation

which is called the space form of ithe wave equation or Helmholtz's
cfuetion.

I. The Occurrence of the Wave Equation in Physics

We shall begin this chapter by listing several kinds of situations in
physics which can be discussed by means of the theory of the wave
equation,

(a) Transverse Vibrations of a Siring. If a string of uniform [inear
density p is stretched to a uniform tension 77, and if, in the equilibrium
position, the string coincides with the x axis, then when the string is
Jisturbed slightly from its equilibrium position, the transverse dis-
slacement p(x,7) satisfies the one-dimensional wave equation

a2y 1 &%y 1
ot 2 opp (1)

209
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where ¢® = Tfp. At any point x := ¢ of the string which is fixed
a1y = 0 for all values of 1.

(8) Longitudinal Vibraiions in ¢ Bar. If a uniform bar of elaslic
material of uniform cross section whose axis coincides with Ox is
stressed in such a way that each point of a typical cross section of the
bar takes the same displacement 5(x,/), then

grE I o2

oxt  oF o
where ¢* == E/p. E being the Young's modulus and p the density of the
material of the bar. The stress al any point in the bar is

(2)

ot
0= F— 3

o (3)
For instance, suppose that the velocity of the end x = 0 of the bar
0 = x = @ 1s preseribed o be ¢ff), say, and that the other end x =~ ¢ is
free from stress.  Suppose further that at that time 7 = O the bar is at
rest. Then the fongitudinal displacement of sections of the bar are
determined by the partial differential equation (2} and the boundary and
initial conditions
. 0
o= =1 for x == 0
M 5 =

., 0f
(i1 P 0 for x =«

g5 .
{1il) ‘f:f«g;;() at /= 0for 0= x <l ¢

(¢) Longitudinal Sound Wares. 1f plane waves of sound are being
propagated in a horn whose cross section for the section with abscissa
X is A(x) in such a way that every point of that section has the same
fongitudinal displacement &(x,f), then & salisfies the partial differential
equation

gl ¢ o+

N
ax 14 ax (Ai—)]' PRI (4

Fry

which reduces to the one-dimensional wave equation (2) in the case in
which the cross section is uniform. In equation (4)

2 {dp
=g g

where the suffix 0 denotes that we take the value of dp/dp in the equili-
brium state. The change in pressure in the gas from the equifibrium
value py is given by the formula

-
o

P po= — g (6)
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where p, is the density of the gas in the equilibrium state.  For instance,
if we are considering the motion of the gas when a sound wave passes

must determine solutions of equation (4) which are Sﬁch thdt
23

== () at v == Oand at x == ¢
ox

(&) Electric Signals in Cables.  We have already remarked (in Sec. 2
of Chap. 3) that if the resistance per unit length R, and the leakage
parameter & are both zero, the voltage ¥(x,#) and the current z{x,f)
both satisfy the one-dimensional wave equation, with wave velocity ¢
defined by the equation

P :
¢ == (N
where L 1s the inductance and C the capacity per unit length.

(e) Transverse Vibrations of « Membrane. 1f a thin elastic membrane
of uniform areal density ¢ is stretched to a uniform tension 7, and if,
in the equilibrium position, the membrane coincides with the xy plane,
then the small transverse vibrations of the membrane are governed by
the wave equation

(8)

where z(x,),1) is the transverse displacement (assumed smaif) at time ¢
of the point (x,1) of the membrane. The wave velocity ¢ is defined by
the equation

o 9

1f the membrane is held fixed at its boundary T', then we must have z == 0
on I' for alf values of 1.

(Y Sound Waves in Space.  Suppose that because of the passage of a
sound wave the gas at the point (x,p,z) at time £ has velocity v = (1,v,w)
and that the pressure and density there and then are p, p, respectively;
then if py, pg are the corresponding values in the equilibrium state, we
may write

p = p(l -+ 5), P = Po -+ pys (10
where s is called the condensation of the gas and ¢? is given by equation
133, 1f we substitute these expressions in the equations of motion

p—— = —grad p (1)
D g 2 g ¢

shere e e e o D ,_é; s
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and restrict ourselves to small oscillations of the gas, we find that

av :
Pog, = -¢%py grad s (12)

Similarly, the continuity equation

Dp .
—— +pdivy =20
Dr 7 F
is equivalent, in this approximation, to the equation
ds .
2o Fr d-podivv = 0 (13

If the motion of the gas is irrotational, then there exists a scalar function
¢ with the property that
v— —grad ¢ (14)

Substituting from equation (14) into equation (12), we find that for
small oscillations

grad {Z—(f — c'g.v) =0 (15)
Similarly, equation (13) is equivalent to
55 [ 2 i
5 =V {16)

Eliminating s between equations (15) and (16), we find that ¢ satisfies
the wave equation

1 d%
Vi = — — 1
¢ oo (17)
(g) Electromagneiic Wares, If we wrile
d
H = curi} A, Em—i—‘i—gradé
) = '

then Maxwell’s equations
divE =4dmp, divH=20

1 b5j
curlE = — =25, cur[H;:‘.ll‘_E_lf‘
¢ ot ¢ ¢ Ot

are satisfied identically provided that A and ¢ satisfy the equations

I 0°A 4= 1 0%
‘TzA“;“";m”“"’“i v :—."_.—~—4#J

ot o ¢’ ? c* ar? f

Therefore in the absence of charges or currents ¢ and the components of
A satisfy the wave equation,
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(h) Elastic Waves n Solids. 1f (u,0,w) denote the components of the
displacement vector v al the point (x,y.z), then the components of the
stress tensor are given by the equations

fGu  Ov  Ow du ov 6w)
s A — J— S — £ 2 —y —— g —
(uns) = 2 5 3y 7 52) =2 (Bx 3y @z,
( B ( dw dv du  Ow dv  du
Tue i) gy 0z 0z 9x ax + a}.»)

where Z and p are Lamé’s constants, The equations of motion are

da, | 01y | O, 0%y

Ty T P

where F = (X, ¥,Z) is the body force at (x,y,2). It we write
F - grad ® + curl ¢

then it is easily shown that the displacement vector can be taken in the
form
v — grad ¢ - curl ¢

provided that ¢ and J» satisfy the equations

¢, ot

— - Vi = D, - VR =

arz IV é ar2 = 4‘ LIJ
where the wave velocities ¢, ¢ are given by

C_." s 2_’-—
' p p

Hence, in the absence of body forces, ¢ and the components of § each
satisfies a wave equalion.

> A 2!“ o H
2 2

PROBLEMS

1. Prove that the total energy of astring which is fixed at the points x = 0,x =/
and is executing small transverse vibrations is

o) )

¥y =flx —ct) 0=ux <!

Show that if

then the energy of the wave is equally divided between potential energy and
kinetic energy.

2, Show that
y = A(p)eirliLcie
is a solution of the wave equation lor arbitrary forms of the function A which

depends only on p.
Interpret these solutions physically.
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A string of length /; - [, is stretched to a ension pc® between two points O
and 4. A point mass m is attached to the string at a point distant 7 from O,
Write down the conditions to be satistied by the function describing the
transverse displacement of such a string, and, making use of the result of the
iast problem, show that the periods of possible osciifations of the system are
given by =(I; + )fel, where [ is any positive reot of the equation

280 21 2mi
cot — cot - =
h+1 h +h plly — 1)
A uniform stretched string of great length lies along the axis Ox fromx = —1
tox = + oo theendatx - —/isattached to a fixed point, and a particle of

mass m is attached to the string at x = 0. A train of tran.verse waves in
which the displacement is

i . x.
y == @ees o (f - —)
: C;

travels along the string from x = 4 oo and is reflected,  Show that stationary
waves are set up in each part of the string and that in particutar the dis-
placement for —/ < x < 0is

I~

cos (r:x )
z =24 gy sin |-+ xjcos (ot — 5)

/

where « = slfc and
am
tan g = — — cotu«
Cp

A uniform straight tube of length 27 and cross-sectional area A is closed at one
end and open at the otherend. A quantity of gas is imprisoned by a piston of
mass M free to slide zlong the tube, and the piston 15 in equitibrium when at
the middie of the tube. The density of the enclosed gas is then o, while the
density of the atmosphere is p.  Show that the frequencies p of the oscillations
of the piston about its position of equilibrium are given by

Mp pl pi

—— = coCot — —g'plan s

A c P ol
where ¢, ¢” are the velocities of propagation of sound in the enciosed gas and
the atmosphere, respectively,

A particic P of mass m rests on a smooth horizontal table. Tt is attached to a
point 4 by a uniform heavy string of mass T7/¢® and to a point B by a light
inextensibie string.  The points 4 and B are on the tabie; in the equilibrium
position AP = {, BP = g, and the tension of the strings is 7. Prove that the
normal frequencies p of the transverse vibrations of the heavy string are
solutions of the cquation

pl < 4 ]

¢ a T

A uniform inelastic string of length { and line density p lies on a smooth
horizontal plane.  Oneend is attached to a fixed point A on the plane, and the
other end is attached to a mass A which can slide freely along a horizontal
line at a distance / from 4 and perpendicular to the mean position of the string,
The string is subject to a tension p®. Show that if the system performs small
vibrations with period 2=/p, the equation to determine p is

n Pf_ e
¢ pM

p cot 2

ta
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Deduce thatfor large values of the integer n the values of p arc approximately

5 (fm i M:?W )

i

2. Elementary Solutions of the One-dimensional Wave Equation

We saw in Sec. [ of Chap. 3 that a general solution of the wave
equation

&y 1 &
i o
[
yoefren gy e (2)

where the functions f and g are arbitrary. In this section we shall
show how this solution may be used to describe the motion of a string.

In the first instance we shall assume that the string is of infinite
extent and that at time ¢ — 0 the displacement and the velocity of the

string are both prescribed so that
oy
3= i{x), -é% == p(x) at ¢ == 0 (3)

Qur problem then is to solve equation ([) subject to the initial con-
ditions (3). Substituting from (3) into (2), we obtain the relations

) = S0 = gly), ) == f 1) — ') (4)
Integrating the second of these relations, we have

] i
F6) = g0 == | e as

where b is arbitrary.  From this equation and the first of the equations
(4} we obtain the formulas

] £
f@%ﬁ%ﬂ“ﬂﬁ“ﬁﬁ
1 [
800 = by — 5 | e e

Substituting these expressions in equation (2), we obtain the solution
b

_ [ ne
= Ly = oen) oy o en)) ok 5 { vy dé (5)

ped
The solution (5)is known as d” Alembert’s solution of the one-dimensional
wave equation. I the string is refeased [rom rest, r = 0, so that
cquation (5) becomes
¥ = dx = en) s — en) (©)

<howing that the subsequent displacement of the string is produced by
iwo pulses of “shape” y = L#(x), each moving with velocity ¢, one to
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Such a motion is illusirated by

216
the right and the other io the lefl.
Fig. 34, in which the inidal displacement is
0 AN
S

(x)

[0 o
The motion may be represented by a series of graphs corresponding to
Another method of representing

-

v

various values of  as in this figure.
¥

#

3
e

i

=]
N
&

) .’: )
-a 0 a

Figure 34

the motion graphically is to construct a surface from these profiles, as

shown in Fig. 35.
xzm0ati =0

at the pomt v == 0
. oy
Vo (), FT {x)
oy
=0, 5 0 (78)
The solution {5) is no longer applicable, since 1{x — cr) would not have
Suppose, however, we consider an infinite

We shall now consider the motion of a semi-infinite string x 2= 0 fixed
The conditions (3) are now replaced by
(7a)

i =0atxy=20

at ¢ —

.} _____

a meaning if ¢+ > x/c.

string subject to the initial conditions
P = Y(x g
=, 2=
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L) ity -0
where Yixy == - _
S TS T |
Tr(x) i =0
and Wixy—~- )
(e ifx 0
Then its displacement is given by
, A . .
v MY s ety - Yl a)} o+ Z‘); bi) dé (8)

A 1)

Figure 35
so that when v — 0
Y= ) Y] o | T dE ©
and %; = lelY{et) — Y -—-CI)} 3 ety - V(—et)}

It is obvious from the definitions of ¥ and }” that both these functions
are identically zero for all values of r and that therefore the function (9)
satisfies the condition (7h) as well as the differential equation (1). Itis
easily verified that it also satisfies the condition {7a). In particular,
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if the string is relcased from rest so that r, and consequently V, is
identically zero, we find that the appropriate solution is

1“[7;(\ ety = gl er] N oof

o
’ P -t ety — et - )] X = ¢

The graphical representation of such a solution is shown in Fig. 36. It
may be obtained directly from the analytical form of the solution or,
more easily, [rom the graphical solution for an infinite string subject to
an initial displacement ¥(x).

A similar procedure is applicable in the case of a finite string of

Figure 36

length / occupying the space 0 <X x << /. The initial conditions may
then be written in the form

Ve (v, %l = (x) O=x=/atr -0

L =0 i=0alx--0and x =/
at

and by a method similar to the one above it is readily shown that the
solution of the wave eqguation (I) satisfying these conditions is the

) =0
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expression (8), where now the function Y(x) is defined by the relations

Y) if 0«lx</
v - (" |
L~--aj(-,\-) if /a0
Yix £2r) = Y(x) if /<<y« flandr= =1, -2,...
In other words, ¥{x} is an odd pLI‘iOéiC funcilon of period 2/ The
relation between y(x) and Y(x) 1s shown graphically in Fig. 37.  F(x)is

defined in terms of (1) in a precisely similar fashion.
1t is well known from the theory of Fourier series! that such an odd

b7 (x)
VAN
S
o {
LY (x}
X
-3 —z! -1 0 : 21 3
Figare 37
periodic function has a Fourier sine expansion of the form
”, mmx
Y(x) — /. o s;n—/ (10)
where the coefficients #,, are given by the formula
2 . fmmE :
i =5 | @ sin (770) g (11)
! o
. , < . [mEx )
Similarly F(x) = Z Uy, SID ( ; ) (12
w1 b
2 ~f ) 4’7’?':'75‘
where = 7 | (2 sin : ) at (13)
o !
Substituting the results
o€ s ;
. {HITX ( mrmct
WYy —o) + Yix —ct)} = z 7,, SIN (m?m) cos ( ; }
=0 ) i :
| S I < x| . (mmet
— MH dE = — Zsin [— sm( )
2o e <b) ]’ ! Figd ( l ) !

VR, V. Churchili, “Fourier Series and Boundary Value Problems,” (McGraw-
Hill, New York, 1941}, p, 75,
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which follow from these expressions, into the solution (8), we find that
the sofution of the present problem is

i . X 7 f f'* _{mmxy . imwcet
= Z F SITL ("”] X,} cos (m!d, ) ;—(‘ — w s (g) Sm (m!”')
(14)

w1 -1
where #,, and ¢, are defined by equations (11) and (13), respectively.

Example L. Thie pounes of triscetion of a string ave pulled aside through a distance «
on opposite sides of the position of equilibrinm, and the string is wlmwdﬁom rest.
Derive an expression for the displacement of the string at any subseguenyt time and
show that the mid-point of the string always remains ot rest.

In this case we may take / = 3a and

i 0«xwa
a
_
X) FM a < x < 2a
a
x -3
EM 2a L x = 3a
a

and v(’x} - 0. Thus the Fourier coefficients are

v | 3a - i
{ { sin ﬂ2(1\: i (3a — 2x)sin mry dx - l. (x — 3a}sin me dxl'
\ Ja 8 3a }

A tr 4 212

M -

18¢ .
m{l . (‘ 5)’”}8[[’1 (%H!’.’T)
and r, 0
50 that the displacement Is given by the expression

W
18¢ P (=1 omm X mmet
Yo e §1[) = I = COS
/ P ni* 3 3a 3a

=1
which is equivalent to

9 N i H"r . 2nnx 2iret
Vo — Z s sin cos
7 3a 3a
n=1

The displacement of the mid-point of the string is obtained by putting x —= 3a/2 in
this expression. Since sin (Zn7x/3a) would then equal sin wn, and this is zero
for all integral values of n, we see that the displacement of the mid-point ol the
string is always zero.

PROBLEMS

1. A uniform string of line density p is stretched to tension pe® and executes a
small transverse vibration in a plane through the undisturbed line of the string.
The ends x = 0, [ of the string are fixed, The string is at rest, with the point
x == b drawn aside through a small distance ¢ and released at time ¢ = 0.
Show that at any subsequent time ¢ the transverse displacement y s given by
the Fourier expansion

SR o (5 s (55 en [
3 bl — b) £ YT AT
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2. f the string is released from rest in the position

4
= [_w:x(l' — X

show that its motion is described by the equation

E_me - 1 ¢in 2n ~ liwx cos (2 + Dwer
3 HLO[an])S ! /

."‘ -

3. 1f the string is released from rest in the position y = £(x), show that the total
cnergy of the string is

7 4 o
where ky = t i fx)sin (f_ff ) dx
o i

The mid-point of a string is pulled aside through a small distance and then
released.  Show that in the subsequent motion the fundamental mode con-
tributes 8/=% of the total energy.

3. The Riemann-VYolterra Solution of the One-dimensional Wave
Equation

In Chap. 4 we saw that for Laplace’s equation Viy = 0 it is not
possible to give independent prescribed values to both ¢ and dy/én along
a boundary curve, since if either ¢ or y/6n is prescribed, that alone
is sufficient to determine the potential function v uniquely. In the
last section we saw that the corresponding situation for the one-dimes:-
sional wave equation

0y Oy

ax2 — —35'-_; _} = (¢t ([)
is quite different; ie., that  and dy/@y can be prescribed independently
along the line y = 0. We noted previously (Sec. § of Chap. 3) that if
we are given the values of (x,y.z,p.9) along a strip C, then the equation

otz gz oz

a0 s 5}) 2
has an integral which takes on the given values of z, p, ¢ along the
curve T' which is the projection of C on the xy plane, and a simple
change of variable reduces equation (1) to the type (2).  In this section
we shall use the method of Riemann-Volterra outlined in Sec. § of Chap.
3 to determine the sofution of the Cauchy probiem

gy 0%
il (3
dy :
P _,,.f(_\:’y)’ 8_1 e g(x,},f) on (4)

where I' is a curve with equation u(x.y) = 0.
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Suppose that we wish to find the value (5,7) of the wave function v
al a point £ with coordinates (£,%). Then it is readily shown that the
characteristics of the equation (3) through the point P have equations

Xy gy (5)
and X —y=£&—y ')
and we may assume that the second of these lines infersects the curve C
in the point 4 and that the first intersects C in the point B (cf. Fig. 38).
If we let

0* J?
L o o o g (7)
oxt By

then, since this operator is self-adjoint, it follows from the generalized

AY

Vi

Figure 38
form of Green’s theorem (Prob. 1 of Sec. 8 of Chap. 3) that
’ ’ (wly — plw)dxdy = | [Ucos (n,x) + Vcos(m,y]ds (8)
W JI

. Oy dw
where U= W s (9)
. Oyt ow
Vo= e b g
w 3y W 3 (10)

discussion of Sec. 8, Chap. 3 we see that the Green’s function w must
satisfy the conditions

) Liv =
it) g& = on AP and BP
(i on

(1il) W=l at the point 7
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These conditions are satisfied if we take w = 1.  Using this and the
fact that Ly — 0, we sce that equation (8) reduces to

( [ +- I ’ )[gﬁ cos (mx) - %Cos (f?,])] dy == (1)
rs Jar Jer/ | 0x v
On the characteristic A, which has equation (6), we have
- 1 _
cos (11,x) =" cos (#,y) = A ds == —a/2dx = /2 dy
so that
[y Oy ol oy dy
V¥ cos (n,x) 2 cos (my)! ds = d dv) e v, — pn
S 1y 08 (1) 08 () ds 11) (5hdx + A
Ay
P}
| X
O A(E-9.0) B(E+n,0)
Figure 39
Similarly we have
I | -
ces (mx) = 5 cos (n,3) == A’ ds = —V2dx = vV2dy

along the characteristic PB, so that the value of the integral along the
line BP is yp — yp.  Substituting these values in the equation (11),
we get

| 17 (0w Oy
v My S own) — 5 ' ( 3 cos(x,n) — a—?;b COS("»}’)) ds (12)

as the solution of our Cauchy problem.
For instance, if we are given that

w = f{(x), Z = g(x) ony =0 (13)

then if P is the point (&), it follows that 4 15 (§ — 4, 0) and B 1s
(& -+, 0) (ef. Fig- 39). We have

g o= f(E ), yp = f(& +u)

) a"f’ . at/
'1 B ("g{ cos(x,n) — 5 cos(y n)) ds = — ] g(x) dx

£
o
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If we substitute these expressions into equation (12), we obtain
d'Alembert’s solution {cf. cquation {3) of Sec. 2).

It follows from the Riemann-Yolterra solution (£2) that if an nitial
disturbance, either a displacement or a veloeity, is u)nccntmlgd near
the poinl (xa.y.), it can influence only that infinite sector of the half
plane v -1y Formed by the two lines of “gradient -1 passing through

RN\
\\\

influence ™. ™
~, ~,

¥u

Figure 40

the point.  This scctor is called the initial domain of influence of {x, 1)
(c¢f. Fig. 40). TIna similar way we can construct the domain of influence
of another point (¥, 1), and a simple diagram, ¢.g., Fig. 40, shows that
all domains of influence intersect for v ™ 0. In a similar way we define

LY

v
Dornain of
dependernce

AN

Figure 41

lhc domain of dependence of a point (x,,17;) as the set of all points with

> ) whose domain of influence includes the point {xg,12) (ef. Fig, 41),
jt is easily seen that the domain of céa,pei‘;denu, of a point is the trldngle
cut off from the upper half of the xy plane by the two downward-drawn
lines through (x,.,) of gradient --1. These lines if produced upward
would bound the domain of influence of the point (x;.3.). Since we
do not, in general, consider points with ¢ -2 0, i.e., events in the past,
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it follows that it is possible to have nonintersecling domains of depen-
dence.  Consider two points (x,3) and (v',») whose time coordinates
are equal.  If their domains of dependence do not intersect, then the
displacements at the points will be incoherent: they will be caused by
initial displacements and velocities which are completely independent
of one another,

PROBLEMS

I 4 E!"‘ .
g —-.f(} I —FT. 5 (‘I)

at a point which is moving with constant velocity Jec (7 < 1) starting at
x = 0at p = 0, show that this implics that

hy . )

E S f) = e

and show that

. : . 5
PR PRt L | R VS il ._-‘E(Wn )
y(&n =gl - ﬁ)f(l — :"j,) gl —=af (] = ,-:’) ERL N )dd g0 dy

G-l =8 a =0 = 51— )

2. Using the results of the last problem show that the wave function corresponding
to a traveling source of sound of frequency p is

oy | Iple = xf
wix,f) *'zj;(l — [sm {/’_;___WM?C)} — sin :’ﬂng

\

where b

Interpret the result physically.

3. A function i satisfies the nonhomogeneous wave equation

62?;' 5’341,' 3
o M-S RYSY IS 0
5 )
and the initial conditions
dy
o= —— = 0 when ¢ =0
ey -

Show that
[
ylxe ) =5 {{ flurydude
“- T

LR Y,

where T is the triangle cut out from the upper half of the i plane by the two
characteristics through the point (x,3),

4. 1f yis determined by the differential equation

2 32,,

. ey . 2

Ped - — h ;I) =
22 2
ax 24

where @ and £ are constants, and by the conditions

b0, w=f0. 2 e
J ’ N A dy O
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show by the Riemann-Volerra method! that
oy dfe wn fix s a
p oo L S S 1
A;‘ £, (u VIE “_f.]:)} gz, ™M

a7 R
Jroouy

|
L

"-f e Jolthians (57 @ s
hy i y

- Rl

Tt ay VE APy

4, Vibrating Membranes: Application of the Calculus of
Variations

We saw in subdivision (¢) of Sec. 1 that the transverse vibrations of a
thin membrane 5 bounded by the curve I in the v plane could be
described by a function z{x,y,7) satisfying the wave equation

. |
Viz = ey 1y
the boundary condition
z==0 on I' for all ¢ (2)
and the initial conditions
oz . '
s flen), = —gley) (=0 (vp)eS 3)

The two main techniques for the direct solution of this boundary
value problem are the theory of integral transforms and the method of
separation of variables, The first of these methods is particularly
useful when the membrane is of infinite extent, and the second is
useful when the boundary curve [" has a simple form.

We shall illustrate the use of the theory of integral transforms to
problems of this kind by:

Example 2. A thin wmiembrane of grear extent is released from vest in the position
- flay Determine the displacement ar any subsequent tinie,
Here we have to solve equation (1) subject to the conditions

az
peflend =0 )
at ¢ = Oforali (xy) of the plane,  To selve this initial value problem we muitiply
both sides of equation ¢1; by explifx < ) and integrate over the entire xy
plane. Then using the resuits

o Ay

Lo & f3r @z oy 1 d , _ (."2‘2
— B e ZLEE O TS AP N P [ -
i ‘ f (_ax? ar? o) v ”'drﬁ}
i o o~
where PACRT I 3 ’ f (et T e dy
= o W=

P Cf. Prob. 4, Sec. 8, Chap. 3.
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is the two-dimensional Fourier transform of Z(x,v.r), we see that equation (1) is
equivalent to

*;?E: e CL ?;‘2)2 s () (5)
and the conditions (4) are equivalent to the pair
dz
F(&n) T 0 t o= 0 (6)

olving {3) subject to (6}, we find that
Z o Flémycos [c(#® - if)H]

By a double application of Fourier’s inversion theorem (see p. 128} we have therefore

IS

5 F(23) €08 [c(82 1) Je 5 + ) dE dy (7
Py

7w

ESuE )
go that the problem is reduced to two double integrations, the evaluation of F(é,y)
and the evaluation of (7) (c¢f. Prob. t and 2 below).

The use of the method of separation of variables will be illustrated
in two cases, when I is a rectangle and when it is a circle.

thn " i3 the rectangle formed by the lines x = 0, x = a, y = 0,

------ = b, it is natural to assume solutions of equation (1) of the form

..... X(’() Y(})e,thﬂ

We then find, on substitutmg into equation (1), that

Y e
X Y
showing that the ordinary differential equations for X, Y are

X' 4+ X =0Y" +kiV =0

where k3 - kY = ke ®)
We therefore get solutions of the form
. = Ai‘;he“h ithyr - By b ket) (9)

Since z must vanish when x = 0, x == a4, y == 0, y = b, we must take
solutions of the form

. {mExy L (nwy "

7= Z A, 80 (www) sin (—}n) g = Frnet
a . b

ni,n

where m, n are integers and ~

(10)

For instance, if
ze= X)) = =0  ati=0

then the appropriate solution is

2(x,p,1) == Z A, sin (m

i, 1t

)an(mw)ax(&ma) (11)
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where k,,, is given by equation (10) and the coefficients 4,,, are chosen
so that

‘ ) .

o . fmimx nwy ] . P
Flxy) = Z Ay SIN ( p ) S| ( b‘ ) 07 xa0ysh

",k

0t - { g
ie., A,, = %[ } | F vy sin (ff’{;i) sin { figl) dx dy (12)
The complete solution is therefore given by equations (10), (11), and
(12).  The frequencies of possible oscillations are given by equation
(10).  These quantities are known as the eigenvalues of k. 1t is only
when £ takes one of that set of values that the problem has a selution
of the form (9).

When the boundary curve I'is a circle of radius a, it is best to trans-
form to plane polar coordinates r, 6, in which case equation (1) assumes
the form

2y z 32z 25
9% LEa”....uEME:MZ‘ ........ L (]3)

ot T rar o 2eF

and the curve I' can be taken as r == ¢.  If we assume a solution of this
equation of the form _
o = R(FYO{he=*"

we find that the functions R, @ must be such that

P [dR  1dR } L de
R eR] g0

showing that the ordinary differential equations for R, © are

{12{-} L T—
e o & =10 (14)
dR I dR nZy
: i T 2 .
and Rt } R =0 (15)
The solutions of (14) are of the form
) oo ¢ Cimb

If the displacement z(r.,0.7) is to have the obvious physical property
that =(r, 0 + 2=, 1) = z(r,4,1), then we must choose #1 Lo be an infcger.
Furthermore, since for physical reasons we are interested only in
solutions which remain finite at r == 0, we must take the solution of {15)
to be of the form

where J (x) denotes the Bessel function of the first kind of order m and



THE WAVE EQUATION 229

argument x.T In this way we build up solutions of the equation (13) of

the form
2w 3 AT (krye i (16)
m.k

If z vanishes on the circle r = 4, then the numbers & must be chosen so
that

Jolka) = (17)
and we finally get solutions of the type
z == o A k) exp { +Himll 4 ik,ct} (18)

m, i

where 4,,, are constants and &4, &,,2. . . . are the positive roots of the
transcendental equation (17). In the symmetrical case in which z is a
function of r and ¢ alone the corresponding solution is

2(r,t) = 2 AJyk,rye=" " (19)
A
where &, k,, . . . are the positive zeros of the function Jy(ka).
For mstance, if we arc given that
dz

2= f(r, 5—0 ati =10

then the solution of the problem is
z =3 A Jyk,r) cos (k,ct) (20

where the constants A4, are chosen so that
,f(r) == :\.‘ An‘]()(kiir)

From the theory of Bessel functions® we see that this implies that

2 e
A oy ! Tl dr an

The complete solution of our problem is therefore given by the equations
(20y and (21).

Solutions of problems of these kinds relating to vibrating membranes
with rectangular and circular boundaries can also be derived by means
of the theory of “finite” transforms. For details of the derivation of
these solutions the reader is referred to Sec. 19.5 and 19.6 of Sneddon’s
“Fourier Transforms™ (McGraw-Hill, New York, 1951).

These methods are appropriate only when the boundary curve T has

t Cf. I N. Sneddon, “The Special Functions of Physics and Chemistry™ (Oliver
& Boyd, Edinburgh, 1936), p. 103.

"' G. N. Watson, “A Treatise on the Theory of Bessel Functions,” 2d. ed.
{Cambridge, London, 1944), chap. XVIIL
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a simple form.  When I" is a more complicaled boundary, approximate
values of the possible frequencies of the system can be found by making
use of certain results in the calculus of variations. According to the
calculus of variations,” if the solution of equation (1) in the case in which
I' is fixed is of the form f(x,))e'"* then the nth eigenvalue 4, is
the minimum of the integral

o]

o

B

{(g—f)d (ﬁg)i} dx dy (22)

with respect fo those sufficiently regular functions ¢ which vanish on I’
and satisfy the normalization condition

o f j}sz dx dy | (23)
JJ

and the n — 1 orthogonality relations

( ’ b dx dy = 0 (24)

o

)
where ¢,, 15 the minimizing function which makes / equal to 4,,.
This provides us with a method of determining approximate solutions
to our problem.® If

z = pux et (25)
is an approximate solution of the problem stated in equations (1) and (2),
then if @y, . .., @, are » functions which are continuousty ditfer-

entiable in S and which vanish on I', an approximate solution is
*Pm(-‘f,}’) = Z (";;H?J-(pi(x’y) (26)
[EED

where the coefficients €V are the solutions of the linear algebraic
equations

i
T ok DO =0 =12 ... .n 27
i=1
with o= 0p= | | 00 dydy (28)
([[0D, 00, o, od
=1 e P S N e dv 29
" ! 4 Vox ax oy ByJ dbx dy (29)
and the first # approximate eigenvalues &, k,, . . . , &, are given by

'R, Weinstock, “Caleulus of Variations™ (McGraw-Hill, New York, 1952),
pp. 164-167.
2 ihid., pp. I88-191.
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the # positive roots of the determinantal equation

apk® — 1y Trok® — Iy o o kY rln{
TgK® — 0y Oppk® - Iy T 0'2;,’\ FZnJ
| (30)
2 2 A . 5 1
U::l’r" - In] ank - lu‘j Gnnka — 1 na

In addition the coefficients must be chosen to satisfy the normalization
condition

g \ CimCiey, =1 (3H
,'_, ..... 1
If the boundary curve I of the membrane S has equation u(x,1) =
a simple choice of the approximate functions ®, (i == 1,2, . . . n) 1s
to take
By = u(xy), B xulxyy), = yu(n))

®y = xhulx,y), ®y = xyu(x,)), Dy = yhul(x,y), ete.

The variational approach to eigenvalue problems is useful not only in
the derivation of approximate solutions but also in the establishing of
quite general theorems about the eigenvalues of a system. For details
of such theorems the reader is referred to Chap. 9 of the book by
Weinstock mentioned above and also to Chap. 6 of Vol. T of “Methoden
der mathematischen Physik” (Springer, Berlin, 1924), by R. Courant
and D. Hilbert.

Example 3. Find approximate values for the first three eloenralues of a square
wmenithrane of side 2.

Suppose we take the membrane to be bounded by the lines x = —1, 3 = & 1;
then we may assume
P, (F - ™l )-2], Oy = x(1 — X1 — ,"2)’ Oy = (1 — x* (] — 1,_)
and we find that
256 256
1 3535 Tr2 7 O3y < 73R Oy = Gyy = Oy =0
2%
Ty = %155’ ’ Uyp = lgg = “?%%"2" 20 g = Ty =0

In this case the determinantal equation (30) reduces to
VAT o SHE® — 13¥ = 0
so that the first three approximate eigenvalues of the square are
Ky o= a5 = 2236, ko= ko= 73 = 3.606
From equation {10) we see that the exact results are

ay 2 TN _S-
M b e
3 2,221, ky = kg mm e 3.942

by
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PROBLEMS
1. Show that the solution of Example 2 can be put in the form
N (/) d g
) =y ( [ ai '[‘(M)d%d .
TN o S TN R e (e ) e (e AP

2. A very large membrane which is in its equilibrium position lies in the shape
s f(r} ()% = x4+ 1), Show that its subsequent displacement is given by
the equation

) s { Jg}‘fs) cos (S (&) o
i

~

—_ o0
where (£) = [ of (P (50 dlr
RiE

3. A square membrane whose edges are fixed receives a2 blow in such a way that
a concentric and similarly situated square area one-sixteenth of the area of the
membrane acquires a transverse velocity ¢ withouwt sensible displacement, the
renginder being updisturbed.  Find a series for the displagement of the
membrane at any subsequent time,

4. A membrane of uniform density o per unit area is stretched on a circutar frame
of radius a to uniform stress me?.
When ¢ = 0, the membrane is released from rest in the position
x s elg® — ¢%), where ¢ 1s small, and r is the distance from the center.  Show
that the displacement of the center at time ¢ is

s ]
) cos (£,ctia
Bea® Z W
o :n‘il{‘:n}

where &, is the nth positive zero of the Bessel funciion Jy,.
5. Using the approximations

a g N s LS Te T 5
L IR Dy wox - Xy GE 35 By =y — pv/32 ¢ ¥

show that the first three approximate values of the constant & in the sotution
Frei® describing the transverse vibrations of a circutar membrane of unit
radius, are

K, =v 6, Ky = Ky == V1

5. Three-dimensional Problems

In this section we shall consider some of the simple solutions of
the three-dimensional wave equation
2,
»’2?'} o= —E' ?———E} (])
ct g :

It is a simple matter to show that this equation has solutions of the form

exp {i(lx +my + nz + ker)} )

provided that
I -+ m2 - ne (3)
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Example 4. A gas is contgived in a cubical hox of side @, Show thar if ¢ is the
velocity of sonnd in the gas, the periods of free owcillations are

2n

cyni o owE o W
where ny, Hy, #y are integers.

in this problem we are looking for solutions of the wave equation () valid in the
space 0 = (x,1.7) <0 a and such that ay/én = 0 on the boundaries of the cube.

The form of & will thurclort be

_ RN Nt
ylx, v, 2 t) 2 A,fr,,_g_,,ut:m( p .COS

”1' ?‘3‘ ”"]

(7Y [ Ao
(122) eor (7]
. a a

ner
COs [{ﬁ’% wng ol m]

where . 715, a5 are integers. it follows immediately that the periods of the free
oscillations of the gas are

In spherical polar coordinates r, 6, ¢ the wave equation (1) assumes
the form

Bw; } 2 ﬂl’z: 1 C'?g’ , l 8‘21/‘ B 1 8‘2:;:
& e Fsindm 5 lsin ol s w e @

If we let
(’ b ¢) e (’)Pﬁl (COS (])eifnid:i et (5)

where 1(r) is a function of r and P} (cos 7} is the associated Legendre
function, then on substituting from equation (5) into equation {4) we
find that Y'(r) satisfies the ordinary differential equation
a2 24% aln - 1)
arr T rdr r

W B =0 (6)
Now., putiing
[ S ,F‘fé.R(l')
we see that equation (6) reduces to
d*R 1dR |
dr? rodr
from which it follows that if # - ! is neither zero nor an integer,
R(r) = AT, (kr) + BJ_, (kr) (%)

where 4 and A are constants and J,(2) denotes the Bessel function of the
first kind of order » and argument z.  If on physical grounds we require
the solution (5) to have the symmetry properties

V"("s =+ =, Gé) = ‘(/)()',G’qg)’ t/"("s 0: ‘f) + 27‘—) S V’("ﬁ,@

then we must take 77 and » to be integers.

R=0 (7)
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Hence the function
y(r0,d) = rtJ , kr) P (cos e - )

is a solution of the wave equation (4), The functions J ,, . (kr), which
occur in the solution (9), are called spherical Bessel jﬂf?(‘il';ilfl.s‘.l They
are related in a simple fashion to the trigonometric functrons, for
it can be shown that if # is half of an odd integer

I3

J(x) = (w) [f{x)sin x — g.(x)cos x]

;S

2 , . ,
J_(x) = (_—\) (— 1y g, (¥) sin ¥ — £i{x) cos ]

where f.(x) and g,(x) arc polynomials in x ', e.g., in the case n = 4,
Ay =1, g(x) =0 and for n =3, ./‘3(.\’) =1/x and g(x) =1 It
follows from these facls that

y(r) = e=”” fhet (10)
w(r9) — - [sxnkgkr) — cos (kr)] cos § g (1)

are particular solutions of the wave equation (1).?

The solution (10) is a particular case of a more general solution which
can be derived directly from equation (1). If the solution of the wave
equation is assumed to have spherical symmetry, i.e., if y is a function
only of r and ¢, then 1t must satisfy the equation

By 2oy 1%
ot rar cor
If we put ¢ — ¢/r, we find that

(12)

¢ 1 &%
ort % or
so that ¢ = f(r - 4 g(r = ¢t

where the functions fand g are arb11rary. In other words, the general
solution of the equation (12) is

} Lf(r — )+ g(r + )] (13)

where the functions f'and g are arbitrary.

LT, N. Sneddon, “The Special Functions of Physics and Chemistry” (Oliver &
Rovd, Edinburgh, {956), sec. 31,

2 For applications of the wave functions (9) to clectromagnetic theory the reader
is referred to J. A, Stratton, “Electromagnetic Theory™ (McGraw-Hill, New York,
£941), chap. VIL
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The function r'f(r — cf) represents a diverging wave.  If we take
g ! 7l ") (14
' 4= ¢ ‘
to be the velocity potential of a gas, then the velocity of the gas is
6@5_“ | f{f r) I f(f i)
8}‘ 47‘,!.2‘. ¢ 4;;_’.(.. 5 I

so that the total flux through a sphere of center the origin and smali
radius ¢ is

H o=

dmey == {1} — OfF)

For this reason we say that there is a point source of strength (/)
situated at the origin; the expression (14) therefore represents the
velocity potential of such a source.  The difference between the pressure
at an instant + and the equilibrium value 1s given by

o P [ r .
ﬁafpﬂ;—.Af(;ﬁm (15)
pp gr  Admrt A g

Example 5. A gavis contained iin a vigid sphere of radiuy a. Show that if ¢ iv the
velocity of sound (0 the gas, the freguencics of purely radial oscilfations are o fa,
where 51, 55 o L are the positive roots of the eqaation tan § = £,

The conditions to be satisfied by the wave function i are that it satisfies equation
(12), that y remains finife at the origin, and that & - ¢/2r ~ Oat ¢ — g, From
equation (10) we sce that the first two of these conditions is satisfied if we take

sin (k)

oo A mm,,_) (,?.r,cf
.
where 4 is a constant.  For this function

0= — ket

ar

iy [k cos {Ary  sin(kr)
— A — 5 ¢
I3 s

so that & — O on v =» aif k is chosen so that
tan {ka) = ka

The possible frequcncics are therefore given by the expression effa (i - 1,2, . . ),

where £, &, . . . are the positive roots of the transcendental equation

tan & — & (16)

Similar sofutions of the wave equation (1) can be found when the

coordinates are taken to be cylindrical coordinates (p,é,z).  The wave
equation then takes the form

2y I fy I hp 1 % .
T%F“*“:E—-““ET“;"MT%_’_&“Z% (17
p prp P {gﬁ" [ [

If we wrile

os$s2,1) = RINP(HZ(D)T)
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we see mimediatelv that the equation (17) separates into

R 1R Lo
f R Al L1 L
EE 17 i va
i P —= 0, (_)W A 0, f__;m T 2 )
dl? (=" dr*
where St o (18)
We therefore have solutrons of the form
ylpd, oy S Gephe™ e (19)

where ;- 13 related to k and « through the cquation (1%), Ik - @, s0
that ; is real, we can think of the solution (19) as representing a wave of
amplitude /, (c2p)e " moving along the - axis. The phase velocity of
such a wave is

[/' 2 f\:’f‘
and the group velocity! is
)
W — (kc) =
k) =g

Example 6. Hurmonic sound waves of period 2=lke and suwadl amplitiele are
propagated along a oirenlar wave fmrrfv bonnded by the evlinder o - a. Prove that
solulions Jrr(/:[)mdm,f af the angle rariable & are n/ the form

Lot e Sup
g = oithet =) g mi,,_}
' a

where 5, iv @ Zero of J(&) and 72w K - (56 )

Show that this pode is /)J(J/}a”'a'f(’(! onlv if b = £ fa.

Since ¢ is independent of ¢, it foliows that we must take = — 0 in equation (19)
to obtain

y .]"((_,)p)(,f(«i‘(‘i — s}

where ;% &* — o, The boundary condition is that the velocity of the gas
vanishes on the cylinder; ie.,

g
- 0 onp e d (20}
dp
Since Ju(x) -+ —J(x), it follows that this condition s satisfied only {f o is chosen to
be such that Jyfoa) = 07 « = £ fa, where 5y, 5, . . . are the zeros of J,05). We
therefore have
P ( np ) (21
L

where 3% - &% — (:,:j;’a'*‘}
For the mode given by equation (21} to be propagated we must have 3 real;
le, ko & fat

L COAL Coulson, *Waves™ (Oliver & Bovd, Edinburgh, 1941), p. 130.
* For the application of the theory or eylindrical waves in electromagnetic theory
the reader is referred to Stratton, gp. cir., chap. Y1
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The solution (19) is useful i applications to problems in which the
physical conditions impose the restriction that p must remain finite when
p = 0. In problems in which there is no such requirement we must
take as our solution

ypuhody o= (A upy - BY, (op)let e {22y

where V, (wp) denotes Bessel's function of the second kindt and 4,. 3.,
denote complex constants.  The most convenient solutions of Bessel's
cquation (o use i this connection are Hankel functions

Hiopy = J (op) = 0¥, (op),  H{ewp) =, (op) — 1Y (0p)
so that we may write the solution (22} in the form
1,5!(,09@57:“31) = {flme’i ?((;)p) - Bn*HE:"(("[)}}&(,’;’:M SEn o Ged (33)

For instance, in the case of axial symmetry (m = 0) we obtain
solutions of the form

yp.n 0y = [AH (op) - BH Pep)le™ (24)

Now for large values of p
ol

)é{_;e(,,s, f, H:FE({UP} _ (#27&7) ‘:() T THT S, P (25)

T

H! (op) ~

S0 as p - L,

T;*t’i)p

) : [Ae“’"“’ Drepedpiodmh L Burtket - mp =i }-—:]

.z, 0) ~ (_“mp

Thus the solution

yolpust) = Hy (np)e™™ (26)
represents waves diverging from the axis p —= 0, while the solution
.2,y = H P (op)et s 27
represents waves converging to this axis.
In the two-dimensional case (¢/7z == 0) it follows from equation (16)
of Sec. 4 that the analogue of equation (23) is
Ppht) = [, 1 00Kp) = B H (kg™ (28)
while those of equations (26) and (27) are
volpt) = Hkp)e™ (29)
and wip.t) = HJ(kpye™ (30)

respectively.  The functions (29) and (30) play the same role in the
theory of cylindrical waves as do the solutions (10) in the theory of
spherical waves.

Y1. N. Sneddon, “The Special Functions of Physics and Chemistry™ (Oliver &
Bovd, Edinburgh, 1956}, p. 105,
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ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

PROBLEMS

A wave of frequency » is propagated inside an endiess uniform tube whose
cross seciton is rectangular.  {a) Caleulate the phase velocity and the wave-
length along the divection of propagation.  (h) Show that il a wave is to be
propagated along the tube, its frequency cunnot be fower than

el LR
Yriin 3 (;_,_ P}

where @ and / are the lengths of the sides of the cross section. () Verify that
the group velocity js always fess than ¢, Show that the group velocity tends to
zero as the frequency decreases 1oy,

Show that the flux of encrgy through unit area of a fixed surface produced by
sound waves of velocity rutcn*slf voin a medium of average density g is

‘J—
%]

e
P73 B

]

A source of strength 4 cos (o7) is situated at the origin.  Show that the
average rale at which the source loses energy to the air is

pAz(J"!

Brc
where ¢ Is the velocity of sound in air.

A symmgetrical pressure disturbance p,4 sin ker is maintained over the surface
of a sphere of radius @ which contains a gas of mean density p,.  Find the
velocity potential of the forced oscillation of the gas, and show that the radial
velocity at any point of the surface of the sphere varfes harmonically with
amplitude

A ( i )

- = —cotka

¢ Vka
Air is contained between concentric spheres, the outer being of fixed radius »
and the inner of oscillating radius of1 - «sio ker), where ¢ is small.  Prove
that the velocity potentizl of the forced oscillations of the air is

eake cOs x sinthkh — 3 ko)

- —- cos Act
sintkh — g ka - 1) r

where » and ¢ arc the acute angles defined by tap = — kg and tan j = kb,
A rigid spherical envelope of radius @ containing air exccutes small pscillations
=0 that its center is af any instant at the point v~ Asinng, 0 = 0. Prove that
the velocity potential of the air inside the sphere is

fcos ke sin k|
f—— —— cos B cos nt
| kr e

nkiah

where " Zkacoska — (2 k%) sin ka

Show that the wave cquation has solutions of the form

y o S{0.8)R(r.1)
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where 6, ¢, ¢ are spherical polar coordinates, [ is a constant integer. and

1 2 . 5 ) 1 e ]

L DT B I : 7

{sin & (aﬂ ST St s il 1); 50
[t 8,8 -1 1 &

Verify that the last equation is satisfied by

2 ” fir = c) - glr - er)

Rirg) = i(
) ’ rer. ¥

where f'and g are arbitrary functions.

6. General Solutions of the Wave Equation

In this section we shall derive general solutions of the wave equation
associated with the names of Helmholtz, Kirchhofl, and Poisson. The
solutions of Helmholtz and Kirchhoff deal with wave problems in
which the values of the wave function (r,7) and its normal derivative
fyion are prescribed on a surface S. From Kirchhoff’s form of
solutions of this problem we deduce Poisson’s solution to the initial
value problem in which » and &y/¢/ are prescribed at time 7 = 0.

Suppose that ¥ is a solution of the space form of the wave equation

e ) S (1)

and that the singularities of " all lie outside a closed surface § bounding
the volume V. Then putting
iy — ¢
. e
Yo 2
Ir r’l ( )
and this value of 1" in Green’s theorem in the form of equation (1) of
Sec. 8 of Chap. 4, we find that if the point with position vector r lies
autside S, then
P (,{A' v - r'l ()x.l [r = o (l' )!

f a
’ Rl e el v e R )

On the other hand, if P lies inside S, by applying Green’s theorem to
the region bounded externally by S and internally by C, a small sphere
with center r and radius ¢ (Lf Fig. 23), we find that

i ; pi e - F Sk — | (‘1{

[l £ 207 o)

gt in r —v| en |
L ‘ { T | Wiy - (1} (r )l ()(.( fr — ,r- ’
----- lmg [1(1 ]r ) 0N \r [ a5

and by a process similar to that employed in Sec. 8 of Chap. 4 we can
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show that the value of the limit on the right-hand side of this equation
is 4N (r).

Hence we have:

Helmholtz’s First Theorem. [f '1(x) is ¢ solution of the space form
of the wave equation N2'U KRV 0 whose partial derivatives of the
Jirst and second orders are continwous within the volume V oon the closed
surface S bounding 1. then

l . "(,ié ir r! ;11‘([.‘) e 7 [,;.i.-ir r'|l

= | = )y

dr e —1y in inor--rl)

ds’

"(r) frel 4
1o ifre 1 )
where n is the outward normal to 5.

Helmholtz’s first theorem is applicable in the case when all the
singularitics of the function 1'(r) lie outside a certain volume V. We
now consider the case in which all the singularities of 1" lie within a
closed surface S. If we now apply Green’s theorem to the region V
bounded internally by .S and externally by X. a sphere of center the
origin and very large radius R, we find, on letting R -+

Helmholtz’s Second Theorem. /£ Y(r) is a solution of the space form
of the ware equaiion whose partial derivatives of the first and second
orders are continuous outside the volume V and on the closed surfuce S
bounding V., if r'V(r) is bounded, and if

. \
r (;i f/(‘}") -~ 0

CF

uniforinly with respect to the angle rariables as v oo, then

* - priin o P ok ¥ Gkl 1
r | ey — (£ - i) L s

dr J tm\fr--r ‘e i

AV 1 '

{l(r) {Fr-; L, 5)

0 ifrel
where n is the outward normal 1o S.

It would appear from Helmholtz's formulas that the values taken by
Y and 1/7n on the surface S can be assigned arbitrarily and indepen-
dently of each other. By use of a Green's function G{rrx’) with
singularity at £ (see Sec. 7 below) we can express T(r) in terms of 1'(r")
alone through the equation

~

| iy s
B H

l
11.(1'J — I

50 that knowing the value of 1" on the surface §, we can, in general,
determine '“(r) uniquely and, in particular, calculate the value of
“Fjcn on S, It can also be shown that if 74/ is prescribed on S,
(r) 1s in general determined uniquely so that its value on § can be
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determined. The values of ¥ and 7Y"/7xn on S are therefore related,
If the functions f{r) and g(r) are defined in an arbitrary way, then the
function

J(ir £ = {);AEr rt%

Hr) == f( ) — glr )n r”——i_}dg

dr f |- r
satisfies the space form Of{ha wave equation, but it does not necessarily
follow that }W{x") == g(r"), ¢9'/tn == fir'yon S.

Similarly m the iwo-dimms:onai case by taking

fl}
where p = {x,)), in the two-dimensional form of Green’s theorem, we
can readily establish the two-dimensional analogue of Helmholtz's

first theorem:
Weber’s Theorem. If ‘if" p) is a S”Ohtff()i’! of the space Sform of the

1]

of i‘he ﬁr&! and xe(’orzd orders are CORLINUOUS um’;m i/;e areq S and on the
closed curre T bozmdz’ﬁg S, then

4i .

where n is the owrward normal to I, The proof is lefl as an exercise to
the reader?

Helmholtz’s first theorem can be expressed in another way by intro-
ducing the idea of a retarded value. If »(r',7) is a function of the
coordinaies of a variable point with position vector 1, then we define
the retarded value [¢] of p by the equation

A

=l -2 -

e (6)

where r is the position vector of some fixed point.  If

ylr' 1t} = (' )e 1ot
then it 1s obyvious that
‘ y S
[w] == wl(r' e **, [ﬁ] e - ik (7
If, now, we multiply both sides of the equation which occurs in Helm-
holtz’s first theorem by ™ we find that if the poiat with position
1 See Weber, Math. Ann., 1, 1{1869), and B. B. Baker and E. T. Copson, “The

Mathematical Theory of Huygens’ Principle,” 2d ed. (Oxford, London, 19350},
pp. S0-51.
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vector r is inside the surface S, then that equation can be written in (he

form
S L NI N R
erfr'?wrihﬁﬁ

which, because of the second of equations (6), can be written in the form

PR Pl LEafep]l 1 [E .
wn =g [t ma G an 2l Ble

Now an arbitrary wave function ¢(r.7) can be expressed, either by a
Fourier sertes or by a Fourier integral, as a linear combination of wave
functions of the type W, (r)¢ ", and since the equation (8) does not
contain & explicitly, it follows that 1t is true for any wave function. It
can also be shown that if the point with position vector r lies outside
S, the right-hand side of equation (8) is equal to zero. We therefore
have:

Kirchhoff’s First Theorem. If ¢(r,1) is a solution of the wave equation
whose partial derivatives of the first and second orders are continuous
within the volume V and on the surface S bounding V| then

1".[‘@‘1‘1 [(z,‘l(?;]
athaGFaa(J ﬂmL”
‘w(r 1 ifPryelV
o if P(r) ¢ ¥

where 2 == |r — r'| and n is the ourward normal to S.

Fora dzrect proof of Kirchhoffs first theorem the reader is referred
to pages 38 to 40 of “The Mathematical Theory of Huygens’ Principle,”
by Baker and Copson.  In the case where the singularities of y(r,f) all lie
outside a given closed surface we have:

Kirchhoff’s Second Theorem. [f 4(r,1) is a solution of the wave
equation which has no singularities outside the region V bounded by the
surface S for all values of the time from —co tot, and if asr -—» @,

ot - ¥
w0 w[,(f) .
where f(i), (1) are bounded near u = — x, then
A i s ewl] Cwlr irP el
s ()2 28] ] as— T g
4 s Al chen Loy Alénll 0 i P(r ¢ V

where n is the ourward normal 1o S.
We get a special form of these results if we take the surface S to be
the sphere with equation

o= [r'—— r[ == (n
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Then at any point of §

[L‘i’J — ”_f(r 0 «(r)

Lt i
where g 1s the value of ¢y/crat + = 0. If we substitute this result m
equation (9), we find that

L Jf____ g i e 5
el N v Z(Eﬁ.,.)n, 45 (1)
where S has the equation (11).  Now if we denote by the symbol M ( [)
the mean value of the function fover the sphere (1 1), then
] g ds’
drn )y i
Cf L , ¢ .
- Lo SV UST ae  IM
(5 2 2 ds = = ()]

AT

= 1M (g)

and

Substituting these expressions in equation (12), we find that

v
WD) = L M = (M) (13)
is the solution of the wave equation which satisfies the initial conditions
: %
v =/, = =z =0 (14)

The solution (12) is Poincaré’s solution of the initial value problem (14).
Equation (13) expresses Poisson’s solution. For a direct proof of
Poisson’s solution see Prob. 2 below.

PROBLEMS

L If wip,r) — Mip)em ! is a two-dimensional function in which ¥'(g) does not
depend on ¢, prove that

(p.1) = j:l e ‘)T”‘;pi T;?-_:f- dS

if o lics within the closed contour 1, where g, = [o — o |.
Show that if we write

o A ex ey of  of dpy
n Ay an Wé;;é"f;’ s 8py on
this result becomes

ol oy [T oeled - wie) dul

1 Ny o I



244 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS
2. Using the principle of superposition, show that if g and F are arbitrary,
o et r-ri)
S & = F(r %‘ ‘ ) dr’
dmet Jp [0 v s ¢
is a solution of the wave equation provided r is not the position vector of a

point of ¥
Taking Flu) to be «°L when -¢ = » = 0 and zero otherwise, prove that

e - tM(g)
and deduce that when ¢+ - 0,

Pty =

3. The function y(r,r) satisties the wave equation.  [fattime ¢ = 0,3 = 0 for all
r and
o (k0 <r«a
o 10 poea

where & Is a constant, use Poisson’s solution 10 determiree the values of i and
Sl &t at any subsegquent time.
Determine the solution alse by making use of equation (13) of Sec. 5.

7. Green’s Function for the Wave Equation

In this section we shall show how the solution of the space form of
the wave equation under certain boundary conditions can be made to
depend on the determination of the appropriate Green's function,

Suppose that G(r,r") satisfies the equation

FZ ;2 )
T‘,‘:""":T'"‘"A,‘ Gr.r) — kG =0 i

(c‘.\’.2 ('y% ' Fu'd ( ) ( ) ( )
and that it is finite and continuous with respect to either the variables
x, ¥, z or to the variables X', y', 2’ for points r, ¢’ belonging to a region
¥ which is bounded by a closed surface S except in the neighborhood
of the point r, where it has a singularity of the same type as

t,,i.!c fr—1'f

as ' -»r. Then proceeding as in the derivation of equation (4) of the
last section, we can prove that, if r is the position vector of a point
within V, then

RN
¥ = 5= | {6

where n is the outward-drawn normal to the surface §.
it follows immedialely from equation (3) that if Gy(r,x") is such a
function and if it satisfies the boundary condition

Gy(rx’) =0 (4)

E‘F( ) G(rr)l

j¢ ds’ (3)

- Hr)
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if the point with position vector ¢’ lies on §, then

F(r) = f—l 4ir )’("(”) (3)

by means of which the value of 1" at any point r within § can be cal-
culated in terms of the values of %" on the boundary.
Similarly if G,(r,r') is a function of this kind satisfying the boundary
condition
FIGZ

= 0 forreS (6)
then we obtain
oo
v = | DG as ()
4z Js

a formula which enables us to calculate ¥ at any point within .S when
the value of ¢%7/7n is known at every point of 3.

Similar results can be obtained in the case of a more general boundary
condition (cf. Prob. 1 below) and in the two-dimensional case (cf.
Prob. 2 below).

We shall consider the special cases in which the surface S is a plane:

Green's Functions for the Half Space z 2= 0. It is obvious that in
this mstance

r'k{l’—l"| ()iﬁ-lp—r’i

Gi(rr’y = ‘P‘*l"i

(8)

where p == (x,1,—z) s the position vector of the image in the plane
z == C of the point with position vector ¥ = (x,y.z). For this function
it is easily shown that if the point with position vector r’ lies on II,
the xy plane, then
2G, tG, "e‘“‘ﬂ)
in 7 R

C\
oz

where R* = (x - x")® + (y — y)* + 22 It follows from equation (5)
that if " = f'(x,y) on z = 0, then when z > 0,

o2 otk
F(x,y,2) = — 2—72 f"(x Yy ) dx’ dy’ (9
Similarly it can be shown that
,er L (,iﬂp— rf .
Gofry) = i + P (10)

so that on the plane II
zeikR

Gyrr’) =




246 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

It follows from equation (7) that if ¢'['/cz == g(x,1) on the plane I,
then when = = 0.
11 A0

T2 - . F{ENRRS' ER,, dx" v’ (11)

s

2!

We shall now indicate how the solution (11) may be applied in the
theory of diffraction of “"monochromatic™ sound waves by an infinile
plane screen which is assumed to be perfectly reflecting but which
contains holes of arbitrary size and shape.  We shall assume that the
screcen lies in the vy plane. and, for convenience, we shall denote the
holes in the screen by S, and the material screen itself by S, 1f we
assume thal monochromatic waves which i the absence of the sereen
have velocity potential *',(r)e "’ are incident on the positive side of the

Zz

Figure 42

screen (cf. Fig. 42), then the reflected and diffracted wave produced by
the screen will have a velocity potential of the form ''y(r)e** ', and the
total velocity potential of the sound waves will be 4 (r)e* ", where
Hr) = W(r) - Wi(r) (12)
The boundary conditions of the problem are that, on the material
of the screen, the normal component of the velocity of the gas must
vanish, i.e., that
g a

el — on 8, (13)
e

[

and that, in cach aperture, the total velocity potential must be equal
to the incident velocity potential, i.¢., that

Ys=0 onlS (14
To solve this problem we suppose that on §,
Sl

()~ 52+ 5 = “5)

(z ‘ iz
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If we substitute the value for ((Wg/72), , obtained from equation (15)
into equation ( 11), we find that
iR

-l .5

CZ 7=t

dx" dv’

mMR

[ FO0) e dx (16)

Now if we put f{x,p) =0 in equat:on (16), we get the solution
appropriate to the problem in which the screen has no holes and this
must yield the velocity potentldl of the waves reflected by an unper-
forated screen occupying the entire xy plane. It is readily shown that
if == 0 thls w.]omty pote.nt;dl has the space form l'{"i('p) where

lhc, pomt with posmon vector r = (v,1,7). Hence :f z i» 0, we must
have
o=ttt

W(r) = ¥,() + F(p) —-I S

We have stil] to ensure that the cond1t10n (14) is sausﬁed. To achieve
this we must Choose f(x,¥) so that when (x,1,0) belongs to S,

)....l“
f(Y M)

dax’ dy’ (17)

dx' dy = 20 (x,3,0) (18)

o

where £ = - \"'(.\’ ........... x )d i (y e y')z’

Hence when = > 0, the solution of our diffraction problem is given
by equation (17), where the function f(x,y) satisfies the integral equation
(18).

We can deduce the solution in the case z <2 0 very easily. If we
superimpose the solution of the problem in which waves with velocity
potential ¥ (p)e”** are incident on the negative side of the screen,

satisfies the boundary conditions (13y and (14). Hence we have the
relation

Fir) + T(p) = Filr) + T (p)
from which it follows that if =z <2 (,

- ikR

1
0 =5 |, 1w

dx" dy’ (19
where f(x,y) again satisfies the integral equalion (18).

PROBLEMS

1. The function G4r,r) satisﬁes(?"* — k%G = 0and is finite and continuous with
respect to x, ¥, z or x, ¥, 2" in the region I bounded by the dosed surface §

except in the neighborhood o[ I ,EYﬂbeFJf 85 3 sipgnlarip of tbe same
CRECC (Y (T (LR 61 gﬁ%){]f} ere it has a singularity of the same
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type as er-tie ] s r -t It oalso satisfies the condition  that
8Gy/én - hGy vanishes on £ # being o constant.
H (e Cls o wave function satisfying the condition

e
— RN
on ‘ i
for points on 5, show that
ey - ' FENGLr e dS
4 R
If GLlp.p") is such that
G bR A
(5 5 ©) G0
with g — (x,p), 7 = (x",)") and is finite and continuous in the p ane regi(}n 5
bnunded by the curve 1’ cxcept that it has a singularity of type H'§'(k | h
asg’ - p, and if G; = 0 on I', prove that
1 (‘I
T(p) = = ot (],
(@) il (e lTAY
lf G,(p ') nbeys the same conditions as C:,(p.p } except that G,/ én = Q and
Gy = 0 on ', prove that
i Ay
Yig) - - — [ L Gape) ds
o) 3l T AP,P7)

Moncchromatic sound waves of velocity p()tcntigil Y, (e Care incident on the
positive side of a perfectly conducting screen in the xy plane which has a small
aperture 5, at the point (0,0,0).  The dimensions of the aperture are small in
comparison with the wavclength 2=/ of the incident wave. Show that at a
great distance ¢ from the aperture on the negative side of the screen the velocity
potential is given approximately by

Ae Phoir- iy
t]l(r,” ........ ¢
r
where A 5 Flxyydy dy
TN

(A ey dat dy

and ( AT 20,(0.0,0)
N N I e S

Dreduce that A . CY(0,0,0) where € is the capacity of a conducting disk
which has the size and shape of the aperture 5.

Monochrematic waves of velocity potential ¥ (ry*¢! are incident on the

positive stde of an infinite perforated scrcen accupying the plane - = 0 of such

material that the total velocity potential vanishes on the screen.  Show that the
velocity potential M (rje<" is given everywhere by
F o R

Iy — Y 'I(r) ....... e f(.\”,}")

g

dx’ dy’

where R -o Ay — x -(y = P+ 2% and f(xy) satisfies the integral
equation
s ik

FACR dx" v = IV (x, 0,00
e

when (x,1,0)is a point of §,, the sereen itself, and 7~ (7= X - (v — R
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8. The Nonhomogeneous Wave Equation
The second-order hyperbolic equation
Ly = f(r,0) (n

]
where Lo —

x
¢t 7

(2 )

(25
‘E*_.,; i

which arises in electromagnetic theory and other branches of mathe-
matical physics 1s called the nonhomogeneous wave equation. It is
readily scen that if y, is any solution ot"thg nonhomogeneous equation
(1) and w, is any solution of the wave equation, then

P ®

is also a solution of equation ([).

Suppose that a function y satisfies equation (1) in the finite region
bounded by a closed surface S and that we wish to find the value of the
function at a point P, with position vector r, which lies within S, If
we denote by {2 the region bounded by § and the sphere C of center P
and small radius ¢, we may write Green’s theorem in the form

X ‘7 N . ! ‘ By Ch El‘a.=" .
10 (VJV—QS . (’f)v-q_r) dr’ e ( ‘r ' )(’i‘“ﬂm .......... GS T‘m) d4s (4)

JND N OR CH
where the normals n are in the directions shown in Fig. 23.  In equation
(4) we take (r) to be a solution of equation (1), so that

1/ »
V) - () — ) )

2

™~

and assume that
\r —r

$ v - , F( P—

=

) (6)

C

where ¢ is a constant and the function Fis arbitrary. It follows that

qu ......... : (), 50 that
1 7%
Vi = 7
k o2 (I] ()

Substituting from equation (5) and (7) into equation (4), we find that
¢ ‘b ) D
- ] (I;‘"(r'" -:;!5::2) d= - 1 JO.08 d
el Ja ( of N
LD e
oo DS S 0 i

I we now integrale with respect to ¢ from — o 1o -2 and assume that
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y, cy/ct vanish for 1 = ! o, we find. on interchanging the order of the
integrations, that
" ) ;orer , L i m o . ?(f) F%{! ] )

dr ' I, dt —(’ - [ e b dl dST (8
.-Ixz (\. ff( 1 J L 'H} lf . ¥ N ' ?JJ} dj ‘ (8)

1t is readily shown that

g

[ '[ I (!/‘ :("";"? — % %J dr] dS’ — 4n ‘, wEDFE — ) de e O()
(9

lr — v ] . , r—ry )
e | F N — 1 - dr 11
ch ( ¢ ) I ( )
So far the function F has been arbitrary.  Suppose we now assume that
[ 1 L
Ew G E N

Fx) =+ 2

2
| 0 otherwise

Then, using the mean value theorem of the integral calculus, we find that

" . 1 VR e o o
| swnsa = mr,if(r.kt - B ) e
so that
. ' P . ~ .,’ ) 1‘ L : - ij
o ([ rempar) = [l - ) 5
(12)

Similarly, from (9) we have

T p . ,
"(‘ { (T{'% — ‘5;_:1} dt } dS" = dmp(r, 1" + G,5) (13

. -
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where -1 =7 8, <0 1, and from equations {10) and (11) we have

e el
(!,[ ) . It ¢
ll btajas - | — - "
and
e g
l {l ¢ 2 ds
NS — o I
§ [y o —r] gy 1
) .,.“f“s y (r o jw} inlr—r|
_________ Y IV et I ir—rd
‘E"W ”fl{ (r’ ! ¢ ) )1”) Er r'] MN?;TMW (l 5)

where —1 =0y, 0, <2 I, Substituting from equations (12), (13), (14),
and (15) into L.L]Udt]()n (8) and letting »; — 0, we find, on replacing ¢’
by 1, that

_____ [ f)de
y(r,f) = 4?7 .Ll Ir r|‘
A N
47.*“,«! inl o 1 vl = r—
_.Ami :wi/m‘J l fﬁ|‘[“ _r'l‘i .
- L‘f r 1] . ds (16)

where [ /] denotes the value of the function f at time ¢ —[r — r'[/c
In particular the solution of equation (1) satisfving the conditions
Py

p= 0 on S
¢

[

Y(r,1) = i E

(i7)

Because of its physical interpretation [f7] is known as the rerarded
valve of f, and the expression on the right-hand side of equation (17)
is called a rerarded potentiol. 1t will be observed that by a simple

change of variable in the integral on the right equation (17) can be
written in the form

wrf) — | _l-(fm;_f:;f;;’_'f_’li@ s (18)

The equation (17) may be established by means of the theory of
Fourier transforms; for a proof by this method the reader is referred
to Sec. 39.2 of Sneddon’s “Fourier Transforms,™
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1t should be emphasized here that the derivation of equation (17)
which we have given is not rigorous. Among other things, we have
supposed the arbitrary function F to be differentiable and have then
taken a form for ¥ which does not satisfy this condition. In fact the
final F we have chosen is not a function at allin the ordinary sense of the
word but a Dirac delta function.!  We shall give a rigorous derivation
of this formula in the next section.  In the remainder of this section we
shall merely indicate how the solution may be applied to the solution of
specific problems.

We saw in Prob. 1 of Sec. 2 of Chap. 3 that Maxwell's equations of
the electromagnetic field possess solutions of the form

I A

H — curl A, E—- - —— —grad é (19)
c i

where the vector potential A and the scalar potential ¢ satisfy the
nonhomogeneous wave equations

47

LA =i '
A=—i (20)
L& =dmp (21)

respectively. In these equations i denotes the current density, and p is
the space-charge density. It follows immediately from equation {17)
that if A, ¢, FA/cr, and 7¢/c7 vanish on the infinite sphere, then

L il
A= ru‘ r—r| (22)
and & = '%’G}:d—;i— (23

where the integrals are taken throughout the whole of space.

Example 7. Determine the vector poleatial and scalar potential at a point © due
to a point chgree g at the point vy moving with veleeity v (¢ 2 ¢).

We may suppose that a point charge ¢ Is distributed uniformiy throughout the
volume of a small sphere of radius &, We may therefore write

e =g,  pnd =g /() (24)
where v — {fi‘?, oo Ir—r (25)
ot ¢
(s il
— ife —ry < ¢
and f(r} A’ ol
\0 if ;r - rﬂl g

Substituting in eguation {22), we find that

g | v(f i Jf_:i)dT

ATt T T

P 1. M. Sneddon, “Fourier Transforms™ (McGraw-Hill, New York, 1951), p. 32
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where S is the sphere 1 — ry| < o 1f we make the transformation

(Ait,) =X =1" 1
in this integral, then since
a4 dx, o1 X - x)v
Rk S SR (______),.j,etc_
ax’ ar ax’ e - v

we find that for small values of #/¢

) vo(r —r)
so that dr dA du dv
‘ et e rg = A velr o1y —A)
and
v(r -w)dld;:dv A2
34 : €
_'mLc-|r~r0~li vo(r - rg —A) &

S5 having equation (A; = ¢ in these coordi-
nates.  Making use of the mean-value

theorem and letting ¢ — 0, we find that vit)
. r
) ¢
Alrf) = —F—— 26
{r,0) R Rw (26) )
where we have written R =ry —r, 1’ = ¢ 0 >
— Rjc.
Similarly we have, for the scalar potential,
b 3 f A du dv 4
dmed Jg ot — 1y — A - ve(e —ry, — A) Figure 43
which becomes in the limit ¢ — 0
eq .
g = ——— 27
b TR 7
In the nonrelativistic range of velocities ¢ < ¢ we have the approximate expressions
v(!') g
N ALE S & 28
cR ’ R (28)

The potentials given by equations (26) and (27) are known as the Lienard-Wichert
potentials.

PROBLEMS

L. A current is suddenly started at time ¢ =0 in an infinitely long straight
conducting wire, and its magnitude at a subsequent time £ is (1), Show that
at a point # distant » from the wire the vector potential A at time ¢ is zero if
r > cf but that if » < ¢1, A is directed along the wire and has magnitude

2ff?fc Hrydr
2. M f(r) is the limit as ¢ - 0 of the function
3

f(r)z ‘fiﬁ [I'J < &
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show that

LY

45y
5 @ solution of the cquation Ly fiepe

3. The D function of guantum electrodvnamics satisfies (L kD 0
and the initial conditions Plrgs 0, 80/8r — fieyat sy - 0, where fir}is
the function defined in the last problemy,  Show that

i
——f%r!)

ety dner Ot

where the function F(r,7) is defined by the equations

[Folktc®e® 3 et
Firpy - «‘[O Feoet el
l JolhUe2 2 - rht ef e ey

9. Riesz’s Integrals

1t was observed in the last section that the derivation of equation (17)
of that section was not rigorous. In this section we shaii give a brief
account of a method due to Marcel Riesz which provides a rigorous
proof of this formula and also of the corresponding two-dimensional
problem. We shall also indicate how the method can be applied to the
solution of Poisson’s equation.

Inn two short papers' read at the Oslo congress in 1936, Riesz intro-
duced two generalizations of the Riemann-Liouville integral of fractional
order. The first generalization associated with the operator

~3
2

Lo % 1)

. .
T,y — ?E,(é”);(é” T -}n Wy YRV de dE (2)
where dr" =dx'dy d=’, R = —¢¥ —|r P and D is the
hvpervelume bounded by the b},pursuriaca R — 0 and the hyperplane
" == 0. The time variable ¢ is always reckoned to be positive.

The fundamental properties of the integral (2) were stated without
proof by Riesz, but brief indications of proofs of these results under
conditions sufficiently general for their use in theoretical physics have
been given by Copson.?  If the function ¥ is continuous the integral /™y
is an analytic function of the complex variable n for R(n) > 2. The

! M. Ricsz, Compt. rend. congr. intern. math., Osla, 1936, vot, i, pp. 45 and 62.
L E.T. Copson, Proc. Roy. Soc. Edinburgh, 39A, 260 (1943),
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characteristic properties of the Riesz integral (2) are expressed by the
equations

Iy )
LI 2y s fryp (-4
If wand <y/f7 vanish when 1 = 0, then
Pl o oy (3)
lirr(ll Iy =y {6)

Comparing equations (3) and (4), it appears that, in some scnse, the
operator L is [-*

In the particular case n = 2 it can be shown by simple changes of
variable that

5 b Pplr — 1, 1 i ,
]zy,'(l',f == ' Mm Ll:w!}(ﬁ (7)

where the integration is taken over 0 < |r|

As an example of the use of these resulib we con51dcr the problem of
solving the nonhomogencous wave equation

Ly = f(r,) 10 (8)

subject to the initial conditions y == Cyp/f7 =0 at ¢ =0, it being
assumed that fand 7ff¢s are cominuous. lt follows from equation
(5) that

Iy = D3

If, now, we let n —» 0 and make use of equations (6) and (7), we find

that
] e
o ff (r - - D (9)

in agreement with equation (18) of the last section. It will be observed
that this is precisu[v the solution we should have obtained if we had
interpreted L as /~* and proceeded symbolically,

For the corresponding two-dimensional problcm associated with the
operator

(‘2

Riesz introduced the integral

o,y = [. 1,/)(9',!'}13;"’3 dx' ey dt’ (1D

1
O C(n — 1)
where p denotes the plane vector (x,y),

R = (t — 1) —|p— ¢
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and D, is the volume in the vyt space bounded by the plane ¢* = 0 and
the cone

lp- el - 1)
This integral has the propertics
it =17 "y (12)
Ly Sy - Ly (13)
lim [iy (14)

o

from which it follows that a solution of the nonhomogeneous two-
dimensional wave equation

Figure 44

Lyple.ty = f(e0) 10 (15)

! ‘ @)y d (16)
T Dy R,
The second Riesz integral, associated with the operator V2, is defined

by the equation

L e N
Jh(r) == S ' e (f’:” ([7
g‘( ) 2:17:,.]"(112”} . |r or |3 " )
the integration being taken over the whole of space.  If  isa continuous
function such that J*y exists in a strip 0 -2 R(n) <=7 &k of the complex
n plane, then
Jm‘fﬂif' _ Jm-]- i’if' [8)

\—:J”lz?,” - _J?I(’,_, 19)

lim Sy =4 (20)
-0

e

(
(



THE WAVE EQUATION 257

Thus if we have to solve Poisson’s equation

V() = —dnr)
then operating on both sides of the equation by J*#* and letting n - 0,
we find that

Wr) = 4=%p(r)

which from equation (10) becomes
[ ') dr’
Jojr—r'

w(r) = (21

PROBLEMS

1, Show that the solution of the equation
(L4 Alnny = (o)

with 3 = éy/ét = 0 when 1 = 0, can be written symbolically in the form

ot

plrd) = Z(*l)rk‘“’"lzf‘r‘{’r
r=0

Deduce that

pro = o fio e =l —chde k[ [

T (kR d= dr
g v 3 |, R kBT

r—r| <o,

where B = {1 1) — |r = '[!, ¥is the volume for which 0 <
and D is the hypervolume bounded by R O and ¢ 0.

2. Show that the solution of the equation
(L, — &%leuty = f(p,0)

with w = éyp/ér = 0 when ¢ = 0, can be writlen symbalically in the form

wip,f) = :{U kzrl?r ; 2f(P,1)

Decluce that
1 . . . cosh(kR

W) = 5= | feu0) ——lk(—m'—)

=" UDI ]

dx’ dy dr

where R} = (r — ¢)* — |p — 90’|* and D, is the volume in the x'yt" space
bounded by the plane ¢* = 0 and the cone R} = 0.

10. The Propagation of Sound Waves of Finite Amplitude

The problems of wave propagation which we have been considering in
this chapter have been concerned with linear partial differential
equations. We shall conclude this chapter by considering an important
nonlinear problem, that of describing the motion of a gas when a
sound wave of finite amplitude is being propagated through it. We
shall consider only the one-dimensional problem, since it lends -itself
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to a simple linearization procedure and provides a useful illustration
of the use of the Riemann-Volterra method and of a complex variable
method due to Copson.  Even this simple problem has important
applications in aerodynamics and astrophysics,
The one-dimensional motion of a gas obeying the adiabatic law
p = kp (1}
is governed by the momentum equation

L @

If we introduce the local velocity of sound ¢ through the relations

dp
2 .. A oot 4
¢ dp Yo €3
we find that equation (2} becomes
‘ ¢ 2 7o -
L L (3)
ci ex v~ lrx
and that equation (3) becomes
2 e e fu
il ) reg =0 ©
If we let
o ¢ 1 oo ¢ Sl 7
roe m— lu, s — u (7}
Lo, if we put
¢ =3y — Dir + 9, H=r-—35 (8}

then the equations (5) and (6) reduce to the pair

&£ {or -+ fis) o 0, ;; — (x5 + pR) 2 (9)
¥ ¢ '

?

~

—
-
3
P

where o = 3y — 1), g = {» — 3%

The quantities » and s defined by the pair of equations (7} are called
Ricwcnn invarianis.  1f one of the Riemann invariants is a constant,
then one equation of the pair (9) is an identity, and the other is a first-
order equation of Lagrange type, by means of which the other invariant
may be determined. The gas flow corresponding to the solution so
obtained is called a simple wave. For instance, if r is constant, then

X {as Ay o= ()
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where the function fis arbitrary, and if 5 1s constant,

X o - gy e g(r)
where g Is arbitrary.
Riemann showed that if r and 5 are taken as independent varables.
the problem can be lincarized. If x and 7 are expressed in terms of r
and s, then it is readily shown that

°F ci cr IS 7y ot rs S
—_— ::‘-Jm;_me = '—"J“:"""! e *'J“:““? ""Z”"“'*’J““:‘“
ry [ cof [y (Y oF o or

whete J = &(r,8)/7(x,/).  1f we substitute these expressions in equations
(9), we find that these equations may be written in the form

‘ ) )
e (X (a2 fs)] = 0,
[

|~

[v — (a8 = pr)] — =0

™~

Iz

from which it follows that these equations are satisfied if we express the
original independent variables x and ¢ in terms of » and s by the
equations

X o= (o = P e m[:ibu Nt s ey = - :ﬁ {10y
or [

where the function ¢ satisfies the equation

4 N o jid Fd
. d e LA —— e 1 l
fres o ks ( er I ?.S‘,-} 0 (1
) . . L
in which N oz AT (12)
...")..ENI I 3
so that Y= ] (13)

If NV is a positive integer, a solution of equation (I1) can be obtained
in closed form. Consider the expression

1= ’ﬁr.\' l(f‘ L '5.)‘\'
where the function f/(r} is arbitrary. By direct differentiation it is
readily shown that

2, N T, ;,_g,l)
I — |\= T =
cres F -85t cr e
_ oy S NS S
AT 5).\“ 1 o g L ipY (, L q) v { P (r _¢).\’ 7 ',[
Now if we write
AT L NP
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and make use of Leibnitz's theorem for the nth derivative of a product,
we find that

KR A oI S A L DR LAY A2
“ ) AI’ (, .. ;)-\ -3 ("1’“\—1 (’. " .S’)'\ +1

from whlch it follows that ¢, is a solution of equation (11). A similar

solution can be obtained by interchanging r and 5. We therefore have
S (N0

Hrs) = ==, j) T ) (14)
{r + sy csTHrE - 8)

where f(r)and g(s) are arbltrary, as the solution of the linear equation

(13y in the case in which & is a

42 positive integer. In the case N = |

we have the simple solution

) , sy =T E0)

For general values of the con-
stant y, N is not an integer, and
so recourse has to be made to
some other method of solution,

¢ such as the Riemann-Volterra
;s method. It follows from the
0 analysis of Sec. 8 of Chap. 3
Figure 45 that, in the notation of Fig. 45,
the solution of equation (11) is

\ R N ] {cw Nw |
bp = ppwy — L & [“’ s P - ¢ j """ o 7F 5l dr }

where ¢, ¢4/ r, and £d/7s are prescribed along a curve C in the rs plane
and the Green’s function sw(r,s;r’,s') is determined by the equations

s g w e w
] N N — — N S — O
(1) crcs Y Ly s) cs (r - s,:)
. €1 N ,
{11} e 122 W when § == §
. . A
s EH" JV s
(1ii) — = whenr = r
s r—+s
{iv) o | when v == r and 5 — 5’
It can be shown that
’ PN
P L o A A E 5
wirsir's) = | __1_5:) Jl — N, Ny 16 (15)
r— s —
where £ e (___W._l(m._m) (16)

(r =)'+ 5
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An alternative method of solution has been devised by Copson,! using
the theory of functions of a complex variable. 1t is easily proved that

the function
,..L’X

N+ 9

is a solution of Riemann’s CQLE&%%O%] (11). Furthermore if r and 5 are
real and & is not an integer, this solution is an analytic function of the
complex variable z, which 1s regular if the = plane is cut along the
segment of the real axis which joins the points 0, r, —s.  We may then
consider the branch of this function which is real and positive when =
is real and greater than 0, r, and 5. Therefore, if /(z) is an analytic
function w hlch is regular in a region containing the real axis. and itC

o
38 a simple closed cos é%ouz sa:rroundm;: the cut, then

— =
Blr.s) = 7‘ (___“ /i_)i‘ Y

is also a solution of the partial differential Lqﬂalion (1. Substituting
this expression in equations (10), we find that

N ) 2 () d=

dlr,s) =

(17}

x = {ar == day = el B Pt (18)
‘ ) N T (o) d=
¥l = Jr (z— !'}:‘JIE -yt (%)
from which it follows that
o N T () ds
o= Qni,L-(: — Az e

Now in a state of rest the velocity u is zero so that r =- 5. Hence if
the solution {17) is to represent a motion of the gas in which the initial
state is a state of rest, the function /(=) must be chosen to satisfy the
integral equation

[ e

(22 _. z)\—} o

where ' is a simple closed contour surrounding the cut [R(z)| < r. It
is readily shown that this implies that f{z) is an even function, and
conversely.

Suppose that when 7 = 0. x = x(r); then equations {18) and (1%)
show that

xlr) -

N( 2Yf(2) d= “EW Y (2) dz
B I Y P N N Y P
[rom which we obtain by addition the symmetrical expression
AR ) .
n - [ 2
LE. T. Copsen, Proe. Royv. Soc. Londen, 216A, 339 (1933).

(20)
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Equation (20) can be regarded as an integral equation for the deter-
mination of f(2) when v (r) is known. Copson has shown that the
solution of (his cquation is

FE =2] ) dr (21)

provided that . (r), regarded as a [unction of the complex variable r, is
an even function regular in a region containing the reaf axis. Equation
{17) then gives the required function &(r,s).

PROBLEMS

L. In the problem of the expansion of a gas cloud into a vacoum the initial con-
ditions are
=5 = rylx} X 0,y =0

81:) o dr,
( #l, 2(; Drgly) e

Show that

Hence show that if /g(x) 0, the cloud expands into the vacuum,

2. H the face of the expanding cloud has advanced into the vacuum and is at

X = xpie), show that the conditions r - s = 1) hold there. Deduce that
; "t ONL o i
. N Zfta)dr
X 2iqf "5 ~ —T
LT Ji . (& - 11)"“
N ,f{ )
where (% - iyt — t —
( i 3 TR

and Cy is a simple closed eontour surrounding O and r,.
Prove that £, = 2ryi ic.. the velocity with which the face of the doud
advances is equal to the particle veloeity at the face,
3OIEN -4, prove that

1 d”

Xy o= 2t 3 1’r §r1/(fi] P i iy Firnl
4. I initially r 5 - (—p)h x <00, prove that
I !
N (NP 2N - Dies o N8 42N - Dilr - )
2 2u

Peduce that the position x| of the face of the cloud at time 7 Is given by

;4‘12
2N

Xy

MISCELLANEOUS PROBLEMS

L Two very long uniform strings are connecled together and stretched in a
straight line with tension 7 they carry a particle of mass a7 at their junction,
A train of simple harmonic transverse waves of frequency » travels along one



IHE WAVE EQUATION 263

of the strings and is partiaily reflected and partiafly transmitied at the juncoon.
Find the amplitude of the transmitted wave, and prove that its ph‘m legs
behind that of the incident wave by an amount

where ¢ and ¢ are the velocities of propugation in the two strings.
Verify that the mean energy of the incident wive is equal 10 the sum of the
mean energies of the refiected and transmitted wuves,

A upiform straight rod of mass ne and length /s free 10 rotate in a horizontal
plane about onc end A, which is fixed on a smooth horizonta! tabbn. The
other end of the rod is tied to one end of @ heavy string.  The other end of
the string is tied 10 a fixed point B on the table so that A8 = 2/ Initially
the rod and the string are in a straight ling, in which pﬂsiti()n the tension in
the string is £, and its dcmlt\, is p per ynit length,  The system i$ set in motion
s0 that it performs small transverse v lbrauom in a horizontal pldnc

Show that the periodic times of normal modes of vibration are given by
2wl/ci, where F satisfies the equation

. 3pd
stan ; —

Hi

A uniform string of line density p and length / has one end fixed and the other
attached 10 a beud of mass w7 free to move on 4 rough rigid wire perpendicular
to the string.  The rough wire exerts a frictional force on the bead equal to
2 times its velocity,  If .y == 0 is the fixed end of the string, and if the cffect
of gmvltv can be neglected, show that the displacement of any point of the
string in transverse v|bratmn can be expressed as the real purt of ¢ife! - “hfx),
where p satisties the equation

. /
mp - cp ot il
c

If ,+ is small, show that the approximate value of p is

;“u
R
mio plcose® wile

where wn = cp cot niie,

A cylindrical tube of small radius, open at both ends, is divided into two parts
of ]LnUths 1, 1 by a piston of small thickness » and density & attached 1o a
sprmg “such that i racuo the period of vibration is 2=/, Show that when the
tube is in air of density p, the peried of vibrazion becomes 2a/n, where

, . nl il
oln - )8 pemtan = . tan —°
.

and ¢ denotes the speed of sound,

Show that the only solution of the one-dimensional wave equation which is
homogeneous of degree zerc in x and 1 is of the form

Alog (x ”} ----- B
X o er

where A4 and B are arbitrary constants.
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Find a solution of #1:27 % & 24%) such that:
iy v involves x trigonometrically:

(i) v - Owhenx ~ Qorr for all values of 72

(iiy &1/78& Owhen s 0, for all values of x;

poosinyfromxy Qtox o 52

v O0fromx ~=2tox -7 whenz 0.

{iv)
Two equal and opposite impulses of magnitude 1 are applied normatly 1o the
poinis of trisection of a string of density p per enit length stretched to a tension
7 between two points ar a distance / apart,  Derive an eXpressicn for the
displacement of the string at any subsequent mstant, and show that the mid-
point of the string remains ut rest,

Find a solution of the equation

I N
TS 5

such that V7 = O when v — Gorx o forall values of £ and that 2¥/3r 0
when ¢ == Gand ¥ — Ewhen ¢ = 0 for all values of » between Dand a. The
quantities @, ¢, and £ are constants,

Find a solution of

B ST

satisfying the conditions « - 2u/éf — 0 when ¢ = 0.
One end of a string (v — 0) is fixed, and the point & = 4 is made to oscillate
s0 that at time f its displacement is Y'(7).  Prove that the displacement of the
point x at time r is

flet = xip— frer - x)

where /is a function which satisfies the relation

for all values of -,

A string is constrained to move in two different ways; in case 1 the point
X als given a displacernent Yy, and in case 2 the point = b is given
an identical displacement. It Is found that the shape of the string in case |
is identical with that in case 2 at all times; show that the displacement at
x = hin case | is equal to that of x .- a in case 2.

Show that the equation governing small transverse motions of a nonuniform
string is of the form

3

a

=

2y @y
D

B
oy

it

X
where ¢ is a function of 4.
Show that a solution of this is y - f(x./) — Flx.1}, where

ér 1éf I éc ) 2F 1 8F
. o e D L F} oo o
~ éx ¢ ér 2 6,\‘{ f d éx ¢ &

and interpret this, in a region in which @c/8x is smali, as the sum of two
progressive waves whose form is slowly altering.

An infinite string is such that ¢ is constant f x = 0 or x - a: between
x — 0 and x = a, ta/c)#c/8x is cverywhere small. A wave 3 = flf — x/¢)
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is propagated along the string frony x . Show that a first approxema-
tion 10 the form of the string is given by £ (x.) = fi(r — &, Fixt) — 0. where

£
g - [ e~ Vdx, and that a second approximation is given by
L)

f - flr =il - Hlog elx) - log e(O];. F— §t -8, 1)

where ¢(u,x) is given by

"

| . o
Folae 20y — dx
r C

Glir,x)

(=]

A string of nonuniform density p(x) is fixed at two points x O und x - 4,
the tension of the string being ¢®p,. I the density plx) varies only slightly
from the valuc gy, show that, to the first order of small quantities, the nornual
periods of vibration are
2 T ey
e [pg  plxl] sip® — dfx
FCpg Jo 4

and the npormal functions (apurt from a normalizing factory are

e 3 2 .
. orxy 2N ! . T
Sin e < = > Dy e 0 s

a - !

where r, 5 arc positive integers and

" 3 . : ¢
[otx) | . fsxy (mx)
#, = - 1y sin |— Js — | dx
¥ “[J l o }xln ( a }ﬂ;ln wry X

A uniform string of mass M is streiched between two fixed pnints at distance
a apart, and carries a small muss A at o distunce » from one end. Show
that, to the first order in &, the periods of the normal modes are

)

and the npormal functions are proportional to

sin (E) + 2esin (ﬂ)) > sin (ﬂ) sin ﬂ)
al T @ o F L a a

/ sty Y /

Deduce that if the particle is attached 1o the mid-point of the string, the
period of the rth normal maede is unaltered if # is even.

A uniform string of line density p is stretched at tension pc® between two
fixed points at distance @ apart. If the mid-point is constrained to vibrate
trunsversely so that its displacement is = cos nt, where « is small compared with
a and #afc is not a multiple of 2, find the displacement at any time of all
points of the string in the resulting forced vibration,

Also show that the mean Kinetic energy of the string s

. o fma . ona ;[ na
e | — — sin— | cosec® |
L ¢ . ¢

A string of length /, with its extremities fixed, is initially at rest and in the form
of the curve y = Asinmmx/l, At 1 =0 it begins to vibrate in a resisting
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medium,  Givenr that the dificrential cquation governing damped svibrations is

¥l

- o -

A PR
s I

=13

-
=

g

i

a
Y}

X
show that, after time 1,

. Ao . IHmX
voos Ae jeos ni' - —sin m’f} sin
: | 1

where

i1

A suing of length / is vibrating in q resisting medium.  The end x - 0
is fixed, while the end x {1s made to move so that its displace-
nient is A cos (werff). With the notation of the Jast problem prove that if
kije is small, the forced oscillation of the string s deseribed by the equation

v - Acosech (é—/)
2 B
v {sin (77{) cash (

7)o (7 i) )

Flexural vibrations of a uniform rod are governed by the equation

e &y

axt KT

where k is a constant, Shew that if y = X7, where X is a function of x ulone
angd T a function of r alone, then T may take the form 4 sin (Akr - %), where
A, 7, = are constants,

Show that if p — dy/8x — 0 when x = 0, then

X = B(cos px - cosh px) — Cisin px — sinh px)

where pf - 4 and B, € are constants, and that if also v @vféx = 0 when
x -, then
Blsinpu  sinh pay = Cleos pa — cosh pa)

and cos pa cosh pa — 1.

By means of a rough sketch, show that this last equation gives an infinite
number of values of A
If H(r) denotes Heaviside™s unit function

jo -0
H”)”l‘ .0
and if 71£) is the Laplace transform of a function y(7), show that e =&} is the
Laplace transform of the function v(f — a}H(f — a).
fn the equation defining the current 7 and the voltage £ in a cable [equations
(3 and (4) of Sec. 2 of Chap. 3] R/L - G/C ~ &, where k is a constant,
Both £ and fare zeroat timer — 0, and £ ~ Eglnforx -0, ¢ ~ 0. If V
remains finite as x tends to infinity, show that

I £
X P X
! \ ¢/

Efx,1) = < ’

X
0 r =
£
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A membrane is in the form of a right-angle isosceles triangle of area 1 with
fixed boundary. I 7 is the (uniform) tension and ¢ is the density per unit
area, show that the frequeney of the fundumental mode of oscillation ts
A(31720A4):, What is the frequeney of the first harmonic?

A rectangular membranc of sides 2a, 25 is subjecied to o small Auctuating
force £ sin w7 acting at its center. 1T P and  are constants and transients are
ignored, show that if the axes are chosen symmetrically, the transverse dis-
placement is given by

(2;' - ) (2.; e )
B + - Cos ~ X ) CO8 - Y
Psin st < 2a J .2 )

(.:!Pa/'] ’:4,”1) :/_J[) i ( Iy I[ ) F ( 2 1 P)-_g ) i;
. 2k o2

A very large membranc, which in its equilibrium position lies in the plane
7 =0, is drawn into the shape

T e

at any subsequent instant the transverse displucement is

l ].2 . (;2;‘.% 3"
o 1

/

A uniform thin elastic membrane is subjected to a normal external force per
unit area px,1./).  Prove that the equation governing transverse vibrations is

&% o Pl
JEAF R T

A cireular membrane of radius a (s deformed by the application of 2 uniform
pressure Pyyir) 10 a concentric circle of radius 6 (~2a). I the membrane is set
i motion from rest in its equilibrinm position at time ¢ = 0, prove that at
any subsequent time the transverse displacement of the membiane is

2P S TUBE Y T
n.,J f_i)' } ‘_““ f,} {iﬁ(n) sin [ed(r = w)] de
(TG Lot glheal |

If f(z) is a twice-differentiable function of the variable z, prove that the
functions f'{x ~ kv — v7) are solutions of the two-dimensional wave equation
provided that £* = #%/¢* — |,
Deduce that
wlerd) = [ xle) flx ysinhx o cosh o) dx
where 7 is arbiteary, is also a solution,
Show that the equations of motion of a two-dimensional elastic medium in
the absence of body forces may be reduced by the substitutions
éd 2y 2eh 2y

I U —
fx éy &y dx

to two wave equations.
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Making use of the result of the last problem, determine the components of
stress in @ semi-infinite solid y . 0 when a moving pulse of pressure of
magnitude

Moo~y - F¥%x - )

is applied to the boundary v - 0. (F?* denotes the complex conjugate of the
complex function F.and T denotes the second derivative.)

A solid sphere performs small radial pulsations in air of density p so that its
radius at time ¢ is R - = sin pt. Show that the velocity potential of the sound
waves produced s

a2p RE cos | pit — (r — R)je] — 3

i (W)" .

where ¢ is the velocity of sound in air and tan 3 = pR/e, and that the approxi-
mate average rate at which the sphere loses energy to the air is

h.)i
1 - (pRlcy

moctoH p

The radius of a sphere at time ris g(1 = « cos 1), where #is small.  Show that
to the first order in £ the pressure amplitude of the sound waves is
poruz(‘a:i!‘
RSPEINE

at a distance r from the center of the sphere.
Air is contained inside a spherical shell of radius a, and there is a point source
of sound, of strength A cos o, at the center. The acute angle « is defined by
the equation tan x = ka, where & = ofe.  Show that the velocity potential
inside the sphere is

A nika — o — ki)

2 s ar 22 s

w sin (ka — )

provided that kg — = is not an integral multiple of =, What is the significance
of this condition?

Prove that a particular solution of the wave equation is

2 fl !
Ceos 0w - fint — kr)
rr’

where # is a real constant and k — nje.

A sound wave 15 produced by the small vibrations of a rigid sphere of
radius @ which is moving so that its center moves along the line § = 0 with
velocity U cos (7). Determine the velocity potential, and show that at a great
distance from the sphere the radial velocity of the fluid is approximately

kPa®l

e €08 008 (1t — ke - ka o @)
"L kg

where tan ¢ - 2kaf(2 ~ k%a°).

A uniform elastic sphere of radius & and density p is vibrating radially under
ne external forces,  The radial displacement u satisfies the equation

F 3 Eu 2u P
(/ 4 2”) ( e — b e
v

£l P2 ) PEe
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where 2 and g are elastic constunts, and the radial component of stress 15
(A 5 2py=m  2j

Prove that the periods of the normal modes of vibration ure 27afe; S, where
cf - {2 - Zmfpandthe &5 are the positive roots of the transcendental equation

dscot s - 4 - g
in which % == (&4 - 2o

Monochromatic sound waves of velocity potential ¥ {r)e’™ are incident on
the positive side of a screen in the xv p]dm which has a small aperture Sy
at the origin, The boundary condition is the vanishing of the total wave
function on the screen.  The dimensions of the aperture are small compared
with the wavelength 2=/k of the incident wive.  Show that at a great distance
# from the aperture on the negative side of the screen the velocity potential is
given approximately by

oy o D

y(rt) A4 . J

17
where 4 -+ — ’ FOx vy dx dy
2r Js, ' N

and the function f(x,1) is such that the function

tr Jix Y dn v

2 e Y
2T Sy, 4 (x -x _)- (}‘ ........ ‘1,)12

vanishes on the boundary of §; and satisfies on §; the equation
AR ~
vy T A 0

where C is the value of 9°,/8z at the origin.
If §) is a circular disk of radius & and center 0, verify that

A S
[y - — vt e xR y?
‘ . - .
and that
o T S s P
e ) = - ﬂsz_ gitlemri)
! 3mr®

Monochromatic sound waves of velocity potential " (x y)e** are incident on
the positive side of an infinite perfectly reflecting screen lying in the plane
¥ = 0 which contains apertures bounded by straight lines parallel to the z
axis so that the apertures cul the plane z — 0'in a set of straight lines L, lying
on the x axis, Show that i y = 0, the total velocity potential s given by

Yy - Uiy -y - L f‘ FUxVH P ep) ddx
J Ly
where p — \ (y — ¥ IE and f'(x) satisfies the integral equation
FENHPk|x — x) dx o= 270, (x,0)
R

where the point (x,0,0) belongs to L,.
Deduce the solution for y -« 0,
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32. If, in the last problem, the material of the sereen instcad of being perfectly
reflecting had been such that the ol velocity potential vanished on it, show
that the velocity potential is given everywhere by

Wiy = Ty b 7 e H Py i

L

where Ly is the set of lnes on the x axis in which the screen cuts the plane
=0, p = 4 E-Y w x)® & and f1(x) satisfics the integral equation

FONHP|x - xyex — 27 (2.0

S,
where the point (x,0} belongs to £,
33. Show that if E and H satisfv Maxwells equations
divE — 0, divH -- 0

H ¥ )
curl £ = — .[_i ‘ N curl H == i —
¢ @ é

(,vz ........ m]u; ”““”“E) (EH) = 0

where ¢ - 3y
Deduce that

E = eelfi 2 el H == /f; fn e deifs o (nov e )eifle}
LYY ’
is a solution with Ry = plt — (n*r)fr], Ry = plr -+ (n-nfr] and the vectors
e, e, nconstant vectors.  Prove that

H -« hyetfe — hoelfy, E - — /ﬁ {tn = hpeify — (n > hyeifa)
A ¢

15 also a solution of Maxwell's equations.
34, Theelectric force in a plane electromagnctic wave in racuo has the components

. { xsins d-oreosy ]
E, -0 E, =acospit — —m———— o, E. =0
' | ¢ J

Find the magnetic force.

The wave 1s incident on the plane face of a uniform dielectric, in which the
dielectric constant is ¢ and the magnetic permeability is unity, cccupying the
region z 3 0. Find the amplitude of the reflected wave!

35. The magnetic force in a plane electromagnetic wave in vacuwo has the
components

| ysinx < Z08 % }

H,=acosp 1.’ — H,=H. =0

¢ i
Find the electric force,

! The boundary conditions are that the normal components of #E and jH are
gontinnous and that the tangential components of E and H are continuous,
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The wave is incldent on the plane face of a uniform diclectrie, in which the
diclectric constant is ¢ and the magnetic permealbility is unity, oceupyiag the
region z =~ 0. Find the amphtude of the reflected wave, and show in par-
ticular thdt it vanishes if the angte of incidence x is tan 1 ¢',

Prove that a possible electromagnetic ficld i racue 15 given by

1 . ik
E - - - curl (k). H  grad(k-grad ) — =

where k is a constant vector and % is a scalar function of position and time
which satisfies the wave equation T = f#¢#,

Taking k to be the unit vector in the direction of the 7 axis of a rectangular
coordinate system and # to be of the formy # f(x, v, 2 - wr), where ¢ 8 a
pns\tl\e constant, prove that the rate of transmission of cner gy across an
arca § which lies in a plane = - constant can be expressed in the form

a { Ff o2 SRR |
4 J; | ( Ay 8- ) ( R a:) | dx ch

Show also that E-H 0 and E- k - 0 whatever the value of ¢ but that
H-k —0onlyifa=c

Establish the existence of an electromagnetic field of the form

aie #n
E 5 B T B0
1
H, -0, H, 0 H.- -
where i ocexp (o iky ket fle a), e

and determine the functions £(» - vh

Show that if I is a vector function of space and time coordinates which at a
fixed position in space Is proportional to exp (fker) (A constant) and which
satisfies the equation

THI &Y O

then the clectric and magnetic fields
E = —fheurl Il and H —curlcurl IT

satisfy Maxwell’s equations for free space,

By considering the case in which the direction of IT is uniform and its
magnitude is spherically symmetrical, show that a nonzero simple harmonic
clectromagnetic field of period Za/(ck) can exist in a sphere of radius ¢ with
perfectly conducting walls if ka satisfies the equation

tan ka - Aa

Shew that in cylindrical coordinates p, #,  Maxwell's equations for empty
space lave a solution

1 &y
H, -0, Hy P T H. =0
8 12/ &
Brrgm P “é*(“*”)

and find the differential equation satisfied by f.
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Show thut there s o solution of Maswells cquations for clectronugnetic
waves i1 racse iy which the compenents of the magnetic intensity are

&5 Y
H, ay & H, ov .0

wlhere rS - Fler — ), ¢ is the distanee from the origin, ¢ the spccd of light,
and £ an arbitrary function,

Obtuin the corresponding formulas for the components of the electric
intensity, and prove that the lines of electric force are the meridian curves of
the surfaces

a8

= const,

op
where po=(xt  )
Prove that Maxwell's equations

. I aH ) .
curtE P 0. div [po(rE] == 0
P ol

curl H -- o — . 0, divH = 0
I

for an inhomaogeneous sphericaily svmmetrical medium of ndex of refraction
#0r) have solutions

] )
(a) E /{—2 et curteurd (rnf), H .. — ke ey (r“j()

where {satisfies the scular wave equation

I d* 71 |
‘m'f A - H (f}'l‘z (;)’ f -0
Ltk R Curl ('r,u?{’f)
(h) E = —curl (r2%9), H = ¢curl e
I” n-

where ¢ satisfies the sealar wave equation
2 22
Vig o Kly = 0

A scalar wave function g satisfies the wave cquation

where s, the refractive index, is a function of x, v, 7. We define a wave front
as any continuously moving surface that contains discontinuities of v and
assume the existence of one wave front only.  Tuking iy, v, to be the wave
function on either side of the wave front and writing

Py ) =)

where Mg} denotes Heaviside's unit function defined to be 1 for ¢ = 0 and
0 for¢ 0, prove Bremmer's relations

(a) lgrad 8| = - o

" . 20t Gy ¥
(& p*viS - Z(grad A -grad ¥y - Ry =0




THE WAVE EQUATION 273

Denoting differentiating along the normals to the surfaces S corstant
by 8/ 8n, show that the vartution of any fusction fin the rav direction i~ gaver by

df o
y ;(bhldf'ghlds)

Hence prove that (4) cun be writien in the form
1)
20 —(logy*®) - - T8
i T

and that the change of ¢* along o trajectory is related to that of p and that of
the cross section & of a smalf beam according to the relation
gy const,

43. The electric und magnetic vectors E and H satisfy Maxwell's equutions

¢ arer oF
curEH—i—frE}f " E im
c ar o
| 2
curl B - — —(#H) =0
¢ ar
di [a(F) 4 El 8d' F
- GE malE; = — — div
| 2 f ét

div (H) — 0

wherc (1/4my( aF/21) represents the enforced current density and «, #, and x
may be any functions of x, v, z,and r. If ¥V* = V| — V, represents the jump
of Fon the wave fronts ¢ - 0, show that

1 o
H* - erad BT . F*E —_—
grad ¢ - {(¢E) ey
] b
E* o gradd - - (ob)* —
= ¢ &t
j’( a("'E)}* . (P
1 w - d={rE) (?’) I grad & =10

GHY . grad g = 0



Chapter 6

THE DIFFUSION EQUATION

In this last chapter we shall consider the typical parabolic equation

e/

-2

€x
and its generalizations to two and three dimensions. Because of its
occurrence in the analysis of diffusion phenomena we shall refer to this
equation as the one-dimensional diffusion equation and to its generaliza-
tion

‘1

Q/
et
(where & is a constant) as the diffusion equation.
We shall illustrate the theory of these equations mainly by reference
to the theory of the conduction of heat in solids, but we shall begin by

outlining other circumstances in which the solution of such equations is
of importance.

I. The Occurrence of the Diffusion Equation in Physics

We have already seen in Sec. 2 of Chap. 3 how the one-dimensional
wave equation arises in the theory of the transmission of electric
signals along a cable.  We shall now indicate further instances of the
occurrence of diffusion equations in theoretical physics.

() The Conduction of Heat in Solids. 1f we denote by # the tem-
perature at a point in a homogeneous isotropic solid, then it is readily
shown that the rate of flow of heat per unit area across any plane is

cf
where & is the thermal conductivity of the solid and the operator ¢/cn
denotes differentiation along the normal.  Considering the flow of
heat through a small element of volume, we can show that the variation
of # is governed by the equation
¢

pC '6: — div (k grad 7) + H(r,0,1) (2)

274
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where p 1s the density and ¢ the specific heat of the solid, and Fir.0.7) d7
is the amount of heat generated per unit time 1n the element o sitvated
at the point with position vector r.

The heat function H(r ,1) may arise because the solid is underzoing
radioactive decay or is absmbnm radiation. A term of this kind
exists also when there is gencration or absorption of heat in the solid
as a result of a chemical reaction, ¢.g., the hvdration of cement.

if the conductivity & 1s a consiant throughout the body, and if we write

o Ko ooy o a0
pe pc
equation (2) reduces to the form

~

ol
= PAN 0} U (3)

The tundamental problem of the mathematical theory of the con-
duction of heat 15 the solution of equation (2) when it is known (hat the
boundary surfaces of the solid are treated in a prescribed manner.
The boundary conditions are usually of three main types:*

(iy The temperature is prescribed all over the boundary; ie., the
temperature 4(r,7) is a prescribed function of ¢ for every point r
of the bounding surface;

(i) The flux of heat across the boundary is prescribed; ie., 74/cn is
prescribed;

(ii) There is radiation from the surface into a medium of fixed
temperature fy; iLe.,
ch ‘
, i 6) =0 (4)
where /i is a constant.
If we introduce the differential operator

(3)

where €y, ¢, C,, C, are functions of x, y, = only, we see that the
gencral boundary condltlon

~3
[~

Miir.t) = G{r,1) res (6
embraces all three cases.

(h) Diffusion in Isotropic Substances,  Another example of the occur-
rence of the diffusion equation arises in the analysis of the process of
diffusion in physical chemistry. This is a process leading to the

' For the discussion of more complicated types of boundury conditions see H. 8.

Carslaw and J. C. Jacger, ~"Conduction of Heat in Solids™ (Oxford, New York,
1947).
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equalization of concentrations within a single phase, and it is governed
by laws connecting the rate of flow of the dittfusing substance with the
concentration gradient causing the flow." If ¢ is the concentration of
the diffusion substance, then the diffusion current vector J is given by
Fink’s first law of diffusion in the form

J o -Dgradc (7

where D is the cocfficient of diffusion for the subsiance under con-
sideration. The equation of continuity for the diffusing substance
takes the form

™~

,,,;_‘ cdivd e 0 (8)

-~

Substituting from equation (7) into equation (8), we find that the
variation of the concentration is governed by the equation

== div (D grad ¢) (9
( .

In the most general case the coefficient of diffusion D will depend on
the concentration and the coordinates of the point in question. I,

however, D does happen to be a constant, then equation (9) reduces to
the form

~3
2

i

~ Dy (10)

it

(¢) The Slowing Down of Neutrons in Matter. Under certain
circumstances? the one-dimensional transport equations governing the
slowing down of neutrons in matter can be reduced to the form

7y 2y »

i T(z0) (n
where 9 is the “symbolic age”™ and #(z,7) is the number of neutrons per
unit time which reach the age 0; ie., y is the slowing-down density.
The function 7 is related to S(z,#), the number ol neutrons being
produced per unit time and per unit volume, by the relation

du

T(z0) = 4=S8(z,u) = (12)

where & - log (E£,/E}is a dimensionless parameter expressing the energy
E of the neutron in terms of a standard energy E,.
() The Diffusion of Vorticiry. In the case of a viscous fluid of
¥ For a tharough discussion of particu]ar cases the reader is referred to W. Josi,
“Diffusion in Solids, Liquids, Gases” (Academic Press, New York, 1952).

z See 1. N. Speddon, “Fourier Transforms™ (McGraw-Hill, Wew York, 193],
p. 212,
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density p and coeflicient of viscosity # which is started into motion from
rest the vorticity §, which is related to the velocity q in the fluid by the
equation

g - curlg (13)

is governed by the diffusion equation
B (14)

where » = u/p is the kinematic viscosity.

(€) Conducting Media. Maxwell's equations for the electromagnetic
field in a medium of conductivity o, permeability #, and dielectric
constant « may be wriften in the form

div («E) = 0
div (uH) =
curl H = ;"E = = (xE)
] ¢
curl E = - ; (T_ (,uH)

If we make use o7 the identity
curl curl = grad div — ¥*

then it follows from these equations that when o, g, « are constant
throughout the medium

V%E kit :Z“E ......... m _(HE

Ss it
If we are dealing with problems concerning the propagation of long
waves in a good conductor, the first term on the right-hand side of this
equation may be neglected in comparison with the second. We
therefore find that the components of the vector E satisfy the equation

F"f
vip L (15)
v il
where v = c2{(4muc).
PROBLEMS

1. Suppose that the diffusion is linear with boundary conditions ¢ = ¢ at
x 0, ¢ = ¢y at x =1 and that the diffusion coefficient D is given by u
formula of the tvpe D = Dy[l — f(c)], where Dy is a constant, Show that
if the concentration distribution for the steady state has been measured, the
function f(¢) can be determined by means of the relation

e — Flo) — ¢y — Fle))] = x[eq — Fleg) — oy~ Fleg)]

e
where Fley = l [ ) du
i
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Show further that if s is the quantity of solute passing per unit arca during
time £, then

2. Show that diffusion in a linear infinite svstem in which the diftusion coefficient
D depends on the concentration ¢ is governed by the equation

_— - D —
cr ax e

)
ac Fe  dD ( d¢ )"
ax !
Ifinitially ¢ ~ ¢cgforx  Oand ¢ Ofor.x -0, and if ¢ is measured as a
function of x and r, show that the variation of £ with ¢ may be determined by
means of the equation

e

7 ‘

Dir - el
() 2{!{‘“.0'“
where & <= xt !

3. Show that the equation

i Y {1y A8
r— L AT T
af n 1 K [

may be reduced o the form

au v (.0
- = W
o s PALR

by the substitutions
J‘ .

w- fexpp - ‘ e,-(r’)a’f‘!, pALNS) ‘(ﬁ(r,{chpj*
Ut f |

. ;
’ ) d!‘}

2, The Resolution of Boundary Value Problems for the Diffusion
Equation

We shall now describe a method due to Bartels and Churchill* for
the resolution of complicated boundary problems for the generalized
diffusion equation.

If we assume that the function H(r,r) occurring in equation (2)
of the last section is a linear function of the temperature 4 of the form

HE0.0) = pelCy(r9 - F(ED) (1)
where (', is a function of r only, introducing the lincar differential
operator

A== l(" div (k grad) + Cy(r) (2)
Py

and denoting by r the position vector of a point in the solid and by r’
that of a point on its boundary, it follows from equations (2) and (6)

PR. C. F. Bartels and R. V. Churchill, Bull. Ani. Math. Soc., 48, 276 (1942).
See also Sneddon, op. cit., pp. 162-166.
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of the last section that the boundary value problem for the temperature
6(r,7} in the solid can be written in the form

¢

)(r 0 = A -t Flrt) i 0

A0 < Gy 10 (A)
5,0} = Jr)

The third equation of this set merely expresses the [act that at the instant
= 0 the distribution of temperature throughout the solid is prescribed.
We shall now show that the complicated boundary value problem (A)

may be resolved into simpler problems,

Suppose that the function é(r,s,") depending on the fixed parameter
¢" is a solution of the boundary value problem {A) in the case in which
the source function 77 and the surface temperature G are functions of
the space variables and of the parameter /” but not of the time /, so that
¢(r,1,t') satisfies the equations

; M0 - A

b)) - G(r i) (B)
H(r,0,1"y = J(r)

Then it is readily shown that once the solution of the boundary value
problem (B) is known, the solution of the boundary value (A) can be
derived by a simple calculation., The method is contained in:

Theorem 1: Duhamel’s Theorem. 7/ie solution O(r,1) of the boundary
ralue problem (A) with lime- d()peudcut source and surface conditions is
given in terms of the solution ¢(r.1.1"y of the boundary value problem (B)
with constani source and surface conditions by the formula

)

| =~

Or,0) = AMr, -1, 1 dr

™3

oo

We shall give in outline a direct proofl of Duhamel's theorem. For
an ingenious prool making use of the theory of Laplace transforms the
reader is referred to the paper by Bartels and Churchill mentioned
above.

if the boundary condition is
_ =0
YU
G ) t =20
it follows that the corresponding solution of (A) 1s
== d(r,t,1") r =0
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Similarly if the boundary condition is

. 0 I
A(}‘(]“_'[} -

1l

Gl T
the corresponding temperature is

———— = e, ¢ — 1, 1) =t
Further if

'0 pt e dr
A(xr' 1) =
Gt te ! dr
then O=d&(r', t —¢ - di', 1) [t et
and it follows that if the boundary condition is
(0 I
AG(r'n) = < G(r1") ¢ R dl
0 Pt = dr

L

the solution of the boundary value problem is

b=, 1 — 1,10 — dr, 1t — " —dt’, 1)
((‘5(]‘ £t i')
T

By breaking up the interval r == 0 to ¢ = 7 into small intervals in this
way and integrating the results obtained we find that the solution of the
boundary value problem (A) is

‘—,d’

m)

«

or,7) — j S, 1 — 1, 1y di’ (3)

ol
This theorem is of great value in the solution of boundary value
problems in the theory of the conduction of heat, since it is often easier
to derive the solution in the case of constant source and boundary
conditions.
It can further be shown that the solution of the boundary value
problem {B) can bé written in the form
i
A1) = ST 1) — o117 | ulrr, i) dr 4
W
where the functions ¢y, ¢,, and ¢, are solutions of the boundary value
problems

_ Abrg) = 0, ady(r,0) = G(r' 1) (B,)
(7 — A dor ) = 0, Ado(r' ) = 0, dr0,0') = J(r) — By(r.0)

| (B)
(i _ \) do(rt ) = 0, Ady(Cini) == 0, dyr00) = Fri)

(Bs)
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From Duhamel's theorem it follows that the solution of the boundary
value problem is

E ™ ! R
Uy = (0 — = | dolr, 1 1 1y dr | ylr, 0 — ) d (5)
orJo S0 )
The solutions of the three simpler boundary value problems (B,), (B,),
and (B,), of which the first is a steady-state problem, may therefore
be used to derive the solution of the thral boundary value problem
(A).

PROBLEMS
L9 (x.nr - 1, 2, 3 is the solution of the one-dimensional diffusion equation
B, 1,
e @, T x, bt =0
a:{ h' E"I ] r i

satisfying the initial condition 44x,,0) — f.(x,) and the boundary conditions

a0,

): ET - f -0, Xy = by £ =0
rF'J
ff = = G, = 0, x, = b, t -0

then the solution 0[‘

in the rectangular parallelepiped ay <= xy << by, @ o Xy T by, Gy T X By
satisfying the boundary conditions

afs
= 7;{) N Da v, a, t o Os 4 I 25 3y
R\
i
By— - 0.0, v, ow by £ 0,r =123
E,\‘!.
and the initial condition & - f1(x,} fula,) falxg) is
(X0, X0,0) Ol O gl )50 xy,1)
2. If R(ye) is the solution of the boundary value problem
1 é AR [ BR
- — - t -0 Ty b
Foar ( Fr ) PaFa S ’
R, R, _
Ly *é?’ - 7’]Ra [ v"jlké? ,’%R, Foee B Rir.0) f {r)
and if Z(2,¢) is the solution of the boundary value problem
FZ 1L
o—q--——r—, ¢ 0,0 w2 ad
a_:' I 81 i
3L iz ,
13% sy, T o= o, gy ;— e E 7o d, 22,0y = g(2)
3T 74

then ezt - Rr.002(z,0)
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is the solution of the boundary vajue problem

.

i é ( 80) AT ]
- — |5 [
roar Azt s

- & rhyo zoodt >0
ar

satisfying the inftial condition 4 f(#1¢(r) and the boundary conditions

o, 2
— =l F __a: Hoose o A
Ty 3 gl f a. th P A b
o, m o,
ctwé; — oz, e ﬁ:?: ez

3. Elementary Solutions of the Diffusion Equation

In this section we shall consider elementary solutions of the one-
dimensional diffusion equation

7 I &b

x? okl ()
We begin by considering the expression
| CxE
i o= ——exp | — 2
V' P( 41<1,) (2)
For this function it is readily seen that
s 2
(_{}_ - X oy — W bt - l i
rx® o 4Pt 2@
&t X2 . 1 :
and — = el ()—.r*f-ixf _ . a2pdut
et et 222
showing that the function (2) is a solution of the equation (1).
It follows immediately that
|
e @ i X3t (3)
2yt

where £ is an arbitrary real constant, is also a solution. Furthermore,
if the function ¢(x) 1s bounded for all real values of x, then it is possible
that the integral

o . [ (‘\‘ s 5_)2] .
p R OIS A exp | roranhs @
is also, in some sense, a solution of the equation ().

It may readily be proved that the integral (4) is convergent if r => 0
and that the integrals obtained from it by differentiating under the
mtegral sign with respect to v and ¢ are uniformly convergent in the
neighborhood of the point (x,7). The function {x,r) and its derivatives
of all orders therefore exist for t = 0, and since the integrand satisfies
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the one-dimensional ditfusion cquation. it follows that G(x.r) iself
satisfies that equation for ¢ = 0.

Now
- u [ (x - 5?3
L £ e G T
]2(17#(()5 J - Hs)exp ] | 15— &(x)
- Ell 1 [2 ]3 . Ili
] RS - ‘ -
where L = —= ’ xS — ()l du
Vg =N
| .
le = —= ’ B(x - 2unpde ™ du
Vg Jy
| .
Iy = —= | dv o 2unSiepdem du
Vg d—u
2d(x 2
Iy = (:) e~ du
Vi LY

1t the function &(x) is bounded, we can make each of the integrals /,, 7,
I, as small as we please by taking ¥ to be sufficiently large, and by the
continuity of the function ¢ we can make the integral /; as small as we
please by taking ¢ sufficiently small. Thus as 7 — 0, 0(x,1) — ¢(x).
Thus the Poisson integral

: | [ (x— &F
i v o —— Y e T =
is the solution of the initial value problem
] 176
T — 0 <X <0 )
ECIY e (6)

B(x,0) == B(x)

It will be observed that by a simple change of variable we can express
the solution (35) in the form

0(x,1) = m{%_ ]7 B -4 2N ke~ du (7

We shall now show how this solution may be modified to obtain the
solution of the boundary value problem

220 ;
Tj = ETO 0=x < >
{"\'d w !

O(x0) = f(x) x =0 (8)

50,1y = 0 {0
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If we write
Tfx forx = 0
sy O
e f ( ..... x) for v — 0

then the Poisson integral (4) assumes the form

1 ['” o
0. 1) == );h [ S LTS P SNPRE & R LIE 27 ) E 9
( 3 ) 2\/‘7:("; 2o f( )Le ¢ ,d_ ( )

and it is readily verified that this is the solution of the boundary value
problem (8).  We may express the solution (9) in the form
1o

G(,\", r) T s I f(\ Zu\ m_:;)e-—uz du

Vg Vi

- mlm: ' ) B f( .......... X 21(\:‘.‘\’_.3‘)6" ® el (10)

'\/Tr VoY et

Thus if the initial temperature is a constant, 9, say, then

9x,1) = 6 erf - 11
() © 124/ %1l (1
. 2 & o
where erf = = — ‘ e” " du (12)
Vo
The function
, X
6 X, ) == g [l ........... Crf‘ — ] 13
(et} = 0 5= (13)

will theref‘()re have the property that 6(x,0) = 0. Furthermore
80,8 = 6,. Thus the function

P TR  |

is the function which satisfies the one-dimensional diffusion equation
and the conditions 6(x,0,/') = 0, G(0,0¢) = g(t). By applying
Duhamel’s theorem it follows that the solution of the boundary value
problem

Hx,0) =0, 60,1 = g(r) (14)

i%' (I)dt

'\"'n' O i X2 - xt}

is

™o

Hx,1) = e

"t e~ w2l -

2w o &) (r — Z")m:E i

Changing the variable of integration from ¢ to u where

X
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we see that the solution may be written in the form

~ o

2 A 3 -
f(x,1) = o J,; g(‘z - @2) e du. o= 2::1. (13)
PROBLEMS

1. The surface x - 0 of the semi-infinite solid x .~ @ is kept at temperature 4,

during @ - 1 < T and is maintained at zero temperature for ¢ .- 7. Show
that if r = T,
9 o, lert === £
W) -y er = — et 5=
T A NN 2\ )

and determine the value of Bif ¢+ = T,

2. Prove that the expression!

¢ (e - ap)
Blmwi e exp {

8{:" o dict J

represents the temperature in an infinite solid due 10 a quantity of heat Qpe
instantanecusly generated at £ - 0 at a point with position vector a.

If heat is liberated at the point a in an infinite solid at a rate pcf{1) per unit
time in the interval {0,), show that the temperature in the solid is given by

4 -
(’ [= e —af} fuydr

8=t L P d — =y
K f(#} = g, a constant, show that

q [ r :_‘jfxl
g, - %ﬂxlr - ai %E erf i |

3. Show that the temperature due to an instantanecus line source of strength @
at { = 0 parallel to the z axis and passing through the point {a,b) is

- gV — BV
U(X’a}»’,l’) = g eXP {i - o a} 4Kf(} b} J!

Gawt
If heat is liberated at the rate pcf (/) per unit ime per unit length of a line
thrpugh the point (a,h) parallel to the z axis, and if the supply of heat starts at
t = 0 when the solid is at zero temperature, show that if 1 = 0,

1 f r2 dr
Bx v f) — — f : J_o__r~ | ar
(X = 5 {}f(f)cxlol PR }{ —

g
&

where #* = {x ~ af + (v — P2

Deduce that if (1) = ¢, a constant,

, .
W= - oL Ei( - L)
(x50 e T\ T B
where —Ei(—x) = l e % dufn.

o

! This is called the temperature due to an fnstanfancous point sogrce of strength
Qataattimer = 0.
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4, Separation of Variables

The method of the separation of variables can be applied to the
diffusion equation

T2 = 1;{ )

in a manner similar to those emploved in the similar problems of
potential theory and wave motion. If we assume that the time and
space variables can be separated, so that equation (1) has solutions of
the form

= AN T(1) (2

then it follows from the fact that equation (1) can be written in the form
I 1 dT
SvEh — o
&b v T di

that the equations determining the functions T and ¢ must be of the
forms

j—; | k22T — 0 (3)
(V2 = 2%)b =0 (4)

where 4 is a constant which may be complex.  Since the solution of (3)
is immediate, we see that solutions of (1) of the type (2) assume the form

00r.1) == dirpe™" (5)

where the function ¢ is a solution of the Helmholtz equation (4), which
may itself be solved by the method of separation of variables,
We have already used this method 1n Sec, 9 of Chap. 3 to obtain
solutions of the one-dimensional diffusion equation
e 1 o6
et kit (®)
of the form
O(x,1) = ¥ [c; cos (Ax) — d, sin (Ax)]e *™ (7)
A

where ¢, and J, are constants.
We shall now consider the use of this form in the solution of a
typical boundary value problem. )

Example 1. The faces x = 0, x = a of an infinite slab are wmaintained at zero
temperatire. The mmal d:smbm:on of femperatyre (n the slab is described by the
eguation i - [} (0 < x < a). Delermine the temperature dt a subsequent time 1,

Our problem is to hnd a function 0(x, ) which satisfies the differential equation
(6) and the conditions

HO,1) = 6@,y ~ 0, 650 = f(x) (8)
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In order that a solution of the ty pe {7) should vanish identically at x == 0, we mus
choose ¢; — 0 for ali values of A, and in order that #a.n 0 we must cho:)\L ;
$0 that

sinfig) 6
f.e., A must be taken to be of the form ax/a, where # s an integer.  Hence the first
two of the three conditions (8) are satistied if we take

A

= (1: \) et
(’}(Xs” 1 §in . HERTelin
e o :

e

To satisfy the third conditions we must choose the constants A, in such a way that

L e

flo 2 A, sin a

pre= |

The coefficients 4, must therefore be taken to be

~

)} i o
A, =~ ’ [ ey sin iy
aJu u
and the required solution is
2
fitx, ) - A w2ztaija? gin ( ) * Faysin ( ) du )
B
The solution
U{,\‘,"ﬁ,f} = i E Ci.;r COs (E__\' - f‘;) COs (iuy J {);’)e (AT it (IO)
Aoop

of the two-dimensional equation

W 170
T (11)

which we derived in Sec. 9 of Chap. 3 may be (reated in a precisely
similar way (cf. Prob. 3 below).
If we assume a solution of the form
0 = R(p)P(H)Z()T(1)
of the diffusion equation
o* o R/
p pip  pridt I« P

we find that 7 satisfies equation (3) and that R, @, Z salisfy equations of
the form

*R 1dR »
e b [P - S R =
do®  pdp ( f o )
@ 2¢
d°Z EEy dj i },E(D —

d2 T dd?
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so that the equation (12) has solutions of the form

S AT (VI p)e e i (13)

P,

To iNlustrate the use of solutions of this kind we consider:

rxample 2. Determnine the temperatioee Up, 1) ér the infinite cylinder O << p < a
when the initial tewperature v Hp0y - {p) and the surface p = a fs naintained al
D€ fEneratire,

In this instance the solution (13) reduces to the much simpler form

o) = N Al (rpe Pt (14)

In order that f(a,f) — 0, the constants 2 must be chosen so that Jy(2a) == 0; ie.,

4 takes the values £, 55, .. ., &, . . ., the roots of the equations
Jfia) -0 (1%)
We therefore have
Bp1) = S A dylps, e {16)

i
To satisfy the condition %(,0) = f(p) the constants 4, must be chosen so that
f(P) \ A JD{PS,;)

It follows from the theory of Bessel functions! that

2

it
A ’ uf G £y due
y

" @l (5@ L

Substituting this expression into equation (16), we find that the required solution s

TE) e [
O p.0} = Z e <5 [ af (1) 5 e} clie (17)
? [-]1( na)]Z A 0 f R
where the sum is taken overtheposnwe roots$,, £, L .., 5, .. ., Of theequation
(15).
Finally if we write the diffusion equation
ey
kgt = En

in polar coordinates (r,0,4) and assume a solution of the form

p = ROOO(He
we find that
aiR - 2dR [, nn -+ l)}

i il i R
2 2
(1ﬁu)d0 2ZO fn(n+1)ﬁ ’:’ug}e-m:o = cos 6
2P
é;—d:—{—m?(bﬂ()

' G. N. Watscen, “The Theory of Bessel Functions,” 2d ed. (Cambridge, London,
1944), chap. XVIIL
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so thal we have solutions of the form
Z C,.,m,-_(/‘ir) i }J” . j(}'} )Pm(”k)i Wj 7_}‘2“’ (18)

m.ad

This solution is used in:

Example 3. Find the temperature in a sphere of radivs a when its surface
mainigined at zero teinperainre and ity initial lemiperatire 55 f (r0).
In order that a solution of the typc (18), 1e.,
~ CH;(/r) A r}(’:f')Pn(COS the — At (19
l!_
should vanish when r = a, each 4 must be chosen to be one of the roots 2, 4.,
A of the equations

PR P

Sy t2ay -0 (20)

and in order that w(r, 0 + 27, 1) = w(r 0,0, n must be an integer. We therefore
have the solution

e o
it'(r 6 {) = \ 2. (m( i F )_EJ?E -'Z(A)!ir]Pn(COS 0)" A;’KC
n1is1

where the constants ¢, musi be chosen so that

== o

f(rﬁ) = 3 N Cofldyir) =40y, ; 1(/,,,?‘)]’”({,05 )

n=1i—4

From the theory of Bessel functions and Legendre polynomials we find that

c Cr+ V" v d r PO FUrM d
i R AT T — Frdy v i # ;H ra A
" aai‘]n "-E(Ania)]g W D i " —1 " f 7
PROBLEMS
1. Solve the one-dimensional diffusion equation in the region 0 < x < m,
£ = 0, when

(iy @ remains finite as 1 —» x;
(11} =0il x =0or=, forall values of ¢;

Jﬁ X 0 <
() Aty =1,

l =T — X éw-’f{,‘

2. Solve the one-dimensional diffusion equation in the range 0 < x < 27,1 2= 0
subject 10 the boundary conditions
Bix,00 = sin® x for 0 < x = 2
60,1 = 6271y =0 fortr =0

3. The edges x =0, @ and y =} of the rectangle 0 < x << a4, 0 < ¥y = b an
maintained at zero temperature while the tcmperdture alnng thc edgc 1 =
is made to vary au.ordmg to the rule #(x0,1y — f{x), O -

If the initial temperature in the rectangle is zero, find the temperdture at
subsequent time 1, and deduce that ihe steady-state temperature is

%ismh mth = 0l i @) " rasin (™) a
q sinh (mi=hla) ( a /e (u ( a | “

re

0
=0,

ny
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4. A circular eylinder of radius a has its surface kept al a constant temperature
By, 1f the initial temperature is zerc throughcut the eylinder, prove that for

0
2~ |
20 JyEa 20
By = 0,1 == > el e Tl
\ U et sS40 Jl
where =&y, —&. ..., &, .. .arethe roots of J(fa) = 0.

5. The Use of Integral Transforms

We shall now consider the application of the theory of the integral
transforms to the solution of diffusion problems. First of all we shall
indicate the use of the Laplace transform. Suppose that we have to

find a function 0(r,/) which satisfies the
diffusion equation

? v 1‘_? (1)

in the region bounded by the two surfaces
S, and 8, the initial condition
g — f(r) when 1 =0 (2)

and the boundary conditions

AN
D

2
/ af) - b, = —gry  ons, (3
b bl ory  onS. (@
-t o T M 3 o
Figure 46 G e, T e ©

where the functions f, g,. and g, are pre-
scribed.  The quantities a,, a4, b, b, may be functions of x, v, and z,
but we shall assume that they do not depend on ¢.
_ To solve this system of equations we introduce the Laplace transform
r,s) of the function 6(r,7) defined by the equation

m

Or,5) = | Hr,pe ™ dt
« i}
If we make use of the rule for integrating by parts, we find that

Mt o

ch , -
o e~ di = [0(r,0)e~" 7 + s0(r,5)
Joo €
Substituting from (2) into this expression, we find on multiplying both
sides of equation (1) by e~ and integrating with respect to ¢ [rom 0
to oo that 6(r,s) satisfies the nonhomogeneous Helmholtz equation

(vt ke = (o) ®

]
s
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with &% == s/.  Similarly the boundary conditions (3) and (4) can be
shown to be equivalent to

=3
Rou]

af — b, = - 2:(r.5) on S, (6)
- ] i
a) - by = Zo(1,5) on S, {7

The method is particularly appropriate when equation (§) can readily
be reduced (o an ordinary differential equation, as in the case considered
below, When the function fi(r,s), which forms the solution of the
boundary value problem expressed by the equations (5), (6), and (7), has
been determined, the temperature 9(r,7) is given by Laplace’s inversion
formula

: Lo ,
r,) = = Olr, s)e' ds (8)
27” R
In the case where the solid body is bounded by one surface only, S,
say, we only have an equation of type (3), but we have in addition the
condition that %, and hence 4, does not become infinite within §,.

Example & Determing the furciion () satisfying

2 ] 6!') ] aij

— s — =00 o p g
P P ! , Fo {9

and the condiviens r0) = 0, Has) - [
To solve qu]dll()n (9) we mult;plv both sides by ¢ and integrate with respect 10
¢ from 0 to =, Making use of the conditions B0y — 0, we see that
d*a ! dit g

2o (10)
rdr o w

[

dr
where #lr.5) is the Laplace transform of 6(rs).  Since Ba,t) == [(1), it follows that
i j‘(s) onr osog (11}

where f(s) is the Laplace transform of the function f()." If we make use of the

ph)smal condition that #(#,1), and, hence, f(r,s), cannot be infinite al ong the axis
- 0 of the cylinder, we see that thL salution of equation (10) appropriate to the

boundary condition (11} is

Totkr)

Tolka)

ir,s) = f(s)
where &% -+ s/« so that, by the result (8),

ci

[ '” Iytkr)
Hr oy - —
Hr,t) vl N Jis) ik s

Now if I,(kr){Iytka) is the Laplace transform of the function g(r), ie., if
1 ‘“0 T gk

. T (12
i) lot'ka)( s )

ll’;(") o

it is readily shown that

~
Dr.y = '0 [ee — ) dr’ (13
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To evaluate the contour integral (12) we note that the integrand is a single-valued
function of s, so that we may nuike use of the contour shown in Fig, 47, The poles
of the intcgrand are at the points

Pt
R L Y a2, ...

where the guantities £, &, .
equation

.y S . . .oare the roots of the transcendental

Joasy 0 (14)

From the theory of Bessel functions we know that the roots of equation (14) are
all real and simple. I we take the radius of the circle MNL 10 be ol — §)*=%a?,
there willbe no polesof the integrand on the circumference of the circle, and from the
asymptatic  expansions  of the modified
Bessel functions {y(kr}, Jplha) it is readily
shown that the integral round the circular
arc MNI tends 1o the value Qusn — 0, We
may therefore replace the line integral for g(r)
by the integrai of the same function taken
round the complete contour of Fig. 47, and
hence we may replace it by the sum of the
N residues of the function F{kriesfI{# in the
(c0) plane R{(s} -2 ¢, Now the residue of this
function at the pole s = 5, is

P k2 - o _ . E2
I(ir e~ 2 Toirs, e TR

al(Zick ) ling,) ad (as,)

L I, since [,(x) = fj(x). Hence we have
[=s)

_ —*Cﬁn {r-n) ,‘-;-'E_f
Figure 47 g0 = Z aJ (at,) (43)

#e=

Substituting from equation (135} into equation (13), we obtain fnally

ZK < SudofrEn)
9(r SRt » _"‘w{r -1 6
(? ,[} Fr) J! {a‘,r;} J‘ f {f )( d ( )

where the sum is iaken over the p{)siiivc rocts of the transcendental equation (14),

We shall give a further example of the use of Laplace transforms
at the end of the next section.

Other integral transforms may be used in a similar way. To illustrate
the use of Fourier transforms in the solution of three-dimensional
diffusion problems we consider:

Example 5. Find the solyrion of the equation

o4
cf

for an infinite sofid whose lnitial disiribution of termiperature is given by

(r,0) = f(r) (18)

where the function { is preseribed.
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We reduce the equation (17) to an ordinary differential equation by the intro-
duction of the Fourier transform of the function #(r ¢) defined by the equation

O{p,1) = (2#) 3 f 0(r,0e™ P oy (19

where p = (&,5,0), dv = dx dydz, and the integration extends throughout the
entire xyz space. Mul tipEying both sides of equation (17} by exp [i(p - r3] and
mtcgmtmg thmughout the entire xyz space, we find, after un integration by parts
(in which it is assumed that 9 and its Space denmmcs vanish at great distances
from the origin}, that equations (17) and (18} are equivalent to the pair of equations

)
d o xp?@ = 0 (20)

9(9,0) = F(p) (21)

where F(p) is the Fourier transform of the function #(r). The solution of equation
(20) subject to the initial condition (21) is

G(p,1) = Flghe =" (22)
Now it is readily shown by direct integration that the function
Glp) = ¢ " (23)

is the Fourier transform of the function
o(r) ...... = (2x1) i ot idel (24)

and it is 2 well-known result of the theory of Fourier transforms! that if Ftg), Gle)
are the Fourier transforms of f(r), g¢(r), respectively, then F(p)G(p) is the Fourier
transform of the function

(27)“3J\f{r’)g(r - 1) d7’
Tt follows from equations (22), (23), and (24) that the required solution is
by = (2xt) J‘_f‘(r")e"if“f’f%" dr’ {25
where the integration extends over the whole x’pz" space.  If we let

u (H,t",W) ........ (4,«) — *»'(I" - l')

we find that the solution {25) reduces to the form

6(r,r) = f f f flr 207 0e” mE D ey dw (26)
] 0

which is known as Fourier’s soluion.

PROBLEMS

1. Use the theory of the Laplace transform to derive the solution of the boundary

value problem:

a4 a6
_";l— 0<x «fa, >0

60,1y = f(), Bla,r) =0, B(x,0) = 0

 Sneddon, “Fourier Transforms,” p. 435.
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2. H 0{r,1) satisfies the equations

&1 H )

) — - S O reia -0
CF FoGF woef

(i) iy - f(r) 0o a

e 8!1

tiiiy (Ef- . lzﬁ)r= !, ¢ t 0

show that

o
AR
e Jolsr) " [
a o 2« (!i- - {}ﬂ( P “f ()5 ey el

where the sum is taken over the positive roots &, &, .. ., &, . . . of the
equation
Wlglasy = 5J(as)
3. Usmg the theory of the Fourier exponential transform to climinate the x
variable from the diffusion equation, derive the solution {5} of Sec. 3.
4. Using the Fourier sine transform

b B e o)
G5 1) - (:) ’ ftx,e) sin {5x) dx
R

derive the solurions (93 and (133 of Sce. 3.

5. A plane clectromagnetic pulse is propagated in the positive z direction in an
unbounded medium of constant permeability ¢ and conductivity 7. At the
instant ¢ = O the electric vector E iy given by

] [ 2%y
E, - jexp ( — F)’ O

Determine the value of £, at a later instant ¢,

6. The Use of Green’s Functions

We saw in Sec. 8 of Chap. 4 how Green’s functions may be employed
with advantage in the determination of solutions of Laplace’s equation.
We procced now to show how a similar function may be used con-
veniently in the mathematical theory of diffusior processes.

Suppose we are considering the solution #{(r,/) of the diffusion
equation

/]
;— = w2 (H
ot
in the volume ¥, which is bounded by the simple surface S, subject to
the boundary condition
O(r,0) = ¢(r.0) ifreS (2)
and the initial condition
O(r,0y = f(r) ifrel (3)
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We then define the Green's function Gir,t', 1 — ") (+ > ') of our
problem as the function which satisfies the equation

G
G (4)
cf

the boundary condition
Gr,r',t —tH =10 ifres (%)
and the initial condition that I’m;\ G is zero at all points of ¥ except at

the point r where G takes the form

1 [ TP ]
e £X B e —— (6
S{WK(I — ! )]‘ P 4r(t — 1) ) )
Because ¢ depends on ¢ only in that it is a function of  — ¢, it follows
that equation (4) is equivalent to
G
SR S (7)
ol
The physical interpretation of the Green’s function & is obvious from
these equations: G(r, ¥, 7 — ') is the temperature at r’ at time ¢ due
to an instantaneous point source of unit strength generated at time ¢’
at the point r, the solid being initially at zero temperature, and its
surface being maintained at zero temperature.
Since the time ¢ lies within the interval of ¢ for which equations (1)
and (2) are valid, we may rewrite these equations in the form

!
Ay (8)
cf
Wty = ¢r')  ifresS (9)
It follows immediately from equations (7) and (8) that
o o "(
L6y =68~ 6 6w — 0veG)
ot et ot

so that if £ is an arbitrarily small positive constant,

[ ‘- “ ZwGrddr =« | {fl [GV¥ — 092G df'} dir(10)

) oof 40

N

If we interchange the order in which we take the integrations on the
left-hand side, we find that it takes the form

f (0) PR 'I (0G) wy d7’
ST g

— 5000 | (60w, e — | Gty e
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Now from the expression (6) for G(r, r', + — ') we can readily show that

so that if we let £ -» 0, the left-hand side of equation (10) becomes

_ | FIX)YGx 1) de
Wl
On the other hand, it we apply Green's theorem to the right-hand side

of equation (10) and make use of equations (2) and (5), we find that it
reduces to

dar | g Lg ds’

in the limitas e -~ 0. Tt will be recalled that ¢/ ¢n denotes differentiation
along the outward-drawn normal to . We therefore obtain finally

B(r,1) = ’ f(r)Gl'l’[)dTwmh

dz ’ S ;)mdS’ (an

as the solution of the boundary value prob[em formulated in equations
(13, (23, and (3).

To illustrate the use of a Green's function in a very simple case
we consider:

Example 6. I the surface : = O of the sewi-infinite solid z 3= 0 is maintained at
tentperature Slx y,t) for + > 0, and If the initial tesiperarure of the solid is {(x,p,2),
determine the distribution of remperature in the selid.

I is. readily shown that the appropriate Green’s function for this problem is

T o 1 f Ik -rp] [M | ]]
Glr, ey — 1) = T | exp [ ‘WJ exp T

where g’ = (x’,1", —2z') s the position vector of the image of the point ¢’ in the
plane z = 0. For this function

(s (BG) 7 |: (x — x’)?— e (},‘ ........ )")2 - ZZ:I
i B T e EXp | — A
on ez 2 =1 Brin(y — f)d 4K(f = t')

so that, from cquation (11}, we obtain the solution

Ben - o l FOr)e=lrm v — o It

1
8(771(! 2

dlx,y r) X — x9Sy - )P~ 22]
-~ _ S dx  dy* dr’
el fn T [ 4t — 0) we

where 3’ denotes the half space z = 0 and 1 the entire x) plane.

In this problem we have been able to guess readily the form of the
Green's function. For more complicated types of boundary this may
not be possible, and so it is desirable to have available a tool for the
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determination of the Green's function. The most powerful analytical
tool for this purpose is the theory of Laplace transforms. We shall
illustrate its use by considering:

Example 7. Determine the Green's function for the thick plare of infinite rading
bounded by the parallel planes z .. O and = - a.

From equations (4}, (5), and (6) we sce that we have to determine a function &
which vanishes on the plancs z = 0, = — g and has a singularity of the type (6).
We write

o] r —rf L )
Gir,r,n 8t exp { T} G, (e r' 1) (12
where, by virtue of equation {4)
ol
KV"EGI - a_rl (l3)

If we multipty both sides of equations {12y and (13) by ¢” "', integrate with respect to
t from 0 to «, and make use of the fact that the Laplace transform of

! r—rf
—exp | - L—
Ronrt OF dect
can be writizn in the form

1 ’ ootz Tl2RY

A
Ari Vi it a

where R* = (x ~ x') -£ () —~ }'¥ and s ~ 22 4 s/«, we find that these equations
are equivalent to
- I AR
Girr,sy - —— ' ¢k -L(-—-w)f‘.d/'» - Gry s {14}
dre Ig H
a2, G, #6 &G s
fora D e St fg) (15)
cp » ap k4 Fl g W
where (G, &, arc the Laplace transforms of G, G, and, as usuzl, p, z, ¢ denote
cylindrical coordinates.  Equation (15) has a solution of the form
I . .
=S ARW Fsinh (iz) + Hsinh [pla — 2)]} dA

e Jg 1

where the functions F(iy and H(2) must be chosen so that & vanishes on the planes
z =0,z = a. We must therefore have

F = —e71=2Y cosech (pa), = —¢ # cosech (jia)

Thus if 0 < z < 7, we find that

oo b ’“ AJ(ARy sinh [,1'-4(3 ~ ) sinhgea)
2w dg s 8inh {(na)

If we make the substitution 4 = if in this integral, we obtain the form

G =

1 " £1¢R) sinh [ya — 2)]sinh (i)
T i n sinh (na) -

where 7# - s/~ £ Now it is readily shown by the calculus of residues that

- < . (m.—z) . (m.—z’ )
G =— s —_ R . W
3 sin T, sin p o5 ft)

\
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where £, = + Jf Csk. U sing the fuet that K[v Sff(] is the Laplace trans-
form of (21 e g and that the L aplace transformof ¢ {6y is F(s — e, we find

that
CRY ik o . .
- ¢ . H 2 . 7 8 8 4,0
{ = e z sin (—f—ﬁ) sin —) g M (16}
oty . \ a )

This expression could have been obtained by the method of separation of vartables
il we had been prepared to assume the possibility of the expansion of an arbitrary
furction in the form ¢16),  One of the advantages of using the theory of the Laplace
transform s that it avoids making such an assumption: each Green's function so
derived \ields an cxpansion theorem (or an integral theorem}.

PROBLEMS

1. Derive the linear analogue of equation (1) for the segment a = X <« A,
Hence solve the boundary value problem

ot &=} 0 0
—— { —— - f " .
n e ’

MO, — ey, - 0 O(xj0y — flx). x -0
2. By using the theory of Laplace transforms derive the Green's function for the
segment 8 - x4,

3. Show that the Green's function for problems with radial symmetry, in which
the temperature vauishes on r — a, can be expressed in the form

S . N
i S L fams” I
Glr 'ty = sin (—) sin (—) g RiTRREE
’ 2rare’ 2 Vg L a
H 1 N :
4. Show that the two-dimensional analogue of equation ¢11) is
o, : P D R ¢
Gy = | G rx’ vy ds — « | o dt ’ PNy
S ’ T Jo & ’ an

where (is the boundary of the region S, and where ¢ has a singularity of the

type
i cxp{ {x — X9 ¢ (v - _1")2]
dmrt et
at the peint (x.p).

Dctermine the Green's functions for the regions

(n S X L v 0
iy x =0, y:-0
{ii) 0-"x - a, 0y b

5. Show that the Green's function for the cylinder 0 « 2 < ip < a i3
Glpb,zip ", 2718)

. . . w
2 0w . fBEEIV  {mmmz ,
. N powtl gin ( ) sin ( VN cosms - 4)
nah Lo - h . Ly
B L ' fs —
. ~ ot Ju5, 0350000
o ey
where &5, 80 . -, 5, . . . are the positive roots of the transcendental

equation J, (fg) — 0
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7. The Diffusion Equation with Sources

In the previous sections of this chapter we have considered ihe
solution of problems relating to diffusion in a medium in which there
are no sources. We shall now consider briefly the solution of the
more general equation (3) of Sec. 1 when the source function Q(r.%.7)
assumes a simple form.  In many cases of practical interest the function
O(r.0,r) may be taken to be a [incar function of the temperature of the
form

Q(r,0,0) == d(r,1) - () (D

and we have seen in Prob. 3 of Sec. [ that the solution of problems of
this type can be deduced readily from solutions of the equation
f o
AR () @)
3
We shall consider therefore only this simple equation.

The analysis of problems of this kind can be further simplified.
Suppose that we have to solve equation (2) in a region ¥ bounded by a
simple surface $ subject to the conditions

0(r0) == f(V)ifreV;  Hrn = ¢ ifres (3)

then if we find a function 6(r,s) which satisfies the homogenecous
equation

fou]

%iwm 4)

™3

and the boundary and initial conditions (3) and a function ,(r,r)
which satisfies the equation (2) and the boundary and initial conditions

Ogr.) =01ifre ¥, ffr,)=0ifre S (5)

then it is immediately obvious that the solution of the problem posed
by equations (2) and (3) is given by the equation

0(r,0) == 0(01) + 04fr) (6)

The methods available for the solution of equation (4) are also
available for the solution of the nonhomogencous equation (2). For
instance, if the method of separation of variables has been applied to
determine the function %,(r), the same type of expansion may be
employed in the determination of fy(r,), or il a particular kind of
integral transform has been used to find /4,(r,f), it may also be used to
deiermine f4(r.1).

For instance, if we wish to solve the equation

VA x 7
BT N A 7



300 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

in the region 0 < =~ g, we know that the solution of
7 )
T KT
of [Ah e

which vanishes when x ~ 0, x = a, is of the form

X
N ontegigt o HTX
S Aot gy
— a
w1
Therefore we assume a solution of equation (7) of the form

B.,(x,1) Z é,(1) sin 7% (8)
-
We also employ the expansion
et = 3 70 sin mg‘« ©
nt
where AGE ‘ #(x,0) sm T gy (10)

Substituting from equations (8) and (9) into equatlon (7), we see that the
functions ¢,(r) must satisfy the first-order ordinary differential equation

dd, Wi
df + _WEEW" q{)n = XH(I) (1 1)
and, since 0,(x,0) = 0, must also satisfy the initial condition
¢ (0) = 0 (12)

When we have found the functions ¢,(7) satisfying the equations (11)
and (12), we have only to substitute them as coefficients in the expansion
(8) to obtain the desired result.

To illustrate this method we consider:

Example 8. The faces x - 0, x ==a of a finite slab are mainiained al zero

termperarare. A source of strength Q0 Us situated at x = b, Determine the distribution
of remperature within the siab.

We have to solve the equation (7) in which the function x(x,1) is Q(x), where
Qlx) = lim Q.(x)

gt}
. ( ¢ fx — bf e
where Qo(x) = (2. pC
10 lx — bl e
The Fourier coefficients of Q.(x) are
0 [°7° . mex 20 |1 nme . nmh
sin —dx - — $IN e SI e
pOAE by a p¢ (nwe) a a
If we let ¢ — 0, we find that for this x(x,0)

2 . M
Zalt) = —Q sin firb
pca
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Substé;uting this constant vatuc in eyuation (113 we see that the approsimate form

for ¢, is
204 s, w . nwh
Q (1 - 5™y Gy il

&’néf) - oA
i kot 7

where, it will be remembered, & pex. Substituting from equation (13 into
equation (8), we find that the desired solution is

o
204 .
;gf —l‘, (1w oty gin 20 g i
Tk " a a

U{_\A,;} e

When the range of the space variables is infinife, it is more appropriate
to make use of the theory of integral transforms. Consider, for
instance, the problem of solving the equation (7) for the infinite range
o <7 X <. 0 subject to the imitial condition 0(x0) == 0. 1f we
multiply both sides of equation (7) by (Zn) ‘e” and integrate with
respect to x from -0 to o, we find that the Fourier transform

oy

O = Blxnet dx (14)

=
satisfies the ordinary differential equation

%? ..... C kEO= X(&,1) a

where X(&,1) denotes the Fourter transform of y(x,r). The solution
of equation (15) we are seeking must satisfy the initial condition
O&£,0) == 0, so that we have

i

O(£,1) = ' ¢ HOXEL) i’
[§]

o

Making use of Fourier’s integral theorem

;oo

0ot =
v

oAl

O(&0e " dE
and interchanging the order of the integrations, we find that
Lo ,
9(,\',1’) S 1 d{f ‘ e —r;.a:r—‘x;w!—i)){ i_-,rr) d-f(,“
A 2 e Vo
Now

F5) = ¢

is the Fourier transform of the Munction

I
2k (=)}

il =17y

Jv)
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so that using the convolution theorem for Fourier transforms

| Foxe = ds =

—

we find that

it

SO = i) dy

T odr [
0 -
{-Xa{) (47TK)3' .,-’[} (!' R I'}l v’_ "

is the final solution of our problem.

e -{r — ¥ da(t - !J')x("?,[’) d’?

PROBLEMS
1. The function #{x,/) satisfies the equation
a0 #o
a e e

forx =0, > 0and Hx0y 0,60, - 0. Show that
fa s
M.ty N/i ' dr’ ' X,y —#3—= sin (Exy o
)] oY

where X513 1s the Fourier sine transform of the function yix, 7).

2. The function «(p,r} satisfies the differential equation

&t { TR 31[) (o1}

R Il

% e THF

for p >+ 0, and the initial condition w(p,0) - 0. Prove that, for 1 = 0,

i [ s
exp [ —p%dult — 1] gttt aY
= TN AT R ik LA JEN AL— )
“pl) ‘.Ei 26t — 17) ai o e o 2ef — 1) @

3. The function ¥p,) satisfies the equation of Prob. 2 in the finite cylinder
0= p<a ¥ay -0forf =0, and if 8(,0) - 0, show that

2w Syl Y

0o, —Z_Uu;,, P

P G  [FiaEn] ), X&nt)e ot
4

where the sum is taken over the positive roots of the equation Jyal,) -~ 0 and

where

X = | oo o) do
w0

Show that, in particutar, if x(p,1) = f(1), then
2
Bou) = = >

Jl){Pfi}
a i 50 Gk}

i

Jo

4. The slowing-down density § of neutrons in the finite pile 0 < x < q,
0=y = h, —ox -2z x satisfies an equation of the type

o,
— - VY - SOU)
7t
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If ¢ vanishes on the faces of the pile and is initially zero, show that

. o
2 L mmx L dawy
O(r, ey = == ;« Z $iD —— HiA e
ah A S 8 a b

L N T

ENE ST

- ~
a1t R ML IRTES S S VI S B oo
I UU,) d?’ ’ e ! i it i G- - f ‘S(:!H!.H}C’W‘" ff';
i) LI

where

et

S -

nox . Ny .
sin | ——| &% dz
b

1 h ~o ,
“““““““\wz;‘ chy | iy J._IS(r) sin (

] w1 a

Deduce the solution corresponding to a point source Ur) situared at the
geometrical center (3a,1h,0) of the pile.

MISCELLANEOUS PROBLEMS

Heat is flowing along a thin straight bar whose cross section has area 4 and
perimeter p. - The conductivity of the materiat of the bar is K, and the rate
at which heat is lost by radiation at the point x of the surfuce is H(0 — ) per
unit area, where #(x,7) is the temperature at a point in the bar and @, is the
temperature of its surroundings. If p, ¢ are, respectively, the density and
specific heat of the materiat of the bar, show that # satisties the equation

an 2

e I ) b
FPI bl G

where « — Kjpc, b HplepA.
Show that the substitution
g9 .- 'r.'” = e Bt

reduces this cquation to the one-dimensional diffusion equation,

Heut is flowing steadity atong 2 thin strajght semi-infinite bar one end of which
is situated at the origin and maintained at & constant temperature.  The bar
radiates into a medium at zero temperature,  Prove that if temperatures £,
fia, fty ... are measured at a series of points on the bar at equal distances
apart, then the ratios (9, - 0,,,)/0, are constant.

A spherical shel} of internat and externat radii ry, ry, respectively, has its inner
and outer surfaces maintained at constant temperatures . 8, the conduetivity
of the material of the shell is a linear function of the temperature.  Show that
the heat flowing through the shell in unit time in the steady state is the same
as if the conduetivity were independent of temperature and had the valuc
appropriate to the temperature 416, - #,),

Prove that the diffusion equation

where A and » are constants and (Fi(=;f;2) denotes the confluent hyper-
geometrie Tunction of argument z and parameters = and .
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Prove that every sotution of the one-dimensional diffusion equation defined

and continuous in the space-time region 0 -« x <2 L 0 = 7 «7 T tukes on its
feast and greatest vatuesonr Ooronx = 0, x £ Deduce that: (@) the
boundary vatue probicm
oy Gx,0y = & ) oLn
B L0y = i - o
P R T &0 lx}, 0,0y - fun (L0 = g(n
has a unique sotution in the region 0 - x =7 /0 < r < T; (5) the solution of

the above boundary vaiue problem depends continucusly on the functions
$la), fit), glrh

If the concentration ¢ of one component diffusing in a two-phase medium is
determined by the equations

a¢ e ar e
— ey v - (L — = D)., .y o
2t Dy e 21 Dy FYERE 0
the boundary conditions
2¢ ic
o ke, Dl(”g,jc) m,(“";"""") atx == 0
e e e x 0
and the imtial condition
jcl, x =0
(' e
10 x>0
at { .. 0, show that when x © 0,
k[‘% ' i ( x
¢ = g i | b o] : )
¢ L opt L 2D}

and derive the corresponding expression for x < 0.

Assuming the temperature at a point on the earth’s surface (assumed plane)
to show a periodic variation from day to day given by

O iy o 0ycosor

investigate the penetration of these temperature variations into the earth's
surface, and show that at a depth x the temperature fluctuates between the
limits

Dy = Gpexp (~xVi/2e)

The conducting core of a fong cable whose capacity and resistance per unit
tength are C and R, respectively, is grounded at one end, which may be taken
1o be infinitety distant.  The “other end x - 0 is raised to a potcntaal Vy in
the interval 0 <7 ¢ < = and then towered again to its initial zero vatue. If the
nterval 7 is short, prove that the current in the cabie is

;cm Bl
“A/an oy

Hence show that the maximum vatue of the current at a point with co-
ordinate x is propOrtional 1o x 3

o O R gt

The sphEre r == b is maintained at zero tt,mperature and the sphert, roea b
is heated in such a way that its temperature at time ¢ is qcf” sand g being
constants, The space between the two spheres is filled with a conducting
material,  Find the temperature af time 1 at any point between the spheres,
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-

a4 &
- satisfying the condivons:
Ayt ar B -

Show that the solution of the equation
(i3 0 -—-0ast - ov,
viir % - O when x = - aforall values of ¢ - 0,

auy A - xwhent = Qand g T x v ow

y o \

,  2a (- Dy b fimx A

b e S0 | EeXp | e
b ] # (2 o4

A
By use of Fourier series, or otherwise, find a solution of the one-dimensional
diffusion cquation g,atu,{ung he following conditions:

tiy 115 bounded as ¢ -~ %2

(i) #fex - 0 Tor ath vatues of 1 when x = 0 and when x = g

ity 0 —xtg —xxwhen¢ - 0and® . x - _a.

Solve a0/ 81 —~ o @1/ 8x") given that:

(Y 0 is finite when ¢ Cw

(i5) 0 = Owhenx — Oand x = for all values of 12

(i 4 - xfromx = Otox = whent = 0,

A uniform rod of length & whose surface is thermally insulated {s initfatty at
temperature i ~ ;. Attimes - Ooneendis suddenl\ cooted to tf_mpelature

i~ 8 and ‘;u%)su’;umt v nwiﬂmm{,é at this iempemmre The other end
remains thermatty lns&ld%nd show that the temperature at this end at time ¢

is given by

o N

40, O (- D" R izt
g 3 Z wexp[ﬂml

— 2 -} | Ag* J
where « is the thermometric conductivity ({Eiﬂusivéty}.
The boundaries of the rectangle 0 = » < a, 0 = 5 b oare maintained at
zero temperature. I at ¢ 0 the iemgemture 9 ims the prescribed value
flx,y), show that for ¢ - 0 the temperature at a point within the rectangie s

riven by
Lox i

_ 4 AN AT (J;m,r) )
DX v A} — o et b i A Y in s
Ux, vt} pos “{:} ,‘,4:‘] Flm,n) exp [ wiw (a"’ bﬂj}‘}sm e sin ( 7 )
ot .
where Fmmy o ‘ ’ Flx,1) s bt Sin ﬁimd( ey
J6J0 ” a b
The faces of the solid parallelepiped 0 < v <t a. 0 <0y <0 h 0 - e

are kept at zero temperature.  1f, initialty, the tcmpcmm;c m"thn soud is gncn
by #x,1.2,0) — f(x,+,2), show that at time 1 = ©
fe o3 e o©
wwx |, nmy | gos
dl,p,ziy oo e Z T T Flinagle ~1 sin —— sin vgw sin 17

s

abe e et a p

where
ru b e ¢ ,
. fmmxy . fumyy . fgws
Flmngy - ‘ i [ fx,1,238in (—)Sm — )sm (w) I dyds
() ..-u.=0.-of 1) . a ( b y f,f A
; b 0l a2
. a o § B H” ('l'
and - A
13 # + (az bi CZJ,)
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16. 1f the face x -~ @ is kept at a constant temperature ¥, the other faces being
maintained at zero temperature, and if the initial tcmperature ts zero, show that
the steady-state tempcraturc is

i o
& . I - . e e
I))n 0 S i Sl.l']h(i\)s.“ (2r by sin( o by
w? f:(x:]( 2r = IM2s  tysinh (ra 7] ¢

where

p -2 {_:f‘ _}ﬁ . (25 ! ])-’
. m o =

17. Show that the sotution G{p,z ¢} of the diffusion equation for the semi-infinite
cytinder O 7 p =0 @, z = 0 which satisfies the boundary conditions
6 -0, : -0 0« p=at -0
-0, p-a =z 0, £ 0
and the initial condition
Wp,0,0) = fiz)

is

A - ] 4
2Bl R ER N A . HI .
i — = —_—— /(i) sinh (7)_{ o iy
" PN

\ et as s a) o
where the sum is taken over all the positive roots of the equation J,{ia) = 0,

18. The outersurfaces p  a,p  hig .- b of an infinite cvlinder are kept at zero
temperature. and the initial temperature is 0p0)  [fip)(h < p - Show
that at time 7 0 the temperaturce is given by

0( A f [ )e _
) N3 Ez K ——— [ i (a‘:) (CL_:, G :,)
4 ! i JU(G-«,) - ]n (bt ) [ " P ) i 0 ) Mnp ]

where f is defined to be

4
! ipf(P)[Ju(p-“,)Go(a:'.)- Jolaz)Gylpd] dp

Wi
and £; &, ... are the positive roots of the transcendental equation

SolbE )G (al) - JfainGubs) — 0
19. Find the solution of

for which
MHx 0y =¢ 7 x =0

0,1 0 i -0

(Note that ¢ "% is the Laplace transform of

Ye -rR

2oid )

20. The spuce x = 0 s fitted with homogencous material of thermometric con-
ductivity «, the surface boundary x — 0 being impervicus to heqt The
tempcmuue distribution at time /- 0 is given by ¢ - figt — ¢ =), Find
the temperature distribution at time 1.
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21, W ohiady is the solution of the one-dimensional ditfusion equation for the
~emi-infimte solid x 0 which satisfies the conditions #0,1) - 4, cos taf),
“ta0) = 0, show that

o

-
n ) o i

l ¢ gin ( - X
o i} \/J K

= g™ cos (nt - Jx) —

ERR~

where A - v e,

22, The funetion ) satisfies the one-dimensional diffusion equation and is
~uch that 8(x,0y - #,, a constant. and

ofi
e - An0,1)
L O
Prove that
L .
0o, uf( ) o ' o bt (2t g
Y xi i
23, Show by means of the Laplace transform #(x,7) that the sofution of the one-
dimensionat diffusicn in the region 0 = x - a satisfying the conditions
o,y - fin, Ma,t) - 0, (x,0)
is given by the formuia
“ .
Qi W .onmx ; an,
ix, ) — Z HSin —— ' firke il ) e
o~ a o
wod
24, The boundaries x — 0, v - 0 of the semi-infinite strlp O<vab x Oare

kept at zero temperature white the boundary y - £ is kept at 1empcrduue -
i the Initial temperature Is zero, show that

2 (el Wi 20 -1 . famy
xay L o> = sin (” ) + =2 ? —met L ) st (MEiJ

[ - 1 h
[IRES |
- L Er gDy x o o
) 4[1’” --------- A - [)} sin - ' O R S L S T (;‘.’C} o
A 4} 4 E(EE nﬁ.‘.’_zﬁfb:d)
oo .

25, Show that the solution dr.0) of the boundary value problem
/A |
art Fer 7 x ot

0,0} = 0, = const. 0=r<a
af
— = A== 0 whenr =g, 1t =0
or

may be expressed in the form

2~ 2 (gl — DRPSin (rEja) et
2a%0,0 S“ (1 [ (w’l 1312 sin (r5, /e o
r

Hr.n
] a” - aqhlal — 1)s,
where the sum is taken over the positive roots 5y, £, . . ., &5, - 2 . of the
cquation

(ah — lytan s =0



308 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS
26.  The distribution of temperature in an infinite solid is governed by the equation

a1 s
5 «V% oyl - plri)

Transforming the equation {ef. Prob, 3 of Sec. 1) and making use of the theory

of Fourier transforms, show that if initiatty 4 - f,(r), then at time ¢ =~ 0
N A ey
e, 1} = {dmer) " Fexp w(ey di fy(cyexp | — = " J dr
L0 o ) Kt

e .
A €Xp [A ' ") d{"'l
A3

x = dr

-
+ (dmet) 4 exp “ v d”] ()
1} o 0 -

o«

3

exp[ Ji@ﬂ%]qﬁ(r',f')dr"

by

h Guclt — 1
27. A point source of heat of strength @ is moving with vetocity «(r) along the line
x =g, -+ 0in an infinite solid. [f initially the temperature of the solid is

zero, show that at time ¢ > 0

M o BER( 1)
¢ ;
Gie, gy o= ¢ ' dr’
ot

Roctne) . Jy (1 = 1)1

with R* (x — aq)? [}. — () =
If the point source moves in the same way in the interior of the semi-infinite
solid x ~ 0 whose boundary is kept at zero temperature, show that

Q ¢ - Rl — 1)

;
BlE 1} o oo Iy e R S .
) 8pe(m)i J;] [ ¢ ] (r -ty r

>



APPENDIX

SYSTEMS OF SURFACES

[n Chap. 2 we made use of some of the properties of systems of surfaces. The
object of this appendix is to provide a brief cutline of such systems for the benefit
of readers unacquainted with them. Fora fuller account the reader is referred to
R, J. T. Beli, “An Elementary Treatise on Coordinate Geometry of Three
Dimensions,” 2d ed. (Macmiltan, London, 1931}, pp. 307323,

{. One-parameter Systems

[f the function £ (x.),z.a) is a single-valued function possessing continuous partial
deriv atives of the first order with respect to each of its variables in & certain domain,
then in xyz spuce the cquation

flyza 0 (h

represents & one-parameter system of surfaces,

We now fix attention on the member of this system which is given by a preseribed
vatue of g and on the member corresponding 1o the slightly different value ¢ — da,
which will have equation

Sy za da) -0 @)

These two surfaces will intersect in @ curve whose equations are (1) and (2), and it
is casity seen that the curve may also be considered to be the intersection of the
surface with eguation (1) with the surfuce whose equation is
(I :
- (e v 2,0 + day —~ flxpza) =0 3
FYRFALCH FAGH
As the parameter difference da tends to zero, we see that this curve of intersection
tends to a limiting position given by the equations

é
flxyza) = 0, e fley,z,8) =0 {(4)

This timiting curve is called the characteristic curre of the system on the surface (1)
or, more loosely, the characteristic curve of (1), Geometricalty it is the curve on
the surface (1) approached by the intersection curve of (1) and (2} as ¢g 0,
As the parameler g varies, the characteristic curve (4) will trace out a surface
whose equation
glxpnzy 0 (3)

Is obtained by ctiminating a between the equations (4).  This surface is catled the
enrefope of the one-parameter system (1),

For example, the equation
etz —a? =1

309
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is the equniion of the famity of spheres of unit radius with eenters on the 7 axis.

Putting /7 ~x*  +* (= @) l,wescethat/, - o, s0that the character-
istic curve to the surfuce a is the circte

s, Mooy owt
and it foitows immediately that the envelope of this famity is the eviinder

A\.'.. 75"— E

tcf. [g. 48).  In this particular case it is obvious that the envetope touches each
member of the family along the appropriate characteristic curve. We shalt now
prove that this s true in general,

A%

e 12+y2 +(z-a!2=1

dl

[ ————— Characteristic curve
z=a, x4y 4(z.0)?=]

Enveiope-*‘l
xl+y?=)

<

- - ¥
3
-

Figure 48

Theorem 1. Apart fron singular points, the envelope toiches cach meniber of the
one-parameter system of swrfaces along the characteristic curee of the systent on that
nickther,

To prove this theorem consider the One-parameter system (1), Since it Is a one-
parameter system it foliows that through any point £ of the enve tope there is one
member of it} whose churacteristic curve passes through Plx,v,z).  The direction
cosines of the normal to this surface arc proportional to ( f,, ,‘,,f ). Now we may
consider the envelope to be the surface

fixgnnalx,yzy =0 (6)

where a(x,).o) is determined from the equation

Qs
.

4]

Q

Now the dircetion cosines of the normal to the surface (6) are proportional to

(ﬂ a3 ia ¥ jfaa‘}

\ox da ox @& da oy 8z a0
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Ar o on aceount of (7). reduce to (/. f,. /- Henee the tangent pranes to the
~.oevw wnd the envelope eoineide.

W ohnnve proved that aleng the appropriate churacteristie eurve the surface o
2 1d the envelope bave the same vatues of (v vopg). o See 8 of Chap, 2 we saw
"t these numbers speeify the characteristic sirip of the surfuce ¢. We may there-
Tore think of the characteristic strip as being the set of small clements of tangent
clanes which the surfuce und the envelope have in common slong the characterstic
JUTVY.

The argument given above breaks down at singular points, i.e., at poings ut which
!0 [, 1. 0.but it is not difficult to show that such points lie on the locus (4),
A5 a conscquence singular foci appear in the result,

2, Two-parameter Systems

In a similar way we may discuss the two-parameter system of surfaces defined by
the equation

FERS TN N1 B (1)
in which ¢ and & are parameters.  We consider first the one-parameter subsystem
Characteristic

/cwve /En\ielope

7

i
/
£

Surface

Figure 49

obtained by taking # (o be a preseribed function of a; c.g.,
b - dla) (2)

This in turn gives rise to an envetope obtained by eiminating a, & from cquations
t1) and {2} and the retation
of  ef db

it — = D (3
Gut eh }
The characteristic curve of the subsystem on the surfacc (1} is given by equations
{1y and (3). in which # has been substituted from {2).

It should be observed that for every form of function &(a) the characteristic curve
of the subsystem on (1) pusses through the point defined by the equations

f=0. fi -0 fi -0 (4

This point is callcd the characteristic point of the two-parameter system (1) on the
purticu}ar surfuce (1), As the parameters o and b vary, this point gencrates a
surface which is called the eriedape of the surfaces (1), Its ecuation s obtained by
eliminating # and & from the three equations compyising the set (4),

As an example consider the equation

(x =@ = {v— b= 7% = (5)
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where @ and & are parameters.  The two-parameter family corresponding to this
equation is made up of alt spheres of unit radius whose centers tie on the xy plane,
In this instance the equations {(4) assume the forms

(o —=a)® - (v —hPF - =], x - a0, vy —bh=0

so that the characteristic points of the two-parameter system on the surface (1) are
la,f, .- 1), Inother words, each sphm_ has two characteristic points. - The envetope
is readily scen to be the pair of parattel planes z = - 1.

A subsystem of the two- parameter system (5) is obtained by taking b = Z2a;
the equation of this subsystem is

(- af (- 2a? - 2] (6)
The characteristic curve of this subsystem is the intersection of the .sphere (6) with
the plane
x - 2}' ..... Sa (7)
It is therefore a great circle through the center Cla,2a,0) of the sphere normai to
the line QC,  lts center lies on the line

x_y. z (8)

The equation of the envelope of this subsystem is obtained by eliminating @ from
equations (6) and (7). We find that the envelope Is a right circular cylinder with
axis (8) and unit radius,

Corresponding to Theorem | for onc-parameter families of surfaces we have:

Theorem 2. The cnvejope of a two-parameter system Is touched at each of iis
points P by the surface of which P is the characteristic point,

The proof is a simple extension of that for Theorem 1, We may consider the
envelope to be the surface

flayzaix, )bz = 0 9
where the functions a(x,r,z) and H{x,v,z) are defined by the relations
f” 0’ fb = () (]0)

The direction cosines of the tangent plane 10 the envelope at the point P(x,y,z) are
therefore proportional to
(‘ o ca ¥ dfda b ida ¥ 8b}

\ox Gadx ehax &y dady @boy  dr daézr 8boz

and, as a result of equations (10}, these reduce to ( £, f,. £.). showing that the tangent
plane to the envelope coincides with the tangent plane to the surface (1) at P, as we
had to prove.

3. The Edge of Regression

We shall return now to a consideration of the one-parameter system of surfaces
with equation

flxyza) =0 (h
Then, as we showed in Sec. 1, the characteristic curve on {1} has equations
flxyzal -0, $xyzral =0 {(2)

where d(x,1,z,a) fix,z,a). The characteristic curve on a nelghboring

a
surface has equations

flxe, v oa -0a) =0, Hlx, y,z,a +dg) =0 (3
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These twi characteristic curves will intersect if the four equations (2} and {3) are
consistent or if the equations (2y and

i .

gz a - da) - flryza) =0 {4)
1

T ele, vz, a0 - da) — xyna)} =0 53

are consistent,

Both characteristic curves lie on the envelope of the system {1}, If they intersect,
the tocus of their limiting point of intersection as dg — 0 is calied the edge of
regression of the encelope of (1), 1t should be noted that this locus is 4 curve on
the envetope.

Letting na — @ in equations (4) and (5), we sce that the characteristic curves will
possess a limiting point of intersection if the equations

[=0, g=0, f=0, 4 =0

are consistent; i, if
X [= 0, fu =0, fuu =0 (&
are consistent,

Since there are only three equations to be satisfied, it follows that in general
there is always a solution.  For this reason we say that “consecutive characteristic
curves intersect” at a point given the equations (6). As the parameter g varies,
this point generates the edge of regression; its equations are abtained by eliminating
the parameter 4 in two diffcrent ways from the equations (6).  The edge of regression
has the property that it touches each of the characteristic curves of the system.

To illustrate these remarks we consider the one-parameter system of planes
whose equation is

3a*x — day -z = {7

in which @ is a parameter. The characteristic curve of the system on the surface
(7) has for its equations the equation (7) and

a - 2ax iy =0 (8}

The envelope is found by eliminating g between equations (7) and (8). If we
multipty equation (8) by a and subtract it from equation {7), we find that

@ = 2ay —z %

and climinating a from equations (8) and (%), we obtain the equation

R e
R

Substituting this value for @ in equation {7), we see that the envelope has equation
{xy — 2P = Hx* — (P — x2)

For the edge of regression we have, in addition {0 equations (7) and (8), the
cquation @ — x == 0, so that the edge of regression has freedom equations
X o= a, )' B 02, Z == a3
Alternatively it can be thought of as the intersection of the surfaces

o
Py = xz, Xy =1
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4, Ruled Surfaces

We shall now consider briefly some of the propertics of a rufed surface, A rufed
surface is one which is gencrated by straight hines, which are themsetves called
generators,  Typical examples are cones, eylinders, the hy perboloid of one sheet,
the hyperbolic paraboloid,  We distinguish between two kinds of ryted surface,
A derefopable surface s a ruled surfuce of which “*consecutive generators interseet:”
a ruted surface which is not developable is ealled a shew surface,  Cones are develop-
able, though they are not typical examples, since any two penerators intersect, not
merely two consecutive generators,  Myperboloids of one sheet and hyperbolic
puraboloids are skew surfaces.

A developable surface is so called because it can be “developed”™ into a
plane in the sense that it can be deformed into a part of & plane without
stretching or tearing. To sce this we
consider a set of “‘consecutive gencra-
wors™”" Ay, 2y, Ay, ... 00 g developable
surface.  They intersect as shown in
Fig. 30, and the surfuce consists of
smali planc efements =, 7y, 73, . . . .
The element =, can be rotated about
the tine 2, untit it is coplanar with w,.
The aren =, =, can now be rotated
about A, untii it is brought into the plane
=5 We can proceed thus untit the whole
surface is developed into part of a plane.

There are two results about devetop-
able surfaces which are of vatue in the
theory of partiat differcntial equations:

Theorem 3. The enveiope of a one-
puraneier fanify of planes is a develop-
able surfuce.

To prove this thcorem we note that
the equation of a onc-parameter family
of planes may be writien in the form

x tay o flaz gl =0 (1)

The characteristic curve is determined

Figure 50 by

v [ - gla) =0 (2
together with equation (1), Since the characteristic curve is the intersection of the
planes (1} and (2}, it is a straight tine. The envelope which is generated by it is
therefore a ruled surface, This straight line intersects its consecutive in a point
given by the equations (1), (2), and

@z g -0 )

Since “‘consecutive generators intersect” at this point, the envelope is a devetopable
surface.
Theovem 4.  The edoe of regression of a developable surface touches the generators.
This theorem follows from the fact that a developable surface consists of two
sheets which meet one another at a cuspidal edge, one sheet being generated by the
forward tangents to the edge of regression, the other sheet by backward tangents,
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Chapter 1 Section 1
. I T
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Secrion 3 . ¢ ¢ "
1Lx =y - ¢. XyZw=ey Lo a +Z b - TR, AL A,
L o oA L B L, oy b :
Sz by e D e, Y Xyl -f.1--'- LA
o " . o -
Section 4 &

[ FER

th

o —

e Rt e e, (x

. The orthogonal trajectorics are the intersections of the system fyz + d = kx

(4 a parameter) with the surface ¥ 5 3* 2fir 1 4 0.

. The orthogonat trajectorics are the curves

I3

=2 (x - -)IE) =, 2y =t

. The orthogonat trajectories are the curves

1 1

Xobeyp e g e’ (x = pze=1

Ny

Secrion 5

2

. Integrable; xy o 2% e e

integrable; xi* - 2%,

. The cquation is not integrable.

Section 6

=Xz e )

x oxy -clx =y D)
= (xy @ Dy + 1)

2vz

v

o g

X

e

Miscellaneous Problems

thy v —=ryx, x

by X — ) - O, XV oyl Ix v Ca

. The integral curves are given by the equations

xz - ay = cfaz -~ xy), (xz - ayly = {cg = z)az — xy)
from which it follows that they are the intersections of the quadrics xz + av
— cy{az — xy) by the planes ¢,y - z = ¢, and are therefore conics,
315
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8. ) =2z,  p=oes

o I },2 = 2az, {(x - }.)2 4 228 = 0

13, x(xt— )% =e), xp =2

Chapter 2 Section 2
1. (Cl) pq w7
(b) px e (]}, s 1
(c) zlpx —qy) = FLI
Section 4
Lot gt 2 = L) 2o Tz oyt x 1(5)

3o (et pHx by o 2) = fxy) K. gz g foxyt)

5 Fix* + P~ 2% xp +2) =0 . =z = 1y £ (23 () )
Secrion 5

Lox? s ) -2y = 22 4 g Xteingtowzie - II""““"‘)&';

0 P
B e LA B —éi‘fi B f(%) . ) =
S~y 4+t 4Ny vy P -2 —y 42 -2 p +2) =0

¢
= 4311“1—31_1, -l

Seciion 6
Lo(x? + = 4)(x? — 3 = alx® + )3)
3. The gene'rat equation is

2o 2
\ 2xt 4y
LIS I Ry sl
P ‘,f( = )

The case quoted is obtained by taking f(£) to be constant,
(x* + )7 e 2P w20 - ¥4

Seciion T
Lo(x &+ p — 2P = day

Section 8

=
.

Characteristics:
x o= 20let — 1),  yo=huet v 1), 1=
16z = (4p + x)*
3. Characteristics:
o= 202 ),y = 2VI(eTt - 1), oz o= -

4z +(x + ‘/E}:)z = ()
Section 9
1z =x = ¢l + xp)

Section 10
L {x = 8% + 3 = ar®

3 z= bx"yl"“
g 2y + a)f i 1 hedz?
.ng{},—a:’*-a-fr-iggl«e

a

b
A
¥ ¥ 4}}3
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Secrion 4
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¥

Seceion 5
x .

1. z = f di | flEmdy + filx) + fily)
Jo R

"zo= wplxy - D)+ FiLO - S
3. If the equation

2z dz
R - Pl
( 0) eIl b

has solution z =- ('lf(x,c) -~ ¢g2(x,c), then the given cquation has solution

z = [0~ fHne(x ),

oF

RGN
5.7 = (% — ) fi(x® - 1) - ol Y

z

C ATV & flper Y

Section 6
3. (x — 3u® = Cy, where C i a constant.

Section 7
1. {a)} Parabolic; (k) hyperbolic; {(c} elliptic; () elliptic; {¢) parabolic,

Section 8
3ozx lﬂgw + ¥ log},f,:ﬁ_;%}
o T

5.2 =2 « 3Py o 3x)? - 207

3. V= Z Cp (g) cos (1)

n ‘
.
2vVx

2 {
where erf (£) = g [ e~ dy,
3

L]

Secrion 9

Section 10
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g dxt bRy



.

by

SOLUTIONS TC THE ODD-NUMBERED PROBLEMS 3%

Chapter 4 Section 2
3. The potential is duc t0: (@) & uniform densisy p = 3/{27) of matter within the
sphere » =~ a; (b} a surface density o =-3ax* — ! — Hf(dma) on the
sphere r ~ a.
Atk = D)
Section 3

Atog {(u® + ¥R - 20%x® — ) + 48 - B

Secrion &

] a2
b (T
¥ = 2wog %i (;) Py (cos 8) — 2moz
o= ’ ‘
butif r > a,
fr el PR
_ (=H=D), o fa)"
g = 2woa Z ._.u_(jz_j__iw}w (;) P, (cos )
— ! g
where (@), = afa = 1) - - - {a —n = 1),
Section 7

. If the polar axis is taken along the direction of the feid,

aB
W= fE(l fr—s)rcos(}

. If the polar axis is taken along the direction of the unifcrm stream,

ER
yom [ (E + 2?’_3) Fe0s b
Secrion 12

Ld iy = {1 — 2){sinz &+ 2%, N )

Miscelluneons Problems
6mrwlas — ay)

elu - 2)
. The potential at a point distant » ( <a) from the center is
[=a3
(8 1 Ly
2y z {1y - H) 2Py (cos B)
B=i)

nl panti

g /

0 < r-c@ < b The magnitude of the attraction at a peint in the plane of
the disk distant » { <a) from the center is

By (1! )
a

aln A 1) i3 pEnid

7w i} L
The potential at an external point is
mo(r —f) (¢ ~Dam* (e ~§ (n-—Da MFm:(p Wf)jﬁgu!f#ﬁ-l)d,‘«,
F —fP {p o+ 1w o — 1 (n + D lip — 1]

where p = a%/rh.

dayo

G
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39. The complex potential is
s . / at
= — e - _ 2 _ 7 7 -
W m tog (= ) — mtog (z (2) ~ 2mlog 2
4l (@) w = }ocde®™ =9 cos 2y, where x = ¢ cosh £ cos 5
y = ¢ sinh & sin %, a = ¢ cosh «, b == ¢ sinh «
(0 v = ce*> NV cosh « cos n — Usinh « sin #)
() ¥ = o™= =8 g 2n 4 coe®$(x, cosh & cos n + y, sinh = sin )

45, The compiex potentiat is w = 2m log {(em4% — 1),

49, - = sinh (ZE,)
2

29 fzeos 8 + asin 2y sin b
SI.f!T:wm;(m-T—, ”zﬂ*r—?;}?’“
. 1 _ (2 2 22 22 2ar
where R = (P + 2% — a®y 4 4a%7, tun 20 =
re+ 8 —a
Chapter 5 Sectfon 4
[xe) =l
lb"""‘ — s 2r = 1)r 25 + D= . (2r + 1)
3. :z > ( i)_ Siﬂ(rg hsin(ggl) sm(rkl)x
iy Wy ( r + )(hb + E)urs a
25 + =y oy
* sin( s + Dm) sin (m“n)
a _a
where afy = {2r 4+ 12 = (25 4 1 v
Section 5
3 aA sin (kr) cos (ket)
) - ker sin (ka)
Section 6
[0 R
wled — (r — c1)?]
3. P o= e —ag<r —cl <a
der
0 r—ocl < ~a
[0 r—ct>a
do <0 —a < r =0l <da
P 2 = =
L0 Pl —a
Miscellancous problems
Y
1. it

[(cp + P + o]t
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%0 ; e h ey
7. ¥y o= - A 1sin 5_':) cos ( ) sin ( s'“\) sin ‘5_—?7”)
- ol lS 6 ) [J ) ! ;

§==

1
T‘:,'X?( -— !“)

STV
UA)

31, —4i f F ) H @ kp) dx
J;

Ay

ra| ‘.’l‘

9. u~=

19, =

—

35, The amptitude of the reflected wave is

sin 2o — sin 2§
sin 2o - sin 28
where Vesin f = sin .

vE
37. f(f) = 2 [ 2o —ikut gy,

v
Chapter 6 . Section 4
4 Z (—ty (7 Bl
1. 0= ;,:1(2’" T sin (2r 4+ lx.e
Section 5
+ix —1.3 N
1. 0:-*‘1—( f ySinh =2t — 2 e g
2mi Jy i sinh {x = tsa)
i [ -2? )
5. (6 4 —% —
(0% + dvt)"Texp (‘52 e
Secrion 6

1. (a) Y 8{a,r) = ¢ (1), 8(b,1) = (1), B(x,0) = f(x), then

5 .
6(x,1) = [ G(x,0) f(x} dx - x £ , {«zsm (E) ~ dal1") (a—c) ) } dr
where the Green's function G(x,r) satisfies

G, = «Gy, Gla,r) = G{b,1) =0 t =0

Gix,0) = 0 a<x<b

o<
) U(x,?) - }.-— {‘ j'(xf)[ew(zwx'}?ght - e—(zfz')z,%d] dx’
a

Vit
) x e —Fa(t—1) "

| —d
TV ['qﬂ(r) Y

Miscellaneous Problems
3. Ik = kg - k.9, then the flux of heat through the shell is
0= 4l — B,)lky + 15,000 + 81k

Fip —
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T & =10y 5 8 exp

¥ . 3
_gacttsinh [s(h o r)w ]
9. 60 = [s(h — gk 4]

a Zﬂ I [ Zrry
dep 0,8 4;
11. O(X,!‘} = — - - cos ( )e—4w-rﬁxfﬂzs
T ¥
roxl '

aq

-
xe' [t

19, B(x,r) = ¢ -

=7 -1 =1 gy

2vm Jy



INDEX

Abel’s equation, 178, 180x. Carstaw, H. 8., 275x.
Absotule temperature, 41 Cauchy’s method, 6!
Absorption of heat, 275 Cauchy's problem, for first-order
Accessible points, 34 equations, 47
Adiabatic law, 2358 for second-order equations, 10
Ahifors, L. V., 185, for wave cquation, 221
d"Alembert’s sotution, 2t3, 224 Cauchy-Riemunn equations, t54, 133
Analytical mechanics, § Central conicoid, 7
Appel's functions, 137 Chadwick, J., 7.
Arc fength, 4 Chain, 93
Axially symmetricat potential problems,  Chandrasekhar, S., 824,

l61 Characteristic, i

Charuacteristic base curve, HH
Charucteristic cone, 118

Baker, B. B., 241n, Characteristic curve, Het, 309
Bars, vibrations of, 210, 266 of second-order equations, |10
Bartels, R, C. F., 278 In three variables, [15
Busset, G., 177 Characteristic equations, 64
Betl, R.J. T., t18n., 309 Characteristic point, 3!
Bernoulh's theorem, 187 Characteristic strip, 63, 3Ht
Bernstein, I, 48xq,, 119 Characteristic surfaces, 117
Bessel functions, 127, 159 Charpit’s method, 69, 134
sphericat, 234 Churchitt, R, V., 154, 2t94,, 2785,
Bes.cl's equation, 126, 159 Churchill problern, 154, 155
Bicharacteristics, 118 Circle theorem, 192
Biharmeonic equation, 95 Clatraut equations, 72
Birth and death processes, 32 Compatible systems, 67
Blasius' theorem, 193 Complementary function, 97
Bocher, M., 178x., 180, Complete integrat, 49, 60
Born, M., 37x, Complex potential, 187
Boundary value problems, 151135,  Compressible fluid, t14
175179, 278-282 Conductanee, 91
Bremmer's relations, 272 Conducting media, 277
Buchdahi, H, A., 35 Conduction of heat, 274
Busbridge, 1, W, 177n, Conduction vector, 143

Conductivity, 274
Confluent hypergeometric function, 303

Cable. 90, 211, 304 Conformat transformation, 190
Calcutus of variations, 174, 226, 230 Conoid, 118

Canonical forms, (06 Convolution theorem, 302

Capacity of condenser, 189 Copson, E. T, 177, 241, 254, 258, 261
Carathéodory, C,, 394, Copson’s method, 179

Carathéodory’s axiom, 4} Copson’s theorem, 179

Carathéndory’s theorem, 33 Coulson, C, A, 236h.
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Courant, R,, 23t
Crack problems, 179
Curves, 3, 10

systems of, £5
Cytindrical waves, 236

D function, 254
Damped osciliations, 266
Deveiopabte surface, 314
Drietectric constant, t43
Dielectrics, 143
Diffraction, 246
Diffusion of vorticity, 276
Diffusion coeflicient, 276
Diffusion equation, 9%, 139, 275.308
elementary selution of, 282
Green’s function for, 294-298
with sourges, 299302
Dipote, 143
Dirac detta fungtion, 252
Direction cosines, 4
Dirichiet’s principle, 175
Dirichtet’s problem, t31, 169, 174
for circte, 195
for half ptane, 193
for semi-infinite space, 170
for sphere, 71
for two dimensions, 193-196
Discriminant, 06
Diverging wave, 235
Domain, of dependence, 224
of influence, 224
Duat integral equations, 179
Duhamel’s theorem, 279
Dynamical systems, 8

Earth’s temperature, 304

Edge of regression, 313

Eigenvalue, 228

Eigenvalue problems, 231

Etastic solid, 95, t36, 213

Electrical doubte tayer, 148

Etcetritied disk, 175

Electrode, 143

Electromagnetic pulse, 294

Electromagnetic waves, 212, 234, 236,
249, 252, 270-273

Electrostatic energy, 158

Etectrostatic field, 92

Electrostatic potential, 142

Flectrostatics, t4t, 158, 162, 167, 188

Etementary sotutions, of diffusion equa-
fion, 282
of Laplace’s equation, 143
of wave cquation, 215
Eltiptic equation, 108, 118
Elis, C, D., 7u,
Envetope, 309, 312
Equations, with constant coctficients,
O6- 104
with variabte coefficients, (05-109
(See also specific equations)
Equipatential surfuces, 148
Error function, 284
Euler-Lagrange equation, | 74
Evans, GG, C., t46n,
Exact equation, 19
Existence of solutions, 9, 48
Expanding gas ctoud, 262

Fetior, W., 82n,

Feshbach, H., 164,

Finite transforms, 229

Fink’s taw, 276

First taw of thermodynamics, 39
Flexural vibrations, 266

Ftux of heat, 275
Fokker-Planck equation, 82
Forsyth, AL R, 134u,

Fourier cosine transform, 128
Fourier series, 160, 219, 242
IFourier sine transform, 128
FFourier transform, 128
Fourier's sofution, 293
Fourier-Besset series, 160, 229
Franklin, P, 120

Gatiop, 1., 177

Gas-thermometer scale, 41

Gauss’ taw, 92

Gauss' theorem, 44

Generat integral, 49, 60

Generat sotution, 49

Generalized form of Green's theorem,
122

Generation of heat, 275

Generator, 314

Gillespie, R, P, 18in,

Gotomb, M., 9, 51, 126

Goursat, E., 9.

Gravitation, 14t

Green, G., 173x.

Cireen's equivalent taver, 148
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Grreen's function, 20, t21
for diffusion cquation, 294-298
for Laptace’s equation, 167-174
for two-dimensionat equation,
[93-196
for wave equation, 222, 244.-248
CGireen's theorem, 92, 148, 167
generatized form, 122
Group velocity, 236

Huamilton-Jacobi equation, 8!
Hamilonian function, 8, 81
lankel functions, 237
fankel transform, 128
larmoenic equation, %2

'Sev alva Laplace’s equation)
Huarmoenic osciltator, 8
Huarnack's theorems, 196, 197
Heat function, 273
Heaviside's unit function, 266
Heavs string, 8
He nrholiz's equation, 219
Helnhottz's sotution, 239
Helarbolts's theorems, 240
Henchy ~Mises condition, 95, 136
Hithert, I, 11, 23]
Homuogeneous equations, 28
H- dration of cement, 275
H.rerbolic equation, 108, T8

F
b
F

Srage systenm, |67
~contpressible fluid, 187
coaenanee, 91
e equations, 19, 21
vral equations, 178, 183
=reyral strip, €3, 110
=weyral surface, circumseribing given
sarfuaee, 76
rassing through curve, 56, 73
wyeral trunsforms, 126-13]
rronny fuctor, 19, 21
el enerey, 40
Sooorston, B32 164
i oers oy theorem, 127
holvir s, 164
- -odue ble equations, 102
f-ooducible operator, 98
Frearariona! motion, 142, 157

[
!
!
f

Jaeabt’s method, 78
Joewer, )L O 2750,
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Jost, W, 276n.
Joute's kaw, 39

Kelvin's inversion theorem, |64

Kelvin's theerem on harmonic functions,
197

King, L. V., 77

Kirchhoit's sotution, 239

KirchhoR's theorems, 242

Kaober, H., 192

Kowalewski, 5., 49

Lagrange’s equation, 50
Lamb, H., 95x.
Lamé's constunts, 213
Landé, A., 39n.
Laplace transform, 128, 290, 267
Laplice’s equation, 92, 109, 141-208
elementary solution of, 145
Green's function (or, 167-174
Laptacian operator, 93, 164
Lass, H., 2tn., 93n., 148x.,
Laurent’s series, 162
Legendre functions, 156
Legendre polynomiats, 156
Legendre series, 157, 162, 173
Legendre’s associated equation, 156
Legendre’s associated functions, |57
Legendre's differential equation, 156
Lienard-Wichert potentials, 253
Lineac equations, 47, 89
of first order, 49
Lincar hyperbolic equations, 119
Liouville™s theorem, 197
Lipschitz's condition, 9, 119
Love, AL E. H., 954,
Logarithmic potential, 182
Longitudinal sound waves, 210, 257

MacDonald, H. M. 177

Magnetostutics, 143

Markhoft process, 82

Maxwell's equations, 93, 212, 252, 270,
271,277

Mean value, 243

Mechanical work, 39

Membrane, vibrations of, 139, 211,

226-232

Milne-Thompson, L. M., 192n.

Mixed boundary value problems,
175-179
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Monge’s method, 131

Monochromatic sound waves, 246, 248,

269
Morse, P. M., 164u.
Muskhelishvili, N. 1, 179, 183

Naiani's method, 30, 32
Nehari, 7., 192
Newmann's problem, {53
Neutrons, 276

Nonhomogeneous wave eqguation, 249

Nonlinear equations, of first
arder, 5%
of second order, 131
uniform, 132
Normal 1o surface, §

One variable separable, 28
Order of equation, 44
Orthogonal surfaces, 57
CGrthogonal trajectorics, 15

Parabolic equation, 108, 118

Parametric equations, 2, 37

Partial differential equation, 44

Particular integral, 97

Plaffian differential equation, 18-33

Plaffian differential form, 1§

Phase velocity, 236

Pile, 302

Plane element, 62

Plastic body, 95

Poincaré, H., 9!

Paincaré’s solution, 243

Poisson’s equation, 92, 141, 257

Poisson’s integral, 172, 196, 283

Poisson's ratio, 95

Poisson’s solution, 239, 243

Potentiad of a disk, 139

Potential equation (see Laplace's
eguation)

Primitive, 21

Punching problems, 179

Quantity of heat, 40
Quantum electrodynamics, 254
Quasi-liinear equation, 132

Radiation from surface, 144, 273
Radipactive decay, 7, 275
Reeiprocal cone, 18n,

INDEX

Reducible operator, 98

Reduction to an ordinary equatic
Riemann invariants, 258
Riemann's mcthod, 119
Riemann-Green function, 121
Riemann-Liouville integral, 254
Riemann-Volterra solution, 22]-22
Retarded potential, 23]

Retarded vulue, 251

Riesz, M., 254

Ricsz's integruls, 254-257

Ruled surfuce, 314

Rutherford, F., 7

Scalar potential, 212, 252

Second law of thermodynamics,
Second-order equations in physics,
Self-adjoint operator, 123, 222
Separable cguations, 72
Separation of variables, 123, 156, Z
Shanks, M, E, 9 154, 126
Simple wave, 258

Simultanecus differentinl equations
Singular integral, 60

_w Singuiar integral equations, 179, 18

Singular points, 310
Skew surface, 314
Slow motion of viscous fluid, 95
Slowing down of neutrons, 276
Slowing-down density, 276
Sneddon, I. N., 127u., 1564., 139n.,
229, 234n., 251, 276n., 278n., 1
Soddy, F., 7
Solutions, elementary (See Elemer
solutions)
existence of, 9, 48
general, 49
satisfying given conditions, 73
{See also specific solutions)
Sound waves, 94, 210, 211, 233,
236, 246, 257
longitudinal, 210, 257
monochromatic, 246, 248, 269
Souree funetion, 275, 299
Space form of wave equation, 209
Spherical Bessel functions, 234
Steady currents, 143
Steady flow of heat, 144
Stieltjes measure, (47
Stieltjes potentials, 146
Stochastic processes, 82
Stratton, b AL, 234
Stream function, 187



