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Preface to the First Edition

This book is an account of physical chemistry designed for stude.its in

the sciences and in engineering. It should also prove useful to chemists in

industry who desire a review of the subject.

The treatment is somewhat more precise than is customary in elementary
books, and most of the important relationships have been given at least a

heuristic derivation from fundamental principles. A prerequisite knowledge
of calculus, college physics, and two years of college chemistry is assumed.

The difficulty in elementary physical chemistry lies not in the mathematics

itself, but in the application of simple mathematics to complex physical
situations. This statement is apt to be small comfort to the beginner, who finds

in physical chemistry his 'ftrst experience with such applied mathematics.

The familiar x's and /s of the calculus course are replaced by a bewildering

array of electrons, energy levels, and probability functions. By the time these

ingredients are mixed well with a few integration signs, it is not difficult to

become convinced that one is dealing with an extremely abstruse subject.

Yet the alternative is to avoid the integration signs and to present a series of

final equations with little indication of their origins, and such a procedure is

likely to make physical chemistry not only abstruse but also permanently

mysterious. The derivations are important because the essence of the subject

is not in the answers we have today, but in the procedure that must be

followed to obtain these and tomorrow's answers. The student should try not

only to remember facts but also to learn methods.

There is more material included in this book than can profitably be dis-

cussed in the usual two-semester course. There has been a growing tendency
to extend the course in basic physical chemistry to three semesters. In our

own course we do not attempt to cover the material on atomic and nuclear

physics in formal lectures. These subjects are included in the text because

many students in chemistry, and most in chemical engineering, do not acquire

sufficient familiarity with them in their physics courses. Since the treatment

in these sections is fairly descriptive, they may conveniently be used for

independent reading.

In writing a book on as broad a subject as this, the author incurs an

indebtedness to so many previous workers in the field that proper acknow-

ledgement becomes impossible. Great assistance was obtained from many
excellent standard reference works and monographs.

To my colleagues Hugh M. Hulburt, Keith J. Laidler, and Francis O.

Rice, I am indebted for many helpful suggestions and comments. The

skillful work of Lorraine Lawrence, R.S.C.J., in reading both galley and

page proofs, was an invaluable assistance. I wish to thank the staff of

Prentice-Hall, Inc. for their understanding cooperation in bringing thfc
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book to press. Last, but by no means least, are the thanks due to my
wife, Patricia Moore, who undertook many difficult tasks in the preparation
of the manuscript.

PREFACE TO THE SECOND EDITION

In preparing the second edition of this book, numerous corrections of

details and improvements in presentation have been made in every chapter,
but the general plan of the book has not been altered. My fellow physical
chemists have contributed generously of their time and experience, suggesting

many desirable changes. Special thanks in this regard are due to R. M. Noyes,
R. E. Powell, A. V. Tobolsky, A. A. Frost, and C. O'Briain. A new chapter
on photochemistry has been added, and recent advances in nuclear, atomic,

and molecular structure have been described.

W. J. MOORE
Btoomington, Indiana
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CHAPTER 1

The Description of Physicochemical Systems

J/ThcThe description of our universe. Since man is a rational being, he has

always tried to increase his understanding of the world in which he lives.

This endeavor has taken many forms. The fundamental questions of the end

and purpose of man's life have been illumined by philosophy and religion.

The form and structure of life have found expression in art. The nature of

the physical world as perceived through man's senses has been investigated

by science.

The essential components of the scientific method are experiment and

theory. Experiments are planned observations of the physical world. A theory
seeks to correlate observables with ideals. These ideals have often taken the

form of simplified models, based again on everyday experience. We have, for

example, the little billiard balls of the kinetic theory of gases, the miniature

hooks and springs of chemical bonds, and the microcosmic solar systems of

atomic theory.
As man's investigation of the universe progressed to the almost infinitely

large distances of interstellar space or to the almost infinitesimal magnitudes
of atomic structures, it began to be realized that these other worlds could not

be adequately described in terms of the bricks and mortar and plumbing of

terrestrial architecture. Thus a straight line might be the shortest distance

between two points on a blackboard, but not between Sirius and Aldebaran.

We can ask whether John Doe is in Chicago, but we cannot ask whether

electron A is at point B.

Intensive research into the ultimate nature of our universe is thus gradu-

ally changing the meaning we attach to such words as "explanation" or

"understanding." Originally they signified a representation of the strange in

terms of the commonplace; nowadays, scientific explanation tends more to

be a description of the relatively familiar in terms of the unfamiliar, light in

terms of photons, matter in terms of waves. Yet, in our search for under-

standing, we still consider it important to "get a physical picture" of the

process behind the mathematical treatment of a theory. It is because physical
science is at a transitional stage in its development that there is an inevitable

question- as to what sorts of concepts provide the clearest picture.

v^J/Thysical chemistry. There are therefore probably two equally logical

approaches to the study of a branch of scientific knowledge such as physical

chemistry. We may adopt a synthetic approach and, beginning with the

structure and behavior of matter in its finest known states of subdivision,

gradually progress from electrons to atoms to molecules to states of

i
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aggregation and chemical reactions. Alternatively, we may adopt an analyti-

cal treatment and, starting with matter or chemicals as we find them in the

laboratory, gradually work our way back to finer states of subdivision as we

require them to explain our experimental results. This latter method follows

more closely the historical development, although a strict adherence to his-

tory is impossible in a broad subject whose different branches have progressed
at very different rates.

Two main problems have occupied most of the efforts of physical chem-

ists: the question of the position of chemical equilibrium, which is the

principal problem of chemical thermodynamics; and the question of the

rate of chemical reactions, which is the field of chemical kinetics. Since these

problems are ultimately concerned with the interaction of molecules, their

final solution should be implicit in the mechanics of molecules and molecular

aggregates. Therefore molecular structure is an important part of physical

chemistry. The discipline that allows us to bring our knowledge of molecular

structure to bear on the problems of equilibrium and kinetics is found in the

study of statistical mechanics.

We shall begin our introduction to physical chemistry with thermo-

dynamics, which is based on concepts common to the everyday world of

sticks and stones. Instead of trying to achieve a completely logical presenta-

tion, we shall follow quite closely the historical development of the subject,

since more knowledge can be gained by watching the construction of some-

thing than by inspecting the polished final product.

j Mechanics: force. The first thing that may be said of thermodynamics
is that the word itself is evidently derived from "dynamics,'* which is a

branch of mechanics dealing with matter in motion.

Mechanics is still founded on the work of Sir Isaac Newton (1642-1727),

and usually begins with a statement of the well-known equation

WIth

/= ma

dv

The equation states the proportionality between a vector quantity f,

called the force applied to a particle of matter, and the acceleration a of the

particle, a vector in the same direction, with a proportionality factor w,
called the mass. A vector is a quantity that has a definite direction as well

as a definite magnitude. Equation (1.1) may also be written

f.

where the product of mass and velocity is called the momentum.

With the mass in grams, time in seconds, and displacement r in centi-

meters (COS system), the unit force is the dyne. With mass in kilograms, time
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in seconds, and displacement in meters (MKS system), the unit force is the

newton.

Mass might also be introduced by Newton's "Law of Universal Gravi-

tation,"

f-'~rf
which states that there is an attractive force between two masses propor-
tional to their product and inversely proportional to the square of their

separation. If this gravitational mass is to be the same as the inertia! mass of

eq. (1.1), the proportionality constant ft 6.66 x 10~8 cm3
sec""

2
g"

1
.

The weight of a body, W, is the force with which it is attracted towards

the earth, and naturally may vary slightly at various points on the earth's

surface, owing to the slight variation of r12 with latitude and elevation, and

of the effective mass of the earth with subterranean density. Thus

At New York City, g = 980.267 cm per sec2
;

at Spitzbergen, g = 982.899;

at Panama, g = 978.243.

In practice, the mass of a body is measured by comparing its weight by

meanspf a balance with that of known standards (mjm2
= W^W^).

Jltwo and energy. The differential element of work dw done by a force

/ that moves a particle a distance dr in the direction of the force is defined

as the product of force and displacement,

dw-^fdr (1.3)

For a finite displacement from rQ to r
t , and a force that depends only on the

position r,

*' =
P/(r)dr (1.4)
Jr

The integral over distance can be transformed to an integral over time:

f l drM*Jt/ att

Introducing Newton's Law of Force, eq. (1.1), we obtain

f'i d*rdr
,w = I m~~~-dt

Jt dt 2 dt

Since (d/dt)(dr/dt)*
= 2(dr/dt)d*r/dt

2
, the integral becomes

w = \rnvf
-

\rnvf (1.5)

The kinetic energy is defined by
EK = JlMP

2
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It is evident from eq. (1.5), therefore, that the work expended equals the

difference in kinetic energy between the initial and the final states,

\r)dr = EKl -EKQ (1.6)

An example of a force that depends only on position r is the force of

gravity acting on a body falling in a vacuum; as the body falls from a higher

to a lower level it gains kinetic energy according to eq. (1.6). Since the force

is a function only of r, the integral in eq. (1.6) defines another function of r,

which we may write

J/(r) dr -= -
U(r)

Or /(/)- -dU/dr (1.7)

This new function U(r) is called the potential energy. It may be noted that,

whereas the kinetic energy EK is zero for a body at rest, there is no naturally

defined zero of potential energy; only differences in potential energy can be

measured. Sometimes, however, a zero of potential energy is chosen by

convention', an example is the choice U(r) for the gravitational potential

energy when two bodies are infinitely far apart.

Equation (1.6) can now be written

\ dr - Ufa)
-

Ufa) - EKl -- EKQ

The sum of the potential and the kinetic energies, U + EK , is the total

mechanical energy of the body, and this sum evidently remains constant

during the motion. Equation (1.8) has the typical form of an equation of
conservation. It is a statement of the mechanical principle of the conservation

of energy. For example, the gain in kinetic energy of a body falling in a

vacuum is exactly balanced by an equal loss in potential energy. A force that

can be represented by eq. (1.7) is called a conservative force.

If a force depends on velocity as well as position, the situation is more

complex. This would be the case if a body is falling, not in a vacuum, but

in a viscous fluid like air or water. The higher the velocity, the greater is the

frictional or viscous resistance opposed to the gravitational force. We can no

longer write /(r)
= dU/dr, and we can no longer obtain an equation such

as (1.8). The mechanical energy is no longer conserved.

From the dawn of history it has been known that the frictional dissipation

of energy is attended by the evolution of something called heat. We shall see

later how the quantitative study of such processes finally led to the inclusion

of heat as a form of energy, and hence to a new and broader principle of the

conservation of energy.
The unit of work and of energy in the COS system is the erg, which is

the work done by a force of one dyne acting through a distance of one

centimeter. Since the erg is a very small unit for large-scale processes, it is
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often convenient to use a larger unit, the joule, which is the unit of work in

the MKS system. Thus,

1 joule
= 1 newton meter 107

ergs

The joule is related to the absolute practical electrical units since

1 joule
= 1 volt coulomb

The unit of power is the watt.

1 watt = 1 joule per sec = 1 volt coulomb per sec = 1 volt ampere

<-& Equilibrium. The ordinary subjects for chemical experimentation are

not individual particles of any sort but more complex systems, which may
contain solids, liquids, and gases. A system is a part of the world isolated

from the rest of the world by definite boundaries. The experiments that we

perform on a system are said to measure its properties, these being the attri-

butes that enable us to describe it with all requisite completeness. This

complete description is said to define the state of the system.

A B c

Fig. l.la. Illustration of equilibrium.

The idea of predictability enters here; having once measured the prop-
erties of a system, we expect to be able to predict the behavior of a second

system with the same set of properties from our knowledge of the behavior

of the original. This is, in general, possible only when the system has attained

a state called equilibrium. A system is said to have attained a state of equi-

librium when it shows no further tendency to change its properties with time.

A simple mechanical illustration will clarify the concept of equilibrium.

Fig. l.la shows three different equilibrium positions of a box resting on a

table. In both positions A and C the center of gravity of the box is lower

than in any slightly displaced position, and if the box is tilted slightly it will

tend to return spontaneously to its original equilibrium position. The gravi-

tational potential energy of the box in positions A or C is at a minimum, and

both positions represent stable equilibrium states. Yet it is apparent that

position C is more stable than position A, and a certain large tilt of A will

suffice to push it over into C. The position A is therefore said to be in meta-

stable equilibrium.

Position B is also an equilibrium position, but it is a state of unstable

equilibrium, as anyone who has tried to balance a chair on two legs will
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agree. The center of gravity of the box in B is higher than in any slightly dis-

placed position, and the tiniest tilt will send the box into either position A
or C. The potential energy at a position of unstable equilibrium is a maximum,
and such a position could be realized only in the absence of any disturbing
forces.

These relations may be presented in more mathematical form by plotting
in Fig. l.lb the potential energy of the system as a function of height r of

the center of gravity. Positions of

stable equilibrium are seen to be

minima in the curve, and the posi-

tion of unstable equilibrium is

represented by a maximum. Posi-

tions of stable and unstable equi-

librium thus alternate in any system.

For an equilibrium position, the

slope of the U vs. r curve, dU/dr,

equals zero and one may write the

equilibrium condition as

at constant r (= r ), dU

ABC
POSITION OF CENTER OF GRAVITY

Fig. l.lb. Potential energy diagram.

Although these considerations have been presented in terms of a simple
mechanical model, the same kind of principles will be found to apply in the

more complex physicochemical systems that we shall study. In addition to

purely mechanical changes, such systems may undergo temperature changes,

changes of state of aggregation, and chemical reactions. The problem of

thermodynamics is to discover or invent new functions that will play the role

in these more general systems that the potential energy plays in mechanics.

^f. The thermal properties of matter. What variables are necessary in order

to describe the state of a pure substance ? For simplicity, let us assume that

the substance is at rest in the absence of gravitational and electromagnetic
forces. These forces are indeed always present, but their effect is most often

negligible in systems of purely chemical interest. Furthermore let us assume

that we are dealing with a fluid or an isotropic solid, and that shear forces

are absent.

To make the problem more concrete, let us suppose our substance is a

flask of water. Now to specify the state of this water we have to describe it

in unequivocal terms so that, for example, we could write to a fellow scientist

in Pasadena or Cambridge and say, "I have some water with the following

properties. . . . You can repeat my experiments exactly ifyou bring a sample
of water to these same conditions." First of all we might specify how much
water we have by naming the mass m of our substance; alternatively we
could measure the volume K, and the density p.

Another useful property, the pressure, is defined as the force normal to

unit area of the boundary of a body (e.g., dynes per square centimeter). In
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a state of equilibrium the pressure exerted by a body is equal to the pressure
exerted upon the body by its surroundings. If this external pressure is denoted

by Pex and the pressure of the substance by P, at equilibrium P = Pex .

We have now enumerated the following properties: mass, volume, den-

sity, and pressure (m, K, p, P). These properties are all mechanical in nature;

they do not take us beyond the realm of ordinary dynamics. How many of

these properties are really necessary for a complete description? We ob-

viously must state how much water we are dealing with, so let us choose the

mass m as our first property. Then if we choose the volume F, we do not

need the density p, since p ml V. We are left with m, V, and P. Then we
find experimentally that, as far as mechanics is concerned, if any two of

these properties are fixed in value, the value of the third is always fixed. For

a given mass of water at a given pressure, the volume is always the same; or

if the volume and mass are fixed, we can no longer arbitrarily choose the

pressure. Only two of the three variables of state are independent variables.

In what follows we shall assume that a definite mass has been taken

say one kilogram. Then the pressure and the volume are not independently
variable in mechanics. The value of the volume is determined by the value

of the pressure, or vice versa. This dependence can be expressed by saying
that V is a function of P, which is written

V=-f(P) or F(P9 K) = (1.9)

According to this equation, if the pressure is held constant, the volume of

our kilogram of water should also remain constant.

Our specification of the properties of the water has so far been restricted

to mechanical variables. When we try to verify eq. (1.9), we shall find that

on some days it appears to hold, but on other days it fails badly. The equation

fails, for example, when somebody opens a window and lets in a blast of

cold air, or when somebody lights a hot flame near our equipment. A new

variable, a thermal variable, has been added to the mechanical ones. If the

pressure is held constant, the volume of our kilogram of water is greater on

the hot days than on the cold days.
The earliest devices for measuring "degrees of hotness" were based on

exactly this sort of observation of the changes in volume of a liquid.
1 In

1631, the French physician Jean Rey used a glass bulb and stem partly filled

with water to follow the progress of fevers in his patients. In 1641, Ferdi-

nand II, Grand Duke of Tuscany, invented an alcohol-in-glass "thermo-

scope." Scales were added by marking equal divisions between the volumes

at "coldest winter cold" and "hottest summer heat." A calibration based on

two fixed points was introduced in 1688 by Dalence, who chose the melting

point of snow as 10, and the melting point of butter as +10. In 1694

1 A detailed historical account is given by D. Roller in No. 3 of the Harvard Case
Histories in Experimental Science, The Early Development of the Concepts of Temperature
and Heat (Cambridge, Mass.: Harvard Univ. Press, 1950).
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Rinaldi took the boiling point of water as the upper fixed point. If one adds

the requirement that both the melting point of ice and the boiling point of

water are to be taken at a constant pressure of one atmosphere, the fixed

points^are precisely defined.

^Definition of temperature. We have seen how our sensory perception

of relative "degrees of hotness" came to be roughly correlated with volume

readings on constant-pressure thermometers. We have not yet demonstrated,

however, that these readings in fact measure one of the variables that define

the state of a thermodynamic system.

Let us consider, for example, two blocks of lead with known masses.

At equilibrium the state of block I can be specified by the independent
variables Pl and Fx . Similarly P2 and K2 specify the state of block II. If we

bring the two blocks together and wait until equilibrium is again attained,

i.e., until P19
Vl9 P& and K2 have reached constant values, we shall discover

as an experimental fact that Pl9
V

19
P2 ,

and K2 are no longer all independent.

They are now connected by a relation, the equilibrium condition, which may
be written

Furthermore, it is found experimentally that two bodies separately in

equilibrium with the same third are also in equilibrium with each other.

That is, if

and F(P29 V29 P39 Ka) =

it necessarily follows that

It is apparent that these equations can be satisfied if the function F has the

special form

K2)
- o (i. 10)

Thus F is the difference of two functions each containing properties pertain-

ing to one body only. The function /(P, V) defined in this way is called the

empirical temperature t. This definition of / is sometimes called the Zeroth

Law of Thermodynamics. From eq. (1.10) the condition for thermal equi-
librium between two systems is therefore

It may be noted that, strictly speaking, the temperature is defined only
for a state of equilibrium. The state of our one kilogram of water, or lead,

is now specified in terms of three thermodynamic variables, P9 V, and /, of

which only two are independent.
8. The equation of state. The properties of a system may be classified as

extensive or Intensive. Extensive properties are additive; their value for the

whole system is equal- to the sum of their values for the individual parts.
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Sometimes they are called capacity factors. Examples are the volume and

the mass. Intensive properties, or intensityfactors, are not additive. Examples
are temperature and pressure. The temperature of any small part of a system
in equilibrium is the same as the temperature of the whole.

If P and V are chosen as independent variables, the temperature is some
function of P and V. Thus

) (1.12)

For any fixed value of t, this equation defines an isotherm of the body under

consideration. The state of a body in thermal equilibrium can be fixed by

specifying any two of the three variables, pressure, volume, and temperature.

2 4 6 8 10 12 14 16 16 20
V-LITERS

400 800 1200

07

06

05

0.4

03
02

01

00

ISOCHORES

200 400 600

Fig. 1.2. Isotherms, isobars, and isochores for one gram of hydrogen.

The third variable can then be found by solving the equation. Thus, by

analogy with eq. (1.12) we may have:

V=f(t,P) (1.13)

P=--f(t,V) (1.14)

Equations such as (1.12), (1.13), (1.14) are called equations of state.

Geometrically considered, the state of a body in equilibrium can be

represented by a point in the PV plane, and its isotherm by a curve in the

PV plane connecting points at constant temperature. Alternatively, the state

can be represented by a point in the Vt plane or the Pt plane, the curves

connecting equilibrium points in these planes being called the isobars (con-

stant pressure) and isochores or isometrics (constant volume) respectively.

Examples of these curves for one gram of hydrogen gas are shown in

Fig. 1.2.

We have already seen how eq. (1.12) can be the basis for a quantitative

measure of temperature. For a liquid-in-glass thermometer, P is constant,

and the change in volume measures the change in temperature. The Celsius

(centigrade) calibration calls the melting point of ice at 1 atm pressure 0C,
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and the boiling point of water at I atm pressure 100C. The reading at other

temperatures depends on the coefficient of thermal expansion a of the thermo-

metric fluid,

1 /9K\
(1.15)

where K is the volume at 0C and at the pressure of the measurements. If a

is a constant over the temperature range in question, the volume increases

linearly with temperature:
K

t

= K + a/K (1.16)

This is approximately true for mercury, but may be quite far from true for

other substances. Thus, although many substances could theoretically be

used as thermometers, the readings of these various thermometers would in

general agree only at the two fixed points chosen by convention.

9. Gas thermometry: the ideal gas. Gases such as hydrogen, nitrogen,

oxygen, and helium, which are rather difficult to condense to liquids, have

been found to obey approximately certain simple laws which make them

especially useful as thermometric fluids.

In his book, On the Spring of the Air, Robert Boyle
2
reported in 1660

experiments confirming Torricelli's idea that the barometer was supported

by the pressure of the air. An alternative theory proposed that the mercury
column was held up by an invisible rigid thread in its interior. In answering

this, Boyle placed air in the closed arm of a U-tube, compressed it by adding

mercury to the other arm, and observed that the volume of gas varied in-

versely as the pressure. He worked under conditions of practically constant

temperature.

Thus, at any constant temperature, he found

PV = constant (1.17)

If the gas at constant pressure is used as a thermometer, the volume of the

gas will be a function of the temperature alone.

By measuring the volume at 0C and at 100C a mean value of a can be

calculated from eq. (1.16),

^100
- W + 1005) or a =

The measurements on gases published by Joseph Gay-Lussac in 1802,

extending earlier work by Charles (1787), showed that this value of a was a

constant for "permanent" gases. Gay-Lussac found (1808) the value to

be
4^. By a much better experimental procedure, Regnault (1847) obtained

2^3.
For every one-degree rise in temperature the fractional increase in the

gas volume is
3
of the volume at 0C.

2 Robert Boyle's Experiments in Pneumatics, Harvard Case Histories in Experimental
Science No. 1 (Cambridge, Mass.: Harvard Univ. Press, 1950) is a delightful account of
this work.
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Later and more refined experiments revealed that the closeness with

which the laws of Boyle and Gay-Lussac are obeyed varies from gas to gas.
Helium obeys most closely, whereas carbon dioxide, for example, is rela-

tively disobedient. It has been found that the laws are more nearly obeyed
the lower the pressure of the gas.

It is very useful to introduce the concept of an ideal gas, one that follows

the laws perfectly. The properties of such a gas usually can be obtained by
extrapolation of values measured with real gases to zero pressure. Examples

36.75i

36.70

36.65

36.60

200 1200400 600 800 1000

PRESSURE - mm of Hg

Fig. 1.3. Extrapolation of thermal expansion coefficients to zero

pressure.

are found in some modern redetermi nations of the coefficient a shown

plotted in Fig. 1.3. The extrapolated value at zero pressure is

oc
()

- 36.608 x 10~4
,

or l/a --- 273.16

We may use such carefully measured values to define an ideal gas tem-

perature scale, by introducing a new temperature,

=t + = t + (273.16 0.01)
"o

(1.18)

The new temperature T is called the absolute temperature (K); the zero on
this scale represents the limit of the thermal contraction of an ideal gas.

From eq. (1.16),

V T V T
F- ('-I')

273.16

where V is now the volume of gas at 0C and standard atmospheric pressure
PQ9 and VTj>o

is the volume at PQ and any other temperature T. The tempera-
ture of the ice point on the absolute scale is written as T (273.16).

Boyle's Law eq. (1.17) states that for a gas at temperature T
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Combining with eq. (1.19), we obtain

PV^ f^T=C-T (1.20)
M)

The value of the constant C depends on the amount of gas taken, but for a

given volume of gas, it is the same for ail ideal gases. Thus for 1 cc of gas
at 1 atm pressure, PV = 7)273.

For chemical purposes, the most significant volume is that of a mole of

gas, a molecular weight in grams. In conformity with the hypothesis of

Avogadro, this volume is the same for all ideal gases, being 22,414 cc at 0C
and 1 atm. Per mole, therefore,

PV=RT (1.21)

where R = 22,414/273.16 - 82.057 cc atm per C.

For n moles,

PY=nRT^^-RT (1.22)M
where m is the mass of gas of molecular weight M. In all future discussions

the volume V will be taken as the molar volume unless otherwise specified.

It is often useful to have the gas constant in other units. A pressure of

1 atm corresponds to 76.00 cm of mercury. A pressure of 1 atm in units of

dynes cm~2
is 76.00 /3Hgo where

/>Hg is the density of mercury at 0C and

1 atm, and gQ is the standard gravitational acceleration. Thus 1 atm =
76.00 x 13.595 x 980.665 =1.0130 X 106 dyne cm-2

. The gas constant

R - 82.057 x 1.0130 x 106 - 8.3144 x 107
ergs deg~

l mole-1 == 8.3144

joules deg"
1 mole*1

.

10. Relationships of pressure, volume, and temperature. The pressure,

volume, temperature (PVT) relationships for gases, liquids, and solids would

preferably all be succinctly summarized in the form of equations of state of

the general form of eqs. (1.12), (1.13), and (1.14). Only in the case of gases
has there been much progress in the development of these state equations.

They are obtained not only by correlation of empirical PVT data, but also

from theoretical considerations based on atomic and molecular structure.

These theories are farthest advanced for gases, but more recent developments
in the theory of liquids and solids give promise that suitable state equations

may eventually be available in these fields also.

The ideal gas equation PV = RT describes the PVT behavior of real

gases only to a first approximation. A convenient way of showing the devia-

tions from ideality is to write for the real gas :

PV=zRT (1.23)

The factor z is called the compressibility factor. It is equal to PV/RT. For an

ideal gas z = 1, and departure from ideality will be measured by the deviation

of the compressibility factor from unity. The extent of deviations from
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ideality depends on the temperature and pressure, so z is a function of T
and P. Some compressibility factor curves are shown in Fig. 1.4; these are

determined from experimental measurements of the volumes of the gases at

different pressures.

Useful PVT data for many substances are contained in the tabulated

values at different pressures and temperatures of thermal expansion co-

efficients a [eq. (1.15)] and compressibilities /?.
3 The compressibility* is

defined by
1 IAV\

(1.24)

The minus sign is introduced because (3V/dP)T is itself negative, the volume

decreasing with increasing pressure.

Z2{
C2H4/-N2

^>CH4

200 400 600 800 1000
PRESSURE -ATM

Fig. 1.4. Compressibility factors at 0C.

1200

Since V /(P, T), a differential change in volume can be written 5
:

For a condition of constant volume, V = constant, dV =- 0, and

-
,,,6,

, v (3K/aP)r
-

3
See, for example, International Critical Tables (New York: McGraw-Hill, 1933); also

J. H. Perry, ed., Chemical Engineers
9 Handbook (New York: McGraw-Hill, 1950), pp. 200,

205.
4 Be careful not to confuse compressibility with compressibility factor. They are two

distinctly different quantities.
6

Granville, Smith, Longley, Calculus (Boston: Ginn, 1934), p. 412.
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Or, from eqs. (1.15) and (1.24), (3Pl3T)r =---
a/0. The variation of P with T

can therefore readily be calculated if we know a and ft.

An interesting example is suggested by a common laboratory accident,

the breaking of a mercury-in-glass thermometer by overheating. If a thermo-

meter is exactly filled with mercury at 50C, what pressure will be developed
within the thermometer if it is heated to 52C? For mercury, a 1.8 X
10~4

deg-
1

, p
- 3.9 x 10- 6 atm-1

. Therefore (2P/dT)v --
<x/ft

=-- 46 atm per

deg. For AT 2, A/> =-- 92 atm. It is apparent why even a little overheating
will break the usual thermometer.

11. Law of corresponding states. If a gas is cooled to a low enough tem-

perature and then compressed, it can be liquefied. For each gas there is a

characteristic temperature above which it cannot be liquefied, no matter how

great the applied pressure. This temperature is called the critical temperature
Tfy and the pressure that just suffices to liquefy the gas at Tc is called the

critical pressure Pc . The volume occupied at T
c and P

c
is the critical volume

V
c

. A gas below the critical temperature is often called a vapor. The critical

constants for various gases are collected in Table 1.1.

TABLE 1.1

CRITICAL POINT DATA AND VAN DER WAALS CONSTANTS

The ratios of P, K, and T to the critical values P
c ,
K

c , and T
c are called

the reduced pressure, volume, and temperature. These reduced variables may
be written

P V T
p r V T (\ ">7\rn ~ p ' '

it
~

is 9 1 R ~
T \ 1 '^')* c Y c 2 c

To a fairly good approximation, especially at moderate pressures, all

gases obey the same equation of state when described in terms of the reduced

variables, Pn ,
Vw TR , instead of P, K, T. If two different gases have identical

values for two reduced variables, they therefore have approximately identical

values for the third: They are then said to be in corresponding states, and
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LEGEND
NITROGEN a N-BUTANE
METHANE a ISOPENTANE
ETHANE
ETHYLENE

N-HEPTANE
A CARBON DIOXIDE
WATER

23456
REDUCED PRESSURE, PR

Fig. 1.5. Compressibility factor as function of reduced state variables.

[From Gouq-Jen Su, Ind. Eng. Chem., 38, 803 (1946).]

this approximation is called the Law of Corresponding States. This is equiva-

lent to Sciying that the compressibility facror z is the same function of the

reduced variables for all gases. This rule is illustrated in Fig. 1.5 for a number

of different gases, where z PV/RT is plotted at various reduced tempera-

tures, against the reduced pressure.

12. Equations of state for gases. If the equation of state is written in terms

of reduced variables as F(P& VE}
^= TR ,

it is evident that it contains at least

two independent constants, characteristic of the gas in question, for example
Pc and K

r
. Many equations of state, proposed on semi-empirical grounds,

serve to represent the PVT data more accurately than does the ideal gas

equation. Several of the best known of these also contain two added con-

stants. For example:
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Equation of van der Waals:

Equation of Berthelot:

(
P

Equation of Dieterici:

P(V - b')e
a

'IRTV = RT (1.30)

Van der Waals' equation provides a reasonably good representation of

the PVT data of gases in the range of moderate deviations from ideality.

For example, consider the following values in liter atm of the PV product
for carbon dioxide at 40C, as observed experimentally and as calculated

from the van der Waals equation:

P, atm 1 10 50 100 200 500 1100

PF, obs. 25.57 24.49 19.00 6.93 10.50 22.00 40.00

PK,calc. 25.60 24.71 19.75 8.89 14.10 29.70 54.20

The constants a and b are evaluated by fitting the equation to experimental
PVT measurements, or more usually from the critical constants of the gas.
Some values for van der Waals' a and b are included in Table 1.1. Berthelot's

equation is somewhat better than van der Waals' at pressures not much
above one atmosphere, and is preferred for general use in this range.

Equations (1.28), (1.29), and (1.30) are all written for one mole of gas.
For n moles they become:

f )(V-nb) = nRT

n*A'

P(V-nb')e
na 'IRTV ^ nRT

The way in which the constants in these equations are evaluated from
critical data will now be described, using the van der Waals equation as an

example.
13. The critical region. The behavior of a gas in the neighborhood of its

critical region was first studied by Thomas Andrews in 1869, in a classic

series of measurements on carbon dioxide. Results of recent determinations
of these PV isotherms around the critical temperature of 31.01C are shown
in Fig. 1.6.

Consider the isotherm at 30.4, which is below Tc . As the vapor is com-

pressed the PV curve first follows AB, which is approximately a Boyle's law
isotherm. When the point B is reached, liquid is observed to form by the

appearance of a meniscus between vapor and liquid. Further compression
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Fig. 1.6. Isotherms of carbon dioxide near the critical point.

64

then occurs at constant pressure until the point C is reached, at which all

the vapor has been converted into liquid. The curve CD is the isotherm of

liquid carbon dioxide, its steepness indicating the low compressibility of the

liquid.

As isotherms are taken at successively higher temperatures the points of

discontinuity B and C are observed to approach each other gradually, until

at 31.0lC they coalesce, and no gradual formation of a liquid is observable.

This isotherm corresponds to the critical temperature of carbon dioxide.

Isotherms above this temperature exhibit no formation of a liquid no matter

how great the applied pressure.
Above the critical temperature there is no reason to draw any distinction
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between liquid and vapor, since there is a complete continuity of states. This

may be demonstrated by following the path EFGH. The vapor at point E,

at a temperature below T
c , is warmed at constant volume to point /% above

T
c

. It is then compressed along the isotherm FG, and finally cooled at constant

volume along GH. At the point //, below T
c , the carbon dioxide exists as a

liquid, but at no point along this path are two phases, liquid and vapor,

simultaneously present. One must conclude that the transformation from

vapor to liquid occurs smoothly and continuously.
14. The van der Waals equation and liquefaction of gases. The van der

Waals equation provides a reasonably accurate representation of the PVT
data of gases under conditions that deviate only moderately from ideality.

When an attempt is made to apply the equation to gases in states departing

greatly from ideality, it is found that, although a quantitative representation
of the data is not obtained, an interesting qualitative picture is still provided.

Typical of such applications is the example shown in Fig. 1.6, where the

van der Waals isotherms, drawn as dashed lines, are compared with the

experimental isotherms for carbon dioxide in the neighborhood of the critical

point. The van der Waals equation provides an adequate representation of

the isotherms for the homogeneous vapor and even for the homogeneous

liquid.

As might be expected, the equation cannot represent the discontinuities

arising during liquefaction. Instead of the experimental straight line, it

exhibits a maximum and a minimum within the two-phase region. We note

that as the temperature gradually approaches the critical temperature, the

maximum and the minimum gradually approach each other. At the critical

point itself they have merged to become a point of inflection in the PKcurve.

The analytical condition for a maximum is that (OP/OK) and (d
2
P/dV

2
)

< 0; for a minimum, (ZPfiV) = and (D
2
/>/3K

2
) > 0. At the point of in-

flection, both the first and the second derivatives vanish, (DP/3K)

According to van der Waals' equation, therefore, the following three

equations must be satisfied simultaneously at the critical point (T = Tc ,

V= Vn P=-.P
t):

RTr

*r'
V,

- b V*

RTf laPP\
w) - =--

(vt -bp y*

When these equations are solved for the critical constants we find

(L31)
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The values for the van der Waals constants are usually calculated from these

equations.

In terms of the reduced variables of state, PJf ,
VR , and T

]{ , one obtains

from eq. (1.31):

The van der Waals equation then reduces to

As was pointed out previously, it is evident that a reduced equation of

state similar to (1.32) can be obtained from any equation of state containing
no more than two arbitrary constants, such as a and b. The Berthelot equa-
tion is usually used in the following form, applicable at pressures of the order

of one atmosphere:

+
15 (-)]

15. Other equations of state. In order to represent the behavior of gases
with greater accuracy, especially at high pressures or near their condensation

temperatures, it is necessary to use expressions having more than two adjust-

able parameters. Typical of such expressions is the very general virial equation
of Kammerlingh-Onnes:

4 I ft
^ 2

i

3
-t- . .

The factors B(T) 9 C(T) 9 D(T), etc., are functions of the temperature, called

the second, third, fourth, etc., virial coefficients. An equation like this,

though difficult to use, can be extended to as many terms as are needed to

reproduce the experimental PKTdata with any desired accuracy.
One of the best of the empirical equations is that proposed by Beattie

and Bridgeman in 1928. 6 This equation contains five constants in addition

to R, and fits the PKTdata over a wide range of pressures and temperatures,
even near the critical point, to within 0.5 per cent.

16. Heat. The experimental observations that led to the concept of tem-

perature led also to the concept of heat. Temperature, we recall, has been

defined only in terms of the equilibrium condition that is reached when two

bodies are placed in contact. A typical experiment might be the introduction

of a piece of metal at temperature T2 into a vessel of water at temperature 7\.

To simplify the problem, let us assume that: (1) the system is isolated com-

pletely from its surroundings; (2) the change in temperature of the container

itself may be neglected; (3) there is no change in the state of aggregation of

either body, i.e., no melting, vaporization, or the like. The end result is that

'
J. A. Beattie and O. C. Bridgeman, Proc. Am. Acad. Arts Sci., 63, 229-308 (1928).

J. A. Beattie, Chem. Rev., 44, 141-192 (1949).
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the entire system finally reaches a new temperature T, somewhere between

7^ and T2 . This final temperature depends on certain properties of the water

and of the metal. It is found experimentally that the temperatures can always
be related by an equation having the form

C2(T2
~ 7')=C1(r-r1) (1.34)

Here C\ and C2 are functions of the mass and constitution of the metal and

of the water respectively. Thus, a gram of lead would cause a smaller tem-

perature change than a gram of copper; 10 grams of lead would produce
10 times the temperature change caused by one gram.

Equation (1.34) has the form of an equation of conservation, such as

eq. (1.8). Very early in the development of the subject it was postulated that

when two bodies at different temperatures are placed in contact, something
flows from the hotter to the colder. This was originally supposed to be a

weightless material substance, called caloric. Lavoisier, for example, in his

Traite elementaire de Chimle (1789), included both caloric and light among
the chemical elements.

We now speak of a flow of heat q, given by

q
- C2(T2 - r) - CAT -

T,) (1.35)

The coefficients C are called the heat capacities of the bodies. If the heat

capacity is reckoned for one gram of material, it is called the specific heat;

for one mole of material, the molar heat capacity.

The unit of heat was originally defined in terms of just such an experiment
in calorimetry as has been described. The gram calorie was the heat that must

be absorbed by one gram of water to raise its temperature 1C. It followed

that the specific heat of water was 1 cal per C.

More careful experiments showed that the specific heat was itself a func-

tion of the temperature. It therefore became necessary to redefine the calorie

by specifying the range over which it was measured. The standard was taken

to be the 75 calorie, probably because of the lack of central heating in

European laboratories. This is the heat required to raise the temperature of

a gram of water from 14.5 to 15.5C. Finally another change in the definition

of the calorie was found to be desirable. Electrical measurements are capable
of greater precision than calorimetric measurements. The Ninth International

Conference on Weights and Measures (1948) therefore recommended that

the joule (volt coulomb) be used as the unit of heat. The calorie, however, is

still popular among chemists, and the National Bureau of Standards uses a

defined calorie equal to exactly 4.1840 joules.

The specific heat, being a function of temperature, should be defined

precisely only in terms of a differential heat flow dq and temperature change
dT. Thus, in the limit, eq. (1.35) becomes

or C = (1.36)
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The heat added to a body in raising its temperature from 7\ to T2 is

therefore

(1.37)*=\ T\
CdT

Since C depends on the exact process by which the heat is transferred, this

integral can be evaluated only when the process is specified.

If our calorimeter had contained ice at 0C instead of water, the heat

added to it would not have raised its temperature until all the ice had melted.

Such heat absorption or evolution accompanying a change in state of aggre-

gation was first studied quantitatively by Joseph Black (1761), who called it

latent heat. It may be thought of as somewhat analogous to potential energy.
Thus we have latent heat of fusion, latent heat of vaporization, or latent

heat accompanying a change of one crystalline form to another, for example
rhombic to monoclinic sulfur.

17. Work in thermodynamic systems. In our discussion of the transfer of

heat we have so far carefully restricted our attention to the simple case in

which the system is completely isolated and

is not allowed to interact mechanically with

its surroundings. If this restriction does not

apply, the system may either do work on

its surroundings or have work done on itself.

Thus, in certain cases, only a part of the

heat added to a substance causes its tem-

perature to rise, the remainder being used

in the work of expanding the substance. The

amount of heat that must be added to

produce a certain temperature change depends on the exact process by
which the change is effected.

A differential element of work may be defined by reference to eq. (1.3)

as dw /'dr, the product of a displacement and the component of force in

the same direction. In the case of a simple thermodynamic system, a fluid

confined in a cylinder with a movable piston (assumed frictionless), the work

done by the fluid against the external force on the piston (see Fig. 1.7) in a

differential expansion dV would be

Fig. 1.7. Work in expansion.

dw - J- A dr - />ex dV

Note that the work is done against the external pressure Pex .

If the pressure is kept constant during a finite expansion from

w dV = AK

(1.38)

to V*

(1.39)

If a finite expansion is carried out in such a way that each successive state

is an equilibrium state, it can be represented by a curve on the PV diagram,
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since then we always have Pex
= P. This is shown in (a), Fig. 1.8. In this

case,

dw = P dV (1.40)

On integration,

\v^j*PdY (1.41)

The value of the integral is given by the area under the PV curve. Only when

equilibrium is always maintained can the work be evaluated from functions

of the state of the substance itself, P and Y
9 for only in this case does P -=- Pex .

It is evident that the work done in going from point I to point 2 in the

PV diagram, or from one state to another, depends upon the particular path
that is traversed. Consider, for example, two alternate paths from A to B in

(b), Fig. 1.8. More work will be done in going by the path ADB than by the

path ACB, as'is evident from the greater area under curve ADB. If we proceed

(a)

Fig. 1.8. Indicator diagrams for work.

from state A to state B by path ADB and return to A along BCA, we shall

have completed a cyclic process. The net work done by the system during this

cycle is seen to be equal to the difference between the areas under the two

paths, which is the shaded area in (b), Fig. 1.8.

It is evident, therefore, that in going from one state to another both the

work done by a system and the heat added to a system depend on the par-

ticular path that is followed. The reason why alternate paths are possible in

(b), Fig. 1.8 is that for any given volume, the fluid may exert different pres-

sures depending on the temperature that is chosen.

18. Reversible processes. The paths followed in the PV diagrams of

Fig. 1.8 belong to a special class, of great importance in thermodynamic

arguments. They are called reversible paths. A reversible path is one connect-

ing intermediate states all of which are equilibrium states. A process carried

out along such an equilibrium path will be called a reversible process.

In order, for example, to expand a gas reversibly, the pressure on the

piston must be released so slowly, in the limit infinitely slowly, that at every
instant the pressure everywhere within the gas volume is exactly the same

and is just equal to the opposing pressure on the piston. Only in this case

can the state of the gas- be represented by the variables of state, P and V
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Geometrically speaking the state is represented by a point in the PV plane.

The line joining such points is a line joining points of equilibrium.
Consider the situation if the piston were drawn back suddenly. Gas would

rush in to fill the space, pressure differences would be set up throughout the

gas volume, and even a condition of turbulence might ensue. The state of the

gas under such conditions could no longer be represented by the two variables,

P and V. Indeed a tremendous number of variables would be required, corre-

sponding to the many different pressures at different points throughout the

gas volume. Such a rapid expansion is a typical irreversible process; the inter-

mediate states are no longer equilibrium states.

It will be recognized immediately that reversible processes are never

realizable in actuality since they must be carried out infinitely slowly. All

naturally occurring processes are therefore irreversible. The reversible path
is the limiting path that is reached as we carry out an irreversible process
under conditions that approach more and more closely to equilibrium con-

ditions. We can define a reversible path exactly and calculate the work done

in moving along it, even though we can never carry out an actual change

reversibly. It will be seen later that the conditions for reversibility can be

closely approximated in certain experiments.
19. Maximum work. In (b), Fig. 1.8, the change from A to B can be

carried out along different reversible paths, of which two (ACB and ADB)
are drawn. These different paths are possible because the volume Kis a func-

tion of the temperature 7, as well as of the pressure P. If one particular tem-

perature is chosen and held constant throughout the process, only one rever-

sible path is possible. Under such an isothermal condition the work obtained

in going from A to B via a path that is reversible is the maximum work possible

for the particular temperature in question. This is true because in the rever-

sible case the expansion takes place against the maximum possible opposing
force, which is one exactly in equilibrium with the driving force. If the

opposing force, e.g., pressure on a piston, were any greater, the process
would occur in the reverse direction ; instead of expanding and doing work

the gas in the cylinder would have work done upon it and would be com-

pressed.

20. Thermodynamics and thermostatics. From the way in which the

variables of state have been defined, it would appear that thermodynamics

might justly be called the study of equilibrium conditions. The very nature

of the concepts and operations that have been outlined requires this restric-

tion. Nowhere does time enter as a variable, and therefore the question of

the rate of physicochemical processes is completely outside the scope of this

kind of thermodynamic discussion. It would seem to be an unfortunate

accident of language that this equilibrium study is called thermodynamics',
a better term would be thermostatics. This would leave the term thermo-

dynamics to cover the problems in which time occurs as a variable, e.g.,

thermal
conductivity, chemical reaction rates, and the like. The analogy with
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dynamics and statics as the two subdivisions of mechanics would then be

preserved.

Although the thermodynamics we shall employ will be really a thermo-

statics, i.e., a thermodynamics of reversible (equilibrium) processes, it should

be possible to develop a much broader study that would include irreversible

processes as well. Some progress along these lines has been made and the

field should be a fruitful one for future investigation.
7

PROBLEMS

1. The coefficient of thermal expansion of ethanol is given by a 1.0414

x 10~3 t- 1.5672 x 10~6
/ + 5.148 x 10~8

/
2

, where t is the centigrade tem-

perature. If and 50 are taken as fixed points on a centigrade scale, what

will be the reading of the alcohol thermometer when an ideal gas thermo-

meter reads 30C?
2. In a series of measurements by J. A. Beattie, the following values were

found for a of nitrogen :

P (cm) . . . 99.828 74.966 59.959 44.942 33.311

axlOVK- 1
. . 3.6740 3.6707 3.6686 3.6667 3.6652

Calculate from these data the melting point of ice on the absolute ideal gas
scale.

3. An evacuated glass bulb weighs 37.9365 g. Filled with dry air at 1 atm

pressure and 25C, it weighs 38.0739 g. Filled with a mixture of methane and

ethane it weighs 38.0347 g. Calculate the percentage of methane in the gas
mixture.

4. An oil bath maintained at 50C loses heat to its surroundings at the

rate of 1000 calories per minute. Its temperature is maintained by an electri-

cally heated coil with a resistance of 50 ohms operated on a 110-volt line,

A thermoregulator switches the current on and off. What percentage of the

time will the current be turned on?

5. Calculate the work done in accelerating a 2000 kg car from rest to a

speed of 50 km per hr, neglecting friction.

6. A lead bullet is fired at a wooden plank. At what speed must it be

traveling to melt on impact, if its initial temperature is 25 and heating of

the plank is neglected? The melting point of lead is 327 and its specific heat

is 0.030 cal deg~
'l
g-

1
.

7. What is the average power production in watts of a man who burns

2500 kcal of food in a day?

8. Show that

7
See, for example, P. W. Bridgman, The Nature of Thermodynamics (New Haven:

Yale Univ. Press, 1941); K. G. Denbigh, The Thermodynamics ofthe Steady State (London:
Methuen, 1951).
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9. Calculate the pressure exerted by 10 g of nitrogen in a closed 1-liter

vessel at 25C using (a) the ideal gas equation, (b) van der Waals' equation.

10. Use Berthelot's equation to calculate the pressure exerted by 0.1 g of

ammonia, NH3 , in a volume of 1 liter at 20C
11. Evaluate the constants a and b' in Dieterici's equation in terms of

the critical constants P
c , Vc , Tc of a gas.

12. Derive an expression for the coefficient of thermal expansion a for

a gas that follows (a) the ideal gas law, (b) the van der Waals equation.

13. The gas densities (g per liter) at 0C and 1 atm of (a) CO2 and (b)

SO2 are (a) 1.9769 and (b) 2.9269. Calculate the molar volumes of the gases
and compare with the values given by Berthelot's equation.

14. The density of solid aluminum at 20C is 2.70 g per cc; of the liquid

at 660C, 2.38 g per cc. Calculate the work done on the surroundings when
10 kg of Al are heated under atmospheric pressure from 20 to 660C.

15. One mole of an ideal gas at 25C is held in a cylinder by a piston at

a pressure of 100 atm. The piston pressure is released in three stages: first to

50 atm, then to 20 atm, and finally to 10 atm. Calculate the work done by
the gas during these irreversible isothermal expansions and compare it with

that done in an isothermal reversible expansion from 100 to 10 atm at 25C.

16. Two identical calorimeters are prepared, containing equal volumes

of water at 20.0. A 5.00-g piece of Al is dropped into calorimeter A, and a

5.00-g piece of alloy into calorimeter B. The equilibrium temperature in A
is 22.0, that in B is 21.5. Take the specific heat of water to be independent
of temperature and equal to 4.18 joule deg~

l
. If the specific heat of Al is

0.887 joule deg"
1
, estimate the specific heat of the alloy.

17. According to Hooke's Law the restoring force/ on a stretched spring
is proportional to the displacement r (/-=- /cr). How much work must be

expended to stretch a 10.0-cm-long spring by 10 per cent, if its force constant

AC 105 dynes cm"
1 ?

18. A kilogram of ammonia is compressed from 1000 liters to 100 liters

at 50. Calculate the minimum work that must be expended assuming (a)

ideal gas, (b) van der Waals' equation.
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CHAPTER 2

The First Law of Thermodynamics

1. The history of the First Law. The First Law of Thermodynamics is an

extension of the principle of the conservation of mechanical energy. This

extension became natural when it was realized that work could be converted

into heat, the expenditure of a fixed amount of work always giving rise to

the production of the same amount of heat. To give the law an analytical

formulation, it was only necessary to define a new energy function that

included the heat.

The first quantitative experiments on this subject were carried out by

Benjamin Thompson, a native of Woburn, Massachusetts, who became

Count Rumford of The Holy Roman Empire. Commissioned by the King
of Bavaria to supervise the boring of cannon at the Munich Arsenal, he

became impressed by the tremendous generation of heat during this opera-
tion. He suggested (1798) that the heat arose from the mechanical energy

expended, and was able to estimate the amount of heat produced by a horse

working for an hour; in modern units his value would be 0.183 calorie per

joule. The reaction at the time to these experiments was that the heat was

produced owing to a lower specific heat of the metal in the form of fine

turnings. Thus when bulk metal was reduced to turnings it had to release

heat. Rumford then substituted a blunt borer, producing just as much heat

with very few turnings. The adherents of the caloric hypothesis thereupon
shifted their ground and claimed that the heat arose from the action of air

on the metallic surfaces. Then, in 1799, Sir Humphry Davy provided further

support for Rumford's theory by rubbing together two pieces of ice by clock-

work in a vacuum and noting their rapid melting, showing that, even in the

absence of air, this latent heat could be provided by mechanical work.

Nevertheless, the time did not become scientifically ripe for a mechanical

theory of heat until the work of Dalton and others provided an atomic

theory of matter, and gradually an understanding of heat in terms of

molecular motion. This development will be considered in some detail in

Chapter 7.

James Joule, at the age of twenty, began his studies in 1840 in a labora-

tory provided by his father in a Manchester brewery. In 1843, he published
his results on the heating effect of the electric current. In 1849, he carefully

determined the mechanical equivalent of heat by measuring the work input
and the temperature rise in a vessel of water vigorously stirred with paddle
wheels. His value, converted into our units, was 0.241 calorie per joule; the

accepted modern figure is 0.239. Joule converted electric energy and mechanical
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energy into heat in a variety of ways: electric heating, mechanical stirring,

compression of gases. By every method he found very nearly the same value

for the conversion factor, thus clearly demonstrating that a given amount of

work always produced the same amount of heat, to within the experimental
error of his measurements.

2. Formulation of the First Law. The interconversion of heat and work

having been demonstrated, it is possible to define a new function called the

internal energy E. In any process the change in internal energy A, in passing
from one state A to another 5, is equal to the sum of the heat added to the

system q and the work done on the system w. (Note that by convention

work done by the system is called positive, 4 H>.) Thus, A - q vv. Now
the first law of thermodynamics states that this difference in energy A

depends only on the final state B and the initial state A 9
and not on the path

between A and B.

&E=EB -EA = q-w (2.1)

Both q and w depend upon the path, but their difference^ w is independent
of the path. Equation (2.1) therefore defines a new state function E. Robert

Mayer (1842) was probably the first to generalize the energy in this way.
For a differential change eq. (2.1) becomes

dE = dq
- dw (2.2)

The energy function is undetermined to the extent of an arbitrary addi-

tive constant; it has been defined only in terms of the difference in energy
between one state and another. Sometimes, as a matter of convenience, we

may adopt a conventional standard state for a system, and set its energy in

this state equal to zero. For example, we might choose the state of the system
at 0K and 1 atm pressure as our standard. Then the energy E in any other

state would be the change in energy in going from the standard state to the

state in question.

The First Law has often been stated in terms of the universal human

experience that it is impossible to construct a perpetual motion machine,

that is, a machine that will continuously produce useful work or energy from

nothing. To see how this experience is embodied in the First Law, consider

a cyclic process from state A to B and back to A again. If perpetual motion

were ever possible, it would sometimes be possible to obtain a net increase

in energy A > by such a cycle. That this is impossible can be ascertained

from eq. (2.1), which indicates that for any such cycle &E = (En EA)

+ (EA EB)
= 0. A more general way of expressing this fact is to say that

for any cyclic process the integral of dE vanishes:

dE=Q (2.3)

3. The nature of internal energy. On page 6 we restricted the systems
under consideration to those in a state of rest in the absence of gravitational

or electromagnetic fields. With these restrictions, changes in the internal
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energy E include changes in the potential energy of the system, and energy
associated with the addition or subtraction of heat. The potential energy

changes may be considered in a broad sense to include also the energy

changes caused by the rearrangements of molecular configurations that take

place during changes in state of aggregation, or in chemical reactions.

If the system were moving, the kinetic energy would have to be added to

E. If the restriction on electromagnetic fields were removed, the definition of

E would have to be expanded to include the electromagnetic energy. Simi-

larly, if gravitational effects were of interest, as in centrifugal operations, the

energy of the gravitational field would have to be included in or added to E
before applying the First Law.

In view of these facts, it has been remarked that even if somebody did

invent a perpetual motion machine, we should simply invent a new variety

of energy to explain it, and so preserve the validity of the First Law. From
this point of view, the First Law is essentially a definition of a function called

the energy. What gives the Law real meaning and usefulness is the practical

fact that a very small number of different kinds of energy suffice to describe

the physical world.

In anticipation of future discussions, it may be mentioned that experi-

mental proof of the interconversion of mass and energy has been provided

by the nuclear physicists. The First Law should therefore become a law of

the conservation of mass-energy, and the extension of thermodynamics along
these lines is beginning to be studied. The changes in mass theoretically

associated with the energy changes in chemical reactions are so small that

they lie just outside the range of our present methods of measurement. Thus

they need not be considered in ordinary chemical thermodynamics.
4. Properties of exact differentials. We have seen in Section 1-17 that the

work done by a system in going from one state to another is a function of

the path between the states, and that dw is not in general equal to zero.

The reason was readily apparent when the reversible process was considered.

Then, dw
\
P dV. The differential expression P dV cannot be inte-

J A J A

grated when only the initial and final states are known, since P is a function

not only of the volume Kbut also of the temperature 7, and this temperature
CB

may also change along the path of integration. On the other hand, I dE

can always be carried out, giving En EA , since is a function of the state

of the system alone, and is not dependent on the path by which that state is

reached or on the previous history of the system.

Mathematically, therefore, we distinguish two classes of differential ex-

pressions. Those such as dE are called exact differentials since they are

obtained by differentiation of some state function such as E. Those such as

dq or dw are inexact differentials, since they cannot be obtained by differen-

tiation of a function of the state of the system alone. Conversely, dq or dw
cannot be integrated to yield a q or w. The First Law states that although
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dq and dw are not exact differentials, their difference dE = dq dw is an

exact differential.

The following statements are mathematically completely equivalent :

(1) The function E is a function of the state of a system.

(2) The differential dE is an exact differential.

(3) The integral of dE about a closed path dE is equal to zero.

As an important corollary of the fact that it is an exact differential, dE

may be written1

dE -
( )

dx +
( } dy (2.4)

\dx/ v \cy' x

where x and y are any other variables of state of the system, for instance

any two of P9 T, V. Thus, for example,

/XF\
IT (2.5)

A further useful property of exact differential expressions is the Euler

reciprocity relation. If an exact differential is written dE = M dV + TV dT,

then

ar/ r \*VJ T
(2 '6)

This can be seen immediately from the typical case of eq. (2.5), whence

eq. (2.6) becomes (3
2
/8FOr) -- (d

2
E/dTdV) since the order of differentiation

is immaterial.

5. Adiabatic and isothermal processes. Two kinds of processes occur fre-

quently both in laboratory experiments and in thermodynamic arguments.
An isothermal process is one that occurs at constant temperature, T
constant, dT 0. To approach isothermal conditions, reactions are often

carried out in thermostats. In an adiabatic process, heat is neither added to

nor taken from the system; i.e., q
= 0. For a differential adiabatic process,

dq 0, and therefore from eq. (2.2) dE dw. For an adiabatic reversible

change in volume, dE ==- P dV. Adiabatic conditions can be approached

by careful thermal insulation of the system. High vacuum is the best insulator

against heat conduction. Highly polished walls minimize radiation. These

principles are combined in Dewar vessels of various types.

6. The heat content or enthalpy. No mechanical work is done during a

process carried out at constant volume, since V = constant, dV 0, w 0.

It follows that the increase in energy % equals the heat absorbed at constant

volume.

A-?r (2.7)

If pressure is held constant, as for example in experiments carried out

under atmospheric pressure, A = E2 El
= q w q P(V2 Kx) or

1
See, e.g., Granviller, Smith, Longley, Calculus (Boston: Ginn, 1934), p. 412.
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( 2 + PV*) (Ei + PV\) = <!P> where qp is the heat absorbed at constant

pressure. We now define a new function, called the enthalpy or heat content2

by
H - E -\ PV (2.8)

Then A// = H2
- H -

qp (2.9)

The increase in enthalpy equals the heat absorbed at constant pressure.

It will be noted that the enthalpy H9 like the energy *, is a function of the

state of the system alone, and is independent of the path by which that state

is reached. This fact follows immediately from the definition in eq. (2.8),

since
", P, and V are all state functions.

7. Heat capacities. Heat capacities may be measured either at constant

volume or at constant pressure. From the definitions in eqs. (1.36), (2.7), and

(2.9):

heat capacity at constant volume: Cv
-= ~ - I I (2.10)aT \oTfy

heat capacity at constant pressure: CP = -~
\ ) (2.11)aT \dT/p

The capital letters Cv and CP are used to represent the heat capacities

per mole. Unless otherwise specified, all thermodynamic quantities that are

extensive in character will be referred to the molar basis.

The heat capacity at constant pressure CP is always larger than that at

constant volume CF ,
because at constant pressure part of the heat added to

a substance is used in the work of expanding it, whereas at constant volume

aH of the added heat produces a rise in temperature. An important equation
for the difference CP Cv can be obtained as follows:

C" - C* =
(I'),- (D K

=
(fH'

+ P ()- (D F
(2 ' 12)

Since, dE --

/3\ /3\ /3K\ p\

Substituting this value in eq. (2.12), we find

v l/dy\
(2.13)

The term P(dV/dT)P may be seen to represent the contribution to the

specific heat CP caused by the expansion of the system against the external

2 Note carefully that heat content H and heat capacity dqjdT are two entirely different

functions. The similarity in nomenclature is unfortunate, and the term enthalpy is therefore

to be preferred to heat content.
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pressure P. The other term (dE/dV)T(dy/3T)j> is the contribution from the

work done in expansion against the internal cohesive or repulsive forces of

the substance, represented by a change of the energy with volume at constant

temperature. The term (dE/3V)T is called the internal pressure? In the case

of liquids and solids, which have strong cohesive forces, this term is large.
In the case of gases, on the other hand, the term (dE/dV)T is usually small

compared with P.

In fact, the first attempts to measure (d/dY)T for gases failed to detect

it at all. These experiments were carried out by Joule in 1843.

8. The Joule experiment. Joule's drawing of his apparatus is reproduced
in Fig. 2.1, and he described the experiment as follows. 4

I provided another copper receiver () which had a capacity of 134 cubic
inches. ... I had a piece D attached, in the center of which there was a bore J of

an inch diameter, which could be closed per-

fectly by means of a proper stopcock. . . .

Having filled the receiver R with about 22

atmospheres of dry air and having exhausted the

receiver E by means of an air pump, I screwed
them together and put them into a tin can con-

taining 161 Ib. of water. The water was first

thoroughly stirred, and its temperature taken by
the same delicate thermometer which was made
use of in the former experiments on mechanical

equivalent of heat. The stopcock was then

opened by means of a proper key, and the air

allowed to pass from the full into the empty re-

ceiver until equilibrium was established between
the two. Lastly, the water was again stirred and

Fig. 2.1. The Joule experiment. its temperature carefully noted.

Joule then presented a table of experimental data, showing that there was

no measurable temperature change, and arrived at the conclusion that "no

change of temperature occurs when air is allowed to expand in such a manner
as not to develop mechanical power" (i.e., so as to do no external work).

The expansion in Joule's experiment, with the air rushing from R into

the evacuated vessel , is a typical irreversible process. Inequalities of tem-

perature and pressure arise throughout the system, but eventually an equi-
librium state is reached. There has been no change in the internal energy of

the gas since no work was done by or on it, and it has exchanged no heat

with the surrounding water (otherwise the temperature of the water would

have changed). Therefore AE 0. Experimentally it is found that Ar 0.

It may therefore be concluded that the internal energy must depend only on

the temperature and not on the volume. More mathematically expressed:

3 Note that just as d/<V, the derivative of the energy with respect to a displacement, is a

force, the derivative with respect to volume, 5E/DK, is a force per unit area or a pressure.
4

Phil. A%., 1843, p.- 263.
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while </K>0

Since

and

it follows that

Joule's experiment, however, was not capable of detecting small effects,

since the heat capacity of his water calorimeter was extremely large compared
with that of the gas used.

9. The Joule-Thomson experiment. William Thomson (Lord Kelvin)

suggested a better procedure, and working with Joule, carried out a series of

experiments between 1852 and 1862. Their apparatus is shown schematically

in Fig. 2.2. The principle involved

throttling the gas flow from the high

pressure A to the low pressure C side

by interposing a porous plug B. In

their first trials, this plug consisted of

a silk handkerchief; in later work,

porous meerschaum was used. In this

way, by the time the gas emerges into

C it has already reached equilibrium
and its temperature can be measured

directly. The entire system is thermally insulated, so that the process is an

adiabatic one, and q 0.

Suppose that the fore pressure in A is /\, the back pressure in C is P2 >

and the volumes per mole of gas at these pressures are V and K2 , respec-

tively. The work per mole done on the gas in forcing it through the plug is

then P^, and the work done by the gas in expanding on the other side is

P2V2 . The net work done by the gas is therefore w P2V2 P^V^
It follows that a Joule-Thomson expansion occurs at constant enthalpy,

since

A E2 E
l q w --= w

E2 EI PI V\ ^2 ^2

E2 + P2V2 ^E,+ P.V,

Fig. 2.2. The Joule-Thomson experi-

ment.

The Joule-Thomson coefficient, /iJmTf9 is defined as the change of temperature
with pressure at constant enthalpy:

/^r\

(2.14)

This quantity is measured directly from the temperature change A7 of the

gas as it undergoes a pressure drop A/> through the porous plug. Some
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experimental values of the J.-T. coefficients, which are functions of tem-

perature and pressure, are collected in Table 2.1.

TABLE 2.1

JOULE-THOMSON COEFFICIENTS FOR CARBON DIOXIDE*

/* (C per atm)

* From John H. Perry, Chemical Engineers' Handbook (New York: McGraw-Hill,

1941). Rearranged from Int. Crit. Tables, vol. 5, where further data may be found.

A positive //< corresponds to cooling on expansion, a negative \i to warm-

ing. Most gases at room temperatures are cooled by a J.-T. expansion.

Hydrogen, however, is warmed if its initial temperature is above -80C,
but if it is first cooled below 80C it can then be cooled further by a J.-T.

effect. The temperature 80C at which jn
^ is called the Joule-Thomson

inversion temperature for hydrogen. Inversion temperatures for other gases,

except helium, lie considerably higher.

10. Application of the First Law to ideal gases. An analysis of the theory
of the Joule-Thomson experiment must be postponed until the Second Law
of Thermodynamics has been studied in the next chapter. It may be said,

however, that the porous-plug experiments showed that Joule's original con-

clusion that (9/OK)T ^ for all gases was too broad. Real gases may have

a considerable internal pressure and work must be done against the cohesive

forces when they expand.
An ideal gas may now be defined in thermodynamic terms as follows:

(1) The internal pressure (9/3K)T = 0.

(2) The gas obeys Boyle's Law, PV = constant at constant T.

It follows from eq. (2.5) that the energy of an ideal gas is a function of

its temperature alone. Thus dE -~- (3E/dT)y dT = Cv dT and Cv = dE/dT.

The heat capacity of an ideal gas also depends only on its temperature.
These conclusions greatly simplify the thermodynamics of ideal gases, so

that many thermodynamic discussions are carried on in terms of the ideal

gas model. Some examples follow:
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Difference in heat capacities. When eq. (2.13) is applied to an ideal gas,

it becomes

Then, since PV = RT

/9F\ _R

and Cp Cv = R (2.15)

Heat capacities are usually given in units of calories per degree per mole,

and, in these units,

R - 8.3144/4.1840

= 1.9872 caldeg-
1 mole-1

Temperature changes. Since dE Cv dT

Likewise for an ideal gas:

dH = CP dT

and A// = H2
- H

=j*'
Cv dT (2.17)

Isothermal volume or pressure change. For an isothermal change in an

ideal gas, the internal energy remains constant. Since dT - and

-0,

and dq = dw = P dV

Since p =

f 2 P
\ dq = \

Ji Ji

dvRT-
i V

or = w- *nn-^ = RTln (2.18)

Since the volume change is carried out reversibly, P always having its equi-

librium value RT/V, the work in eq. (2.18) is the maximum work done in an

expansion, or the minimum work needed to effect a compression. The equa-
tion tells us that the work required to compress a gas from 10 atm to 100 atm
is just the same as that required to compress it from 1 atm to 10 atm.
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Reversible adiabatic expansion. In this case, dq
= 0, and dE = dw ~

~PdV.

From eq. (2.16) dw = Cv dT

For a finite change w \CV dTJ i

We may write eq. (2.19) as Cv dT + P dV -

_ dT dV
Whence

(2.19)

(2.20)

(2.21)

Integrating between 7\ and 7^, and ^ and K2 ,
the initial and final tempera-

tures and volumes, we have

Cv In J + R In =-- (2.22)
' 1 ^1

This integration assumes that Cv is a constant, not a function of T.

We may substitute for R from eq. (2.15), and using the conventional

symbol y for the heat capacity ratio C^/Cy we find

ISOTHERMAL
^v

ADIABATIC

(y-

7\

nTherefore,

Since, for an ideal gas,

(2.23)

Fig. 2.3. Isothermal and

adiabatic expansions.
(2.24)

It has been shown, therefore, that for a reversible adiabatic expansion of an

ideal gas

PVY ^ constant (2.25)

We recall that for an isothermal expansion PV constant.

These equations are plotted in Fig. 2.3. A given pressure fall produces a

lesser volume increase in the adiabatic case, owing to the attendant fall in

temperature during the adiabatic expansion.
11. Examples of ideal-gas calculations. Let us take 10 liters of gas at

and 10 atm. We therefore have 100/22.414 4.457 moles. We shall calculate

the final volume and the work done in three different expansions to a final

pressure of 1 atm. The heat capacity is assumed to be Cv = $R, independent
of temperature.

Isothermal reversible expansion. In this case the final volume

V2
= P^Pi -

(10)(10)/(1)
- 100 liters
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The work done by the gas in expanding equals the heat absorbed by the gas

from its environment. From eq. (2.18), for n moles,

y
q
^ w nRTln -

V\

- (4.457)(8.314)(273.2)(2.303) log (10)

-23,3 10 joules

Adiabatlc reversible expansion. The final volume is calculated from

eq. (2.24), with

CP ($R f R) 5

Thus ^2H ~
I K! (10)

3/5 - 10 - 39.8 liters

\ * 2

The final temperature is obtained from P2V2 nRT2 :

P,V, (1)(39.8)
Tz ~

n'R (4.457X0.08205)
m* K

For an adiabatic process, q
=- 0, and A q u ^- - iv. Also, since Cr is

constant, eq. (2.16) gives

A - rtCjAr n%R(T2 7\) 9125 joules

The work done by the gas on expansion is therefore 9125 joules.

Irreversible adiabatic expansion. Suppose the pressure is suddenly released

to 1 atm and the gas expands adiabatically against this constant pressure.

Since this is not a reversible expansion, eq. (2.24) cannot be applied. Since

q = 0, A ~w. The value of A depends only on initial and final states:

A- - w =-/iCr(7*2
-

7\)

Also, for a constant pressure expansion, we have from eq. (1.39),

Equating the two expressions for vv, we obtain

The only unknown is T2 :

-^(r-2732)=l^2

2 f \ 1 10
>

Tz
- 174.8K

Then A = vv =- fRn(\14.S 273.2)

=- 5470 joules
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Note that there is considerably less cooling of the gas and less work done

in the irreversible adiabatic expansion than in the reversible expansion.

12. Thermochemistry heats of reaction. Thermochemistry is the study of

the heat effects accompanying chemical reactions, the formation of solutions,

and changes in state of aggregation such as melting or vaporization. Physico-

chemical changes can be classified as endothermic, accompanied by the

absorption of heat, or exothermic, accompanied by the evolution of heat.

A typical example of an exothermic reaction is the burning of hydrogen:

H 2 f- i- O2
- H2O (gas) f 57,780 cal at 18C

A typical endothermic reaction would be the reverse of this, the decom-

position of water vapor:

H2O - H2 -f I O2
-

57,780 cal at 18C

Heats of reaction may be measured at constant pressure or at constant

volume. An example of the first type of experiment is the determination of

the heat evolved when the reaction takes place at atmospheric pressure in an

open vessel. If the reaction is carried out in a closed autoclave or bomb, the

constant-volume condition holds.

By convention, reaction heats are considered positive when heat is ab-

sorbed by the system. Thus an exothermic reaction has a negative "heat of

reaction." From eq. (2.7) the heat of reaction at constant volume,

Qv - A F (2.26)

From eq. (2.9) the heat of reaction at constant pressure,

QP - A//,>
- A + P AK (2.27)

The heat of reaction at constant volume is greater than that at constant

pressure by an amount equal to the external work done by the system in

the latter case. In reactions involving only liquids or solids AFis so small

that usually P AK is negligible and Qv & QP . For gas reactions, however,

the P A V terms may be appreciable.
The heat change in a chemical reaction can best be represented by

writing the chemical equation for the reaction, specifying the states of all

the reactants and products, and then appending the heat change, noting the

temperature at which it is measured. Since most reactions are carried out

under essentially constant pressure conditions, A// is usually chosen to

represent the heat of reaction. Some examples follow:

(1) SO2 (1 atm) + | O2 (1 atm) - SO3 (1 atm)
A//298 - -10,300 cal

(2) CO2 (1 atm) + H2 (1 atm) - CO (I atm) + H2O (1 atm)
A//298 - 9860 cal

(3) AgBr (cryst>+ \ C12 (1 atm) - AgCl (cryst) + \ Br2 (liq)

A//008- -6490 cal
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As an immediate consequence of the First Law, A or A// for any
chemical reaction is independent of the path; that is, independent of any
intermediate reactions that may occur. This principle was first established

experimentally by G. H. Hess (1840), and is called The Law of Constant Heat

Summation. It is often possible, therefore, to calculate the heat of a reaction

from measurements on quite different reactions. For example: :

(1) COC12 -! H2S =-- 2 HCl + COS A//298 - -42,950 cai

(2) COS + H2S - H2O (g) + CS2 (1) A//298 - +3980 cai

(3) COC12 | 2 H2S - 2 HCl + H2O (g) + CS2 (1)

A #298 = "38,970 cai

13. Heats of formation. A convenient standard state for a substance may
be taken to be the state in which it is stable at 25C and 1 atm pressure; thus,

oxygen as O2 (g), sulfur as S (rhombic crystal), mercury as Hg (1), and so on.

By convention, the enthalpies of the chemical elements in this standard state

are set equal to zero. The standard enthalpy of any compound is then the

heat of the reaction by which it is formed from its elements, reactants and

products all being in the standard state of 25C and 1 atm.

For example:

(1) S + O2
- SO2 A// 298

- -70,960 cai

(2) 2 Al + | O2
- A12O23 A// 298

- -380,000 cai

The superscript zero indicates we are writing a standard heat of formation

with reactants and products at 1 atm; the absolute temperature is written as

a subscript. Thermochemical data are conveniently tabulated as heats of

formation. A few examples, selected from a recent compilation of the

National Bureau of Standards,
5 are given in Table 2.2. The standard heat of

any reaction at 25C is then readily found as 'the difference between the

standard heats of formation of the products and of the reactants.

TABLE 2.2

STANDARD HEATS OF FORMATION AT 25C

Thermodynamic Properties'*).
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Many of our thermochemical data have been obtained from measure-

ments of heats of combustion. If the heats of formation of all its combustion

products are known, the heat of formation of a compound can be calculated

from its heat of combustion. For example

(1) C2H6 j I O2
- 2 CO2 ~| 3 H2O (1) A// 298

- -373.8 kcal

(2) C (graphite) f O2
-- CO2 A// 298

= -94.5 kcai

(3) H2 + I O2
- H 2O (1) A// 298

- -68.3 kcai

(4) 2 C f 3 H 2
-- C2H6 A// 298

--= -20.1 kcal

The data in Table 2.3 were obtained from combustion heats by F. D.

Rossini and his co-workers at the National Bureau of Standards. The

standard state of carbon has been taken to be graphite.

When changes in state of aggregation occur, the appropriate latent heat

must be added. For example:

S (rh) { O2 SO2 A// 298 -70.96 kcal

S (rh) S (mono) A// 298
^ -0.08 kcal

S (mono) + O2
- SO2 A// 298

. 70.88 kcal

14. Experimental measurements of reaction heats.6 The measurement of

the heat of a reaction consists essentially of a careful determination of the

amount of the chemical reaction that produces a definite measured change
in the calorimeter, and then the measurement of the amount of electrical

energy required to effect exactly the same change. The change in question is

usually a temperature change. A notable exception is in the ice calorimeter,

in which one measures the volume change produced by the melting of ice,

and thereby calculates the heat evolution from the known latent heat of

fusion of ice.

The A// values in Table 2.3 were obtained by means of a combustion-

bomb calorimeter. It is estimated that the limit of accuracy with the present

apparatus and technique is 2 parts in 10,000. Measurements with a bomb
calorimeter naturally yield A values, which are converted to A//'s via

eq. (2.27).

A thermochemical problem of great interest in recent years has been the

difference in the energies of various organic compounds, especially the hydro-
carbons. It is evident that extremely precise work will be necessary to evaluate

such differences from combustion data. For example, the heat contents of

the five isomers of hexane differ by 1 to 5 kcal per mole, while the heats of

combustion of the hexanes are around 1000 kcal per mole; even a 0.1 per cent

uncertainty in the combustion heats would lead to about a 50 per cent un-

certainty in the energy differences. Important information about such small

a Clear detailed descriptions of the experimental equipment and procedures can be
found in the publications of F. D. Rossini and his group at the National Bureau of Stan-

dards, J. Res. ofN.B.S., rf,.
1 (1930); 13, 469 (1934); 27, 289 (1941).
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TABLE 2.3

HEATS OF FORMATION OF GASEOUS HYDROCARBONS

Substance

Paraffins :

Methane
Ethane

Propane
rt-Butane

Isobutane

w-Pentane

2-Methylbutane

Tetramethylmethane

Monolefines:

Ethylene

Propylene
1-Butene

cis-2-Butene

trans-2-Butene

2-Methylpropene
1-Pentene

Diolefines:

Allene

1,3-Butadiene

1,3-Pentadiene

1,4-Pentadiene

Acetylenes :

Acetylene

Methylacetylene

Dimethylacetylene

Formula

CH 4

C 2H

C4H 10

C4H,
C,H 12

QH!!

C2H 4

C,H.
C4H 8

C 4
H

fl

C,H 8

j (cal/mole)

17,8651 74
-20,191 L 108

24,750 f 124

29,715 153

31,350 I 132

34,7394, 213

36,671 I 153

39,410 L 227

12,556 1 67

4956 t 110

383 JL 180

-1388 J 180
- 2338 180
- 3205 J. 165

-4644 .{ 300

46,046 260

26,865 -> 240

18,885 -f- 300

25,565 j : 300

54,228 J. 235

44,309 }- 240

35,221 -{- 355

energy differences can be obtained for unsaturated hydrocarbons by measure-

ment of their heats of hydrogenation. This method has been developed to a

high precision by G. B. Kistiakowsky and his co-workers at Harvard. 7

It is evident that in calorimetric experiments for example, in a deter-

mination of a heat of combustion the chemical reaction studied may
actually occur at a very elevated temperature. One measures, however, the

net temperature rise after equilibrium has been reached, and this usually

amounts to only a few degrees, owing to the high heat capacity of the calori-

meter. Since AE or A// depends only on the initial and final states, one

actually measures the A or A//, therefore, at around 25C, even though

temperatures of over 2000C may have been attained during the actual

combustion process.

15. Heats of solution. In many chemical reactions, one or more of the

reactants are in solution, and the investigation of heats of solution is an

important branch of thermochemistry. It is necessary to distinguish the

integral heat of solution and the differential heat of solution. The distinction

7

Kistiakowsky, et al., /. Am. Cfiem. Soc., 57, 876 (1935).
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between these two terms can best be understood by means of a practical

example.
If one mole of alcohol (C2H5OH) is dissolved in nine moles of water, the

final solution contains 10 moles per cent of alcohol. The heat absorbed is the

integral heat of solution per mole of alcohol to form a solution of this final

composition. If the mole of alcohol is dissolved in four moles of water, the

integral heat of solution has a different value, corresponding to the formation

3000

m 2000

o
2

I
"? 1000

V
10 20 30 40 50 60 70 80
MOLES WATER/MOLES ALCOHOL

Fig. 2.4. Heat of solution of ethyl alcohol in water at 0C.

of a 20 mole per cent solution. The difference between any two integral heats

of solution yields a value for the integral heat of dilution. The example can

be written in the form of thermochemical equations as follows:

(1) C2H 5OH + 9 H2O - C2H5OH (10 mole % solution)

A// 273
= -2300

(2) C2H 5OH -f- 4 H 2O - C2H 5OH (20% solution)

(3) C2H 5OH (20% solution) + 5 H 2O -= C2H5OH (10% solution;

A// 273
- -1500

A// 273
= -800

The heat of dilution from 20 to 10 per cent amounts to 800 cal per mole.

It is evident that the heat evolved ( A//) when a mole of alcohol is

dissolved in water depends upon the final concentration of the solution. If

one plots the measured integral heat of solution against the ratio moles

water per mole alcohol (njna\ the curve in Fig. 2.4 is obtained. As the

solution becomes more and more dilute, njna approaches infinity. The

asymptotic value of the heat of solution is called the heat of solution at

infinite dilution, A//^, For alcohol in water at 0C, this amounts to 3350
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calories. The values of A//80lution generally become quite constant with in-

creasing dilution, so that measured values in dilute solutions are usually

close to A//^. Often one finds literature values for which the dilution is not

specified.
These are written, for aqueous solution, simply as in the following

example:
NaCl + x H2O - NaCl (aq) h 1260 cal

:

In the absence of more detailed information, such values may be taken to

give approximately the A// at infinite dilution.

The integral solution heats provide an average A// over a range of con-

centrations. For example, if alcohol is added to water to make a 50 mole

per cent solution, the first alcohol added gives a heat essentially that for the

solute dissolving in pure water, whereas the last alcohol is added to a solution

of about 50 per cent concentration. For theoretical purposes, it is often

necessary to know what the A// would be for the solution of solute in a

solution of definite fixed concentration. Let us imagine a tremendous volume

of solution of definite composition and add one more mole of solute to it.

We can then suppose that this addition causes no detectable change in the

concentration. The heat absorbed in this kind of solution process is the

differential heat of solution. The same quantity can be defined in terms of a

very small addition of dn moles of solute to a solution, the heat absorbed

per mole being dq/dn and the composition of the solution remaining un-

changed. Methods of evaluating the differential heat will be considered in

Chapter 6.

16. Temperature dependence of reaction heats. Reaction heats depend on

the temperature and pressure at which they are measured. We may write the

energy change in a chemical reaction as

~
^reactants

3
pr0(1

From eq. (2.10),
- = Crprod

- CFreact
= ACr (2.28)

Similarly, f ,

= C'i* '
Q'react

- AQ, (2.29)

Integrating, at a constant pressure of 1 atm, so that A// is the standard A//,
we obtain

A// T>
- A//

Ti
- ACp dT (2.30)

JT,

These equations were first ^et forth by G. R. Kirchhoff in 1858. They
state that the difference between the heats of reaction at 7\ and at T2 is equal
to the difference in the amounts of heat that must be added to reactants and
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products at constant pressure to raise them from 7\ to T2 . This conclusion

is an immediate consequence of the First Law of Thermodynamics.
In order to apply eq. (2.30), expressions are required for the heat capaci-

ties of reactants and products over the temperature range of interest. Over

a short range, these may often be taken as practically constant, and we

obtain:

A// r A//
TI

---= ACV(72 Tj)

More generally, the experimental heat-capacity data will be represented by
a power series:

CV -a + bT-\- cT2
f . . . (2.31)

Examples of such heat-capacity equations are given in Table 2.4. These

three-term equations fit the experimental data to within about 0.5 per cent

TABLE 2.4

HEAT CAPACITY OF GASES (273-1 500K)*

CP = a 4- bT i cT2
(C/. in calories per deg per mole)

* H. M. Spencer, /. Am. Chem. Soc., 67, 1858 (1945). Spencer and Justice, ibid., 56,
2311 (1934).

over a temperature range from 0C to 1250C. When the series expression
for AC/> is substituted8

in eq. (2.30), the integration can be carried out

analytically. Thus at constant pressure, for the standard enthalpy change,

rf(A//) - AQ, dT - (A + BT + CT2 + . . .)dT

A// - A// -f-AT + i BT* + J Cr3 + . . . (2.32)

Here A// is the constant of integration.
9
Any one measurement of A// at

8 For a typical reaction, N8 -f-
;

J H 2
- NH 3 ; ACP = C

PNHi
- i C^ t

-
J PH .

9 If the heat-capacity equations are valid to 0K, we may note that at T = 0, A/f
= A//

, so that the integration constant can be interpreted as the enthalpy change in the

reaction at 0K.



Sec. 16] THE FIRST LAW OF THERMODYNAMICS 45

a known temperature T makes it possible to evaluate the constant A// in

eq. (2.32). Then the A// at any other temperature can be calculated from

the equation. If the heat capacities are given in the form of a CP vs. T curve,

a graphical integration is often convenient.

Recently rather extensive enthalpy tables have become available, which

give H as a function of T over a wide range of temperatures. The use of

these tables makes direct reference to the heat capacities unnecessary.
16. Chemical affinity. Much of the earlier work on reaction heats was

done by Julius Thomsen and Marcellin Berthelot, in the latter part of the

nineteenth century. They were inspired to carry out a vast program of

thermochemical measurements by the conviction that the heat of reaction

was the quantitative measure of the chemical affinity of the reactants. In the

words of Berthelot, in his Essai de Mecanique chimique (1878):

Every chemical change accomplished without the intervention of an external

energy tends toward the production of the body or the system of bodies that sets

free the most heat.

This principle is incorrect. It would imply that no endothermic reaction

could occur spontaneously, and it fails to consider the reversibility of chemi-

cal reactions. In order to understand the true nature of chemical affinity and

of .he driving force in chemical reactions, it is necessary to go beyond the

Firs. Law of Thermodynamics, and to investigate the consequences of the

second fundamental law that governs the interrelations of work and heat.

PROBLEMS

1. Calculate A and A// when 100 liters of helium at STP are heated to

100C in a closed container. Assume gas is ideal with Cv ^R.

2. One mole of ideal gas at 25C is expanded adiabatically and reversibly
from 20 atm to 1 atm. What is the final temperature of the gas, assuming

Cy = \R1
3. 100 g of nitrogen at 25C arc held by a piston under 30 atm pressure.

The pressure is suddenly released to 10 atm and the gas adiabatically

expands. If Cv for nitrogen
- 4.95 cal per deg, calculate the final tempera-

ture of the gas. What are A and A// for the change? Assume gas is

ideal.

4. At its boiling point (100C) the density of liquid water is 0.9584 g per

cc; of water vapor, 0.5977 g per liter. Calculate the maximum work done
when a mole of water is vaporized at the boiling point. How does this compare
with the latent heat of vaporization of water?

5. If the Joule-Thomson coefficient is /<t/ T
^ 1.084 deg per atm and the

heat capacity CP = 8.75 cal per mole deg, calculate the change in enthalpy
A// when 50 g of CO2 at 25C and 1 atm pressure are isothermally com-

pressed to 10 atm pressure. What would the value be for an ideal gas?
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6. Using the heat-capacity equation in Table 2.4, calculate the heat

required to raise the temperature of one mole of HBr from to 500C.

7. In a laboratory experiment in calorimetry 100 cc of 0.500 TV acetic acid

are mixed with 100 cc of 0.500 N sodium hydroxide in a calorimeter. The

temperature rises from 25.00 to 27.55C. The effective heat capacity of the

calorimeter is 36 cal per deg. The specific heat of 0.250 N sodium acetate

solution is 0.963 cal deg-
1

g-
1 and its density, 1.034g per cc. Calculate the

heat of neutralization of acetic acid per mole.

8. Assuming ideal gas behavior, calculate the values of &E 29Q for SO3

(g), H2O (g), and HCl (g) from the A// 298 values in Table 2 2.

9. From the heats of formation in Table 2.3, calculate A// 298 for the

following cracking reactions:

C2H6 + H2
- 2 CH4

/i-C4H 10 | 3 H 2
-- 4 CH4

iso-C4H 10 + 3 H2
- 4 CH4

10. The heat of sublimation of graphite to carbon atoms has been esti-

mated as 170 kcal per mole. The dissociation of molecular hydrogen into

atoms, H2
- 2 H, has A// - 103.2 kcal per mole. From these data and the

value for the heat of formation of methane, calculate the A// for C (g) +
4 H (g) CH4 (g). One fourth of this value is a measure of the "energy of

the C H bond" in methane.

11. Assuming that the energy of the C H bond in ethane, C2H6 ,
is the

same as in methane (Problem 10) estimate the energy of the C C bond in

ethane from the heat of formation in Table 2.3.

12. When w-hexane is passed over a chromia catalyst at 500C, benzene

is formed: C6H 14 (g)
- C6H 6 (g) f 4 H2 , A// 298

^ 59.78 kcal per mole.

Calculate A// for the reaction at 500C (Table 2.4).

13. Derive a general expression for A// of the water gas reaction

(H 2 + CO2
-= H 2O f CO) as a function of temperature. Use it to calculate

A// at 500K and 1000K.

14. From the curve in Fig. 2.4, estimate the heat evolved when 1 kg of

a 10 per cent (by weight) solution of ethanol in water is blended with 1 kg of

a 75 per cent solution of ethanol in water.

15. If a compound is burned under adiabatic conditions so that all the

heat evolved is utilized in heating the product gases, the maximum tempera-
ture attained is called the adiabatic flame temperature. Calculate this tem-

perature for the burning of ethane with twice the amount of air (80 per cent

N2 ,
20 per cent O2 ) needed for complete combustion to CO2 and H2O. Use

heat capacities in Table 2.4, but neglect the terms cT2
.

16. Show that for a van der Waals gas, (3E/3K)r a/Y2
.

17. Show that (dEpP)v - 0Cr/a.
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CHAPTER 3

The Second Law of Thermodynamics

1. The efficiency of heat engines. The experiments of Joule helped to

disprove the theory of "caloric" by demonstrating that heat was not a

"substance" conserved in physical processes, since it could be generated by
mechanical work. The reverse transformation, the conversion of heat into

useful work, had been of greater interest to the practical engineer ever since

the development of the steam engine by James Watt in 1769. Such an engine

operates essentially as follows: A source of heat (e.g., a coal or wood fire)

is used to heat a "working substance" (e.g., steam), causing it to expand

through an appropriate valve into a cylinder fitted with a piston. The ex-

pansion drives the piston forward, and by suitable coupling mechanical

work can be obtained from the engine. The working substance is cooled by
the expansion, and this cooled working substance is withdrawn from the

cylinder through a valve. A flywheel arrangement returns the piston to its

original position, in readiness for another expansion stroke. In simplest

terms, therefore, any such heat engine withdraws heat from a heat source,

or hot reservoir, converts some of this heat into work, and discards the

remainder to a heat sink or cold reservoir. In practice there are necessarily

frictional losses of work in the various moving components of the engine.

The first theoretical discussions of these engines were expressed in terms

of the caloric hypothesis. The principal problem was to understand the

factors governing the efficiency e of the engine, which was measured by the

ratio of useful work output w to the heat input q2 .

w
e = -

(3.1)
?2

A remarkable advance towards the solution of this problem was made in

1824 by a young French engineer, Sadi Carnot, in a monograph, Reflexions

sur la Puissance motrice du Feu.

2. The Carnot cycle. The Carnot cycle represents the operation of an

idealized engine in which heat is transferred from a hot reservoir at tem-

perature /2 is Partly converted into work, and partly discarded to a cold

reservoir at temperature tv (Fig. 3. la.) The working substance through
which these operations are carried out is returned at the end to the same
state that it initially occupied, so that the entire process constitutes a com-

plete cycle. We have written the temperatures as tl and t2 to indicate that

they are empirical temperatures, measured on any convenient scale what-

soever. The various steps in the cycle are carried out reversibly.
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To make the operation more definite, we may consider the working sub-

stance to be a gas, and the cyclic process may be represented by the indicator

WORK

12

V, V4

(0) (b)

Fig. 3.1. The essential features of the heat engine (a) and the Carnot

cycle for its operation shown on an indicator diagram (b).

diagram of Fig. 3.1b. The steps in the working of the engine for one complete

cycle are then :

(1) Withdrawal of heat --^-

q2 from a hot reservoir at temperature t2 by
the isothermal reversible expansion of the gas from Vv to V2 . Work
done by gas H^.

(2) Adiabatic reversible expansion from V2 to K3 , during which q
= 0,

gas does work w2 and cools from /2 to tr

(3) Isothermal reversible compression at tl from K3 to F4 . Work done

by the gas w3 . Heat ql absorbed by the cold reservoir at tv
(4) Adiabatic reversible compression from K4 to V

19 gas warming from

tl to t2 . Work done by gas
^ n>4 , q = 0.

The First Law of Thermodynamics requires that for the cyclic process
A = 0. Now A is the sum of all the heat added to the gas, q

= q2 qly

less the sum of all the work done by the gas, w = \vl + w2 vv3
~ vv4 .

A* ^ q w ^ q2
~

ql
w ^=

The net work done by the engine is equal, therefore, to the heat taken

from the hot reservoir less the heat that is returned to the cold reservoir:

w = #2
~~

9i- The efficiency of the engine is:

-

<tl 92

Since every step in this cycle is carried out reversibly, the maximum
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possible work is obtained for the particular working substance and tem-

peratures considered. 1

Consider now another engine operating, for example, with a different

working substance. Let us assume that this second engine, working between

the same two empirical temperatures /2 and tl9 is more efficient than engine 1
;

that is, it can deliver a greater amount of work, w' > w, from the same

amount of heat q2 taken from the hot reservoir. (See Fig. 3. la.) It

could accomplish this only by discarding less heat, q < ql9 to the cold

reservoir.

Let us now imagine that, after the completion of a cycle by this sup-

posedly more efficient engine, the original engine is run in reverse. It therefore

acts as a heat pump. Since the original Carnot cycle is reversible, all the heat

and work terms are changed in sign but not in magnitude. The heat pump
takes in ql

of heat from the cold reservoir, and by the expenditure of work
- w delivers q2 of heat to the hot reservoir.

For the first process (engine 2) w' q2 q^

For the second process (engine 1)
- w -

q2 + ql

Therefore, the net result is: w' w = ql q^

Since w' > w, and ql > <//, the net result of the combined operation of these

two engines is that an amount of heat, q ql <?/, has been abstracted

from a heat reservoir at constant temperature t
l
and an amount of work

w" = w' H' has been obtained from it, without any other change what-

soever taking place.

In this result there is nothing contrary to the First Law of Thermo-

dynamics, for energy has been neither created nor destroyed. The work done

would be equivalent to the heat extracted from the reservoir. Nevertheless,

in all of human history, nobody has ever observed the isothermal conversion

of heat into work without any concomitant change in the system. Think

what it would imply. It would not be necessary for a ship to carry fuel: this

wonderful device would enable it to use a small fraction of the immense

thermal energy of the ocean to turn its propellers and run its dynamos. Such

a continuous extraction of useful work from the heat of our environment has

been called "perpetual motion of the second kind," whereas the production
of work from nothing at all was called "perpetual motion of the first

kind." The impossibility of the latter is postulated by the First Law of

Thermodynamics; the impossibility of the former is postulated by the

Second Law.

If the supposedly more efficient Carnot engine delivered the same amount
of work w as the original engine, it would need to withdraw less heat q2 < q2

1 In the isothermal steps, the maximum work is obtained on expansion and the mini-
mum work done in compression of the gas (cf. p. 23). In the adiabatic steps A" = w, and
the work terms are constant once the initial and final states are fixed.
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from the hot reservoir. Then the result of running engine 2 forward and

engine 1 in reverse, as a heat pump, would be

(2) w^ fc'-fc'
(1)

_ W = -ft+ft

?2
-

?2
=

ft
~

ft
^

<7

This amounts to the transfer of heat
</
from the cold reservoir at t

l to the

hot reservoir at t2 without any other change in the system.

There is nothing in this conclusion contrary to the First Law, but it is

even more obviously contrary to human experience than is perpetual motion

of the second kind. We know that heat always flows from the hotter to the

colder region. If we place a hot body and a cold body together, the hot one

never grows hotter while the cold one becomes colder. We know in fact that

considerable work must be expended to refrigerate something, to pump heat

out of it. Heat never flows uphill, i.e., against a temperature gradient, of its

own accord.

3. Th^Second Law of Thermodynamics- This Second Law may be ex-

pressed precisely in various equivalent forms. For example:
The principle of Thomson. It is impossible by a cyclic process to take heat

from a reservoir and convert it into work without, in the same operation.

transferring heat from a hot to a cold reservoir.

The principle of Clausius. It is impossible to transfer heat from a cold to

a warm reservoir without, in the same process, converting a certain amount
of work into heat.

Returning to Carnot's cycle, we have seen that the supposition that one

reversible cycle may exist that is more efficient than another has led to results

contradicting human experience as embodied in the Second Law of Thermo-

dynamics. We therefore conclude that all reversible Carnot cycles operating

between the same initial andfinal temperatures must have the same efficiency.

Since the cycles are reversible, this efficiency is the maximum possible. It is

completely independent of the working substance and is a function only of

the working temperatures :

*--f(ti,*J

4. The thermodynamic temperature scale. The principle of Clausius may
be rephrased as "heat never flows spontaneously, i.e., without the expenditure
of work, from a colder to a hotter body." This statement contains essentially

a definition of temperature, and we may recall that the temperature concept
was first introduced as a result of the observation that all bodies gradually
reach a state of thermal equilibrium.

Lord Kelvin was the first to use the Second Law to define a thermo-

dynamic temperature scale, which is completely independent of any thermo-

metric substance. The Carnot theorem on the efficiency of a reversible cycle
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may be written: Efficiency (independent of working substance) = (q2 qi)/q2

=
/'('i. '2). or 1

-
ft/ft =/'(^i, >2)- Therefore

-=/('i, /a) (3-3)
ft

We have written /'('i, /2) and/('i> '2) 1 ~-/'('i '2) to indicate unspecified

functions of /
t
and /2 -

Consider two Carnot cycles such that: qjq2 =/(^i ^)J ft/?3 "/(^ '3)-

They must be equivalent to a third cycle, operating between /
t and /3, with

^ A'i '3)- Therefore

^^^Wa) ^ * 2

But, if this condition is satisfied, we can write: J(tl9 t3)
=

F(t^)IF(t^\f(t^ t3)

= F(t2)/F(t3). That is, the efficiency function, f(tl9
/2), is the quotient of a

function of tl alone and a function of t2 alone. It follows that

* =
(3.4)

Lord Kelvin decided to use eq. (3.4) as the basis of a thermodynamic

temperature scale. He took the functions F(t^) and F(/2) to have the simplest

possible form, namely, 7\ and To. Thus a temperature ratio on the Kelvin

scale was defined as equal to the ratio of the heat absorbed to the heat

rejected in the working of a reversible Carnot cycle.

** = P (3-5)
<7i 7*i

The efficiency of the cycle, eq. (3.2), then becomes

The zero point of the thermodynamic scale is physically fixed as the

temperature of the cold reservoir at which the efficiency becomes equal to

unity, i.e., the heat engine is perfectly efficient. From eq. (3.6), in the limit

as 7\->0, <?-> 1.

The efficiency calculated from eq. (3.6) is the maximum thermal efficiency

that can be approached by a heat engine. Since it is calculated for a reversible

Carnot cycle, it represents an ideal that actual irreversible cycles can never

achieve. Thus with a heat source at 120C and a sink at 20C, the maximum
thermal efficiency is 100/393 =- 25.4 per cent. If the heat source is at 220

and the sink still at 20, the efficiency is raised to 200/493 = 40.6 per cent.

It is easy to see why the trend in power plant design has been to higher tem-

peratures for the heat source. In practice, the efficiency of steam engines
seldom exceeds 80 per cent of the theoretical value. Steam turbines generally
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can operate somewhat closer to their maximum thermal efficiencies, since

they have fewer moving parts and consequently lower frictional losses.

5. Application to ideal gases. Temperature on the Kelvin, or thermo-

dynamic, scale has been denoted by the symbol T, which is the same symbol
used previously for the absolute ideal gas scale. It can be shown that these

scales are indeed numerically the same by running a Carnot cycle with an

ideal gas as the working substance.

Applying eqs. (2.18) and (2.20) to the four steps:

(1) Isothermal expansion: \\\
~

q2 RT2 In K2/Kt

C T
(2) Adiabatic expansion: w2

~-
*

Cv dT; qJ TI

(3) Isothermal compression: u 3 qi
RT In VJV%

CT
(4) Adiabatic compression: \v4

=
*

Cv dT; q
--

j TI

By summation of these terms, the net work obtained is w --=
l + w2

RT2 ln V2/yi + RT\\n
Since, from eq. (2.22), K,/^

- K3/K4 ,

w - R(T2 - T,) In ^
- T,

92 7 2

Comparison with eq. (3.6) completes the proof of the identity of the ideal

gas and thermodynamic temperature scales.

6. Entropy. Equation (3.6) for a reversible Carnot cycle operating be-

tween T2 and 7\ irrespective of the working substance may be rewritten

?2 7\

Now it can be shown that any cyclic process can be broken down into a

number of Carnot cycles. Consider the perfectly general ABA of Fig. 3.2.

The area of the figure has been divided

into a number of Carnot cycles by the

crosshatched system of isothermals

and adiabatics. The outside bound-

aries of these little cycles form the

heavy zigzag curve which follows quite

closely the path of the general cycle

ABA. The inside portions of the little

Carnot cycles cancel out, since each

section is traversed once in the for-

ward direction and once in the reverse

direction. For example, consider the
Fig. 3.2. General cycle broken down

isothermal xy which belongs to an into Carnot cycles.

ISOTHERMALS

ADIABATICS
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expansion in the small cycle /?, and to a compression in the small cycle a,

all the work and heat terms arising from it thereby being canceled.

If eq. (3.7) is now applied to all these little Carnot cycles, we have for

the zigzag segments V q\T = 0. As the Carnot cycles are made smaller and

smaller, the boundary curve approaches more and more closely to that for

the general cyclic process ABA. In the limit, for differential Carnot cycles,

the area enclosed by the crooked boundary becomes identical with the area

of the cycle ABA. We can then replace the summation of finite terms by the

integration of differentials and obtain 2

(3.8)r-
This equation holds true for any reversible cyclic process whatsoever.

Fig. 3-3. Carnot cycle on a TS diagram.

It may be recalled (p. 30) that the vanishing of the cyclic integral means

that the integrand is a perfect differential of some function of the state of

the system. This new function is defined by

*3.

T (for a reversible process) (3.9)

Thus,

. , c c_i_c c o-
*-J/? A ~> 'i I'i

The function 5 was first introduced by Clausius in 1850, and is called the

entropy. Equation (3.9) indicates that when the inexact differential expression

dq is multiplied by 1/r, it becomes an exact differential; the factor \JT is

CB
called an integrating multiplier. The integral dqKV is dependent on the

f ft
* A.

path, whereas I dqrev/T is independent of the path. This, in itself, is an

alternative statement of the Second Law of Thermodynamics.
It is interesting to consider the TS diagram in Fig. 3.3, which is analogous

to the PV diagram of Fig. 1.8. In the PV case, the area under the curve is a

2 See P. S. Epstein, Textbook of Thermodynamics (New York: Wiley, 1938), p. 57.



Sec. 7] THE SECOND LAW OF THERMODYNAMICS 55

measure of the work done in traversing the indicated path. In the TS diagram,
the area under the curve is a measure of the heat added to the system. Tem-

perature and pressure are intensity factors ; entropy and volume are capacity
factors. The products P dV and T dS both have the dimensions of energy.

7. The inequality of Clausius. Equation (3.8) was obtained for a reversible

cycle. Clausius showed that for a cycle into which irreversibility enters at

any stage, the integral of dq\T is always less than zero.

?<0 (3.10)

The proof is evident from the fact that the efficiency of an irreversible

Carnot cycle is always less than that of a reversible cycle operating between

the same two temperatures. For the irreversible case, we therefore conclude

from eq. (3.6) that

</2

"
T

<2

Then, instead of eq. (3.7), we find that

*_*<(>
T, 7',

This relation is extended to the general cycle, by following the argument
based on Fig. (3.2). Instead of eq. (3.8), which applies to the reversible case,

we obtain the inequality of Clausius, given by eq. (3.10).

8. Entropy changes in an ideal gas. The calculation of entropy changes in

an ideal gas is particularly simple because in this case (3/<)K)T 0, and

heat or work terms due to cohesive forces need not be considered at any

point. For a reversible process in an ideal gas, the First Law requires that

RTdV
dq - dE + PdV~ Cy dT -\ y-

Therefore, ^ =^ + ^ (3.,,)

On integration, AS1 = S2
- Sl

=-
J

2

Cv d\n T fJ
2

RdlnV

If Cr is independent of temperature,

AS- CF lnp+ Rln^ (3.12)
7\ Vl

For the special case of a temperature change at constant volume, the

increase in entropy with increase in temperature is therefore

AS- CF ln^ (3.13)

If the temperature of one mole of ideal gas with Cy^ 3 is^ doubled, the



56 THE SECOND LAW OF THERMODYNAMICS [Chap. 3

entropy is increased by 3 In 2 --- 2.08 calories per degree, or 2.08 entropy

units (eu).

For the case of an isothermal expansion, the entropy increase becomes

AS- /?ln~- R\n Pl
(3.14)

YI PZ

If one mole of ideal gas is expanded to twice its original volume, its entropy
is increased by R In 2 1.38 eu.

9. Entropy changes in isolated systems. The change in entropy in going
from a state A to a state B is always the same, irrespective of the path between

A and B, since the entropy is a function of the state of the system alone. It

makes no difference whether the path is reversible or irreversible. Only in

case the path is reversible, however, is the entropy change given by

AS S
tt
-SA

--j ^
(3.15)

In order to evaluate the entropy change for an irreversible process, it is

necessary to devise a reversible method for going from the same initial to

the same final state, and then to apply eq. (3.15).

In any completely isolated system we are restricted to adiabatic processes,

since no heat can either enter or leave such a system.
3 For a reversible process

in an isolated system, therefore, dq and dS dq/T 0, or S --- constant.

If one part of the system increases in entropy, the remaining part must

decrease by an exactly equal amount.

A fundamental example of an irreversible process is the transfer of heat

from a hot to a colder body. We can make use of an ideal gas to carry out

the transfer reversibly, and thereby calculate the entropy change. The gas is

placed in thermal contact with the hot body at T2 and expanded reversibly

and isothermally until it takes up heat equal to q. To simplify the argument,
it is assumed that the bodies have heat capacities so large that changes in

their temperatures on adding or withdrawing heat q are negligible. The gas
is then removed from contact with the hot reservoir and allowed to expand

reversibly and adiabatically until its temperature falls to Tv Next it is placed
in contact with the colder body at 7\ and compressed isothermally until it

gives up heat equal to q.

The hot reservoir has now lost entropy = q/T2 , whereas the cold reservoir

has gained entropy
^ q/Tr The net entropy change of the reservoirs has

therefore been AS -
<//7\

-
q/T2 . Since T2 > 7\, AS > 0, and the entropy

has increased. The entropy of the ideal gas, however, has decreased by an

exactly equal amount, so that for the entire isolated system of ideal gas plus

heat reservoirs, AS for the reversible process. If the heat transfer had

3 The completely isolated system is, of course, a figment of imagination. Perhaps our
whole universe might be considered as an isolated system, but no small section of it can be

rigorously isolated. As usual, -the precision and sensitivity of our experiments must be
allowed to determine how the system is to be defined.
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been carried out irreversibly, for example by placing the two bodies in direct

thermal contact and allowing heat
cj

to flow along the finite temperature

gradient thus established, there would have been no compensating entropy
decrease. The entropy of the isolated system would have increased during
the irreversible process, by the amount AS <//7\ qlT2 .

We shall now prove that the entropv ofan isolated system always increases

during an irreversible process. The proof of

this theorem is based on the inequality of

Clausius. Consider in Fig. (3.4) a perfectly

general irreversible process in an isolated

system, leading from state A to state B. It is

represented by the dashed line. Next consider

that the system is returned to its initial state

A by a reversible path represented by the

solid line from B to A. During this reversible Fig- 3.4. A cyclic process.

process, the system need not be isolated, and

can exchange heat and work with its environment. Since the entire cycle is

in part irreversible, cq. (3.10) applies, and

Writing the cycle in terms of its two sections, we obtain

^<0 (3.16)

The first integral is equal to zero, since during the process A >- B the system
is by hypothesis isolated and therefore no transfer of heat is possible. The

second integral, from eq. (3.15), is equal to S
t

SH . Therefore eq. (3.16)

becomes

SA -- SH < 0, or SH SA >

We have therefore proved that the entropy of the final state B is always

greater than that of the initial state A, if A passes to B by an irreversible

process in an isolated system.
Since all naturally occurring processes are irreversible, any change that

actually occurs spontaneously in nature is accompanied by a net increase in

entropy. This conclusion led Clausius to his famous concise statement of the

laws of thermodynamics. "The energy of the universe is a constant; the

entropy of the universe tends always towards a maximum."
This increasing tendency of the entropy has also been expressed as a

principle of the degradation of energy, by which it becomes less available

for useful work. Thus temperature differences tend to become leveled out,

mountains tend to become plains, fuel supplies become exhausted, and work
is frittered away into heat by frictional losses. Interesting philosophical
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discussions have arisen from the entropy concept, notably the suggestion of

Sir Arthur Eddington that, because of its continuously increasing character,

"entropy is time's arrow"; that is, the constantly increasing entropy of the

universe is the physical basis of our concept of time. The "meaning" of

entropy will be displayed in another aspect when we discuss its statistical

interpretation.

10. Change of entropy in changes of state of aggregation. As an example
of a change in state of aggregation we may take the melting of a solid. At a

fixed pressure, the melting point is a definite temperature Tm at which solid

and liquid are in equilibrium. In order to change some of the solid to liquid,

heat must be added to the system. As long as both solid and liquid are

present, this added heat does not change the temperature of the system, but

is absorbed by the system as the latent heat offusion X
f of the solid. Since

the change occurs at constant pressure, the latent heat, by eq. (2.9), equals
the difference in enthalpy between liquid and solid. Per mole of substance,

A,
-- A//7 --

//i, (|U jd //solid

At the melting point, liquid and solid exist together in equilibrium. The

addition of a little heat would melt some of the solid, the removal of a little

heat would solidify some of the liquid, but the equilibrium between solid

and liquid would be maintained. The Litent heat is necessarily a reversible

heat, because the process of melting follows a path consisting of successive

equilibrium states. We can therefore evaluate the entropy of fusion AS/ by
a direct application of the relation A5 -

</rev/^ which applies to any rever-

sible isothermal process.

A//,

T
f

^liquid Ssolid
~ AS, - ^ (3.17)

For example,
4
A//, for ice is 1430 cal per mole, so that AS, = 1430/273.2

= 5.25 cal deg"
1 mole"1

.

By an exactly similar argument the entropy of vaporization ASy , the

latent heat of vaporization A//v , and the boiling point Tb are related by

-A _ A//*
^vapor

~~
^liquid

~" ASV ,= (3.18)

A similar equation holds for a change from one form of a polymorphic
solid to another, if the change occurs at a T and P at which the two forms

are in equilibrium, and if there is a latent heat A associated with the trans-

formation. For example, grey tin and white tin are in equilibrium at 13C
and 1 atm, and A = 500 cal. Then AS, = 500/286 = 1.75 cal deg-

1 mole-1
.

11. Entropy and equilibrium. Now that the entropy function has been

defined and a method outlined for the evaluation of entropy changes, we
have gained a powerful tool for our attack on the fundamental problem of

4 Further typical data are'shown in Table 14.1 in sec. 14.8.
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physicochemical equilibrium. In our introductory chapter, the position of

equilibrium in purely mechanical systems was shown to be the position of

minimum potential energy. What is the criterion for equilibrium in a thermo-

dynamic system?

Any spontaneously occurring change in an isolated system is accom-

panied by an increase in entropy. From the First Law of Thermodynamics
we know that energy can be neither created nor destroyed, so that the

internal energy of an isolated system must be constant. The only way such

a system could gain or lose energy would be by some interaction with its

surroundings, but the absence of any such interaction is just what we mean
when we say that the system is "isolated" no work is done on it; no heat

flows across its boundaries. If we restrict work to PV work (expansion or

compression), and exclude linear or surface effects, it follows also that

the volume of an isolated system must remain constant. An isolated

system may be defined, therefore, as a system of constant energy and constant

volume. The first sentence of this paragraph can thus be rephrased: In a

system at constant E and K, any spontaneous change is accompanied by an

increase in entropy.
Now a system is said to be at equilibrium when it has no further tendency

to change its properties. The entropy of an isolated system will increase until

no further spontaneous changes can occur. When the entropy reaches its

maximum, the system no longer changes: the equilibrium has been attained.

A criterion for thermodynamic equilibrium is therefore the following: In a

system at constant energy and volume, the entropy is a maximum. At constant

E and K, the S is a maximum.

If instead of a system at constant E and K, a system at constant 5 and

V is considered, the equilibrium criterion takes the following form: At

constant S and V, the E is a minimum. This is just the condition applicable in

ordinary mechanics, in which thermal effects are excluded.

The drive, or perhaps better the drift, of physicochemical systems toward

equilibrium is therefore compounded of two factors. One is the tendency
toward minimum energy, the bottom of the potential energy curve. The

other is the tendency toward maximum entropy. Only if E is held con-

stant can S achieve its maximum; only if S is held constant can E
achieve its minimum. What happens when E and 5 are forced to strike a

compromise?
12. The free energy and work functions. Chemical reactions are rarely

studied under constant entropy or constant energy conditions. Usually the

physical chemist places his systems in thermostats and investigates them

under conditions of approximately constant temperature and pressure.

Sometimes changes at constant volume and temperature are followed, for

example, in bomb calorimeters. It is most desirable, therefore, to obtain

criteria for thermodynamic equilibrium that will be applicable under these

practical conditions.
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To this end, two new functions have been invented, defined by the

following equations:
A - E - TS (3.19)

F-- H TS (3.20)

A is called the work function', F is called the free energy.^ Both A and F, by
their definitions in terms of state functions, are themselves functions of the

state of the system alone.

For a change at constant temperature,

A/I - A 7AS (3.21)

If this change is carried out reversibly, T AS q, and A/J A -
q or

- A/* - uWx (3.22)

The work is the maximum obtainable since the process is reversible. When
the system isothermally performs maximum work u'mttx , its work function

decreases by A/f. In any naturally occurring process, which is more or less

irreversible, the work obtained is always less than the decrease in A.

From cqs. (3.19) and (3.20), since H E \ PV,

F---- A \ PV (3.23)

For a change at constant pressure,

AF - &A \ P AF (3.24)

From eqs. (3.22) and (3.24), at constant temperature and pressure,

-AF ,,'max P&Y (3.25)

The decrease in free energy equals the maximum work less the work done

by the expansion of the system at constant pressure. This work of expansion
is always equal to P(V^ VJ P AK no matter how the change occurs,

reversibly or irreversibly, provided the external pressure is kept constant.

The net work over and above this is given by
-
AF/or a reversible process.

For an irreversible process the net work is always less than A/7
. It may be

zero as, for example, in a chemical reaction carried out in such a way that

it yields no net work. Thus the combustion of gasoline in an automobile

engine yields net work, but burning the same gasoline in a calorimeter yields

none. The value of AFfor the change is the same in either case, provided the

initial and final states are the same.

A helpful interpretation of the entropy can be obtained in terms of the

new functions A and F. From eqs. (3.19) and (3.20), we can write for a change
at constant temperature,

A/4- A-TAS (3.21)

AF ----- A// - T AS (3.26)

5 Sometimes A is called the Helmholtz free energy, and F the Gibbs free energy or

thermodynamic potential.
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The change in the work function in an isothermal process equals the change
in the energy minus a quantity TAS that may be called the unavailable

energy. Similarly, the change in free energy equals the total change in en-

thalpy minus the unavailable energy.

13. Free energy and equilibrium. The free energy function F may be used

to define a condition for equilibrium in a form that is more directly applicable

to experimental situations than the criteria in terms of the entropy. We have

seen that for a reversible process occurring at constant temperature and

pressure the net work done by the system is equal to the decrease in free

energy. For a differential change, therefore, under these reversible (i.e.,

equilibrium) conditions at constant temperature and pressure,

dF^ -</wnet (3.27)

Now most chemical laboratory experiments are carried out under such

conditions that no work is obtained from the system or added to the system

except the ordinary PV work,
6 so that dwnet

^ 0. In these cases the equili-

brium criterion becomes simply:

At constant T and P, dF (3.28)

This may be stated as follows: Any change in a system at equilibrium at

constant temperature andpressure is such that thefree energy remains constant.

Thus we have obtained an answer to the question of how the drive to-

ward maximum entropy and the drive toward minimum energy reach a

compromise as a system tends toward equilibrium. From eq. (3.26) it is

evident that an increase in S and a decrease in H both tend to lower the

free energy. Therefore the third criterion for equilibrium can be written: at

constant T and P, the F is a minimum. A similar discussion of eq. (3.19)

provides the equilibrium condition at constant temperature and volume:

at constant T and K, the A is a minimum. These are the equilibrium conditions

that are of greatest use in most chemical applications.
14. Pressure dependence of the free energy. From eq. (3.20), F = H TS

= E + PV TS. Differentiating, we obtain

dF = dE+PdY + VdP - TdS - S dT

Since dE = TdS - P dV

cJF = VdP - SdT (3.29)

Therefore, I I - V (3.30)

For an isothermal change from state (1) to state (2):

F2
-

F, = bF^dF^l VdP (3.31)

6 Notable exceptions are experiments with electrochemical cells, in which electric work

may be exchanged with the system. A detailed discussion is given in Chapter 15.
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In order to integrate this equation, the variation of V with P must be

known for the substance being studied. Then if the free energy is known at

one pressure, it can be calculated for any other pressure. If a suitable equa-
tion of state is available, it can be solved for V as a function of P, and

eq. (3.31) can be integrated after substituting this f(P) for V. In the simple
case of the ideal gas, V - RT/P, and

F2 F
t

- AF
RT\n^ (3.32)

This gives the increase in free energy on compression, or decrease on ex-

pansion. For example, if one mole of an ideal gas is compressed isother-

mally at 300K to twice its original pressure, its free energy is increased by
1.98 x 300 In 2 - 413 calories.

15. Temperature dependence of free energy. From eq. (3.29), at constant

pressure,

377
" S (3 ' 33)

To integrate this equation, we must know S as a function of temperature.
This question is considered in the next section. An alternative expression
can be obtained by combining eq. (3.33) with eq. (3.20):

/DF\ F H
W7 7> ~T~ (3.34)

For isothermal changes in a system, the variation of AF with temperature
7

is then

/DAF\
,

AF A//

(IT\r
~AS =- -

T
-

< 3 -35 >

This is called the Gibbs-Helmholtz equation. It permits us to calculate the

change in enthalpy A// from a knowledge of AF and the temperature co-

efficient of AF. Since

</(AF) AFd /AF\ d(

dT \T )

"
T
"
dT T2

the Gibbs-Helmholtz equation can be written in the alternative forms:

A//

T
' '

Or, = A//
L 3(1 IT) \,,

7 For example the free energy change AF of a chemical reaction might be studied at a

series of different constant temperatures, always under the same constant pressure. The

equation predicts how the observed AF depends on the temperature at which the reaction is

studied.
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Thus the slope of the plot of &F/Tvs. 1/7 is A//, the change in enthalpy.

Important applications of these equations to chemical reactions will be con-

sidered in the next chapter. They are especially important because many
chemical processes are carried out in thermostats under practically constant

atmospheric pressure.

16. Variation of entropy with temperature and pressure. Besides its useful-

ness in the formulation of equilibrium conditions, the free-energy function

can be used to derive important relations between the other thermodynamic
variables. Consider, for example, the

mathematical identity

\3Tjp D:

By virtue of eqs. (3.30) and (3.33), this

identity yields an expression for the Cp

pressure coefficient of the entropy:
8 T"

(
<>>

Thus at constant temperature, dS

IP, so that

f
JvaK\ f 1 '-

AS- L_ <//>-= - a*
J/>, \dTj r Jl\

dP

(3.38)

Fig. 3.5, Graphical evaluation of the

entropy change with temperature.

To evaluate this integral, the equation of state or other PVT data must be

available. For an ideal gas, (3Fpr)7 > R/P. In this case eq. (3.37) becomes

dS RdlnP, or AS =- RlnPJP^^ Rln VJV19 as already shown in

Section 3.8.

The temperature variation of the entropy can be calculated as follows:

At constant pressure,

_ dq __
dH CP dT~

T
7
"

T
~

f~
At constant volume,

Cv dT
//c _ ^ - _ .^ ~

T
~

T
~

Thus at constant pressure,

S=\CP dlnT+ const

~dT+ const; AS

8
Alternatively, apply Euler's rule to eq. (3.29).

(3.39)

(3.40)

= r "

Jr, f
dT (3.41)
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When C/* is known as a function of 7", the entropy change is evaluated by
the integration in eq. (3.41). This integration is often conveniently carried

out graphically, as in Fig. 3.5: if CV\T is plotted against 7, the area under

the curve is a measure of the entropy change. The entropy change is also the

area under the curve of CP vs. In T.

17. The entropy of mixing. Consider two gases at a pressure P. If these

gases are brought together at constant temperature and pressure, they will

become mixed spontaneously by interdiffusion. The spontaneous process will

be associated with an increase in entropy. This entropy of mixing is of interest

in a number of applications, and it can be calculated as follows.

In the final mixture of gases the partial pressure of gas (1) is P1
= A^P,

of gas (2), P2 X2P, where X
l and X2 are the mole fractions. 9 The AS of

mixing is equal to the AS required to expand each gas from its initial pressure
P to its partial pressure in the gas mixture. On the basis of one mole of ideal

gas mixture,

AS XT.R In -

P
-

f X2R In ~

- X^ In
1
X2R In

AS - -R(Xl
In Xl + X2 In X2 )

This result can be extended to any number of gases in a mixture, yielding

AS- -R2Xt
lnX

t (3.42)

The equation is only approximately valid for liquid and solid solutions.

Let us calculate the entropy of mixing of the elements in air, taking the

composition to be 79 per cent N2 ,
20 per cent O2 , and 1 per cent argon.

AS - -/?(0.79 In 0.79 + 0.20 In 0.20 + 0.01 In 0.01)

1.10 cal per deg per mole of mixture

18. The calculation of thermodynamic relations. One great utility of

thermodynamics is that it enables us by means of a few simple paper-and-

pencil operations to avoid many tedious and difficult laboratory experiments.
The general aim is to reduce the body of thermodynamic data to relations

in terms of readily measurable functions. Thus the coefficients (3K/3r)P,

(3P/37V, and (3K/3P)r can usually be measured by straightforward experi-

ments. The results are often expressed implicitly in the equation of state for

the substance, of the general formf(P, V, T) = 0.

The heat capacity at constant pressure CP is usually measured directly

and Cv can then be calculated from it and the equation of state. Thermo-

dynamics itself does not provide any theoretical interpretation of heat

9 See Chapter 6, Section 1..
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capacities, the magnitudes of which depend on the structures and con-

stitutions of the substances considered.

The basic thermodynamic relations may be reduced to a few fundamental

equations:

(1) H -^ E + PV
(2) A -- E TS

(3) F=E+-Py-TS
(4) dE^TdS PdV
(5) dH = TdS+ VdP

(6) dA - -SdT- PdV
(7) dF- SdT f- VdP

Since dA and dF are perfect differentials, they obey the Euler condition

eq. (2.6), and therefore from (6) and (7)

(8) (*S

(9) QS/aP)T - -

By the definition of the heat capacities,

(10) Ct
, -

(11) ? ~

These eleven equations are the starting point for the evaluation of all others. 10

The relation dE TdS P dV may be considered as a convenient ex-

pression of the combined First and Second Laws of Thermodynamics. By

differentiating it with respect to volume at constant temperature, ($EfiV)T
- T(3S/dV)T

- P. Then, since (3S/dV)T -- (dPpT)r ,

This equation has often been called a thermodynamic equation of state, since

it provides a relationship among P, T, K, and the energy E that is valid for

all substances. To be sure, all thermodynamic equations are in a sense

equations of state, since they are relations between state variables, but

equations like eq. (3.43) are particularly useful because they are closely

related to the ordinary PVT data.

It is now possible by means of eq. (3.43) to prove the statement in the

previous chapter that a gas that obeys the equation PV ~ RT has a zero

internal pressure, (dE/3V)T . For such a gas T(3P/dT)y =-- RTJV --=-- P, so that

An equation similar to eq. (3.43) can be obtained in terms of the enthalpy
instead of the energy:

(3.44)

10 A. Tobolsky, /. Chem. Phys., 10, 644 (1942), gives a useful general method.
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An important application of this equation is the theoretical discussion of

the Joule-Thomson experiment. Since

it follows from eq. (3.44) that

TQVfiT),.
- V

(3.45)

It is apparent that the Joule-Thomson effect can be either a warming or

a cooling of the substance, depending on the relative magnitudes of the two

terms in the numerator of eq. (3.45). In general, a gas will have one or more

inversion points at which the sign of the coefficient changes as it passes

through zero. The condition for an inversion point is that

=- V
p

A coefficient of thermal expansion is defined by

1

so that the Joule-Thomson coefficient vanishes when K -- <xKo r. For an

ideal gas this is always true (Law of Gay-Lussac) so that //./.T.
is always zero

in this case. For other equations of state, it is possible to derive /iJmTm from

eq. (3.45) without direct measurement, if CP data are available.

These considerations are very important in the design of equipment for

the liquefaction of gases. Usually, the gas is cooled by doing external work

in an adiabatic expansion until it is below its inversion point, after which

further cooling is accomplished by a Joule-Thomson expansion. A further

discussion of the methods used for attaining very low temperatures will be

postponed till the next chapter. We shall then see that these low-temperature
studies have an important bearing on the problem of chemical equilibrium.

PROBLEMS

1. A steam engine operates between 120 and 30C. What is the minimum
amount of heat that must be withdrawn from the hot reservoir to obtain

1000 joules of work?

2. Compare the maximum thermal efficiencies of heat engines operating
with (a) steam between 130C and 40C, (b) mercury vapor between 380C
and 50C.

3. A cooling system is designed to maintain a refrigerator at 20C in

a room at ambient temperature of 25C. The heat transfer into the refrigera-

tor is estimated as 104 joules per min. If the refrigerating unit is assumed to
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operate at 50 per cent of its maximum thermal efficiency, estimate the power
(in watts) required to operate the unit.

4. Prove that it is impossible for two reversible adiabatics on a P-V

diagram to intersect.

5. One mole of an ideal gas is heated at constant pressure from 25 to

300C. Calculate the entropy change AS if Cv
-= $R.

6. Find the increase in , //, 5, A, and Fin expanding 1.0 liter of an ideal

gas at 25C to 100 liter at the same temperature.

7. Ten grams of carbon monoxide at 0C are adiabatically and reversibly

compressed from 1 atm to 20 atm. Calculate A, A//, AS for the change in

the gas. Assume Cv = 4.95 cal per deg mole and ideal gas behavior. Would
it be possible to calculate AF from the data provided?

8. At 5C the vapor pressure of ice is 3.012 mm and that of supercooled

liquid water is 3.163 mm. Calculate the AFper mole for the transition water

-> ice at -5C.

9. One mole of an ideal gas, initially at 100C and 10 atm, is adiabatically

expanded against a constant pressure of 5 atm until equilibrium is reattained.

If cr -= 4.50 -f 0.0057 calculate A, A//, AS for the change in the gas.

10. Calculate AS when 10 g of ice at 0C are added to 50 g of water at

40C in an isolated system. The latent heat of fusion of ice is 79.7 cal per g;

the specific heat of water, 1 .00 cal per g deg.

11. The following data are available for water: latent heat of vaporization
9630 cal per mole; latent heat of fusion 1435 cal per mole. Molar heat

capacities: solid, CP =-0.50 + 0.030 T\ liquid, CP = 18.0; vapor, CP =
7.256 + 2.30 x 10~3r+ 2.83 x 10~7r2

. Calculate AS when one mole of

water at 100K is heated at constant pressure of 1 atm to 500K.

12. Derive an expression for the Joule-Thomson coefficient of a van der

Waals gas.

13. Calculate the AS per liter of solution when pure N2 ,
H2 , and NH 3

gases are mixed to form a solution having the final composition 20 per cent

N2 , 50 per cent H2 , and 30 per cent NH 3 (at S.T.P.).

14. Prove that a gas that obeys Boyle's Law and has zero internal pressure
follows the equation of state, PV = RT.

15. For each of the following processes, state which of the quantities A,
A//, AS, AF, A/* are equal to zero.

(a) An ideal gas is taken around a Carnot
cycle.

(b) H2 and O2 react to form H2O in a thermally isolated bomb.

(c) A nonideal gas is expanded through a throttling valve.

(d) Liquid water is vaporized at 100C and 1 atm pressure.

16. Derive the expression (3///3P)r = T(dSfiP)T + V.

11. Derive: (2CP/dP)T = -T(yv/dT*)M>.
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18. Evaluate the following coefficients for (a) an ideal gas; (b) a van der

Waals gas: (yppT*)y ; (3/aP)T ; (<>PfiV)8 \ (9
2K/arV

19. Derive expressions for: (a) (dA/dP)T in terms of P and V\ (b)

(dF/dT)^ in terms of A and T.

20. Bridgman obtained the following volumes for methanol under high

pressure, relative to a volume 1.0000 at 0C and I kg per cm
2

:

P, kg/cm
2

1 500 1000 2000 3000 4000 5000
Vol. at 20 1.0238 0.9823 0.9530 0.9087 0.8792 0.8551 0.8354

Vol. at 50 1.0610 1.0096 0.9763 0.9271 0.8947 0.8687 0.8476

Use these data to estimate the AS when 1 mole of methanol at 35C and 1 kg

per cm
2
pressure is compressed isothermally to 5000 kg per cm

2
.
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CHAPTER 4

Thermodynamics and Chemical Equilibrium

1. Chemical affinity. The problem of chemical affinity may be sum-

marized in the question, "What are the factors that determine the position
of equilibrium in chemical reactions?"

The earliest reflections on this subject were those of the ancient al-

chemists, who endowed their chemicals with almost human natures, and

answered simply that reactions occurred when the reactants loved each other.

Robert Boyle, in The Sceptical Chymyst (1661), commented upon these

theories without enthusiasm: "I look upon amity and enmity as affections

of intelligent beings, and I have not yet found it explained by any, how those

appetites can be placed in bodies inanimate and devoid of knowledge or of

so much as sense."

Isaac Newton's interest in gravitational attractions led him to consider

also the problem of chemical interaction, which he thought might spring
from the same causes. Thus in 1701, he surveyed some of the existing

experimental knowledge, as follows:

When oil of vitriol is mix'd with a little water . . . in the form of spirit of vitriol,

and this spirit being poured upon iron, copper, or salt of tartar, unites with the

body and lets go the water, doth not this show that the acid spirit is attracted by the

water, and more attracted by the fix'd body than by the water, and therefore lets

go the water to close with the fix'd body? And is it not also from a natural attrac-

tion that the spirits of soot and sea-salt unite and compose the particles of sal-

ammoniac . . . and that the particles of mercury uniting with the acid particles of

spirit of salt compose mercury sublimate, and with particles of sulphur, compose
cinnaber . . . and that in subliming cinnaber from salt of tartar, or from quick
lime, the sulphur by a stronger attraction of the salt or lime lets go the mercury, and

stays with the fix'd body ?

Such considerations achieved a more systematic form in the early

"Tables of Affinity," such as that of Etienne Geoffroy in 1718, which re-

corded the order in which acids would expel weaker acids from combination

with bases.

Claude Louis de Berthollet, in 1801, pointed out in his famous book,

Essai de statique chimique, that these tables were wrong in principle, since the

quantity of reagent present plays a most important role, and a reaction can

be reversed by adding a sufficient excess of one of the products. While serving
as scientific adviser to Napoleon with the expedition to Egypt in 1799, he

noted the deposition of sodium carbonate along the shores of the salt lakes

there. The reaction Na2CO3 + CaCl2
= CaCO3 + 2 NaCl as carried out in

the laboratory was known to proceed to completion as the CaCO3 was

69
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precipitated. Berthollet recognized that, under the peculiar conditions of large

excess of sodium chloride that occurred in the evaporating brines, the

reaction could be reversed, converting the limestone into sodium carbonate.

Berthollet, unfortunately, pushed his theorizing too far, and finally main-

tained that the actual composition of chemical compounds could be changed

by varying the proportions of the reaction mixture. In the ensuing contro-

versy with Louis Proust the Law of Definite Proportions was well established,

but Berthollet's ideas on chemical equilibrium, the good with the bad, were

discredited, and consequently neglected for some fifty years.
1

It is curious that the correct form of what we now know as the Law of
Chemical Equilibrium was arrived at as the result of a series of studies of

chemical reaction rates, and not of equilibria at all. In 1850, Ludwig Wilhelmy

investigated the hydrolysis of sugar with acids and found that the rate was

proportional to the concentration of sugar remaining undecomposed. In

1862, Marcellin Berthelot and Pean de St. Gilles reported similar results in

their famous paper
2 on the hydrolysis of esters, data from which are shown

in Table 4.1. The effect on the products of varying the concentrations of the

reactants is readily apparent.

TABLE 4.1

DATA OF BERTHELOT AND ST. GILLES ON THE REACTION C2H 5OH -}- CH3COOH ^
CH 3COOC2H 5 ! H 2

(One mole of acetic acid is mixed with varying amounts of alcohol, and the amount of ester

present at equilibrium is found)

In 1863, the Norwegian chemists C. M. Guldberg and P. Waage expressed
these relations in a very general form and applied the results to the problem
of chemical equilibrium. They recognized that chemical equilibrium is a

dynamic and not a static condition. It is characterized not by the cessation

of all reaction but by the fact that the rates of the forward and reverse

reactions have become the same.

Consider the general reaction, A + B ^ C + D. According to the "law

of mass action," the rate of the forward reaction is proportional to the

1 We now recognize many examples of definite departures from stoichiometric com-

position in various inorganic compounds such as metallic oxides and sulfides, which are

appropriately called "berthollide compounds."
2 Ann. chim. phys., [3] 65, 385 (1862).
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concentrations of A and of B. If these are written as (A) and (/?), Kforward =
k\ (A)(B). Similarly, Kbackward = k*> (Q(D). At equilibrium, therefore,

^forward
~

^backward so tnat

Thus
(C}(D}

ThUS
>

More generally, if the reaction is aA + bB cC + dD, at equilibrium

<

Equation (4.1) is a statement of Guldberg and Waage's Law of Chemical

Equilibrium. The constant K is called the equilibrium constant of the reaction.

It provides a quantitative expression for the dependence of chemical affinity

on the concentrations of reactants and products. By convention, the con-

centration terms for the reaction products are always placed in the numerator

of the expression for the equilibrium constant.

Actually, this work of Guldberg and Waage does not constitute a general

proof of the equilibrium law, since it is based on a very special type of rate

equation, which is certainly not always obeyed, as we shall see when we take

up the study of chemical kinetics. Their recognition that chemical affinity is

influenced by two factors, the "concentration effect" and what might be

called the "specific affinity," depending on the chemical nature of the reacting

species, their temperature, and pressure, was nevertheless very important.
The equilibrium law will subsequently be derived from thermodynamic

principles.

2. Free energy and chemical affinity. The free-energy function described

in Chapter 3 provides the true measure of chemical affinity under conditions

of constant temperature and pressure. The free-energy change in a chemical

reaction can be defined as AF ^ F
produt

.t8 ^reactants- When the free-energy

change is zero, there is no net work obtainable by any change or reaction

at constant temperature and pressure. The system is in a state of equilibrium.
When the free-energy change is positive for a proposed reaction, net work

must be put into the system to effect the reaction, otherwise it cannot take

place. When the free-energy change is negative, the reaction can proceed

spontaneously with the accomplishment of useful net work. The larger the

amount of this work that can be accomplished, the farther removed is the

reaction from equilibrium. For this reason, AF has often been called the

driving force of the reaction. From the statement of the equilibrium law, it

is evident that this driving force depends on the concentrations of the re-

actants and products. It also depends on their specific chemical constitution,

and on the temperature and pressure, which determine the molar free-energy
values of reactants and products.

If we consider a reaction at constant temperature, e.g., one conducted in
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a thermostat, AF = A// -f T AS. The driving force is seen to be made

up of two parts, a A// term and a 7 AS term. The A// term is the

reaction heat at constant pressure, and the T AS term is the heat change
when the process is carried out reversibly. The difference is the amount of

reaction heat that can be converted into useful net work, i.e., total heat minus

unavailable heat.

If a reaction at constant volume and temperature is considered, the

decrease in the work function, A/l = AF + T AS, should be used as

the proper measure of the affinity of the reactants, or the driving force of

the reaction. The constant volume condition is much less usual in laboratory

practice.

It is now apparent why the principle of Berthelot and Thomsen (p. 45)

was wrong. They considered only one of the two factors that make up the

driving force of a chemical reaction, namely, the heat of reaction. They

neglected the T AS term. The reason for the apparent validity of their prin-

ciple was that for many reactions the A// term far outweighs the T AS term.

This is especially so at low temperatures; at higher temperatures the TAS
term naturally increases.

The fact that the driving force for a reaction is large (AF is a large nega-
tive quantity) does not mean that the reaction will necessarily occur under

any given conditions. An example is a bulb of hydrogen and oxygen on the

laboratory shelf. For the reaction, H2 + \ O2
== H2O (g), AF298 = 54,638

cal. Despite the large negative AF, the reaction mixture can be kept for years
without any detectable formation of water vapor. If, after ten years on the

shelf, a pinch of platinum-sponge catalyst is added, the reaction takes place

with explosive violence. The necessary affinity was certainly there, but the

rate of attainment of equilibrium depended on entirely different factors.

Another example is the resistance to oxidation of such extremely active

metals as aluminum and magnesium. 2 Mg + O2(l atm) = 2 MgO (c);

AF298 136,370 cal. In this case, after the metal is exposed to air it

becomes covered with a very thin layer of oxide and further reaction occurs

at an immeasurably slow rate since the reactants must diffuse through the

oxide film. Thus the equilibrium condition is never attained. The incendiary
bomb and the thermit reaction, on the other hand, remind us that the

large AF for this reaction is a valid measure of the great affinity of the

reactants.

3. Free-energy and cell reactions. Reactions occurring in electrochemical

cells with the production of electric energy are of especial interest in the

discussion of free-energy changes, since they can be carried out under con-

ditions that are almost ideally reversible. This practical reversibility is

achieved by balancing the electromotive force of the cell by an opposing
emf which is imperceptibly less than that of the cell. Such a procedure can

be accomplished with the laboratory potentiometer, in which an external

source of emf, such as a battery, is balanced against the standard cell. The
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arrangement for this "compensation method" is shown in Fig. 4.1. When
the opposing emf's are balanced by adjustment of the slide wire 5, there is

no detectable deflection of the galvanometer G.

An electrochemical cell converts chemical free energy into electric free

energy. The electric energy is given by the product of the emf of the cell

times the amount of electricity flowing through it. Michael Faraday showed,
in 1834, that a given amount of electricity was always produced by or would

produce the same amount of chemical reaction. For one chemical equivalent
of reaction the associated amount of

electricity is called the Faraday, ^", CELL
AR

and is equal to 96,519 coulombs.

Thus the electric energy available per

mole of reaction equals zS^", where

z is the number of equivalents per

mole and S is the emf of the cell. A GALVANOMETER(
convenient energy unit is therefore

the volt-coulomb or joule.

When the reaction is carried out UNKNOWN
emt

reversibly, this energy is the maxi- _. . . _ .
,,

. r/
., , , p-

7

,
. Fig. 4.1. Compensation method for

mum available, or the net woi k w . measuring the emf of a cell without drawing
If the reaction is carried out at a current from it. When there is no deflection

finite rate, some of the energy is of galvanometer ffx
- (SXISS')tft .

expended in overcoming the electric

resistance of the cell, appearing as heat. This Joule heat, 7 2
/?, is the electrical

analogue of the frictional heat produced in irreversible mechanical pro-

cesses. We may now write, if ^ is the reversible emf,

(4.2)

This equation provides a direct method for evaluating the free-energy change
in the cell reaction. If we know the temperature coefficient of the emf of the

cell, we can also calculate A// and AS for the reaction by means of eq. (3.35),

which on combination with eq. (4.2) yields the relations

A T-f >r<3r \ JP T \ AC T^ (A. "\\l\rt = 2^ \6 1
-TIL],

IAO Z^ (4..J)
\ #77 dT

In a later chapter, devoted to electrochemistry, we shall see that it is possible

to carry out many changes by means of reversible cells, and thereby to

evaluate AF and A// for the changes from measurements of the emf and its

temperature coefficient.

A cell that is occasionally used as a laboratory standard of emf is the

Clark cell shown in Fig. 4.2. The reaction in this cell is Zn -f Hg2SO4

ZnSO4 -f 2 Hg, or more simply, Zn -f 2 Hg+ = Zn++ + 2 Hg. The emf of

the cell is 1 .4324 volts at 1 5C and the temperature coefficient dSjdT =
0.00119 volt per degree. It can therefore be calculated that for the cell



74 THERMODYNAMICS AND CHEMICAL EQUILIBRIUM [Chap. 4

ZINC
SULFATE
SOLUTION

ZINC
AMALGAM

SOLID
Hg2S04

MERCURY

Fig. 4.2. A typical electrochemical

cell: the Clark cell.

reaction AF = (-1.4324 x 2 x 96,519 - -276,510 joule. From eq. (4.3),

AS- (-0.00119 x 2 x 96,519) - -229.7 joule deg-
1 mole"1

. Whence,
A// - AF f T AS = -276,510 - 66,200 - -342,710 joule. The value of

A// obtained from thermochemical data is 339,500, in good agreement
with the electrochemical value.

Since the temperature coefficient is negative, heat is given up to the

surroundings during the working of this cell, and the net work obtainable,

A/% is less than the heat of the reaction. There are other cells for which

the temperature coefficient is positive.

These cells absorb heat from the environ-

ment, and their work output, under re-

versible conditions, is greater than the

heat of the reaction.

These relationships, discovered theo-

retically by Willard Gibbs in 1876, were

first applied to experimental cases by
Helmholtz in 1882. Before that time it was

thought, reasoning from the First Law,
that the maximum work output that could

be achieved was the conversion of all of the

heat of reaction into work. The Gibbs-

Helmholtz treatment shows clearly that

the work output is governed by the value

of AFfor the cell reaction, not by that of A// The working cell can either

reversibly absorb heat from or furnish heat to its environment. This reversible

heat change then appears as the T AS term in the free-energy expression.

4. Standard free energies. In Chapter 2 (p. 39) the definition of standard

states was introduced in order to simplify calculations with energies and

enthalpies. Similar conventions are very helpful for use with free-energy data.

Various choices of the standard state have been made, one that is frequently

used being the state of the substance under one atmosphere pressure. This is

a useful definition for gas reactions ; for reactions in solution, other choices

of standard state may be more convenient and will be introduced as needed.

A superscript zero will be used to indicate a standard state of 1 atm pressure.

The absolute temperature will be written as a subscript.

The most stable form of an element in the standard state (1 atm pressure)

and at a temperature of 25C will by convention be assigned a free energy
of zero.

The standard free energy of formation of a compound is the free energy
of the reaction by which it is formed from its elements, when all the reactants

and products are in the standard state. For example:

H 2 (I atm) + i O2 (1 atm) - H2O (g; 1 atm) AF 298
= -54,638

S (rhombic crystal) + 3 F2 (1 atm) - SF6 (g; 1 atm) AF 298
= -235,000
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In this way it is possible to make tabulations of standard free energies

such as that given by Latimer,
3
examples from which are collected in

Table 4.2. Some of these free-energy values are determined directly from

reversible cell emf's but most are obtained by other methods to be described

later.

TABLE 4.2

STANDARD FREE ENERGIES OF FORMATION OF CHEMICAL COMPOUNDS AT 25C

Free-energy equations can be added and subtracted just as thermo-

chemical equations are, so that the free energy of any reaction can be cal-

culated from the sum of the free energies of the products minus the sum of

the free energies of the reactants.

\FC V F V F^-*r ~~
Z, r products Z, r reactants

If we adopt the convention that moles of products are positive and moles of

reactants negative in the summation, this equation can be written concisely as

AF - 2 ", F> (4.4)

For example:
Cu2 (c) T- NO (g)

^ 2 CuO (c) + i N2 (g)

From Table 4.2,

AF = 2 (-30.4) + i (0)
- 20.66 - (-35.15) - -46.31 kcal

5. Free energy and equilibrium constant of ideal gas reactions. Many im-

portant applications of equilibrium theory are in the field of homogeneous

gas reactions, that is, reactions taking place entirely between gaseous pro-

ducts and reactants. To a good approximation in many such cases, the gases

may be considered to obey the ideal gas laws.

The variation at constant temperature of the free energy of an ideal gas

8 W. M. Latimer, The Oxidation States of the Elements, 2nd ed. (New York: Prentice-

Hall, 1952).
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is given from eq. (3.29) as dF = V dP = RTdln P. Integrating from F and

P, the free energy and pressure in the chosen standard state, to F and P,

the values in any other state, F - F = RTln (P/P). Since P = 1 atm, this

becomes

F-F = RT\nP (4.5)

Equation (4.5) gives the free energy of one mole of an ideal gas at pressure

P and temperature 7, minus its free energy in a standard state at P = I atm

and temperature T.

If an ideal mixture of ideal gases is considered, Dalton's Law of Partial

Pressures must be obeyed, and the total pressure is the sum of the pressures

that the gases would exert if each one occupied the entire volume by itself.

These pressures are called the partial pressures of the gases in the mixture,

Pj, 7*2 ... Pn . Thus if /?
t

is the number of moles of gas / in the mixture,

RT
P-lP, =

-fI", (4.6)

For each individual gas / in the mixture eq. (4.5) can be written

F
l
-F? = RTlnP, (4.7)

For n
t moles, n

t(Fl F) = RTn
t
In P

t
. For a chemical reaction, therefore,

from eq. (4.4),

AF - AF = RT 2 n
t
In P

t (4.8)

If we now consider the pressures P
t
to be the equilibrium pressures in

the gas mixture, AF must equal zero for the reaction at equilibrium. Thu
we obtain the important relation

- AF = RT 2 n
t
In P** (4.9)

AF
or 2 ,

^ P** - -

Since AF is a function of the temperature alone, the left side of this ex-

pression is equal to a constant at constant temperature. For a typical reaction,

aA + bB --= cC 4- dD, the summation can be written out as

This expression is simply the logarithm of the equilibrium constant in terms

of partial pressures, Kp . Equation (4.9) therefore becomes

-AF- RTlnK, (4.10)

The analysis in this section has now established two important results.

The constancy of the expression
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at equilibrium has been proved by thermodynamic arguments. This con-

stitutes a thermodynamic proof of the Law of Chemical Equilibrium. Second,

an explicit expression has been derived, eq. (4.10), which relates the equili-

brium constant to the standard free-energy change in the chemical reaction.

We are now able, from thermodynamic data, to calculate the equilibrium

constant, and thus the concentration of products from any given concentra-

tion of reactants. This was one of the fundamental problems that chemical

thermodynamics aimed to answer.

Sometimes the equilibrium constant is expressed explicitly in terms of

concentrations c
t

. For an ideal gas PI n^RT/V) c
{
RT. Substituting in

eq. (4.11), we find

CA^B

Kp
= Kc(RT)*

n
(4.12)

Here Kc
is the equilibrium constant in terms of concentrations (e.g., moles

per liter) and A is the number of moles of products less that of reactants in

the stoichiometric equation for the reaction.

Another way of expressing the concentrations of the reacting species is

in terms of mole fractions. The mole fraction of component / in a mixture

is defined by

*, - Yn
(4 - 13>

It is the number of moles of a component / in the mixture divided by the

total number of moles of all the components. It follows that P
t
=

Therefore the equilibrium constant in terms of the mole fractions is

Since K9 for ideal gases is independent of pressure, it is evident that Kx is

a function of pressure except when A/2 = 0. It is thus a "constant" only with

respect to variations of the A"s at constant T and P.

6, The measurement of homogeneous gas equilibria. The experimental
methods for measuring gaseous equilibria can be classified as either static or

dynamic.
In the static method, known amounts of the reactants are introduced

into suitable reaction vessels, which are closed and kept in a thermostat

until equilibrium has been attained. The contents of the vessels are then

analyzed in order to determine the equilibrium concentrations. If the reaction

proceeds very slowly at temperatures below those chosen for the experiment,
it is sometimes possible to "freeze the equilibrium" by chilling the reaction

vessel rapidly. The vessel may then be opened and the contents analyzed

chemically.
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This was the procedure used by Max Bodenstein4 in his classic investiga-

tion of the hydrogen-iodine equilibrium: H2 + I2
= 2 HI. The reaction pro-

ducts were treated with an excess of standard alkali; iodide and iodine were

determined by titration, and the hydrogen gas was collected and its volume

measured. For the formation of hydrogen iodide, A/? = 0; there is no change
in the number of moles during the reaction. Therefore Kv

= Kc Kx .

If the initial numbers of moles of H2 and I2 are a and b, respectively,

they will be reduced to a x and b x with the formation of 2x moles of

HI. The total number of moles at equilibrium is therefore a -f b + c, where

c is the initial number of moles of HI.

Accordingly the equilibrium constant can be written

- 2*)

The (a + b + c) terms required to convert "number of moles" into "mole

fraction" have been canceled out between numerator and denominator. In

a run at 448C, Bodenstein mixed 22.13 cc at STP of H2 with 16.18 of I2 ,

and found 25.72 cc of HI at equilibrium. Hence

K~ - _25/72i- - -215
(22.13

-
12.86)(16.18

-
12.86)

In the dynamic method for studying equilibria, the reactant gases are

passed through a thermostated hot tube at a rate slow enough to allow

complete attainment of equilibrium. This condition can be tested by making
runs at successively lower flow rates, until there is no longer any change in

the observed extent of reaction. The effluent gases are rapidly chilled and

then analyzed. Sometimes a catalyst is included in the hot zone to speed the

attainment of equilibrium. This is a safer method if a suitable catalyst is

available, since it minimizes the possibility of any back reaction occurring
after the gases leave the reaction chamber. The catalyst changes the rate of

a reaction, not the position of final equilibrium.

These flow methods were extensively used by W. Nernst and F. Haber

(around 1900) in their pioneer work on technically important gas reactions.

An example is the "water-gas equilibrium," which has been studied both

with and without an iron catalyst.
5 The reaction is

H2 + C02
- H2 + CO, and K9

= ^
HiQ
f
CQ

If we consider an original mixture containing a moles of H2 , b moles of

CO2, c moles of H2O, and d moles of CO, the analysis of the data is as

follows.

4
Z.physik. Chem., 22, \ (1897); 29, 295 (1899).

5 Z. anorg. Chem., 38. 5 (1904).



Sec. 7] THERMODYNAMICS AND CHEMICAL EQUILIBRIUM 79

Total Moles at Equilibrium a + b jrc + d = n

Substituting the partial pressure expressions, we obtain

^

The values for the equilibrium composition, obtained by analysis of the

product gases, have been used to calculate the constants in Table 4.3.

TABLE 4.3

THE WATER GAS EQUILIBRIUM H2 -f CO2
= H2O -f CO; temperature 986C

It is often possible to calculate the equilibrium constant for a reaction

from the known values of the constants of other reactions. This is a principle

of great practical utility. For example, from the dissociation of water vapor
and the water-gas equilibrium one can calculate the equilibrium constant for

the dissociation of carbon dioxide.

HaO

CO2

CO2

= H
H2
- H2O

2

CO

CO + O2

It is apparent that AT/
-= KV'KV .

7. The principle of Le Chatelier. The effects of such variables as pressure,

temperature, and concentration on the position of chemical equilibrium have

been succinctly summarized by Henry Le Chatelier (1888). "Any change in
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one of the variables that determine the state of a system in equilibrium
causes a shift in the position of equilibrium in a direction that tends to

counteract the change in the variable under consideration." This is a prin-

ciple of broad and general utility, and it can be applied not only to chemical

equilibria but to equilibrium states in any physical system. It is indeed possible

that it can be applied also with good success in the psychological, economic,

and sociological fields.

The principle indicates, for example, that if heat is evolved in a chemical

reaction, increasing the temperature tends to reverse the reaction; if the

volume decreases in a reaction, increasing the pressure shifts the equilibrium

position farther toward the product side. Quantitative expressions for the

effect of variables such as temperature and pressure on the position of

equilibrium will now be obtained by thermodynamic methods.

8. Pressure dependence of equilibrium constant. The equilibrium constants

Kp and K
c
are independent of the pressure for ideal gases; the constant Kx

is pressure-dependent. Since Kx
= KPP

An
, In Kx

-= In Kv
- A In P.

dP
"

P RT
'

When a reaction occurs without any change in the total number of moles

of gas in the system, A/? = 0. An example is the previously considered water

gas reaction. In these instances the constant Kp
is the same as Kx or K

c , and

for ideal gases the position of equilibrium does not depend on the total

pressure. When AH is not equal to zero, the pressure dependence of Kx is

given by eq. (4.15). When there is a decrease in the mole number (A/z < 0)

and thus a decrease in the volume, Kx increases with increasing pressure. If

there is an increase in n and V (A/7 > 0), Kx decreases with increasing

pressure.

An important class of reactions for which A -- is that of dissociation-

association equilibria. An extensively studied example is the dissociation of

nitrogen tetroxide into the dioxide, N2O4 2 NO2 . In this case, Kp
=

PxoJP$ to t
' Jf one m le f N2O4 is dissociated at equilibrium to a fractional

extent a, 2a moles of NO2 are produced. The total number of moles at

equilibrium is then (1 a) ~\- 2a = 1 + a. It follows that

(\-a)/(\+a) 1-02

Since for this reaction AA? -^
~f 1,

p
~

*

When a is small compared to unity, this expression predicts that the degree
of dissociation a shall vary inversely as the square root of the pressure.

Experimentally it is found that N2O4 is appreciably dissociated even at
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room temperatures. As a result, the observed pressure is greater than that

predicted by the ideal gas law for a mole of N2^4 s *nce ea h m le yields

1 -\- a moles of gas after dissociation. Thus P (ideal) RTfV, whereas

P (observed) - (1 + a)RT/V. Hence a - (K/*r)(/>ob8
- />ldcal).

This behavior provides a very simple means for measuring a. For example,
in an experiment at 318K and 1 atm pressure, a is found to be 0.38. There-

fore Kx
= 4(0.38)

2
/(1

- 0.38 2
)
- 0.67. At 10 atm pressure, Kx

- 0.067 and

a is 0.128.

Among the most interesting dissociation reactions are those of the

elementary gases. The equilibrium constants for a few of these are collected

in Table 4.4.

TABLE 4.4

EQUILIBRIUM CONSTANTS OF DISSOCIATION REACTIONS

9. Effect of an inert gas on equilibrium. In reactions in which there is no

change in the total number of moles, AH = 0, and the addition of an inert

gas cannot affect the composition of the equilibrium mixture. If, however,

A ^ 0, the inert gas must be included in calculating the mole fractions and

the total pressure P. Let us consider as an example the technically important

gas reaction, SO2 + \ O2
= SO3 . In this case A =

|, and Kp
= KXP~

1/2
.

Let the initial reactant mixture contain a moles of SO2 ,
b moles of O2, and

c moles of inert gas, for example N2 . If y moles of SO3 are formed at equi-

librium, the equilibrium mole fractions are

b - (y/2) y

Here n is the total number of moles at equilibrium: n a + b + c (y/2).

The equilibrium constant,

K = K P1/2 =
*

y/n yn
1/2

[(a [a
-
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It follows that = /
a y

/?S 3 __

"so,

where w
s()i , w80a , w0i , /? are the equilibrium mole numbers.

Let us now consider three cases. (1) If the pressure is increased by com-

pressing the system without addition of gas from outside, n is constant, and

as P increases, n$ Jn$0t a lso increases. (2) If an inert gas is added at constant

volume, both n and P increase in the same ratio, so that the equilibrium

conversion of SO2 to SO3 ,
w
SO|//7SOi remains unchanged. (3) If an inert gas

is added at constant pressure, n is increased while P remains constant, and

this dilution of the mixture with the inert gas decreases the extent of con-

version /fso>s<v
This reaction is exothermic, and therefore increasing the temperature

decreases the formation of products. The practical problem is to run the

reaction at a temperature high enough to secure a sufficiently rapid velocity,

without reaching so high a temperature that the equilibrium lies too far to

the left. In practice, a temperature around 500C is chosen, with a platinum
or vanadium-pentoxide catalyst to accelerate the reaction. The equilibrium

constant from 700 to 1200K is represented quite well by the equation
In Kp

= (22,6QO/RT) - (21.36/7?). At 800K, therefore, Kv
- 33.4.

Let us now consider two different gas mixtures, the first containing
20 per cent SO2 and 80 per cent O2 at 1 atm pressure, and a second containing
in addition a considerable admixture of nitrogen, e.g., 2 per cent SO2 ,

8 per
cent O2 , 90 per cent N2 ,

at 1 atm pressure. Letting y moles SO3 at equi-

librium, we obtain:

I II

Ks
-

ffpP
1

/
2 = 33.4 Kx

- KpPl
l
2 = 33.4

y y
1 ~ (y/2) 1

-
(y/2)

0.2 -y roSj- O/2)]
1

/
1 0.02 - y ["0.08 -(y/2)]

1
/
2

1
-

(y/2) I 1
-

'(y/2)
J 1

-
(y/2)

I 1 - (^T J

/ -
2.000/ -I- 0.681^

- 0.0641 =0 / -
0.1985/ + 6.81 X 10~3

j

y = 0.190 64.06 X 10~6 =

y - 0.0180

95% conversion of SO2 to SO3 90% conversion of SO2 to SO3

The cubic equations that arise in problems like these are probably best

solved by successive approximations. Beginning with a reasonable value

guessed for the percentage conversion, a sufficiently accurate solution can

usually be obtained after three or four trials.
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10. Temperature dependence of the equilibrium constant. An expression

for the variation of KP with temperature is derived by combining eqs. (4.10)

and (3.36). Since

v (4.10)

and

therefore

A//
c

r 2

dT

(3.36)

(4.16)

It is apparent that if the reaction is endothermic (A// positive) the

equilibrium constant increases with temperature; if the reaction is exothermic

(A// negative) the equilibrium con-

stant decreases as the temperature is

raised.

Equation (4.16) can also be written:

iH
(4.17)

d(\IT) R

Thus if In Kp is plotted against \/T9

the slope of the curve at any point is

equal to A// //?. As an example of

this treatment, the data for the varia-

tion with temperature of the 2 HI --=

H2 + I2 equilibrium are plotted in

Fig. 4.3. The curve is almost a straight

line, indicating that A// is approxi-

mately constant for the reaction over

the experimental temperature range.

The value calculated from the slope at

400C is A// = 7080 cal.

It is also possible to measure the

equilibrium constant at one tempera-
ture and with a value of A// obtained

from thermochemical data to calculate the constant at other temperatures.

Equation (4.16) can be integrated, giving

In

V
L25 150 1.75

Fig. 4.3. The variation with temper-
ature of Kf

= PH2Pi.JPm". (Data of

Bodenstein.)

Since, over a short temperature range, A/f may often be taken as approxi-

mately constant, one obtains

In
KJTj -A//

R (4.18)
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If the variations of the heat capacities of the reactants and products are

known as functions of temperature, an explicit expression for the tempera-
ture dependence of A// can be derived from Kirchhoff's equation (2.29).

This expression for A// as a function of temperature can then be substituted

into eq. (4.16), whereupon integration yields an explicit equation for K9 as

a function of temperature. This has the form

In K, - - A// //?r + A In T + BT + CT* . . . + I (4.19)

In this case, as usual, the value of the integration constant / can be deter-

mined if the value of Kp is known at any one temperature, either experiment-

ally or by calculation from AF. It will be recalled that one value of A// is

needed to determine A// , the integration constant of the Kirchhoff

equation.

To summarize, from a knowledge of the heat capacities of the reactants

and products, and of one value each for A// and A^,it is possible to calculate

the equilibrium constant at any temperature.
As an example, consider the calculation of the constant for the water-

gas reaction as a function of the temperature.

CO + H2 (g)
- H2 + C02 ;

Kv
-^co>

-CO rH,0

From Table 4.2, the standard free-energy change at 25C is:

A/r 298
= -94,240 - (-54,640 - 32,790) - -6810

6810

298^

From the enthalpies of formation on page 39,

A# 298
- -94,050 - (-57,800 - 26,420) = -9830

The heat capacity table on page 44 yields for this reaction

Thus In KV298
= - = 1 1.48, or Kv298

= 9.55 X 10*

= -0.515 + 6.23 x 10~3r- 29.9 x 10~7r2

From eq. (2.32),

A// = A// - 0.5157+ 3.12 x 10~3r2 - 10.0 x 1Q-T3

Substituting A// = -9830, T = 298K, and solving for A//
, we get

A// = 9921. Then the temperature dependence of the equilibrium

constant, eq. (4.19), becomes

By inserting the value ofln Kv at 298K, the integration constant can be
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evaluated as / = 3.97. The final expression for Kv as a function of tem-

perature is, therefore,

In K - -3.97 +
9
- - 0.259 In T + 1.56 x I0~3r - 2.53 x 10~7r2

For example, at 800K, In K9
= 1.63, Kv

- 5.10.

11. Equilibrium constants from thermal data. We have now seen how a

knowledge of the heat of reaction and of the temperature variation of the

heat capacities of reactants and products allows us to calculate the equi-
librium constant at any temperature, provided there is a single experimental
measurement of either K9 or AF at some one temperature. If an independent
method is available for finding the integration constant /in eq. (4.19), it will

be possible to calculate K9 without any recourse to experimental measure-

ments of the equilibrium or of the free-energy change. This calculation would

be equivalent to the evaluation of the entropy change, AS , from thermal

data alone, i.e., heats of reaction and heat capacities. If we know AS and

A//, Kp can be found from AF - A// - TA5.
From eq. (3.41), the entropy per mole of a substance at temperature T

is given by

5 = f
r
CP rflnr+S

where 5 is the entropy at 0K. 6 If any changes of state occur between the

temperature limits, the associated entropy changes should be added. For a

gas at temperature Tthe general expression for the entropy therefore becomes

o
'Q,cryst

din T + ^^ +J^CP^dln
T

A// r T

+ -=rSE + Cp^dlnT+S, (4.20)
* b JT

/'Jo

All these terms can be measured except the constant S . The evaluation

of this constant becomes possible by virtue of the third fundamental law of

thermodynamics.
12. The approach to absolute zero. The laws of thermodynamics are in-

ductive in character. They are broad generalizations having an experimental
basis in certain human frustrations. Our failure to invent a perpetual-motion
machine has led us to postulate the First Law of Thermodynamics. Our

failure ever to observe a spontaneous flow of heat from a cold to a hotter

body or to obtain perpetual motion of the second kind has led to the state-

ment of the Second Law. The Third Law of Thermodynamics can be based

on our failure to attain the absolute zero of temperature. A detailed study
of refrigeration principles indicates that the absolute zero can never be

reached.

8 Be careful not to confuse 5, the entropy in the standard state of 1 atm pressure, and
S" , the entropy at 0K.
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Most cryogenic systems have depended on the cooling of a gas by an

adiabatic expansion. This effect was first described by Clement and Desormes

in 1819. If a container of compressed air is vented to the atmosphere, the

outrushing gas must do work to push back the gas ahead of it. If the process

is carried out rapidly enough, it is essentially adiabatic, and the gas is cooled

by the expansion.
To obtain continuous refrigeration, some kind of cyclic process must be

devised; simply opening a valve on a tank of compressed gas is obviously

unsatisfactory.
7 Two methods of controlled expansion can be utilized:

(1) a Joule-Thomson expansion through a throttling valve; (2) an expansion

against a constraining piston. In the latter case, the gas does work against

the external force and also against its internal cohesive forces. In the Joule-

Thomson case, only the internal forces are operative, and these change in

sign as the gas passes through an inversion point. It was shown on page 66

that in order to obtain cooling //t/ T = (\/CP)[T(dV/dT)P V] must be

positive.

In 1860, Sir William Siemens devised a countercurrent heat exchanger,

which greatly enhanced the utility of the Joule-Thomson method. This was

applied in the Linde process for the production of liquid air. Chilled com-

pressed gas is cooled further by passage through a throttling valve. The

expanded gas passes back over the inlet tube, cooling the unexpanded gas.

When the cooling is sufficient to cause condensation, the liquid air can be

drawn off at the bottom of the apparatus. Liquid nitrogen boils at

77K, liquid oxygen at 90K, and they are easily separated by fractional

distillation.

In order to liquefy hydrogen, it is necessary to chill it below its Joule-

Thomson inversion temperature at 193K; the Linde process can then be

used to bring it below its critical temperature at 33K. The production
of liquid hydrogen was first achieved in this way by James- Dewar in

1898.

The boiling point of hydrogen is 22K. In 1908, Kammerlingh-Onnes,
founder of Leiden's famous cryogenic laboratory, used liquid hydrogen to

cool helium below its inversion point at 100K, and then liquefied it by an

adaptation of the Joule-Thomson principle. Temperatures as low as 0.84K
have been obtained with liquid helium boiling under reduced pressures.

This temperature is about the limit of this method, since enormous pumps
become necessary to carry off the gaseous helium.

Let us consider more carefully this cooling produced by evaporating

liquid from a thermally isolated system. The change in state, liquid -> vapor,
is a change from the liquid, a state of low entropy and low energy, to the

vapor, a state of higher entropy and higher energy. The increase in entropy
on evaporation can be equated to A//vap/r. Since the system is thermally

7 This method is used, however; in a laboratory device for making small quantities of

"dry ice,** solid carbon dioxide.
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isolated, the necessary heat of vaporization can come only from the liquid

itself. Thus the temperature of the liquid must fall as the adiabatic evaporation

proceeds.
In 1926, a new refrigeration principle was proposed independently by

W. F. Giauque
8 and P. Debye. This is the adiabatic demagnetization method.

Certain rare earth salts have a high paramagnetic susceptibility? i.e., in a

magnetic field they tend to become highly magnetized, but when the field is

removed, they lose their magnetism immediately. In 1933, Giauque per-

formed the following experiment. A sample of gadolinium sulfate was cooled

to 1.5K in a magnetic field of 8000 oersteds, and then thermally isolated.

The field was suddenly shut off. The salt lost its magnetism spontaneously.
Since this was a spontaneous process, it was accompanied by an increase in

the entropy of the salt. The magnetized state is a state of lower energy and

lower entropy than the demagnetized state. The change, magnetized -> de-

magnetized, is therefore analogous to the change, liquid
-> vapor, discussed

in the preceding paragraph. If the demagnetization occurs in a thermally

isolated system, the temperature of the salt must fall.

When the field was turned off in Giauque's experiment, the temperature
fell to 0.25K. In 1950, workers at Leiden10 reached a temperature of

0.0014K by this method. Even the measurement of these low temperatures
is a problem of some magnitude. The helium vapor-pressure thermometer is

satisfactory down to about 1K. Below this, the Curie-Weiss expression for

the paramagnetic susceptibility, # ^= const/r, can be used to define a

temperature scale.

The fact that we have approached to within a few thousandths of a

degree of absolute zero does not mean that the remaining step will soon be

taken. On the contrary, it is the detailed analysis of these low-temperature

experiments that indicates most definitely that zero degrees Kelvin is

absolutely unattainable.

The Third Law of Thermodynamics will, therefore, be postulated as

follows: "It is impossible by any procedure, no matter how idealized, to

reduce the temperature of any system to the absolute zero in a finite number

of operations."
11

13. The Third Law of Thermodynamics. How does the Third Law
answer the question of the value of the entropy of a substance at

T = 0K, the integration constant SQ in eq. (4.20)? Since absolute zero is

unattainable, it would be more precise to ask what is the limit of S as T

approaches 0.

Consider a completely general process, written as a -> b. This may be a

chemical reaction, a change in temperature, a change in the magnetization,
8

/. Am. Chem. Soc., 49, 1870 (1927).
9 Cf. Sec. 1 1-20.
10 D. de Klerk, M. J. Steenland, and C. J. Gorter, Physica, 16, 571 (1950).
11 R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (London: Cam-

bridge, 1940), p. 224.



88 THERMODYNAMICS AND CHEMICAL EQUILIBRIUM [Chap. 4

or the like. The entropies of the system in the two different states a and b

can be written as :

(4.21)

SaQ and SbQ are the limiting entropy values as T approaches zero.

Let us start with the system a at a temperature T
f

and allow the process
a -> b to take place adiabatically and reversibly, the final temperature being
T" . The entropy must remain constant, so that Sa

= Sb , or

+J7 Q d In T = 5&0 +/J'
Cb dlnT

In order for the temperature T" in the final state to equal zero, it would be

necessary to have

SbQ -Sa0
^*' Ca d\nT (4.22)

As T -> 0, Cn
-> 0. Now if 550 > 5a0 it is possible to choose an initial T'

that satisfies this equation, since the integral is a positive quantity. In this

way the process a -> b could be used to reach the absolute zero starting from

this T 1

. This conclusion, however, would be a direct contradiction of the

Third Law, the principle of the unattainability of absolute zero. The only

escape is to declare that Sb0 cannot be greater than 5a0 . Then there can be

no 7" that satisfies the condition (4.22). The same reasoning, based upon
the reverse process b -> a, can be used to show that 5*a0 cannot be greater

than SbQ .

Since SaQ can be neither greater than nor less than S60 ,
it must be equal

to SbQ . In order to conform with the principle of the unattainability of

absolute zero, therefore, it is necessary to have

5
rt0
-560 or AS =

(4.23)

This equation indicates that for any change in a thermodynamic system
the limiting value of AS as one approaches absolute zero is equal to zero.

The change in question may be a chemical reaction, a change in physical

state such as magnetized ^ demagnetized, or in general any change that can

in principle be carried out reversibly. This requirement of a possible reversible

process is necessary, since otherwise there would be no way of evaluating
the AS for the change being considered.12 The statement in eq. (4.23) is the

12 This restriction may be a little too severe. In one-component systems, changes of one

polymorphic crystal to another may also have A5 = 0. Examples are white tin -> grey tin,

diamond -> graphite, monochnic sulfur -> rhombic sulfur, zinc blende -> wurtzite. The heat

capacity of the metastable form can be measured at low temperatures, and by extrapolation
to 0K and assuming 5 0, it is possible to obtain a "Third-Law entropy,*' as defined in

the next section.
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famous heat theorem first proposed by Walther Nernst in 1906. It has served

as a useful statement of the Third Law of Thermodynamics.
Certain types of systems therefore do not fall within the scope of eq. (4.23).

For example, any reaction that changed the identity of the chemical elements,

i.e., nuclear transmutation, would not be included, since there is no thermo-

dynamic method of calculating AS for such a change. This restriction, of

course, does not affect chemical thermodynamics in any way, since the nuclei

of the elements retain their identities in any chemical change.
Another class of changes that must be excluded from eq. (4.23) comprises

those in which the system passes from a metastable to a more stable state.

Such changes are essentially irreversible and can proceed in one direction

only, namely, toward the more stable states. Certain systems can become

"frozen" in nonequilibrium states at low temperatures. Examples are glasses,

which can be regarded as supercooled liquids, and solid solutions and alloys,

in which there is a residual entropy of mixing. At sufficiently low tempera-

tures, the glass is metastable with respect to the crystalline silicates of which

it is composed, and the solid solutions are less stable than a mixture of

pure crystalline metals. Yet the rate of attainment of equilibrium becomes

so slow in the very cold solids that transformations to the more stable

states do not occur. Such systems have an extra entropy, which can be

considered as an entropy of mixing, and this may persist at the lowest tem-

peratures attainable experimentally. This fact does not contradict eq. (4.23)

because a change such as "metastable glass ~> crystalline silicates" cannot

be carried out by a reversible isothermal path. Hence these metastable states

are said to be "nonaccessible," and the changes do not lie within the scope
of eq. (4.23). These cases will be discussed later from a statistical point of

view in Chapter 12.

14. Third-law entropies. Only changes or differences in entropy have any

physical meaning in thermodynamics. When we speak of the entropy of a

substance at a certain temperature, we really mean the difference between its

entropy at that temperature and its entropy at some other temperature,

usually 0K. Since the chemical elements are unchanged in any physico-
chemical process, we can assign any arbitrary values to their entropies at

0K without affecting in any way the values of AS for any chemical change.
It is most convenient, therefore, to take the value of 5 for all the chemical

elements as equal to zero. This is a convention first proposed by Max Planck

in 1912.

It then follows, from eq. (4.23), that the entropies of all pure chemical

compounds in their stable states at 0K are also zero, because for their

formation from the elements, AS = 0. This formulation is equivalent to

setting the constant 5 in eq. (4.20) equal to zero.

It is now possible to use heat-capacity data extrapolated to 0K to deter-

mine so-called third-law entropies, which can be used in equilibrium calcula-

tions. As an example, the determination of the standard entropy, SQ

29B, for
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TABLE 4.5

EVALUATION OF ENTROPY OF HYDROGEN CHLORIDE FROM HEAT-CAPACITY
MEASUREMENTS

Contribution

1. Extrapolation from 0-16K (Debye Theory, Sec. 13-23)
2. lC,,d\r\ Tfor Solid I from 16

J

~98.36

3. Transition, Solid I Solid II, 2843/98.36
4. JO</ln 7 for Solid II from 98.36

r

-l 58.91

5. Fusion, 476.0/158.91
6. JCV/ln Tfor Liquid from 158.91-! 88.07

7. Vaporization, 3860/188.07
8. JCW In Tfor Gas from 188.07-298.15K

caljdeg mole

0.30

7.06

2.89

5.05

3.00

2.36

20.52

3.22

S
~~~

5 -44.40 0. 10

hydrogen chloride gas is shown in Table 4.5. The value S 298 44.4 eu

is that for HC1 at 25C and 1 atm pressure. A small correction due to non-

ideality of the gas raises the figure to 44.7. A number of third-law-entropies

are collected in Table 4.6.

TABLE 4.6

THIRD-LAW ENTROPIES

(Substances in the Standard State at 25C)

Substance

H 2

D2

He
N2

2

C12

HC1
CO

Mercury
Bromine
Water
Methanol
Ethanol

C (diamond)
C (graphite)
S (rhombic)
S (monoclinic)

Ag
Cu
Fe
Na

(calldeg mole)

31.2

34.4

29.8

45.8

49.0

53.2

44.7

47.3

17.8

18.4

16.8

30.3

38.4

0.6

1.4

7.6

7.8

10.2

8.0

6.7

12.3

Gases

Liquids

Solids

Substance

C02

H2

NH 3

S02

CH4

C2H2

C2H4

C2H,

Benzene

Toluene

Diethylether
rt-Hexane

Cyclphexane

K
I2

NaCl
KCl
KBr
KI

AgCl
Hg2Cl2

298

(calldeg mole)

51.1

45.2

46.4

59.2

44.5

48.0

52.5

55.0

41.9

52.4

60.5

70.6

49.2

16.5

14.0

17.2

19.9

22.5

23.4

23.4

46.4
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The standard entropy change AS in a chemical reaction can be calculated

immediately, if the standard entropies of products and reactants are known.

AS - 2 ", S?

One of the most satisfactory experimental checks of the Third Law is pro-
vided by the comparison of AS values obtained in this way from low-

temperature heat capacity measurements, with AS values derived either

from measured equilibrium constants and reaction heats or from the tem-

perature coefficients of celt emf's eq. (4.3). Examples of such comparisons
are shown in Table 4.7. The Third Law is now considered to be on a firm

experimental basis. Its full meaning will become clearer when its statistical

interpretation is considered in a later chapter.

The great utility of Third Law measurements in the calculation of

chemical equilibria has led to an intensive development of low-temperature

heat-capacity techniques, using liquid hydrogen as a refrigerant. The ex-

perimental procedure consists essentially in a careful measurement of the

temperature rise that is caused in an insulated sample by a carefully measured

energy input.

We have now seen how thermodynamics has been able to answer the

old question of chemical affinity by providing a quantitative method for

calculating (from thermal data alone) the position of equilibrium in chemical

reactions.

TABLE 4.7

CHECKS OF THE THIRD LAW OF THERMODYNAMICS

Reaction

Ag (c) f i Br2 (1)
- AgBr (c)

Ag (c) + * C12 (g)
- AgCl (c)

Zn (c) + J 2 (g)
= ZnO (c)

C M 2 (g)
= CO (g)

CaC03 (c)
- CaO (c) + CO2 (g)

15. General theory of chemical equilibrium: the chemical potential. We
have so far confined our attention to equilibria involving ideal gases. The
relations discovered are of great utility, and are accurate enough for the

discussion of most homogeneous gas equilibria. Some gas reactions, how-

ever, are carried out under such conditions that the ideal gas laws are no

longer a good approximation. Examples include the high-pressure syntheses
of ammonia and methanol. In addition, there are the great number of

chemical reactions that occur in condensed phases such as liquid or even

solid solutions. In order to treat these reactions especially, a more general

equilibrium theory will be needed.
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The composition of a system in which a chemical reaction is taking place
is continually changing, and the state of the system is not defined by specifying

merely the pressure, volume, and temperature. In order to discuss the changes
of composition it is necessary to introduce, in addition to P9 V, and T, new
variables that are a measure of the amount of each chemical constituent of

the system. As usual, the mole will be chosen as the chemical measure, with

the symbols nl9 w2 n3 . . . n
l representing the number of moles of constituent

1, 2, 3, or i.

It then follows that each thermodynamic function depends on these /i/s

as well as on P, V, and T. Thus, E - E(P, V, T, n
t); F = F(P, V, T, n,\ etc.

Consequently, a perfect differential, for example of the free energy, becomes

By eq. (3.29) dF ~ ~S dT + V dP for any system of constant composition,

i.e., when all dn
%

0. Therefore

= -SdT + VdP + -

dn, (4.25)
T,P,n,

The coefficient (dF/dn t)T P n> , first introduced by Gibbs, has been given a

special name because of its great importance in chemical thermodynamics.
It is called the chemical potential, and is written as

(4 '26)

It is the change of the free energy with change in number of moles
t
of

component /, the temperature, the pressure, and the number of moles of all

other components in the system being kept constant. Using the new symbol,

eq. (4.25) becomes

dF - -5 dT + VdP + 2 Hi dn, (4.27)
i

At constant temperature and pressure,

</F=2^<**. (4-28)

The condition for equilibrium, dF 0, then becomes

I to **< = <> (4.29)
i

For an ideal gas, the chemical potential is simply the free energy per mole

at pressure Pt
. Therefore from eq. (4.7),

(4.30)

The value of //, for the ideal gas is the same whether the ideal gas is pure

gas at a pressure Pt
or is in an ideal gas mixture13 at partial pressure Pt

. If,

13 This statement is a definition of an ideal gas mixture. To be precise, one must distin-

guish an ideal gas mixture from a mixture of ideal gases. There might be specific interactions

between two ideal gases that would cause their mixture to deviate from ideality.
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however, the gas mixture is not ideal, this identity no longer holds true.

Various interaction forces come into operation, and the evaluation of ^ {

becomes a separate experimental problem in each case.

16. The fugacity. Because relations such as eq. (4.30) lead to equations
of such simple form in the development of the theory of chemical equilibrium,

it is convenient to introduce a new function, called the fugacity of the sub-

stance, that preserves the form of eq. (4.30) even for nonideal systems.
Therefore we write

dfi
= VdP = RTdlnf, and /i,

- -
RTlnĴ i

where/- is the fugacity of the substance, and/? is its fugacity in the standard

state. It now becomes desirable to change the definition of the standard state

so that instead of the state of unit pressure, it becomes the state of unit

fugacity,/?
= 1. Then

Vi-tf-RTlnfi (4.31)

Now the treatment of equilibrium in Section 4-5 can be carried through
in terms of the fugacity and chemical potential. This leads to an expression
for the equilibrium constant which is true in general, not only for real

(nonideal) gases but also for substances in any state of aggregation what-

soever:

f cf d

f
~~

f af b

JA JB

-A// - RT \nKf (4.32)

The fugacity of a pure gas or of a gas in a mixture can be evaluated if

sufficiently detailed PVT data, are available. This discussion will be limited

to an illustration of the method for determining the fugacity of a pure gas.

In this case,

dF=dp=VdP (4.33)

If the gas is ideal, V = RT/P. For a nonideal gas, this is no longer true. We
may write a - Fideal

- Kreal
- (RT/P)

-
K, whence V = (RT/P) ~ a. Sub-

stituting this expression into eq. (4.33), we find

RTdlnf- dF=dfA = RTctlnP - adP

The equation is integrated from P = to P.

RT\
f

dlnf=RTf
P

d\nP-(
P
adP

J/,p=o
J JP-O Jo

As its pressure approaches zero, a gas approaches ideality, and for an ideal

gas the fugacity equals the pressure, /= P [cf. eqs. (4.30 and (4.31)]. The

lower limits of the first two integrals must therefore be equal, so that we

obtain

RT\nf= RT In P -J
P

<2 dP (4.34)
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This equation enables us to evaluate the fugacity at any pressure and

temperature, provided PVT data for the gas are available. If the deviation

from ideality of the gas volume is plotted against P, the integral in eq. (4.34)

can be evaluated graphically. Alternatively, an equation of state can be used

to calculate an expression for a as a function of P, making it possible to

evaluate the integral by analytical methods.

The fugacity may be thought of as a sort of idealized pressure, which

measures the true escaping tendency of a gas. In Chapter 1, it was pointed

V
2 6 8 10 12 14 16 18 20 22 24

REDUCED PRESSURF-Ffe

Fig. 4.4. Variation of activity coefficient with reduced pressure at

various reduced temperatures.

out that the deviations of gases from ideality are approximately determined

by their closeness to the critical point. This behavior is confirmed by the

fact that at the same reduced pressures all gases have approximately the

same ratio of fugacity to pressure. The ratio of fugacity to pressure is called

the activity coefficient, y =f/P. Figure 4.4 shows a family of curves14
relating

the activity coefficient of a gas to its reduced pressure PK at various values

of the reduced temperature Tlf
. To the approximation that the law of corre-

sponding states is valid, all gases have the same value of y when they are in

corresponding states, i.e., at equal PR and T
I{

. This is a very useful principle,

14
Newton, Ind. Eng. Chem., 27, 302 (1935). Graphs for other ranges of PR and TR are

included in this paper.



Sec. 17] THERMODYNAMICS AND CHEMICAL EQUILIBRIUM 95

for it allows us to estimate the fugacity of a gas solely from a knowledge of

its critical constants.

17. Use of fugacity in equilibrium calculations. Among the industrially

important gas reactions that are carried out under high pressures is the

synthesis of ammonia: | N2 + $ H2
= NH3 . This reaction has been carefully

investigated up to 1000 atm by Larson and Dodge.
15 The per cent of NH3

in equilibrium with a three-to-one H2-N2 mixture at 450C and various total

pressures is shown in Table 4.8. In the third column of the table are the

values of Kp
= PyuJPy^Pa?'

2 calculated from these data.

Since Kp for ideal gases should be independent of the pressure, these

results indicate considerable deviations from ideality at the higher pressures.

Let us therefore calculate the equilibrium constant Kf using Newton's graphs
to obtain the fugacities. We are therefore adopting the approximation that

the fugacity of a gas in a mixture is determined only by the temperature and

by the total pressure of the gas mixture.

Consider the calculation of the activity coefficients at 450C (723K) and

600 atm.

PC TC PR TR r

N2 '33.5 126 17.9 5.74 1.35

H2 . 12.8 33.3 46.8 21.7 1.19

NH3 . . . 111.5 405.6 5.38 1.78 0.85

The activity coefficients y are read from the graphs, at the proper values of

reduced pressure PH and reduced temperature TR . (Only the NH3 values are

found in Fig. 4.4; the complete graphs must be consulted for the other gases.)

TABLE 4.8

EQUILIBRIUM IN THE AMMONIA SYNTHESIS AT 450C WITH 3 : 1 RATIO OF H2 TO N2

Since the fugacity/^ yP, we can write in general Kf
= KYK^ where

in this case Kv
= ^H^N^H,372

- The values of Kv and Kf are shown in

Table 4.8. There is a marked improvement in the constancy of Kf as com-

pared with Kv . Only at 1000 atm does the approximate treatment of the

fugacities appear to fail. To carry out an exact thermodynamic treatment, it

15 /. Am. Chem. Soc., 45, 2918 (1923); 46, 367 (1924).
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would be necessary to calculate the fugacity of each gas in the particular

mixture under study. This would require very extensive PVT data on the

mixture.

Often, knowing AF for the reaction, we wish to calculate the equilibrium
concentrations in a reaction mixture. The procedure is to obtain Kf from

AF = RTln Kf, to estimate Ky from the graphs, and then to calculate

the partial pressures from Kp Kf/Ky .

PROBLEMS

1. The emf of the cadmium-calomel cell in which the reaction is Cd +
Hg2

++ = Cd++ + 2 Hg, can be represented by: ? = 0.6708 - 1.02 x

10~4(/ 25) 2.4 x 10~6
(r
-

25)
2

, where t is the centigrade temperature.
Calculate AF, AS, and A// for the cell reaction at 45C.

2. From the standard free energies in Table 4.2 calculate A/70 and Kv at

25C for the following reactions :

(a) N2O + 4 H2
- 2 NH3 + H2O (g)

(b) H2 2 (g)-H20(g) + |02

(c) CO + H2O (1)
= HCOOH (1)

3. At 900K the reaction C2H6
= C2H4 + H2 has A// - 34.42, AF

= 5.35 kcal. Calculate the per cent H2 present at equilibrium if pure C2H6

is passed over a dehydrogenation catalyst at this temperature and 1 atm

pressure. Estimate the per cent H2 at equilibrium at 1000K.

4. If an initial mixture of 10 per cent C2H4 , 10 per cent C2H6 , and 80 per
cent N2 is passed over the catalyst at 900K and 1 atm, what is the per cent

composition of effluent gas at equilibrium? What if the same mixture is used

at 100 atm? (Cf. data in Problem 3.)

5. The equilibrium LaCl3 (s) + H2O (g)
- LaOCl (s) + 2 HCl (g). [/.

Am. Chem. Soc. 9 74, 2349 (1952)] was found to have Kp
- 0.63 at 804K,

and 0.125 at 733K. Estimate A// for the reaction. If the equilibrium HCI

vapor pressure at 900K is 2.0mm estimate the equilibrium H2O vapor

pressure.

6. From the data in Table 4.4, calculate the heat of dissociation of O2

into 2 O at 1000K. Similarly, calculate A// 1000 for H2
= 2 H. Assuming

atomic H and O are ideal gases with CP = f/*, and using the Q>'s for H2

and O2 in Table 2.4, calculate A// 298 for 2 H + O = H2O (g). The heat of

formation of H2O(g) is 57.80 kcal. One-half the heat calculated in this

problem is a measure of the "strength of the O H bond" in water.

7. For the reaction N2O4 2 NO2 , calculate KP ,
Kx, Kc at 25C. and

1 atm from the free energies of formation of the compounds (Table 4.2).

8. PC1 5 vapor decomposes on heating according to PC15
= PC13 + C12 .

The density of a sample t>f partially dissociated PC15 at 1 atm and 230C was
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found to be 4.80 g per liter. Calculate the degree of dissociation a and AF
for the dissociation at 230C.

9. The following results were obtained for the degree of dissociation of

CO2 (CO2
= CO + i O2) at 1 atm:

K . . . 1000 1400 2000
a . . . 2.0 x 10~7 1.27 x 10~ 4 1.55 x 10~2

What is AS for the reaction at 1400K?

10. The free energy of formation of H2S is given by AF = 19,200

+ 0.94rin T - 0.001 65T2 - 0.00000037r3 + 1-657. H2 + J S2 (g)
- H2S

(g). If H2S at 1 atm is passed through a tube heated to 1200K, what is per

cent H2 in the gas at equilibrium?

11. Jones and Giauque obtained the following values for CP of nitro-

methane. 16

K
CP
K
CP

The melting point is 244.7K, heat of fusion 2319cal per mole. The

vapor pressure of the liquid at 298.1K is 3.666 cm. The heat of vaporization
at 298.1K is 9147 cat per mole. Calculate the Third-Law entropy of CH3NO2

gas at 298.1K and 1 atm pressure (assuming ideal gas behavior).

12. Using the Third-Law entropies in Table 4.6 and the standard heats

of formation calculate the equilibrium constants at 25C of the following

reactions :

H2 + C12
- 2 HC1

CH4 + 2 2
= C02 + 2 H2 (g)

2Ag(s) + Cl2 -2AgCi(s)

13. For the reaction CO + 2 H2
- CH3OH (g), AF - -3220 cal at

700K. Calculate the per cent CH3OH at equilibrium with a 2 : 1 mixture of

H2 + CO at a pressure of 600 atm using (a) ideal gas law, (b) Newton's

fugacity charts.

14. At high temperature and pressure, a quite good equation of state for

gases is P(V b) = RT. Calculate the fugacity of N2 at 1000 atm and

1000C according to this equation, if b = 39.1 cc per mole.

15. Show that

T,F,n, \s,P fn,
W t ' S,V,n,

16. Amagat measured the molar volume of CO2 at 60C.

Pressure, atm . . 13.01 35.42 53.65 74.68 85.35

Volume, cc . . 2000.0 666.7 400.0 250.0 200.0

16 /. Am. Chem. Soc., 69, 983 (1947).
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Calculate the activity coefficient y = f/P for CO2 at 60C and pressures of

10, 20, 40, and 80 atm.

17. When rt-pentane is passed over an isomerization catalyst at 600 K,

the following reactions occur :

(A) CH3CH2CH2CH2CH3
- CH3CH(CH3)CH2CH3 (B)

- C(CH3)4 (C)

The free energies of formation at 600K are: (A) 33.79, (B) 32.66, (C) 35.08

kcal per mole. Calculate the composition of the mixture when complete

equilibrium is attained.

18. For the reaction 3 CuCl (g)
- Cu3C)3 (g), Brewer and Lofgren [J.

Am. Chem. Soc., 72, 3038 (1950)] found AF - -126,400 - 12.5iriog T
+ 104.7 T. What are the A// and AS of reaction at 2000K? What is the

equilibrium mole fraction of trimer in the gas at 1 atm and 2000K?
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CHAPTER 5

Changes of State

1. Phase equilibria. Among the applications of thermodynamics is the

study of the equilibrium conditions for changes such as the melting of ice,

the solution of sugar, the vaporization of benzene, or the transformation of

monoclinic to rhombic sulfur. Certain fundamental principles are applicable

to all such phenomena, which are examples of "changes in state of aggrega-
tion" or "phase changes."

The word phase is derived from the Greek (pa.ai<t, meaning "appearance."
If a system is "uniform throughout, not only in chemical composition, but

also in physical state,"
1

it is said to be homogeneous, or to consist of only
one phase. Examples are a volume of air, a noggin of rum, or a cake of ice.

Mere difference in shape or in degree of subdivision is not enough to deter-

mine a new phase. Thus a mass of cracked ice is still only one phase.
2

A system consisting of more than one phase is called heterogeneous.

Each physically or chemically different, homogeneous, and mechanically

separable part of a system constitutes a distinct phase. Thus a glassful of

water with cracked ice in it is a two-phase system. The contents of a flask

of liquid benzene in contact with benzene vapor and air is a two-phase

system; if we add a spoonful of sugar (practically insoluble in benzene) we

obtain a three-phase system: a solid, a liquid, and a vapor phase.

In systems consisting entirely of gases, only one phase can exist at equi-

librium, since all gases are miscible in all proportions (unless, of course, a

chemical reaction intervenes, e.g., NH3 + HC1). With liquids, depending on

their mutual miscibility, one, two, or more phases can arise. Many different

solid phases can coexist.

2. Components. The composition of a system may be completely de-

scribed in terms of the "components" that are present in it. The ordinary

meaning of the word "component" is somewhat restricted in this technical

usage. We wish to impose a requirement of economy on our description of

the system. This is done by using the minimum number of chemically distinct

constituents necessary to describe the composition of each phase in the

system. The constituents so chosen are the components. If the concentrations

of the components are stated for each phase, then the concentrations in each

phase of any and all substances present in the system are uniquely fixed.

This definition may be expressed more elegantly by saying that the com-

1
J. Willard Gibbs.

2 This is because we are assuming, at this stage in our analysis, that a variable surface

area has no appreciable effect on the properties of a substance.

QO
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ponents are those constituents whose concentrations may be independently

varied in the various phases.

Consider, for example, a system consisting of liquid water in contact

with its vapor. We know that water is composed of hydrogen and oxygen,
but these elements are always present in fixed and definite proportions. The

system therefore contains one component only.

Another example is the system consisting of calcium carbonate, calcium

oxide, and carbon dioxide. A chemical reaction between these compounds is

possible, CaCO3 CaO + CO2 . In this case, three phases are present,

gaseous CO2 , solid CaCO3 and CaO. Two components are required in order"

to describe the composition of all of these phases, the most suitable choice

being CaO and CO2 .

A less obvious example is the system formed by water and two salts

without a common ion, e.g., H2O, NaCl, KBr. As a result of interaction

between ions in solution four different salts, or their hydrates, may occur in

solid phases, namely NaCl, KBr, NaBr, KC1. In order to specify the com-

position of all possible phases, four components are necessary, consisting of

water and three of the possible salts. This fixes the concentrations of three

of the four ions in any phase, and the fourth is fixed by the requirement of

over-all electrical neutrality.

Careful examination of each individual system is necessary in order to

decide the best choice of components. It is generally wise to choose as com-

ponents those constituents that cannot be converted into one another by
reactions occurring within the system. Thus CaCO3 and CaO would be a

possible choice for the CaCO3 CaO + CO2 system, but a poor choice

because the concentrations of CO2 would have to be expressed by negative

quantities. While the identity of the components is subject to some degree

of choice, the number of components is always definitely fixed for any

given case.

Even the last statement should perhaps be modified, because the actual

choice of the number of components depends on how precisely one wishes

to describe a system. In the water system, there is always some dissociation

of water vapor into hydrogen and oxygen. At moderate temperatures, this

dissociation is of no consequence in any experimental measurements, and to

consider it in deciding the number of components would be unduly scrupu-
lous.3 The precision with which experimental data on the system can be

obtained should be allowed to decide borderline cases.

3. Degrees of freedom. For the complete description of a system, the

numerical values of certain variables' must be reported. These variables are

3
It is worth noting that the mere dissociation of water into hydrogen and oxygen does

not create new components, because the proportion of H2 to O2 is always fixed at 2:1,

since we exclude the possibility that additional H 2 or O2 can be added to the system.
The reason why an extra component, either H2 or O2 , might conceivably be required is

that H 2 and O2 dissolve to different extents in the water, so that their ratio is no longer
fixed at 2:1 in each phase.
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chosen from among the "state functions" of the system, such as pressure,

temperature, volume, energy, entropy, and the concentrations of the various

components in the different phases. Values for all of the possible variables

need not be explicitly stated, for a knowledge of some of them definitely

determines the values of the others. For any complete description, however,

at least one capacity factor is required, since otherwise the mass of the system
is undetermined, and one is not able, for example, to distinguish between a

system containing a ton of water and one containing a few drops.
An important feature of equilibria between phases is that they are in-

dependent of the actual amounts of the phases that may be present.
4 Thus

the vapor pressure of water above liquid water in no way depends on the

volume of the vessel or on whether a few milliliters or many gallons of water

are in equilibrium with the vapor phase. Similarly, the concentration of a

saturated solution of salt in water is a fixed and definite quantity, regardless

of whether a large or a small excess of undissolved salt is present.

In discussing phase equilibria, we therefore need not consider the capacity

factors, which express the absolute bulk of any phase. We consider only the

intensity factors, such as temperature, pressure, and concentrations. Of these

variables a certain number may be independently varied, but the rest are

fixed by the values chosen for the independent variables and by the thermo-

dynamic requirements for equilibrium. The number of the intensive state

variables that can be independently varied without changing the number of

phases is called the number of degrees offreedom of the system, or sometimes

the variance.

For example, the state of a certain amount of a pure gas may be specified

completely by any two of the variables, pressure, temperature, and density.

If any two of these are known, the third can be calculated. This is therefore

a system with iwo degrees of freedom, or a bivariant system.
In the system "water water vapor," only one variable need be specified

to determine the state. At any given temperature, the pressure of vapor in

equilibrium with liquid water is fixed in value. This system has one degree
of freedom, or is said to be univariant.

4. Conditions for equilibrium between phases. In a system containing

several phases, certain thermodynamic requirements for the existence of

equilibrium may be derived.

For thermal equilibrium it is necessary that the temperatures of all the

phases be the same. Otherwise, heat would flow from one phase to another.

This intuitively recognized condition may be proved by considering two

phases a and /? at temperatures ra
,
Tft

. The condition for equilibrium at

constant volume and composition is given on p. 59 as dS 0. Let 5a and

Sft be the entropies of the two phases, and suppose there were a transfer of

heat dq from a to /? at equilibrium.

4 This statement is proved in the next Section. It is true as long as surface area variations

are left out of consideration. (See Chapter 16.)
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Then dS = dS* + dSft = or -
-| + -|

-

whence 7a - 7* (5.1)

For mechanical equilibrium it is necessary that the pressures of all the

phases be the same. Otherwise, one phase would increase in volume at the

expense of another. This condition may be derived from the equilibrium

condition at constant over-all volume and temperature, dA 0. Suppose
one phase expanded into another by 6V. Then

or P - Pft (5.2)

In addition to the conditions given by eqs. (5.1) and (5.2), a condition is

needed that expresses the requirements of chemical equilibrium. Let us con-

sider the system with phases a and ft maintained at constant temperature
and pressure, and denote by n*, /?/*, the numbers of moles of some particular

component / in the two phases. From eq. (3.28) the equilibrium condition

becomes dF 0, or

dF |

- tf*-=0 (5.3)

Suppose that a process occurred by which dn
t
moles of component / were

taken from phase a and added to phase ft. (This process might be a chemical

reaction or a change in aggregation-state.) Then, by virtue of eq. (4.28),

eq. (5.3) becomes
-^

/i f to, + /*//!,
=

or ^ - p* (5.4)

This is the general condition for equilibrium with respect to transport of

matter between phases, including chemical equilibrium between phases. For

any component / in the system, the value of the chemical potential /^ must

be the same in every phase.
An important symmetry between the various equilibrium conditions is

apparent in the following summary:

Capacity Intensity Equilibrium

factor factor condition

S T T* = TP

V P P = Pft

5. The phase rule. Between 1875 and 1878, Josiah Willard Gibbs, Pro-

fessor of Mathematical Physics at Yale University, published in the Trans-

actions of the Connecticut Academy of Sciences a series of papers entitled

"On the Equilibrium of Heterogeneous Substances." In these papers Gibbs

disclosed the entire science, of heterogeneous equilibrium with a beauty and

preciseness never before and seldom since seen in thermodynamic studies.
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Subsequent investigators have had little to do save to provide experimental
illustrations for Gibbs's equations.

The Gibbs phase rule provides a general relationship among the degrees
of freedom of a system/, the number of phases /?,

and the number of com-

ponents c. This relationship always is

f^c-p + 2 (5.5)

The derivation proceeds as follows:

The number of degrees of freedom is equal to the number of intensive

variables required to describe a system, minus the number that cannot be

independently varied. The state of a system containing p phases and c com-

ponents is specified at equilibrium if we specify the temperature, the pressure,

and the amounts of each component in each phase. The total variables

required in order to do this are therefore pc -\- 2.

Let n* denote the number of moles of a component / in a phase a. Since

the size of the system, or the actual amount of material in any phase, does

not affect the equilibrium, we are really incerested in the relative amounts of

the components in the different phases and not in their absolute amounts.

Therefore, instead of the mole numbers n* 9 the mole fractions X? should be

used. These are given by

For each phase, the sum of the mole fractions equals unity.

Xf + X,' + AV [-... -+ X? = 1

or 2 X>" =- 1 (5-6)
I

If all but one mole fraction are specified, that one can be calculated from

eq. (5.6). If there are/? phases, there are/? equations similar to eq. (5.6), and

therefore p mole fractions that need not be specified since they can be cal-

culated. The total number of independent variables to be specified is thus

pc + 2 p or p(c 1) + 2.

At equilibrium, the eqs. (5.4) impose a set of further restraints on the

system by requiring that the chemical potentials of each component be the

same in every phase. These conditions are expressed by a set of equations
such as :

V* = fit = /*!"
= ...

^ -^ = ^ -
-

'

- (5.7)

Each equality sign in this set of equations signifies a condition imposed on
the system, decreasing its variance by one. Inspection shows that there are

therefore c(p 1) of these conditions.
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The degrees of freedom equal the total required variables minus the

restraining conditions. Therefore

f-=p(c- l) + 2-c(/>- 1)

f=c-p + 2 (5.8)

6. Systems of one component water. In the remainder of this chapter,

systems of one component will be considered. These systems comprise the

study of the conditions of equilibrium in changes in the state of aggregation
of pure substances.

From the phase rule, when c* !,/= 3
/?,

and three different cases

are possible:

p ^
l,/

r - 2 bivariant system

p --= 2,f^= 1 univariant system

p _z_- 3,/ invariant system

These situations may be illustrated by the water system, with its three

familiar phases, ice, water, and steam. Since the maximum number of degrees

of freedom is two, any one-component system can be represented by a two-

dimensional diagram. The most convenient variables are the pressure and

the temperature. The water system is shown in Fig. 5.1.

.0075 100
TEMPERATURE - *C

374

Fig. 5.1. The water system schematic. (Not drawn to scale.)

The diagram is divided into three areas, the fields of existence of ice,

water, and steam. Within these single-phase areas, the system is bivariant,

and pressure and temperature may be independently varied.
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Separating the areas are lines connecting the points at which two phases

may coexist at equilibrium. Thus the curve AC dividing the liquid from the

vapor region is the familiar vapor-pressure curve of liquid water. At any

given temperature there is one and only one pressure at which water vapor
is in equilibrium with liquid water. The system is univariant, having one

degree of freedom. The curve AC has a natural upper limit at the point C,

which is the critical point, beyond which the liquid phase is no longer

distinguishable from the vapor phase.

Similarly, the curve AB is the sublimation-pressure curve of ice, giving

the pressure of water vapor in equilibrium with solid ice, and dividing the

ice region from the vapor region.

The curve AD divides the solid-ice region from the liquid-water region.

It shows how the melting temperature of ice or the freezing temperature of

water varies with the pressure. It is still an open question whether such

curves, at sufficiently high pressures, ever have a natural upper limit beyond
which solid and liquid are indistinguishable.

These three curves intersect at a point A, at which solid, liquid, and vapor
are simultaneously at equilibrium. This point, which occurs at 0.0075C and

4.579 mm pressure, is called a triple point. Since three phases coexist, the

system is invariant. There are no degrees of freedom and neither pressure

nor temperature can be altered even slightly without causing the disappear-
ance of one of the phases.

It should be noted that this triple point is not the same as the ordinary

melting point of ice, which by definition is the temperature at which ice and

water are in equilibrium under an applied pressure of 1 atm or 760 mm.
This temperature is, by definition, 0C.

Liquid water may be cooled below its freezing point without solidifying.

In AE we have drawn the vapor-pressure curve of this supercooled water,

which is a continuous extension of curve AC. It is shown as a dotted line

on the diagram since it represents a metastable system. Note that the meta-

stable vapor pressure of supercooled water is higher than the vapor pressure
of ice.

The slope of the curve A D, the melting-point curve, is worth remarking.
It shows that the melting point of ice is decreased by increasing pressure.

This is a rather unusual behavior; only bismuth and antimony among
common substances behave similarly. These substances expand on freezing.

Therefore the Le Chatelier principle demands that increasing the pressure
should lower the melting point. The popularity of ice skating and the flow

of glaciers are among the consequences of the peculiar slope of the melting

point curve for ice. For most substances, the density of the solid is greater

than that of the liquid, and by Le Chatelier's principle, increase in pressure

raises the melting point.

7. The Clapeyron-CIausius equation. There are two fundamental theoreti-

cal equations that govern much of the field of phase equilibrium. The first
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is the Gibbs phase rule, which determines the general pattern of the phase

diagram. The second is the Clapeyron-Clausius equation, which determines

the slopes of the lines in the diagram. It is a quantitative expression for the

Le Chatelier principle as it applies to heterogeneous systems. First proposed

by the French engineer Clapeyron in 1834, it was placed on a firm thermo-

dynamic foundation by Clausius, some thirty years later.

From eq. (5.4) the condition for equilibrium of a component / between

two phases, a and /7, is ju^
-=

///. For a system of one component, the

chemical potentials // are identical with the free energies per mole F, so that

F* Fft at equilibrium. Consider two different equilibrium states, at slightly

separated temperatures and pressures :

(1) T,P, F* - Fft
.

(2) T + dT, P + dP, F* + dF* - Fft
\- dF?.

It follows that dF* - dFfl

. The change in F with T and P is given by

eq. (3.29), dF = V dP - S dT. Therefore, V dP - 5a dT - V& dP - S? dT9 or

dP_S'-S^AS
dT VP - Ka AK ^ ' '

If the heat of the phase transformation is /I, AS is simply A/T where T
is the temperature at which the phase change is occurring. The Clapeyron-
Clausius equation is now obtained as

^ - -A (5 10)
dT (5 ' 10)

This equation is applicable to any change of state: fusion, vaporization,

sublimation, and changes between crystalline forms, provided the appro-

priate latent heat is employed.
In order to integrate the equation exactly, it would be necessary to know

both X and AK as functions of temperature and pressure.
5 The latter corre-

sponds to a knowledge of the densities of the two phases over the desired

temperature range. In most calculations over short temperature ranges,

however, both X and AKmay be taken as constants.

In the case of the change "liquid ^ vapor," several approximations are

possible, leading to a simpler equation than eq. (5.10),

dT

Neglecting the volume of the liquid compared with that of the vapor, and

assuming ideal gas behavior for the latter, one obtains

d In P _ Avap

~W =
Kf* (5 ' 12)

6 A good discussion of the temperature variation of A is given by Guggenheim, Modern

Thermodynamicsy p. 57. The variation with pressure of A and A Kis much less than that with

temperature.
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A similar equation would be a good approximation for the sublimation

curve.

Just as was shown for eq. (3.36), this may also be written

wTn
=
~R (5 - 13)

If the logarithm of the vapor pressure is plotted against 1/r, the slope of

the curve at any point multiplied by R yields a value for the heat of vapori-

zation. In many cases, since X is effectively constant over short temperature

ranges, a straight-line plot is obtained. This fact is useful to remember in

extrapolating vapor pressure data.

When A is taken as constant, the integrated form of eq. (5.12) is

ln

-h -*(?-) (5 - 14)

An approximate value for A
vap

can often be obtained from Troutorfs

Rule (1884):

^ & 22 cal deg"
1 mole" 1

The rule is followed fairly well by many nonpolar liquids (Sec. 14-8). It is

equivalent to the statement that the entropy of vaporization is approximately
the same for all such liquids.

8. Vapor pressure and external pressure. It is of interest to consider the

effect of an increased hydrostatic pressure on the vapor pressure of a liquid.

Let us suppose that an external hydrostatic pressure Pp is imposed on a

liquid of molar volume Vv Let the vapor pressure be P, and the molar

volume of the vapor V
g

. Then at equilibrium at constant temperature:

</F
vap

= rfF
llq

or Vg dP - V, dPe

or ~ Vl
(5.15)

dl f V
fl

This is sometimes called the Gibbs equation. If the vapor is an ideal gas, this

equation becomes

"(-.SrH
Since the molar volume of the liquid does not vary greatly with pressure,

this equation may be integrated approximately, assuming constant V
t

:

n \r f n n '\

In theory, one can measure the vapor pressure of a liquid under an

applied hydrostatic pressure in only two ways: (1) with an atmosphere of

"inert" gas; (2) with an ideal membrane semipermeable to the vapor. In
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practice, the inert gas will dissolve in the liquid, so that the application of

the Gibbs equation to the problem is dubious. The second case is treated in

the theory of osmotic pressure.

As an example of the use of eq. (5.16), let us calculate the vapor pressure of

mercury under an external pressure of 1000 atm at 100C. The density is

13.352 gem-3
; hence V,

= M/p = 200.61/13.352 - 15.025 cm3
, and

Pl 15.025(1000-1)
In

>l

=
lilQrx 373.2

Therefore, Pi/P2
= 1.633. The vapor pressure at 1 atm is 0.273 mm, so that

the calculated vapor pressure at 1000 atm is 0.455 mm.
9. Experimental measurement of vapor pressure. Many different experi-

mental arrangements have been employed in vapor-pressure measurements.

One of the most convenient static methods is the Smith-Menzies isoteniscope

shown in Fig. 5.2. The bulb and short attached U-tube are filled with the

TO AIR

THERMOMETER

ISOTENISCOPE

TO VACUUM

BALLAST
VOLUME

THERMOSTAT MANOMETER

Fig. 5.2. Vapor pressure measurement with isoteniscope.

liquid to be studied, which is allowed to boil vigorously until all air is re-

moved from the sample side of the U-tube. At each temperature the external

pressure is adjusted until the arms of the differential U-tube manometer are

level, and the pressure and temperature are then recorded.

The gas-saturation method was used extensively by Ramsay and Young.
An inert gas is passed through the liquid maintained in a thermostat. The

volume of gas used is measured, and its final vapor content or the loss in

weight of the substance being studied is determined. If care is taken to ensure

saturation of the flowing gas, the vapor pressure of the liquid may readily

be calculated.

Some experimentally measured vapor pressures are collected6 in

Table 5.1.

6 A very complete compilation is given by D. R. Stull, Ind. Eng. Chem., 39, 517-550

(1947).
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TABLE 5.1

TYPICAL VAPOR PRESSURE DATA
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10. Solid-solid transformations the sulfur system. Sulfur provides the

classical example of a one-component system displaying a solid-solid trans-

formation. The phenomenon of polymorphism, discovered by Mitscherlich

in 1821, is the occurrence of the same chemical substance in two or

more different crystalline forms. In the case of elements, it is called

aIlotropy.

Sulfur occurs in a low-temperature rhombic form and a high-temperature
monoclinic form. The phase diagram for the system is shown in Fig. 5.3.

The pressure scale in this diagram has been made logarithmic in order to

bring the interesting low-pressure regions into prominence.
The curve AB is the vapor-pressure curve of solid rhombic sulfur. At

point B it intersects the vapor-pressure curve of monoclinic sulfur BE, and

also the transformation curve for rhombic-monoclinic sulfur, BD. This inter-

section determines the triple point B, at which rhombic and monoclinic sulfur

and sulfur vapor coexist. Since there are three phases and one component,

f= c p-^-2 3 3 0, and point B is an invariant point. It occurs at

0.01 mm pressure and 95.5C.

The density of monoclinic sulfur is less than that of rhombic sulfur, and

therefore the transition temperature (Sr ^ Sm) increases with increasing

pressure.

Monoclinic sulfur melts under its own vapor pressure of 0.025 mm at

120C, the point E on the diagram. From E to the critical point F there

extends the vapor-pressure curve of liquid sulfur EF. Also from , there

extends the curve ED, the melting-point curve of monoclinic sulfur. The

density of liquid sulfur is less than that of the monoclinic solid, the usual

situation in a solid-liquid transformation, and hence ED slopes to the right

as shown. The point E is a triple point, Sm-Sliq
-S

vap .

The slope of BD is greater than that of ED, so that these curves intersect
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at Z), forming a third triple point on the diagram, Sf-Sm-Sllq
. This occurs at

155 and 1290atm. At pressures higher than this, rhombic sulfur is again
the stable solid form, and DG is the melting-point curve of rhombic sulfur

in this high-pressure region. The range of stable existence of monoclinic

sulfur is confined to the totally enclosed area BED.
Besides the stable equilibria represented by the solid lines, a number of

metastable equilibria are easily observed. If rhombic sulfur is heated quite

rapidly, it will pass by the transition point B without change and finally melt

10'

IO

10

10*

RHOMBIC

80 90 100 110 120 130 140 150 160
TEMPERATURE

Fig. 5.3. The sulfur system.

to liquid sulfur at 1 14C (point //). The curve BH is the metastable vapor-

pressure curve of rhombic sulfur, and the curve EH is the metastable vapor

pressure curve of supercooled liquid sulfur. Extending from H to D is the

metastable rhombic melting-point curve. Point H is a metastable triple point,
S r-Sliq

-Svap .

All these metastable equilibria are quite easily studied because of the

extreme sluggishness that characterizes the rate of attainment of equilibrium
between solid phases.

In this discussion of the sulfur system, the well-known equilibrium
between SA and S

/4
in liquid sulfur has not been taken into consideration. If

this occurrence of two distinct forms of liquid sulfur is considered, the sulfur
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system can no longer be treated as a simple one-component system, but

becomes a "pseudobinary" system.
7

11. Enantiotropism and monotropism. The transformation of monoclinic

to rhombic sulfur under equilibrium conditions of temperature and pressure

is perfectly reversible. This fact is, of course, familiar, since the transforma-

tion curve represents a set of stable equilibrium conditions. Such a change
between two solid forms, occurring in a region of the phase diagram where

both are stable, is called an enantiotropic change.

On the other hand, there are cases in which the transformation of one

solid form to another is irreversible. The classical example occurs in the

VAPOR

ENANTIOTROPISM

VAPOR

MONOTROPISM

T

Fig. 5.4. Enantiotropic and monotropic changes.

phosphorus system, in the relations between white (cubic) phosphorus and

violet (hexagonal) phosphorus. When white phosphorus is heated, trans-

formation into violet phosphorus occurs at an appreciable rate at tem-

peratures above 260; but solid violet phosphorus is never observed to

change into solid white phosphorus under any conditions. In order to obtain

white phosphorus, it is necessary to vaporize the violet variety, whereupon
the vapor condenses to white phosphorus.

Such an irreversible solid-state transformation is called a monotropic

change. It may be characterized by saying that one form is metastable with

respect to the other at all temperatures up to its melting point. The situa-

tion is shown schematically in Fig. 5.4. The transition point (metastable)

between the two solid forms in this case lies above the melting point of

either form.

7 If SA and S^ came to equilibrium quickly when the T or P of the liquid was changed,
the sulfur system would still have only one component (unary system) as explained in foot-

note 3. If SA and S^ were present in fixed proportions, which did not change with rand P,

because the time of transformation was very long compared with the time of the experiment,
the sulfur system would have two components (binary system). In fact it appears that the

time of transformation is roughly comparable with the time of most experiments, so that

the observed behavior is partly unary and partly binary, being called "pseudobinary."
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Actually, the phosphorus case is complicated by the occurrence of several

molecular species, P2 ,
P4 ,

P% , and so on, so that considerations based on a

one-component system must be applied with caution.

12. Second-order transitions. The usual change of state (solid to liquid,

liquid to vapor, etc.) is called & first-order transition. At the transition tem-

perature Tt
at constant pressure, the free energies of the two forms are equal,

but there is a discontinuous change in the slope of the F vs. T curve for the

substance at T
t

. Since (3F/3T) S, there is therefore a break in the

S vs. T curve, the value of AS at T
t being related to the observed latent heat

for the transition by AS = XjTt
. There is also a discontinuous change in

volume AF, since the densities of the two forms are not the same.

A number of transitions have been studied in which no latent heat or

density change can be detected. Examples are the transformation of certain

metals from ferromagnetic to paramagnetic solids at their Curie points, the

transition of some metals at low temperatures to a condition of electric

superconductivity, and the transition observed in helium from one liquid

form to another. 8 In these cases, there is a change in slope, but no dis-

continuity, in the S vs. T curve at T
t

. As a result, there is a break ACP in

the heat capacity curve, since Cp
= T(dS/dT)r . Such a change is called a

second-order transition.

13. High-pressure studies. It is only a truism that our attitude toward

the physical world is conditioned by the scale of magnitudes provided in

our terrestrial environment. We tend, for example, to classify pressures or

temperatures as high or low by comparing them with the fifteen pounds per

square inch and 70F of a spring day in the laboratory, despite the fact that

almost all the matter in the universe exists under conditions very different

from these. Thus, even at the center of the earth, by no means a large astro-

nomical body, the pressure is around 1,200,000 atm, and substances at this

pressure would have properties quite unlike those to which we are accus-

tomed. At the center of a comparatively small star, like our sun, the pressure

would be around ten billion atmospheres.
The pioneer work of Gustav Tammann on high-pressure measurements

has been greatly extended over the past twenty years by P. W. Bridgman
and his associates at Harvard. Pressures up to 400,000 atm have been

achieved and methods have been developed for measuring the properties of

substances at 100,000 atm. 9

The attainment of such pressures has been made possible by the con-

struction of pressure vessels of alloys such as Carboloy, and by the use of a

multiple-chamber technique. The container for the substance to be studied

is enclosed in another vessel, and pressure is applied both inside and outside

the inner container, usually by means of hydraulic presses. Thus although

8 W. H. Keesom, Helium (Amsterdam: Elsevier, 1942).
* For details see P. W. Bridgman, The Physics of High Pressures (London: Bell & Co.,

1949), and his review article, Rev. Mod. Phys., 18, 1 (1946).
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the absolute pressure in the inner vessel may be 100,000 atm, the pressure
differential that its walls must sustain is only 50,000 atm.

High-pressure measurements on water yielded some of the most inter-

esting results, which are shown in the phase diagram of Fig. 5.5. The melting

point of ordinary ice (ice I) falls on compression, until a value of 22.0C
is reached at 2040 atm. Further increase in pressure results in the transforma-

tion of ice I into a new modification, ice III, whose melting point increases

9000

8000-

7000 -

6000 -

5000 -

1 4000 -

3000-

2000 -

1000 -

-20 20
TEMPERATURE -*C

Fig. 5.5. Water system at high pressures.

with pressure. Altogether six different polymorphic forms of ice have been

found. There are six triple points shown on the water diagram. Ice VII is an

extreme high-pressure form not shown on the diagram; at a pressure of

around 20,000 atm, liquid water freezes to ice VII at about 100C. Ice IV is

not shown. Its existence was indicated by the work of Tammann, but it was

not confirmed by Bridgman.

PROBLEMS

1. From the following data, roughly sketch the phase diagram for carbon

dioxide: critical point at 31C and 73 atm; triple point (solid-liquid-vapor)

at 57 and 5.3 atm; solid is denser than liquid at the triple point. Label

all regions on the diagram.

2. Roughly sketch the phase diagram of acetic acid, from the data:

(a) The low-pressure a form melts at 16.6C under its own vapor pressure

of 9. 1 mm.
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(b) There is a high-pressure /? form that is denser than the a, but both

a and /? are denser than the liquid.

(c) The normal boiling point of liquid is 1 18C.

(d) Phases a, /?, liquid are in equilibrium at 55C and 2000 atm.

3. Sketch the liquid-solid regions of the phase diagram of urethane.

There are three solid forms, a, /?, y. The triple points and the volume changes

AF in cc per kg at the triple points are as follows:

(a) liq, a, /? P - 2270 atm / - 66C AK (I
-

a) = 25.3

(I
-

ft - 35.5

(a _ ft ^ 10.2

(b) liq, ft y P - 4090 atm / - 77C A V: (I
-

ft)
= 18.4

(1
-

y) - 64.0

0?
-

y)
- 45.6

(c) a, /?, y - P = 3290 atm / - 25.5C A K: (a
-

ft - 9.2

(/?
-

y)
- 48.2

(a
-

y) - 57.4

4. The density />
of ice at 1 atm and 0C is 0.917 g per cc. Water under

the same conditions has p -=--

l.OOOg per cc. Estimate the melting point of

ice under a pressure of 400 atm assuming that p for both ice and water is

practically constant over the temperature and pressure range.

5. Bridgman found the following melting points / (C) and volume

changes on melting AK(cc per g) for Na:

P, kg/cm
2

. 1 2000 4000 6000

/ . 97.6 114.2 129.8 142.5

AK . . 0.0279 0.0236 0.0207 0.0187

Estimate the heat of fusion of sodium at 3000 atm.

6. Estimate the vapor pressure of mercury at 25C assuming that the

liquid obeys Trouton's rule. The normal boiling point is 356.9C.

7. The vapor pressure of solid iodine is 0.25 mm and its density 4.93 at

20C. Assuming the Gibbs equation to hold, calculate the vapor pressure of

iodine under a 1000-atm argon pressure.

8. In a determination of the vapor pressure of ethyl acetate by the gas

saturation method 100 liters of nitrogen (STP) were passed through a

saturator containing ethyl acetate at 0C, which lost a weight of 12.8g.

Calculate vapor pressure at 0C.

9. The vapor pressures of liquid gallium are as follows:

/, C . 1029 1154 1350

P, mm . . 0.01 0.1 1.0

Calculate A//, AF, and AS for the vaporization of gallium at 1154C.

10. At 25C, the heat of combustion of diamond is 94.484 kcal per mole

and that of graphite is 94.030. The molar entropies are 0.5829 and 1.3609 cal

per deg mole, respectively. Find the AFfor the transition graphite -> diamond

at 25C and 1 atm. The densities are 3.513 g per cc for diamond and 2.260
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for graphite. Estimate the pressure at which the two forms would be in

equilibrium at 25C. You may assume the densities to be independent of

pressure.

11. Sketch graphs of F, S, V, Q> against T at constant P, and P at

constant T, for typical first- and second-order phase transitions.

12. From the data in Table 5.1, plot log P vs. T~ l for water and calculate

the latent heats of vaporization of water at 20 and at 80C.
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CHAPTER 6

Solutions and Phase Equilibria

1. The description of solutions. As soon as systems of two or more com-

ponents are studied, the properties of solutions must be considered, for a

solution is by definition any phase containing more than one component.
This phase may be gaseous, liquid, or solid. Gases are in general miscible

in all proportions, so that all mixtures of gases, at equilibrium, are solutions.

Liquids often dissolve a wide variety of gases, solids, or other liquids, and

the composition of these liquid solutions can be varied over a wide or narrow

range depending on the particular solubility relationships in the individual

system. Solid solutions are formed when a gas, a liquid, or another solid

dissolves in a solid. They are often characterized by very limited concentra-

tion ranges, although pairs of solids are known, for example copper and

nickel, that are mutually soluble in all proportions.
It is often convenient in discussing solutions to call some components

the solvents and others the solutes. It should be recognized, however, that

the only distinction between solute and solvent is a verbal one, although the

solvent is usually taken to be the constituent present in excess.

The concentration relations in solutions are expressed in a variety of

units. The more important of these are summarized in Table 6.1.

TABLE 6.1

CONCENTRATION OF SOLUTIONS

2. Partial molar quantities: partial molar volume. The equilibrium prop-
erties of solutions are described in terms of the thermodynamic state func-

tions, such as P, T, K, ", 5, F, //. One of the most important problems in

the theory of solutions is how these properties depend on the concentrations

of the various components. In discussing this question, it will be assumed

that the solution is kept at constant over-all pressure and temperature.
Consider a solution containing nA moles of A and nB moles of B. Let the

volume of the solution be K, and assume that this volume is so large that



Sec. 2] SOLUTIONS AND PHASE EQUILIBRIA 117

the addition of one extra mole of A or of B does not change the concentration

of the solution to an appreciable extent. The change in volume caused by

adding one mole of A to this large amount of solution is then called the

partial molar volume of A in the solution at the specified pressure, tempera-

ture, and concentration, and is denoted by the symbol VA . It is the change
of volume K, with moles of A, nA ,

at constant temperature, pressure; and

moles of B, and is therefore written as

One reason for introducing such a function is that the volume of a

solution is not, in general, simply the sum of the volumes of the individual

components. For example, if 100ml of alcohol are mixed at 25C with

100 ml of water, the volume of the solution is not 200 ml, but about 190 ml.

The volume change on mixing depends on the relative amount of each

component in the solution.

\fdnA moles of A and dnB moles of B are added to a solution, the increase

in volume at constant temperature and pressure is given by the complete

differential,

-(")*, + () *.
A'*M WB'*A

or dV --= VA dnA + Pyy dntt (6.2)

This expression can be integrated, which corresponds physically to increasing

the volume of the solution without changing its composition, VA and Vn
hence being held constant. 1 The result is

V = VAnA + VBnB (6.3)

This equation tells us that the volume of the solution equals the number of

moles of A times the partial molar volume of A, plus the number of moles

of B times the partial molar volume of B.

On differentiation, eq. (6.3) yields

<*V= VA dnA + nA d?A + VB dnB + nB dVB

By comparison with eq. (6.2), it follows that

or dVA - - dVB (6.4)
nA

Equation (6.4) is one example of the Gibbs-Duhem equation. This par-

ticular application is in terms of the partial molar volumes, but any other

1

Mathematically, the integration is equivalent to the application of Euler's theorem to

the homogeneous differential expression. See D. V. Widder, Advanced Calculus (New York:

Prentice-Hall, 1947), p. 15.
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partial molar quantity may be substituted for the volume. These partial

molar quantities can be defined for any extensive state function. For example:

Sl . a
.

WA'T,I',H.' ' n

The partial molar quantities are themselves intensity factors, since they
are capacity factors per mole. The partial molar free energy is the chemical

potential /i.

All the thermodynamic relations derived in earlier chapters can be

applied to the partial molar quantities. For example:

/v' (6 ' 5)

The general thermodynamic theory of solutions is expressed in terms of

these partial molar functions and their derivatives just as the theory for

pure substances is based on the ordinary thermodynamic functions.

3. The determination of partial molar quantities. The evaluation of the

partial quantities will now be described, using the partial molar volume as

an example. The methods for ffA , SA , FA9 and so on, are exactly similar.

The partial molar volume VA , defined by eq. (6.1), is equal to the slope

of the curve obtained when the volume of the solution is plotted against the

molal concentration of A. This follows since the molal concentration mA is

the number of moles of A in a constant quantity, namely 1000 grams, of

solvent B.

The determination of partial molar volumes by this slope method is

rather inaccurate; the method of intercepts is therefore usually preferred. To

employ this method, a quantity is defined, called the molar volume of the

solution v, which is the volume of the solution divided by the total number

of moles of the various constituents. For a two-component solution:

"A + "B

Then, Y = v (nA + nB)

and PA =

Now the derivative with respect to mole number of A, nA , is transformed

into a derivative with respect to mole fraction of B, XB .

dv

since XK = ^> 1^1 =- JL
("A + '



Sec. 3] SOLUTIONS AND PHASE EQUILIBRIA 119

Thus eq. (6.6) becomes : VA = v

V

nB dv

nA + ns dXB

x
dv

AB Ti7~ (6.7)

The application of this equation is illustrated in Fig. 6.1, where v for a

solution is plotted against the mole fraction. The slope S^ is drawn tangent
to the curve at point P, corresponding to a definite mole fraction XB

'

. The

line ^iA 2 is drawn through P parallel to O^O2 . Therefore the distance

Si

2

XB i

MOLE FRACTION OF B-XB

Fig. 6.1. Determination of partial molar volumes intercept method.

OlA l v, the molar volume corresponding to XB . The distance SlA l is

equal to the slope at XB multiplied by XB , i.e., to the term in eq. (6.7),

Xn (dv/dXB). It follows that O^ = OlA l Sl
A

l equals VA , the partial

molar volume of A in the solution. It can readily be shown that the intercept
on the other axis, O252 , is the partial molar volume of B, PB . This con-

venient intercept method is the one usually used to determine partial molar

quantities. It is not restricted to volumes, but can be applied to any extensive

state function, 5, H, E, F9 and so on, given the necessary data. It can also

be applied to heats of solution, and the partial molar heats of solution so

obtained are the same as the differential heats described in Chapter 2.

If the variation with concentration of a partial molar quantity is known
for one component in a binary solution, the Gibbs-Duhem equation (6.4)

permits the calculation of the variation for the other component. This cal-

culation can be accomplished by graphical integration of eq. (6.4). For

example:
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where X is the mole fraction. If XB\XA is plotted against Vn , the area under

the curve gives the change in VA between the upper and lower limits of

integration. The VA of pure A is simply the molar volume of pure A, and

this can be used as the starting point for the evaluation of VA at any other

concentration.

4. The ideal solution Raoult's Law. The concept of the "ideal gas" has

played a most important role in discussions of the thermodynamics of gases

and vapors. Many cases of practical interest are treated adequately by means

of the ideal gas approximations, and even systems deviating largely from

ideality are conveniently referred to the norm of behavior set by the ideal

case. It would be most helpful to find some similar concept to act as a guide
in the theory of solutions, and fortunately this is indeed possible. Because

they are very much more condensed than gases, liquid or solid solutions

cannot be expected to behave ideally in the sense of obeying an equation of

state such as the ideal gas law. Ideality in a gas implies a complete absence

of cohesive forces; the internal pressure, (3E/c>V)T 0. Ideality in a solution

is defined by complete uniformity of cohesive forces. If there are two com-

ponents A and B, the forces between A and A, B and /?, and A and B are

all the same.

A property of great importance in the discussion of solutions is the vapor

pressure of a component above the solution. This partial vapor pressure

may be taken as a good measure of the escaping tendency of the given species

from the solution. The exact measure of this escaping tendency is the fugacity,

which becomes equal to the partial pressure when the vapor behaves as an

ideal gas. The tendency of a component to escape from solution into the

vapor phase is a very direct reflection of the physical state of affairs within

the solution,
2 so that by studying the escaping tendencies, or partial vapor

pressures, as functions of temperature, pressure, and concentration, we

obtain a description of the properties of the solution.

This method is a direct consequence of the relation between chemical

potential and fugacity. If we have a solution, say of A and J9, the chemical

potential of A in the solution must be equal to the chemical potential of A
in the vapor phase. This is related to the fugacity by eq. (4.31), since

If we know the pressure, the temperature, and the chemical potentials of

the various components, we then have a complete thermodynamic descrip-

tion of a system, except for the absolute amounts of the various phases. The

partial vapor pressures are important because they are an approximate
indication of the chemical potentials.

A solution is said to be ideal if the escaping tendency of each component

2 One may think of an analogy in which a nation represents a solution and its citizens

the molecules. If life in the nation is a good one, the tendency to emigrate will be low. This

presupposes, of course, the absence of artificial barriers.
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is proportional to the mole fraction of that component in the solution. It is

helpful to look at this concept from a molecular point of view. Consider an

ideal solution of A and B. The definition of ideality then implies that a

molecule of A in the solution will have the same tendency to escape into the

vapor whether it is surrounded entirely by other A molecules, entirely by
B molecules, or partly by A and partly by B molecules. This means that the

intermolecular forces between A and A, A and B, and B and B, are all

essentially the same. It is immaterial to the behavior of a molecule what

sort of neighbors it has. The escaping tendency of component A from such
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Fig. 6.2. Pressures of vapors above solutions of ethylene bromide and

propylene bromide at 85C. The solutions follow Raoult's Law.

an ideal solution, as measured by its partial vapor pressure, is accordingly
the same as that from pure liquid A, except that it is proportionately reduced

on account of the lowered fraction of A molecules in the solution.

This law of behavior for the ideal solution was first given by Francois

Marie Raoult in 1886, being based on experimental vapor-pressure data. It

can be expressed as

PA = *A PA (6-9)

Here PA is the partial vapor pressure of A above a solution in which its

mole fraction is XA , and PA is the vapor pressure of pure liquid A at the

same temperature.
If the component B added to pure A lowers the vapor pressure, eq. (6.9)

can be written in terms of a relative vapor pressure lowering,

(6.10)
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This form of the equation is especially useful for solutions of a relatively

involatile solute in a volatile solvent.

The vapor pressures of the system ethylene bromide propylene bromide

are plotted in Fig. 6.2. The experimental results almost coincide with the

theoretical curves predicted by eq. (6.9). The agreement with Raoult's Law
in this instance is very close.

Only in exceptional cases are solutions found that follow Raoult's Law

closely over an extended range of concentrations. This is because ideality

in solutions implies a complete similarity of interaction between the com-

ponents, which can rarely be achieved.

This equality of interaction leads to two thermodynamic conditions:

(1) there can be no heat of solution; (2) there can be no volume change on

mixing. Hence, AF80lution
- and A//80hltion - 0.

5. Equilibria in ideal solutions. If we wish to avoid the assumption that

the saturated vapor above a solution behaves as an ideal gas, Raoult's Law

may be written

fA~XA ft (6.11)

where/4 and/jj' are the fugacities of A in the solution, and in pure A. It is

evident from eq. (6.8) that

dp -- RTd\nfA RTd\nXA (6.12)

Then, following the sort of development given in Section 4-5, one obtains

for the equilibrium constant in an ideal solution

-AF --= RT\r\Kx

with K<'-'r* (6 ' 13)
AA AB

for the typical case.

6. Henry's Law. Consider a solution of component B, which may be

called the solute, in A 9 the solvent. If the solution is sufficiently diluted, a

condition ultimately is attained in which each molecule of B is effectively

completely surrounded by component A. The solute B is then in a uniform

environment irrespective of the fact that A and B may form solutions that

are far from ideal at higher concentrations.

In such a very dilute solution, the escaping tendency of B from its uniform

environment is proportional to its mole fraction, but the proportionality

constant k no longer is P#. We may write

PB - kXB (6.14)

This equation was established and extensively tested by William Henry
in 1803 in a series of measurements of the pressure dependence of the solu-

bility of gases in liquids. Some results of this type are collected in Table 6.2.

The fc's are almost constajit, so that Henry's Law is nearly but not exactly

obeyed.
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TABLE 6.2

THE SOLUBILITY OF GASES IN WATER (ILLUSTRATING HENRY'S LAW PB = kXB, THE GAS
PRESSURE BEING IN ATM AND XB BEING THE MOLE FRACTION)

As an example, let us calculate the volume of oxygen (at STP) dissolved

in 1 liter of water in equilibrium with air at 23. From eq. (6.14) the mole

fraction of O2 is Xn = P#/k. Since PB = 0.20, and from the table k =
4.58 x 104 ,

Xn - 4.36 x 10~6 . In 1 liter of H2O there are 1000/18 =
55.6 moles. Thus XR nnl(nu + 55.6), or nB = 2A3 x 10~4

. This number

of moles of oxygen equals 5.45 cc at STP.

Henry's Law is not restricted to gas-liquid systems, but is followed by a

wide variety of fairly dilute solutions and by all solutions in the limit of

extreme dilution.

7. Two-component systems. For systems of two components the phase

rule, /= c p + 2, becomes/= 4 p. The following cases are possible:

p ^= [
, / ^ 3 trivariant system

p 2, / 2 bivariant system

p 3, f= 1 univariant system

p = 4, f~ invariant system

The maximum number of degrees of freedom is three. A complete

graphical representation of a two-component system therefore requires a

three-dimensional diagram, with coordinates corresponding to pressure,

temperature, and composition. Since a three-dimensional representation is

usually inconvenient, one variable is held constant while the behavior of

the other two is plotted. In this way, plane graphs are obtained showing

pressure vs. composition at constant temperature, temperature vs. com-

position at constant pressure, or pressure vs. temperature at constant

composition.
8. Pressure-composition diagrams. The example of a (P-X) diagram in

Fig. 6.3a shows the system ethylene bromide-propylene bromide, which obeys
Raoiilt's Law quite closely over the entire range of compositions. The

straight upper line represents the dependence of the total vapor pressure
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above the solution on the mole fraction in the liquid. The curved lower line

represents the dependence of the pressure on the composition of the vapor.
Consider a liquid of composition X2 at a pressure P2 (point C on the

diagram). This point lies in a one-phase region, so there are three degrees of

freedom. One of these degrees is used by the requirement of constant tem-

perature for the diagram. Thus for any arbitrary composition X2 , the liquid

solution at constant T can exist over a range of different pressures.

As the pressure is decreased along the dotted line of constant com-

position, nothing happens until the liquidus curve is reached at B. At this

point liquid begins to vaporize. The vapor that is formed is richer than the
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Fig. 6.3b. Temperature-composition
fraction) diagram for system obeying diagram for system obeying Raoult's

Raoult's Law. Law.

liquid in the more volatile component, ethylene bromide. The composition
of the first vapor to appear is given by the point A on the vapor curve.

As the pressure is further reduced below B, a two-phase region on the

diagram is entered. This represents the region of stable coexistence of liquid

and vapor. The dotted line passing horizontally through a typical point D
in the two-phase region is called a tie line', it connects the liquid and vapor

compositions that are in equilibrium.

The over-all composition of the system is X2 . This is made up of liquid

having a composition X{
and vapor having a composition X3 . The relative

amounts of the liquid and vapor phases required to yield the over-all

composition are given by the lever rule: if (/) is the fraction of liquid

and (v) the fraction3 of vapor, (/)/(r)
-

(Jjf3
- XZ)/(X2

-
A\). This rule

3 Since a mole fraction diagram is being used, (v) is the fraction of the total number of

moles that is vapor. On a weight fraction diagram, (v} would be the weight fraction that is

vapor.
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is readily proved: It is evident that X2
-= (l)Xl I [1

~
(I)]X& or (7)^

(X2
- *s)/(*i- *s)- Similarly (v)

- 1
-

(/) (X,- X2)/(Xl
-

JIT,). Hence

(/)/() =(*3 - *,)/(*a
-

A\), the lever rule.

As the pressure is still further decreased along BF more and more liquid

is vaporized till finally, at F, no liquid remains. Further decrease in pressure

then proceeds in the one-phase, all-vapor region.

In the two-phase region, the system is bivariant. One of the degrees of

freedom is used by the requirement of constant temperature; only one

remains. When the pressure is fixed in this region, therefore, the compositions
of both the liquid and the vapor phases are also definitely fixed. They are

given, as has been seen, by the end points of the tie line.

9. Temperature-composition diagrams. The temperature-composition dia-

gram of the liquid-vapor equilibrium is the boiling-point diagram of the

solutions at the constant pressure chosen. If the pressure is one atmosphere,
the boiling points are the normal ones.

The boiling-point diagram for a solution in which the solvent obeys
Raoult's Law can be calculated if the vapor pressures of the pure com-

ponents are known as functions of temperature (Fig. 6.3b). The two end

points of the boiling-point diagram shown in Fig. 6.3b are the temperatures
at which the pure components have a vapor pressure of 760 mm, viz.,

131.5C and 141.6C. The composition of the solution that boils anywhere
between these two temperatures, say at 135C, is found as follows:

According to Raoult's Law, letting XA be the mole fraction of C2H 4Br2 ,

760 -= PAXA + PK(\ - XA ). At 135, the vapor pressure of C2H4Br2 is

835mm, of C3H 6Br2 , 652mm. Thus, 760 - 835 XA -f 652(1 - XA \ or

XA 0.590, Xn ^ 0.410. This gives one intermediate point on the liquidus

curve; the others are calculated in the same way.
The composition of the vapor is given by Dalton's Law:

The vapor-composition curve is therefore readily constructed from the

liquidus curve.

10. Fractional distillation. The application of the boiling-point diagram
to a simplified representation of distillation is shown in Fig. 6.3b* The
solution of composition X begins to boil at temperature Tv The first vapor
that is formed has a composition Y, richer in the more volatile component.
If this is condensed and reboiled, vapor of composition Z is obtained. This

process is repeated until the distillate is composed of pure component A. In

practical cases, the successive fractions will each cover a range of com-

positions, but the vertical lines in Fig. 6.3b, may be considered to represent

average compositions within these ranges.
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A fractionating column is a device that carries out automatically the

successive condensations and vaporizations required for fractional distilla-

tion. An especially clear example of this is the "bubble-cap" type of column

in Fig. 6.4. As the vapor ascends from the boiler, it bubbles through a film

of liquid on the first plate. This liquid is

somewhat cooler than that in the boiler, so

that a partial condensation takes place. The

vapor that leaves the first plate is therefore

richer than the vapor from the boiler in the

more volatile component. A similar enrich-

ment takes place on each succeeding plate.

Each attainment of equilibrium between

liquid and vapor corresponds to one of the

steps in Fig. 6.3b.

The efficiency of a distilling column is

measured by the number of such equilibrium

stages that it achieves. Each such stage is

called a theoretical plate. In a well designed

bubble-cap column, each unit acts very nearly

as one theoretical plate. The performance of

various types of packed columns is also

described in terms of theoretical plates. The

separation of liquids whose boiling points lie

close together requires a column with a con-

siderable number of theoretical plates. The number actually required de-

pends on the cut that is taken from the head of the column, the ratio of

distillate taken off to that returned to the column.4

11. Boiling-point elevation. If a small amount of a nonvolatile solute is

dissolved in a volatile solvent, the solution being sufficiently dilute to behave

ideally, the lowering of the vapor pressure can be calculated from eq. (6.10).

As a consequence of the lowered vapor pressure, the boiling point of the

solution is higher than that of the pure solvent. This fact is evident on

inspection of the vapor pressure curves in Fig. 6.5.

The condition for equilibrium of a component A, the volatile solvent,

between the liquid and vapor phases is simply ju,A
v =

[iA
l

. From eq. (6.12),

t*A
l

PA + RTln XA , where fiA is the chemical potential of pure liquid

A, i.e., fJLA when XA 1. At the boiling point the pressure is 1 atm, so that

/// = iff* the chemical potential of pure A vapor at 1 atm. Therefore

(l*A
9 = PA

I

) becomes JUA = p% + RT\n XA . For the pure component A 9 the

chemical potentials // are identical with the molar free energies F. Hence,

BOILER

Fig. 6.4. Schematic draw-

ing of bubble-cap column.

4 For details of methods for determining the number of theoretical plates in a column,
see C. S. Robinson and E. R. Gilliland, Fractional Distillation (New York: McGraw-Hill,
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From eq. (3.36), 5(F/T)/3T = ~H/T\ so that differentiating the above

yields

H? - H? = -

Since H^ H% is the molar heat of vaporization,

RT2

I ATM

SOLUTION -

PURE SOLID
PURE LIQUID -
PURE SOLIDrwrt <JWL.II/

i
rwr\u s>v*>i_iu

EQUILIBRIUM^/ f
EQUILIBRIUM

/
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f_+_____/___/^

,^/,
^<?/
'</:*^-
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FR DER B.P EL.

Fig. 6.5. Diagram showing the elevation of the boiling point caused by
addition of a nonvolatile solute to a pure liquid.

Taking A as constant over the temperature range, this equation is integrated

between the limits set by the pure solvent (XA = 1, T = 7^) and the solution

R r TTQ

When the boiling-point elevation is not large, TTQ can be replaced by T
2

.

If XB is the mole fraction of solute, the term on the left can be written

In (I XB\ and then expanded in a power series. Writing A7^ for the

boiling-point elevation, T jT
,
we obtain

RTJ
i X
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When the solution is dilute, XB is a small fraction whose higher powers may
be neglected. Then,

RT 2

AT^y-*-** (6.15)
^vap

In the dilute solutions for which eq. (6.15) is valid, it is also a good
approximation to replace XB by (WBMA)/(WAMS); WB, MB> and WAy MA
being the masses and molecular weights of solute and solvent. Then,

- _B
*vap WAMB

'

/
vap

WAMB

where /
vap is the latent heat of vaporization per gram. Finally WB\WAMB

is set equal to w/1000, m being the weight molal concentration, moles of

solute per 1000 grams of solvent. Thus,

and KB is called the molal boiling-point elevation constant.

For example, for water TQ
= 373.2, /

vap 538 cal per g. Hence

(1.986)(373.2)*
KB =

1538X1000T
=

'5 4

For benzene, KB -
2.67; for acetone, 1.67, etc.

The expression (6.16) is used frequently for molecular-weight determination

from the boiling-point elevation. From KB and the measured TB , we calculate

m, and then the molecular weight from MB 1000 WBjmWA . For many
combinations of solute and solvent, perfectly normal molecular weights are

obtained. In certain instances, however, there is apparently an association or

dissociation of the solute molecules in the solution. For example, the molec-

ular weight of benzoic acid in acetone solution is found to be equal to the

formula weight of 122.1. In 1 per cent solution in benzene, benzoic acid has

an apparent molecular weight of 242. This indicates that the acid is to a

considerable extent dimerized into double molecules. The extent of associa-

tion is greater in more concentrated solutions, as is required by the Le Chatelier

principle. From molecular-weight determinations at different concentra-

tions, it is possible to calculate the equilibrium constant of the reaction

(C6H5COOH)2
= 2 C6H5COOH.

12. Solid and liquid phases in equilibrium. The properties of solutions

related to the vapor pressure are called colligatwe from the Latin, colligatus,

collected together. They are properties which depend on the collection of

particles present, that is, on the number of particles, rather than on the kind.

A colligative property amenable to the same sort of treatment as the boiling-

point elevation is the depression of the freezing point. That this also has its

origin in the lowering of the vapor pressure in solutions can be seen by
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inspection of Fig. 6.5. The freezing point of pure solvent, Tmo is lowered to

Tm in the solution.

It should be understood that "freezing-point depression curve" and

"solubility curve" are merely two different names for the same thing that

is, a temperature vs. composition curve for a solid-liquid equilibrium at

some constant pressure, usually chosen as one atmosphere. Such a diagram
is shown in Fig. 6.13 (p. 147) for the system benzene-chloroform. The curve

CE may be considered to illustrate either (1) the depression of the freezing

point of benzene by the addition of chloroform, or (2) the solubility of solid

benzene in the solution. Both interpretations are fundamentally equivalent:
in one case, we consider Tas a function of c; in the other, c as a function of

T. The lowest point E on the solid-liquid diagram is called the eutectic point

(evT'^KTO?, "easily melted").

In this diagram, the solid phases that separate out are shown as pure
benzene (A) on one side and pure chloroform (B) on the other. It becomes

evident in the next section that this is not exactly correct, since there is

usually at least a slight solid solution of the second component B in the solid

component A. Nevertheless the absence of any solid solution is in many
cases a good enough approximation.

The equation for the freezing-point depression, or the solubility equation
for ideal solutions, is derived by essentially the same method used for the

boiling-point elevation. In order for a pure solid A to be in equilibrium with

a solution containing A, it is necessary that the chemical potentials of A be

the same in the two phases, JUA
* =

fiA
l

. From eq. (6.12) the chemical potential

of component A in an ideal solution is JUA
I =

fiA -f RT\t\ XA , where p,A
is the chemical potential of pure liquid A. Thus the equilibrium condition

can be written HA
* =

fiA f RTln XA . Now
jtiA

8 and
fj,A are simply the

molar free energies of pure solid and pure liquid, hence

Z^/--=l*XA (6.17)

Since we have d(F/T)/3T = H/T* from eq. (3.36), differentiation of

eq. (6.17) with respect to T yields

1 2 ^/l V
(6.18)

RT* RT* dT

Integrating this expression from T
Q9 the freezing point of pure A, mole

fraction unity, to T, the temperature at which pure solid A is in equilibrium
with solution of mole fraction XA ,

we obtain5

^fus

5 It is a good approximation to take Afu8 independent of T over moderate ranges of

temperature.
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This is the equation for the temperature variation of the solubility XA of a

pure solid in an ideal solution.

As an example, let us calculate the solubility of naphthalene in an ideal

solution at 25C. Naphthalene melts at 80C, and its heat of fusion at the

melting point is 4610 cal per mole. Thus, from eq. (6.19),

4610
(353.2-

1 - 298.2-1
)
- 2.303 log XA

1.986

XA - 0.298

This is the mole fraction of naphthalene in any ideal solution, whatever the

solvent may be. Actually, the solution will approach ideality only if the

solvent is rather similar in chemical and physical properties to the solute.

Typical experimental values for the solubility XA of naphthalene in various

solvents at 25C are as follows: chlorobenzene, 0.317; benzene, 0.296;

toluene, 0.286; acetone, 0.224; hexane, 0.125.

The simplification of eq. (6.19) for dilute solutions follows from the same

approximations used in the boiling-point elevation case. The final expression
for the depression of the freezing point &TF -^ T T is

RT
K -

For example: water, KF = 1.855; benzene, 5.12; camphor, 40.0, and so on.

Because of its exceptionally large KF , camphor is used in a micro method for

molecular-weight determination by freezing-point depression.
13. The Distribution Law. The equilibrium condition for a component A

distributed between two phases a and ft is pA
*

/^/, From eq. (6.8),

fA = //. If the solutions are ideal, Raoult's Law is followed, and fA =
XA/A* where fA is the fugacity of pure A (equal, if the vapor is an ideal

gas/ to the vapor pressure PA . Thus XA*fA = JT//J, or XA* - Xj, and

as long as the solutions are ideal, the solute A must be distributed equally

between them.

If the solutions do not follow Raoult's Law, but are sufficiently dilute to

follow Henry's Law,/^ kAXA , and it follows that

y a k a

JT,
=
F?

- * <6 -21 )AA KA

The ratio of the Henry's Law constants, KD , is called the distribution constant

(or distribution coefficient). Thus KD is a function of temperature and pressure.

Equation (6.21) is one form of the Nernst Distribution Law*
In a dilute solution, XA = nAj(nA + nB) ^ nAjnu & cAMB/\QQQpIi ,

where CA is the ordinary molar concentration and MB and pB are the mole-

cular weight and density of the solvent. With this approximation, the ratio

W. Nernst, Z. physik. Chem., 8, 110 (1891).
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of mole fractions is proportional to the ratio of molar concentrations, and

eq. (6.21) becomes

^4 = KD (6-22)
CA

P

A test of the Law in this form, for the distribution of iodine between water

and carbon bisulfide may be seen in Table 6.3.

TABLE 6.3

DISTRIBUTION OF I2 BETWEEN CS2 AND H2O AT 1 8

If association, dissociation, or chemical reaction of the distributed com-

ponent takes place in either phase, modification of the Distribution Law is

required. For example, if a solute S is partly dimerized to S2 molecules in

both phases, there will be two distribution equations, one for monomer and

one for dimer, but the two distribution constants will not be independent,

being related through the dissociation constants of the dimers.

Solvent extraction is an important method for the isolation of pure

organic compounds. Apparatus has been developed by L. C. Craig
7 at the

Rockefeller Institute to carry out continuously hundreds of successive stages

of extraction by the so-called "countercurrent distribution method."

14. Osmotic pressure. The classical trio of colligative properties, of which

boiling-point elevation and freezing-point depression are the first two

members, is completed by the phenomenon of osmotic pressure.

In 1748, the Abbe Nollet described an experiment in which a solution of

"spirits of wine" was placed in a cylinder, the mouth of which was closed

with an animal bladder and immersed in pure water. The bladder was

observed to swell greatly and sometimes even to burst. The animal membrane
is semipermeable; water can pass through it, but alcohol cannot. The in-

creased pressure in the tube, caused by diffusion of water into the solution,

was called the osmotic pressure (from the Greek, coer/jos "impulse").
The first detailed quantitative study of osmotic pressure is found in a

series of researches by W. Pfeffer, published in 1877. Ten years earlier,

Moritz Traube had observed that colloidal films of cupric ferrocyanide acted

as semipermeable membranes. PfefTer deposited this colloidal precipitate

within the pores of earthenware pots, by soaking them first in copper sulfate

and then in potassium ferrocyanide solution. Some typical results of measure-

ments using such artificial membranes are summarized in Table 6.4.

7 L. C. Craig and D. Craig, "Extraction and Distribution," in Techniques of Organic

Chemistry, ed. by A. Weissberger (New York: Interscience, 1950).
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In 1885 J. H. van't Hoff pointed out that in dilute solutions the osmotic

pressure FI obeyed the relationship II V = nRT, or

II = cRT (6.23)

where c = w/Kis the concentration of solute in moles per liter. The validity

of the equation can be judged by comparison of the calculated and experi-

mental values of II in Table 6.4.

TABLE 6.4

OSMOTIC PRESSURES OF SOLUTIONS OF SUCROSE IN WATER AT 20

The essential requirements for the existence of an osmotic pressure are

two. There must be two solutions of different concentrations (or a pure
solvent and a solution) and there must be a semipermeable membrane

separating these solutions. A simple illustration can be found in the case of

a gaseous solution of hydrogen and nitrogen. Thin palladium foil is appre-

ciably permeable to hydrogen, but practically impermeable to nitrogen. If

pure nitrogen is put on one side of a palladium barrier and a solution of

nitrogen and hydrogen on the other side, the requirements for osmosis are

satisfied. Hydrogen flows through the palladium from the hydrogen-rich to

the hydrogen-poor side of the membrane. This flow continues until the

chemical potential of the H2 , /%, *s ^e same on both sides of the barrier.

In this example, the nature of the semipermeable membrane is rather

clear. Hydrogen molecules are catalytically dissociated into hydrogen atoms

at the palladium surface, and these atoms, perhaps in the form of protons
and electrons, diffuse through the barrier. A solution mechanism of some

kind probably is responsible for many cases of semipermeability. For

example, it seems reasonable that protein membranes, like those employed

by Nollet, can dissolve water but not alcohol.

In other cases, the membrane may act as a sieve, or as a bundle of capil-

laries. The cross sections of these capillaries may be very small, so that they
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can be permeated by small molecules like water, but not by large molecules

like carbohydrates or proteins.

Irrespective of the mechanism by which the semipermeable membrane

operates, the final result is the same. Osmotic flow continues until the

chemical potential of the diffusing component is the same on both sides, of

the barrier. If the flow takes place into a closed volume, the pressure therein

necessarily increases. The final equilibrium osmotic pressure can be cal-

culated by thermodynamic methods. It is the pressure that must be applied

to the solution in order to prevent flow of solvent across the semipermeable
membrane from the pure solvent into the solution. The same effect can be

produced by applying a negative pressure or tension to the pure solvent.

15. Measurement of osmotic pressure. We are principally indebted to two

groups of workers for precise measurements of osmotic pressure: H. N.

Morse, J. C. W. Frazer, and their colleagues at Johns Hopkins, and the

Earl of Berkeley and E. G. J. Hartley at Oxford. 8

CAPILLARY
MANOMETER
FOR PRESSURE
MEASUREMENT

SOLUTION =-_.- -

POROUS CELL-
IMPREGNATED

WITH
Cu2 Fe(CN)6

(o)

APPLIED
PRESSURE

CAPILLARY FOR
MEASURING FLOW
THROUGH CELL*

PRESSURE
GAUGE

SOLUTION' LWATER ^IMPREGNATED
CELL

(b)

Fig. 6.6. Osmotic pressure measurements: (a) method of Frazer;

(b) method of Berkeley and Hartley.

The method used by the Hopkins group is shown in (a), Fig. 6.6. The

porous cell impregnated with copper ferrocyanide is filled with water and

immersed in a vessel containing the aqueous solution. The pressure is

measured by means of an attached manometer. The system is allowed to

stand until there is no further increase in pressure. Then the osmotic pres-

sure is just balanced by the hydrostatic pressure in the column of solution.

The pressures studied extended up to several hundred atmospheres, and a

8 An excellent detailed discussion of this work is to be found in J. C. W. Frazer's

article, 'The Laws of Dilute Solutions'
1

in A Treatise on Physical Chemistry, 2nd ed.,

edited by H. S. Taylor (New York: Van Nostrand, 1931), pp. 353-414.
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number of ingenious methods of measurement were developed. These

included the calculation of the pressure from the change in the refractive

index of water on compression, and the application of piezoelectric gauges.

The English workers used the apparatus shown schematically in (b),

Fig. 6.6. Instead of waiting for equilibrium to be established and then

reading the pressure, they applied an external pressure to the solution just

sufficient to balance the osmotic pressure. This balance could be made very

precisely by observing the level of liquid in the capillary tube, which would

fall rapidly if there was any flow of solvent into the solution.

16. Osmotic pressure and vapor pressure. Consider a pure solvent A that

is separated from a solution of B in A by a membrane permeable to A alone.

At equilibrium an osmotic pressure FI has developed. The condition for

equilibrium is that the chemical potential of A is the same on both sides of

the membrane, /if // /. Thus the }tA in the solution must equal that of

the pure A. There are two factors tending to make the value of pA in the

solution different from that in pure A. These factors must therefore have

exactly equal and opposite effects on fiA . The first is the change in pA pro-

duced by dilution of A in the solution. This change causes a lowering of pA

equal to A/*
=- RT\nP 4/PA [eq. (6.8) with /=/>]. Exactly counteracting

this is the increase in pA in the solution due to the imposed pressure II.

From eq. (6.5) dp PdP, so that A/ J

n
VA dP.

At equilibrium, therefore, in order that pA in solution should equal pA

in the pure liquid, J*

1

VA dP -= -RT\n(PA/PA ). If it is assumed that the

partial molar volume VA is independent of pressure, i.e., the solution is

practically incompressible,

PJT =
firing (6.24)

The significance of this equation can be stated as follows: the osmotic

pressure is the external pressure that must be applied to the solution to

raise the vapor pressure of solvent A to that of pure A.

In most cases, also, the partial molar volume of solvent in solution VA
can be well approximated by the molar volume of the pure liquid VA . In the

special case of an ideal solution, eq. (6.24) becomes

HVA - -RT\nXA (6.25)

By replacing XA by (1 XB) and expanding as in Section 6-11, the dilute

solution formula is obtained:

HVA = RTXB (6.26)

Since the solution is dilute,

RT n
II w -S *< RTm' (6.27)

This is the equation used by Frazer and Morse as a better approximation
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than the van't HofT equation (6.23). As the solution becomes very dilute, m'

the volume molal concentration approaches c the molar concentration, and

we find as the end product of the series of approximations

Ft = RTc (6.23)

The adequacy with which eqs. (6.23), (6.25), and (6.27) represent the

experimental data can be judged from the comparisons in Table 6.4.9

17. Deviations from Raoult's Law. Only a very few of the many liquid

solutions that have been investigated follow Raoult's Law over the complete
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Fig. 6.7. (a) Positive deviation from Raoult's Law the PX diagram of carbon

bisulfide-methylal system, (b) Negative deviation from Raould's Law the PX
diagram of chloroform-acetone system.

range of concentrations. It is for this reason that the greatest practical

application of the ideal equations is made in the treatment of dilute solutions,

in which the solvent obeys Raoult's Law and the solute obeys Henry's Law.

Nevertheless, one of the most instructive ways of qualitatively discussing

the properties of nonideal solutions is in terms of their deviations from

ideality. The first extensive series of vapor-pressure measurements, per-

mitting such comparisons, were those made by Jan von Zawidski, around

1900.

Two general types of deviation were distinguished. An example exhibiting

a positive deviation from Raoult's Law is the system carbon bisulfide-

methylal, whose vapor-pressure-composition diagram is shown in (a),

Fig. 6.7. An ideal solution would follow the dashed lines. The positive
9 The osmotic pressures of solutions of high polymers and proteins provide some of the

best data on their thermodynamic properties. A typical investigation is that of Shick, Doty,
and Zimm, /. Am. Chetn. Soc., 72, 530 (1950).
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deviation is characterized by vapor pressures higher than those calculated

for ideal solutions.

The escaping tendencies of the components in the solution are accordingly

higher than the escaping tendencies in the individual pure liquids. This effect

has been ascribed to cohesive forces between unlike components smaller

than those within the pure liquids, resulting in a trend away from complete

miscibility. To put it naively, the components are happier by themselves than

when they are mixed together; they are unsociable. These are metaphorical

expressions; a scientific translation is obtained by equating a happy com-

ponent to one in a state of low free energy. One would expect that this

incipient immiscibility would be reflected in an increase in volume on mixing
and also in an absorption of heat on mixing.

The other general type of departure from Raoult's Law is the negative

deviation. This type is illustrated by the system chloroform-acetone in (b),

Fig. 6.7. In this case, the escaping tendency of a component from solution is

less than it would be from the pure liquid. This fact may be interpreted as

being the result of greater attractive forces between the unlike molecules in

solution than between the like molecules in the pure liquids. In some cases,

actual association or compound formation may occur in the solution. As a

result, in cases of negative deviation, a contraction in volume and an evolution

of heat are to be expected on mixing.
In some cases of deviation from ideality, the simple picture of varying

cohesive forces may not be adequate. For example, positive deviations are

often observed in aqueous solutions. Pure water is itself strongly associated

and addition of a second component may cause partial depolymerization of

the water. This would lead to an increased partial vapor pressure.

A sufficiently great positive deviation from ideality may lead to a maxi-

mum in the PX diagram, and a sufficiently great negative deviation, to a

minimum. An illustration of this behavior is shown in (a), Fig. 6.8. It is now
no longer meaningful to say that the vapor is richer than the liquid in the

"more volatile component." The following more general statement (Kono-
valov's Rule) is employed: the vapor is richer than the liquid with which it

is in equilibrium in that component by addition of which to the system the

vapor pressure is raised. At a maximum or minimum in the vapor-pressure

curve, the vapor and the liquid must have the same composition.
18. Boiling-point diagrams. The PX diagram in (a), Fig. 6.8, has its

counterpart in the boiling-point diagram in (b), Fig. 6.8. A minimum in the

PX curve necessarily leads to a maximum in the TX curve. A well known

example is the system HC1-H2O, which has a maximum boiling point (at

760 mm) of 108.58 at a concentration of 20.222 per cent HC1.

A solution with the composition corresponding to a maximum or

minimum point on the boiling-point diagram is called an azeotropic
solution (c>, "to boil"; arppTros, "unchanging"), since there is no change
in composition on boiling. Such solutions cannot be separated by isobaric
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distillation. It was, in fact, thought at one time that they were real chemical

compounds, but changing the pressure changes the composition of the

azeotropic solution.

The distillation of a system with a maximum boiling point can be dis-

cussed by reference to (b), Fig. 6.8. If the temperature of a solution having
the composition / is raised, it begins to boil at the temperature tv The first

vapor that distills has the composition y, richer in component A than is the

original liquid. The residual solution therefore becomes richer in B; and if

the vapor is continuously removed the boiling point of the residue rises, as

LIQUID

VAPOR

VAPOR

LIQUID

X

(a)

A v I
X

(b)

I' B

Fig. 6.8. Large negative deviation from Raoult's Law. The PX
curve has a minimum; the TX curve has a maximum.

its composition moves along the liquidus curve from / toward m. If a frac-

tional distillation is carried out, a final separation into pure A and the

azeotropic solution is achieved. Similarly a solution of original composition
/' can be separated into pure B and azeotrope.

19. Partial miscibility. If the positive deviations from Raoult's Law
become sufficiently large, the components may no longer form a continuous

series of solutions. As successive portions of one component are added to

the other, a limiting solubility is finally reached, beyond which two distinct

liquid phases are formed. Usually, but not always, increasing temperature
tends to promote solubility, as the thermal kinetic energy conquers the

reluctance of the components to mix freely. In otjier words, the T AS term

in AF = A// T AS* becomes more important. A solution that displays a

large positive deviation from ideality at elevated temperatures therefore

frequently splits into two phases when it is cooled.

A PC diagram for a partially miscible liquid system, such as aniline and

water, is shown in (a), Fig. 6.9. The point x lies in the two-phase region and

corresponds to a system of two liquid solutions, one a dilute solution of

aniline in water having the composition y, and the other a dilute solution of
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water in aniline having the composition z. These are called conjugate solutions.

The relative amounts of the two phases are given by the ratios of the distances

along the tie line, xy/xz. Applying the phase rule to this two-phase region:

since p 2 and c -- 2, the system is bivariant. Because of the requirement

of constant temperature imposed on the PC diagram, only one degree of

freedom remains. Once the pressure is fixed, the compositions of both phases

are fixed, which is indeed what the diagram indicates. The over-all com-

position x is of course not fixed, since this depends on the relative amounts

of the two conjugate solutions, with which the phase rule is not concerned.

P 760mm

VAPOR

VAPOR

A B A
WATER COMPOSITION ANILINE WATER

B
COMPOSITION ANILINE

(a) (b)

Fig. 6.9. Schematic diagrams for aniline-water system, showing limited

solubility of liquids, (a) PC diagram, (b) TC diagram.

Let us follow the sequence of events as the pressure is gradually reduced

along the line of constant composition, or isopleth, xx',

At the point P, vapor having a composition corresponding to point Q
begins to appear. There are now three phases coexisting in equilibrium, so

that the system is invariant. If the volume available to the vapor is increased,

the amount of the vapor phase will increase, at constant pressure, until all

the aniline-rich solution, of composition /?, has vaporized. When this

process is complete, there will remain a vapor of composition Q and a

solution of composition N9
so that the system becomes univariant again as

the pressure falls below that at P.

Since the vapor that is formed is richer in aniline, the composition of the

residual solution becomes rjcher in water. The liquid composition moves

along the line NL, and the vapor composition moves along QL until all the
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liquid has been transformed into vapor, at the point M. After this, further

decrease in pressure proceeds at constant vapor composition along MX' .

It may be noted that the two conjugate solutions N and R have the same

total vapor pressure and the same vapor composition. It follows that the

partial" vapor pressure of component A above a dilute solution of A in B is

the same as the vapor pressure of A above the dilute solution of B in A. For

example, if benzene and water are mixed at 25C, two immiscible layers are

formed, one containing 0.09 per cent C6
H 6 and 99.91 per cent H2O, the other

99.81 per cent C6H6 and 0.19 per cent H2O. The partial pressure of benzene

above either of these solutions is the

same, namely 85 mm.
In (a), Fig. 6.9, the lines NN' and

RR' are almost vertical, since the

solubility limits are only slightly de-

pendent on pressure. Change in tem-

perature, on the other hand, may
greatly affect the mutual solubility of

two liquids. In (b), Fig. 6.9, the TC

diagram for the water-aniline system is

drawn for the constant pressure of

one atmosphere (normal-boiling-point

diagram). Increasing the temperature
tends to close the solubilitv gap, the

difference between the concentrations

of the two conjugate solutions.

The interpretation of the solubility gap can be given in terms of the free

energy of the system. At some constant temperature, let us plot the molar

free energy of the system, defined as F =-- F/(nA -f- nB ), against the mole

fraction of B, XB , for both the a and ft phases. In Fig. 6.9b, for example,
these phases would be the two immiscible liquid solutions. The diagram
obtained, Fig. 6.10, is an exact analog of Fig. 6.1, which was used for the

determination of partial molar volumes. In this case, the intercept of the

common tangent to the two F vs. X curves gives the value of the partial

molar free energies, or chemical potentials, of the two components. At this

composition, therefore, /// = /^/, and
// yy

a
/y f/, i.e., the condition for

equilibrium of components A and B between the two phases is fulfilled. The

corresponding mole fractions represent the phase-boundary compositions;
at any composition between X'B and X"B ,

the system will split into two

distinct phases, since in this way it can reach its minimum free energy. For

XB < X'B , however, pure phase a gives the lowest free energy, and for

XB > X"B , pure phase ft.

20. Condensed-liquid systems. In (b), Fig. 6.9, the variation of solubility

with temperature is shown for only one pressure. At high enough tempera-
tures boiling occurs, and it is therefore not possible to trace the ultimate

Fig. 6.10. Partial miscibility deter-

mined by free energy.
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course of the solubility curves. One might expect that the solubility gap
would close completely if a high enough temperature could be reached

before the onset of boiling. This expectation is represented by the dashed line

in (b), Fig. 6.9.

A number of condensed systems have been studied, which illustrate com-

plete liquid-liquid solubility curves. A classical example is the phenol-water

system of Fig. 6.11 (a). At the temperature and composition indicated by
the point x, two phases coexist, the conjugate solutions represented by y and

Fig. 6.11. Partial miscibility of two liquids, (a) phenol-water system,

(b) tnethylamine-water system, (c) nicotine-water system.

z. The relative amounts of the two phases are proportional, as usual, to the

segments of the tie line.

As the temperature is increased along the isopleth XX \ the amount
of the phenol-rich phase decreases and the amount of water-rich phase
increases.

Finally at Y the compositions of the two phases become identical,

the phenol-rich phase disappears completely, and at temperatures above Y
there is only one solution.

This gradual disappearance of one solution is characteristic of systems

having all compositions except one. The exception is the composition corre-

sponding to the maximum in the TC curve. This composition is called the

critical composition and the temperature at the maximum is the critical

solution temperature or upper consolute temperature. If a two-phase system

having the critical composition is gradually heated [line CC in (a), Fig. 6.11]

there is no gradual disappearance of one phase. Even in the immediate

neighborhood of the maximum d, the ratio of the segments of the tie line

remains practically constant. The compositions of the two conjugate solu-

tions gradually approach each other, until, at the point d, the boundary line

between the two phases suddenly disappears and a single-phase system
remains.
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As the critical temperature is slowly approached from above, a most

curious phenomenon is observed. Just before the single homogeneous phase

passes over into two distinct phases, the solution is diffused by a pearly

opalescence. This critical opalescence is believed to be caused by the scatter-

ing of light from small regions of slightly differing density, which are formed

in the liquid in the incipient separation of the two phases.

Strangely enough, some systems exhibit a lower consolute temperature.
At high temperatures, two partially miscible solutions are present, which

become completely intersoluble when sufficiently cooled. An example is the

triethylamine-water system in (b), Fig. 6.11, with a lower consolute tem-

perature of 18.5 at 1 atm pressure. It is almost impossible to locate the

critical composition exactly, since lowering the temperature a fraction of a

degree greatly increases the solubility. This somewhat weird behavior suggests

that large negative deviations from Raoult's Law (e.g., compound formation)

become sufficient at the lower temperatures to counteract the positive

deviations responsible for the immiscibility.

Finally, systems have been found with both upper and lower consolute

temperatures. These are most common at elevated pressures, and indeed

one would expect all systems with a lower consolute temperature to display
an upper one at sufficiently high temperature and pressure. An atmospheric-

pressure example is the nicotine-water system of Fig. 6.11 (c). Having
come to solutions of this type, we have run the gamut of deviations from

ideality.

21. Thermodynamics of nonideal solutions: the activity. A complete

thermodynamic description of a solution, except for its amount, can be

expressed in terms of the temperature, the pressure, and the chemical poten-
tials of the various components. All the other thermodynamic functions can

be derived from these.

For a single pure ideal gas, the change in chemical potential is given from

eq. (4.33) as dp RTdln P. By integration we obtain ^ = // + RT In P,

where ju is the chemical potential of the gas at one atmosphere pressure.

For a pure gas, this equation is identical with F F + RTlnP, where F
is the free energy per mole.

If the gas is not ideal, the fugacity is defined by the equation ft
=

JLL +
RTlnf. Such an equation holds also for any component in a mixture of gases

(gaseous solution). The constant p is a function of temperature alone. It is

the chemical potential of the gas in its standard state of unit fugacity, or the

standard free energy of the gas.

The same equation is valid for a component in a liquid or solid solution,

since at equilibrium the chemical potential must be the same in the con-

densed phase as in the vapor. For a component A,

(6.8)

If the vapor above the solution can be considered to behave as an ideal
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gas, fA PA ,
and

/LIA /tA + RTinPA . For an ideal solution, PA =
XA/A = XAPA> and therefore

(6.28)
nXA

The two constant terms can be combined, giving

P.i
= 1% + *T\n XA (6.29)

This is the expression for the chemical potential in an ideal solution, pA

being the chemical potential of A when XA - \
; i.e., of pure liquid A. It

should be clearly understood that p,A is a function of both temperature
and pressure, in contrast with JUA in eq. (6.8). This is because the vapor

pressure of the pure liquid, PA in eq. (6.28), is a function of both temperature
and over-all pressure (p. 107).

In the discussion of nonideal solutions we can always use the chemical

potential, obtained from eq. (6.8) in terms of the partial vapor pressure or

fugacity. Sometimes, however, it is convenient to introduce a new function,

the activity a, which was invented by G. N. Lewis. It is defined as follows

so as to preserve the form of eq. (6.29),

pA
-

fiA 4 RTlnaA (6.30)

or P^ I-

where y a/X is called the activity coefficient.

One advantage of the activity coefficient is that it indicates at a glance
the magnitude of the deviation from ideality in the solution. In terms of the

activity, Raoult's Law becomes simply a = X, or y = 1 .

Comparing eq. (6.30) with eqs. (6.28) and (6.8), we find that

*A -4 (6.31)
J A

The activity is accordingly the ratio of the fugacity to the fugacity in the

standard state. We have implicitly taken this standard state to be pure A,

but other definitions might have been used. For a gas/J = 1 and therefore

aA ~fA , the activity equals the fugacity.

Equation (6.31) provides the most direct method of determining the

activity of a component in a solution. It is usually sufficiently accurate to

ignore gas imperfections and set the fugacity ratio equal to the vapor pressure

ratio, so that aA = PA/PA .

Some activities calculated in this way from vapor-pressure data are

collected in Table 6.5. Once the activity of one component has been obtained

as a function of concentration, the activity of the other component in

a binary solution can be calpulated from the Gibbs-Duhem equation.
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TABLE 6.5

ACTIVITIES OF WATER AND SUCROSE IN THEIR SOLUTIONS AT 50C OBTAINED FROM
VAPOR PRESSURE LOWERING AND THE GIBBS-DUHEM EQUATION

Corresponding with eq. (6.4) for the partial molar volumes, we have for the

partial molar free energies or chemical potentials,

d
/
lA ^ -

nA

From eq. (6.30), d\n aA --= d In a,,

If aB is known as a function of X
J}9 aA can be obtained by a graphical

integration.

Activities can also be calculated from any of the colligative properties
related to the vapor pressure. The details of these calculations are to be

found in various treatises on thermodynamics.
10

22. Chemical equilibria in nonideal solutions. The activity function defined

in eq. (6.30) is useful in discussing the equilibrium constants of reactions in

solution. It is readily proved (cf. p. 76) that for the schematic reaction

aA + bB^cC + dD

aS a r
(6.32)

and A/*
- RTln Ka

In terms of activity coefficients and mole fractions,

"a A. a A. & y a y b -~r"x
7A 7s AA A B

In an ideal solution, all the activity coefficients become equal to unity,

10 G. N. Lewis and M. Randall, Thermodynamics and Free Energy of Chemical Sub-
stances (New York: McGraw-Hill, 1923), p. 278.
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and the equilibrium constant is simply Kx . Extensive data on the activity

coefficients of components in solutions of nonelectrolytes are not available,

and the most important applications of eq. (6.32) have been made in electro-

lytic solutions, which will be discussed in Chapter 15.

23. Gas-solid equilibria. The varieties of heterogeneous equilibrium that

have been considered so far have almost all been chosen from systems

involving liquid and vapor phases only. Some systems of the solid-vapor and

solid-liquid types will now be described. Most of the examples will be chosen
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Fig. 6.12. The system CuSO4~H 2O.

from two-component systems, with only a brief introduction to three-

component phase diagrams.
A two-component gas-solid system in which there is no appreciable

solid-solution formation is exemplified by: CaCO3 ^ CaO f CO2 . Since

c 2, the degrees of freedom are/^ 4 p. If the two solid phases are

present, together with the gaseous phase CO2 , the system is univariant,

/=4 3=1. At a given temperature, the pressure of CO2 has a fixed

value. For example, if CO2 is admitted to a sample of CaO at 700C, there

is no absorption of gas until a pressure of 25 mm is reached; then the CaO
takes up CO2 at constant pressure until it is completely converted into

CaCO3 , whereupon further addition of CO2 again results in an increase in

pressure.

The pressure-temperature diagram for such a system is therefore similar

to the vapor-pressure curve of a pure liquid or solid. The CO2 pressure has

been loosely called the "dissociation pressure of CaCO3." Since the pressure
has a definite value only when the vapor phase is in equilibrium with both

solid phases, it is really necessary to speak of the "dissociation pressure in

the system CaCO3-CaO-CO2."
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The necessity of specifying both the solid phases is to be emphasized in

systems formed by various salts, their hydrates, and water vapor. The case

of copper sulfate-water is shown in (a), Fig. 6.12, on a PT diagram, and in

(b), Fig. 6.12, on a PC diagram. As long as only the two phases are present,

a salt hydrate can exist in equilibrium with water vapor at any temperature
if the pressure of water vapor is (1) above the dissociation pressure to lower

hydrate or anhydrous salt and (2) below the dissociation pressure of the

next higher hydrate or the vapor pressure of the saturated solution. State-

ments in the older literature that a given hydrate "loses water at 1 10C" are

devoid of precise meaning.
When the pressure of water vapor falls below the dissociation pressure

for the system, efflorescence occurs, as the hydrate loses water and its surface

becomes covered with a layer of lower hydrate or anhydrous salt. When the

vapor pressure exceeds that of the saturated aqueous solution, deliquescence

occurs, and the surface of hydrate becomes covered with a layer of saturated

solution.

24. Equilibrium constant in solid-gas reactions. The equilibrium constant

for a reaction involving solid phases can be discussed conveniently by con-

sidering a typical reaction of this kind, the reduction of zinc oxide by carbon

monoxide, ZnO (s) f CO -> Zn (g) + CO2 .

The equilibrium constant in terms of activities can be written as follows:

Ka
= gzn*C(\ AF - -RTln Ka (6.33)

The activity is the ratio of the fugacity under the experimental conditions to

the fugacity in a standard state, fAlf^ The standard state of a pure solid

component is taken to be its state as a pure solid at one atmosphere pressure.

The fugacity of the solid varies so slightly with pressure that over a con-

siderable range of pressure, fAlf% for a solid is effectively a constant equal
to unity. Making this very good approximation, the expression in eq. (6.33)

becomes

aco /co

If the gases are considered to be ideal the activity ratio equals the partial

pressure ratio, and K9
= /WW^co-

This discussion leads to the following general rule: no terms involving

pure solid or liquid components need be included in equilibrium constants

for solid-gas or liquid-gas reactions, unless very high precision is required,
in which case there may be a small pressure correction to Kv or Kf .

Equilibrium data for the reduction of zinc oxide are given in Table 6.6.

25. Solid-liquid equilibria: simple eutectic diagrams. For two-component

solid-liquid equilibria in which the liquids are completely intersoluble in all

proportions and there is no appreciable solids-solid solubility, the simple
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TABLE 6.6

THE EQUILIBRIUM ZnO -f CO ^ Zn h CO2 (TOTAL PRESSURE = 760 MM)

diagram of Fig. 6.13 is obtained. Examples of systems of this type are

collected in Table 6.7.

TABLE 6.7

SYSTEMS WITH SIMPLE EUTECTIC DIAGRAMS SUCH AS FIG. 6.13

Consider the behavior of a solution of composition X on cooling along
the isopleth XX' . When point P is reached, pure solid A begins to separate
from the solution. As a result, the residual solution becomes richer in the

other component B, its composition falling along the line PE. At any point

Q in the two-phase region, the relative amounts of pure A and residual

solution are given as usual by the ratio of the tie-line segments. When point
R is reached, the residual solution has the eutectic composition E. Further

cooling now results in the simultaneous precipitation of a mixture of A and
B in relative amounts corresponding to E.

The eutectic point is an invariant point on a constant pressure diagram;
since three phases are in equilibrium,/^ c p + 2 = 2 --/? + 2 --= 4

3=1, and the single degree of freedom is used by the choice of the constant-

pressure condition.
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Microscopic examination of alloys often reveals a structure indicating
that they have been formed from a melt by a cooling process similar to that

considered along the isopleth XX' of

Fig. 6.13. Crystallites of pure metal

are found dispersed in a matrix of

finely divided eutectic mixture. An

example taken from the antimony-
lead system is shown in the photo-

micrograph of Fig. 6.14.

26. Cooling curves. The method
of cooling curves is one of the most

useful for the experimental study of

solid-liquid systems. A two-compo-
nent system is heated until a homo-

geneous melt is obtained. A thermo-

couple, or other convenient device

for temperature measurement, is

- PER CENT B -

Fig. 6.13. Simple eutectic diagram for

two components, A and B, completely inter-

soluble as liquids but with negligible solid-

solid solubility.

immersed in the liquid, which is kept
in a fairly well insulated container.

As the system slowly cools, the

temperature is recorded at regular time intervals. Examples of such curves

for the system shown in Fig. 6.13 are drawn in Fig. 6.15.

The curve a for pure A exhibits a gradual decline until the melting point

of A is reached. It then remains perfectly flat as long as solid and liquid A

Fig. 6.14. Photomicrograph at 50X of 80 per cent Pb-20 per cent Sb,

showing crystals of Sb in a eutectic matrix. (Courtesy Professor Arthur

Phillips, Yale University.)

are both present, and resumes its decline only after all the liquid has solidified.

The curve for cooling along the isopleth XX' is shown in b. The decline as

the homogeneous melt is cooled becomes suddenly less steep when the tem-

perature is reached corresponding to point P, where the first solid begins to
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separate from the solution. This change of slope is a consequence of the

liberation of latent heat of fusion during the solidification of A. The more

gradual decline continues until the eutectic temperature is reached. Then
the cooling curve becomes absolutely flat. This is because the eutectic point
in a two-component system, just as the melting point of one component, is

an invariant point at constant over-all pressure. If the composition of the

COMPOSITION

ALONG \EUTECTIC
\COMPOSITION

(0)

TIME

Fig. 6.15. Cooling curves for various compositions on the simple eutectic

diagram of Fig. 6.13.

system chosen initially happened to be the same as that of the eutectic, the

cooling curve would be that drawn in c.

The duration of the constant-temperature period at the eutectic tempera-
ture is called the eutectic halt. This halt is a maximum for a melt having the

eutectic composition.
Each cooling curve determination yields one point on the TC diagram

(point of initial break in slope) in addition to a value for the eutectic tempera-
ture. By these methods, the entire diagram can be constructed.

27. Compound formation. If aniline and phenol are melted together in

equimolar proportions, a definite compound crystallizes on cooling,
C6H5OH-C6H5NH2 . Pure phenol melts at 40C, pure aniline at -6.1C,
and the compound melts at 3lC. The complete TC diagram for this system,
in Fig. 6.16, is typical of many instances in which stable compounds occur

as solid phases. The most convenient way of looking at such a diagram
is to imagine it to be made up of two diagrams of the simple eutectic

type placed side by side. In this case, one such diagram would be the

phenol-compound diagram, and the other the aniline-compound diagram.
The phases corresponding with the various regions of the diagram are

labeled.

A maximum such as the point C is said to indicate the formation of a
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compound with a congruent melting point, since if a solid having the com-

position C6H5OH-C6H5NH2 is heated to 31C, it melts to a liquid of identical

composition. Compounds with congruent melting points are readily detected-

o

UJ<

S 1
liJ

40

30

20

O
lr'0

-10

-20,

(b)

rSOLID PHENOL
[

+ SOLUTION

SOLID COMPOUND
SOLUTIONJ

SOLID PHENOL
+

SOLID COMPOUND

SOLUTION

SOLID ANILINE
+

SOLID COMPOUND
.1 .2 .3 4 .5 .6 .7 .8 .9 1.0

CgHsOH MOLE FRACTION ANILINE C6 H5NH2

(0)

Fig. 6.16. The system phenol-aniline.

by the cooling-curve method. A liquid having the composition of the com-

pound exhibits no eutectic halt, behaving in every respect like a single pure

component.
28. Solid compounds with incongruent melting points. In some systems,

solid compounds are formed that do not melt to a liquid having the same

composition, but instead decompose before such a melting point is reached.

An example is the silica-alumina system (Fig. 6.17), which includes a com-

pound, 3Al2O3-SiO2 , called mul/ite.

If a melt containing 40 per cent A12O3 is prepared and cooled slowly,

solid mullite begins to separate at about 1780C. If some of this solid com-

pound is removed and reheated along the line XX', it decomposes at 1800C
into solid corundum and a liquid solution (melt) having the composition P.

Thus: 3Al2O3-SiO2
-* A12O3 + solution. Such a change is called incongruent

melting, since the composition of the liquid differs from that of the solid.

The point P is called the incongruent melting point or the peritectic point

(rrjKTo*, "melting"; TTC/M, "around"). The suitability of this name becomes

evident if one follows the course of events as a solution with composition
3Al2O3-SiO2 is gradually cooled along XX' . When the point M is reached,
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solid corundum (A12O3) begins to separate from the melt, whose com-

position therefore becomes richer in SiO2 , falling along the line MP. When

the temperature falls below that of the peritectic at />, the following change

occurs: liquid + corundum --> mullite. The solid A12O3 that has separated

2100

60 3A1203 80 100
Si02 A\203

w PER CENT A1203

Fig. 6.17. System displaying peritectic.

reacts with the surrounding melt to form the compound mullite. If a specimen
taken at a point such as Q is examined, the solid material is found to consist

of two phases, a core of corundum surrounded by a coating of mullite. It

was from this characteristic appearance that the term "peritectic" originated.

29. Solid solutions. Solid solutions are in theory no different from other

kinds of solution: they are simply solid phases containing more than one

1500

1452

I000
10 20 30 4p 50 60 70 80 90 100

Cu wt PER CENT NICKEL Ni

Fig. 6.18. The copper-nickel system a continuous series of solid

solutions.

component. The phase rule makes no distinction between the kind of phase

(gas, liquid, or solid) that occurs, being concerned only with how many
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pure tin melts at 232C and pure bismuth at 268C, their eutectic being at

133C and 42 per cent Sn. The Sn-Bi eutectic temperature is lowered by the

addition of lead to a minimum at 96C and a composition of 32 per cent Pb,

16 per cent Sn, 52 per cent Bi. This is the ternary eutectic point.

Pb Pb

Sn Bi Sn

SOLID Pb
+ SOLUTION

SOLID Pb ^L
+ SOLIDSn Pb /-SOLID Pb

+ SOLUTION
SOLUTION

325 a 315

(0) (b)

SOLID Pb +
SOLID S

SOLUTION

182 133

(0 (d)

SOLID Pb 4- SOLUTION

SOLID Pb + SOLID Bi

SOLUTION

Bi

Fig. 6.22. The system Pb-Sn-Bi : three-dimensional diagram and iso-

thermal sections.

Without using a solid model, the behavior of this system is best illustrated

by a series of isothermal sections, shown in Fig. 6.22. Above 325C (a), the

melting point of pure lead, there is a single liquid solution. At around 315C
(b) the system consists of solid Pb and solution. The section at 182C (c)

indicates the binary eutectic of Sn and Pb. Below this temperature, solid Pb
and solid Sn both separate from the solution. At 133C the binary eutectic

between Sn and Bi is reached (d). Finally, in (e) at 100C there is shown a

section slightly above the ternary eutectic.

The subject of ternary diagrams is an extended and very important one,

and only a few of the introductory aspects have been mentioned. For further

details some of the special treatises that are available should be consulted. 11

11
J. S. Marsh, Principles ofPhase Diagrams (New York: McGraw-Hill, 1935); G. Mas-

sing, Introduction to the Theory of Three Component-Systems (New York: Reinhold, 1944).
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PROBLEMS

1. Solutions are prepared at 25C containing 1000 g of water and n moles

of NaCl. The volume is found to vary with n as V =- 1001.38 + 16.6253 +
1.7738 3/2 + 0.1194fl2

. Draw a graph showing the partial molar volumes

of H2O and NaCl in the solution as a function of the molality from to 2

molal.

2. In the International Critical Tables (vol. Ill, p. 58) there is an extensive

table of densities of HNO3 H2O solutions. Use these data to calculate, by
the graphical method of Fig. 6.1, the partial molar volumes of H2O and

HNO3 in 10, 20, 30, and 40 per cent solutions at 25.

3. When 2 g of nonvolatile hydrocarbon containing 94.4 per cent C is

dissolved in 100 g benzene, the vapor pressure of benzene at 20C is lowered

from 74.66 mm to 74.01 mm. Calculate the empirical formula of the hydro-
carbon.

4. Pure water is saturated with a 2 : 1 mixture of hydrogen and oxygen
at a total pressure of 5 atm. The water is then boiled to remove all the gases.

Calculate the per cent composition of the gases driven off (after drying). Use

data from Table 6.2.

5. Water and nitrobenzene can be considered to be immiscible liquids.

Their vapor pressures are: H 2O, 92.5mm at 50C; 760mm at 100C;
C6H5NO2 ,

22.4 mm at 10QC; 148 mm at 150C. Estimate the boiling point
of a mixture of water and nitrobenzene at 1 atm pressure. In a steam dis-

tillation at 1 atm how many grams of steam would be condensed to obtain

one gram of nitrobenzene in the distillate?

6. The following data were obtained for the boiling points at 1 atm of

solutions of CC14 in C2C1 4 :

Mole fraction

CCI4 inliq. . 0.000 0.100 0.200 0.400 0.600 0.800 1.000

Mole fraction

CCI 4 invap. . 0.000 0.469 0.670 0.861 0.918 0.958 1.000

Boiling point
C . . 120.8 108.5 100.8 89.3 83.5 79.9 76.9

If half of a solution 30 mole per cent in CC14 is distilled, what is the com-

position of the distillate? If a solution 50 mole per cent in CC1
4

is distilled

until the residue is 20 mole per cent CC14 , what is approximate composition
of the distillate?

7. A compound insoluble in water is steam distilled at 97.0C, the dis-

tillate containing 68 wt. per cent H2O. The vapor pressure of water is 682 mm
at 97. What is the molecular weight of the compound?

8. When hexaphenylethane is dissolved in benzene, the f.pt. depression
of a 2 per cent solution is 0.219C; the b.pt. elevation is 0.135. Calculate

the heat of dissociation of hexaphenylethane into triphenylmethyl radicals.
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9. Calculate the weight of (a) methanol, (b) ethylene glycol which, when

dissolved in 4.0 liters of water, would just prevent the formation of ice at

-10C.

10. The solubility of picric acid in benzene is:

/, C . . 5 10 15 20 25 3t

g/100gC6H6 . 3.70 5.37 7.29 9.56 12.66 21.38

The melting points of benzene and picric acid are 5.5 and 121.8C. Calculate

the heat of fusion of picric acid.

11. The osmotic pressure at 25C of a solution of /Mactoglobulin con-

taining 1.346 g protein per 100 cc solution was found to be 9.91 cm of water.

Estimate the molecular weight of the protein.

12. For the ideal solutions of ethylene bromide and propylenc bromide

(p. 124), draw a curve showing how the mole fraction of C2H4Br2 in the

vapor varies with that in the liquid. Use this curve to estimate the number

of theoretical plates required in a column in order to yield a distillate with

mole fraction of C2H 4 Br2 0.9 from a solution of mole fraction 0. 1 . Assume
total reflux.

13. Calculate the distribution coefficient K for piperidine between water

and benzene at 20C, given :

g solute/ 1 00 cc water layer . . 0.635 1.023 1.635 2.694

g solute/100 cc benzene layer . . 0.550 0.898 1.450 2.325

14. A solution of 3.795 g sulfur in 100 g carbon bisulfide (b.pt. CS2

46.30C; A//vap
= 6400 cal per mole) boils at 46.66C. What is the formula

of the sulfur molecule in the solution?

15. The melting points and heats of fusion of 0, /?,
m dinitrobenzenes are:

116.9, 173.5, 89.8, and 3905, 3345, 4280 cal per mole [Johnston, J. Phys.

Chem., 29, 882, 1041 (1925)]. Assuming the ideal solubility law, calculate the

ternary eutectic temperature and composition for mixtures of o, m, p com-

pounds.

16. The following boiling points are obtained for solutions of oxygen and

nitrogen at 1 atm:

b.pt., K . . 77.3 78.0 79.0 80.0 82.0 84.0 86.0 88.0 90.1

Mole % O in
liq.

. 8.1 21.6 33.4 52.2 66.2 77.8 88.5 100

Mole%Oinvap. 2.2 6.8 12.0 23.6 36.9 52.2 69.6 100

Draw the TX diagram. If 90 per cent of a mixture containing 20 per cent O2

and 80 per cent N2 is distilled, what will be the composition of the residual

liquid and its b.pt. ? Plot an activity a vs. mole fraction X diagram from the

data.

17. For a two-component system (A, B) show that:
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18. Redder and Barratt [/. Chem. Soc., 537 (1933)] measured the vapor

pressures of potassium amalgams at 387.5C, at which temperature the vapor

pressure of K is 3.25 mm, of Hg 1280 mm.

Mole % K in
liq.

. 41.1 46.8 50.0 56.1 63.0 72.0

PofHg, mm . 31.87 17.30 13.00 9.11 6.53 3.70

PofK, mm . 0.348 0.68 1.07 1.69 2.26 2.95

Calculate the activity coefficients of K and Hg in the amalgams and plot

them vs. the composition in the range studied.

19. The equilibrium pressures for the system CaSO4-2 H2O = CaSO4 +
2 H2O, and the vapor pressures of pure water, at various temperatures are:

/, C 50 55 60 65

CaSO4 system, mm . .80 109 149 204

H 2O, mm .... 92 118 149 188

The solubility of CaSO4 in water is so low that the vapor pressure of the

saturated solution can be taken to equal that of pure water.

(a) State what happens on heating the dihydrate in a previously evacu-

ated sealed tube from 50 to 65C. (b) What solid phase separates when a

solution of CaSO4 is evaporated at 65, at 55C? (c) What solid phase

separates on evaporating at 55 if, when the solution becomes saturated,

enough CaCl2 is added to reduce its v.p. by 10 per cent?

20. Data for the Au-Te system:

wt. % Te 10 20 30 40 42 50 56.4 60 70 82.5 90 100

f.pt., C 1063 940 855 710 480 447 458 464 460 448 416 425 453

Sketch the phase diagram. Label all regions carefully. Describe what happens
when a melt containing 50 per cent Te is cooled slowly.

21. The dissociation pressure of galactose monohydrate is given by

Iog10 />(mrn)
- 7.04 - 1780/7. Calculate AF, A//, AS , at 25C for the

dissociation.

22. The solubility of glycine in liquid ammonia was found to be:

Moles per liter . . . 0.20 0.65 2.52

/, C -77 -63 -45

Estimate the heat of solution per mole.

23. For the free energies of formation of Cu2O and CuO the following

equations are cited :

Cu20: AF = -40,720 + 1.1771n T - 1.545 x lQr*T* -f 85.771
/
2
-f 6.977

CuO: AF = -37,680 + 1.757 In T - 2.73 X 10-872 + 85.77' /
2 + 9.497

What product is formed when O2 at 10 mm pressure is passed over copper
at900C?
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CHAPTER 7

The Kinetic Theory

1. The beginning of the atom. Thermodynamics is a science that takes

things more or less as it finds them. It deals with pressures, volumes, tem-

peratures, and energies, and the relations between them, without seeking to

elucidate further the nature of these entities. For thermodynamics, matter is

a Continuous substance, and energy behaves in many ways like an incom-

pressible, weightless fluid. The analysis of nature provided by thermo-

dynamics is very effective in a rather limited field. Almost from the beginning
of human thought, however, man has tried to achieve an insight into the

structure of things, and to find an indestructible reality beneath the ever-

changing appearances of natural phenomena.
The best example of this endeavor has been the development of the

atomic theory. The word atom is derived from the Greek aro/io?, meaning
"indivisible" ;

the atoms were believed to be the ultimate and eternal particles

of which all material things were made. Our knowledge of Greek atomism

comes mainly from the long poem of the Roman, Lucretius, De Rerwn

Natura "Concerning the Nature of Things," written in the first century

before Christ. Lucretius expounded the theories of Epicurus and of

Democritus :

The same letters, variously selected and combined

Signify heaven, earth, sea, rivers, sun,

Most having some letters in common.
But the different subjects are distinguished

By the arrangement of letters to form the words.

So likewise in the things themselves,

When the intervals, passages, connections, weights,

Impulses, collisions, movements, order,

And position of the atoms interchange,
So also must the things formed from them change.

The properties of substances were determined by the form of their atoms.

Atoms of iron were hard and strong with spines that locked them together

into a solid; atoms of water were smooth and slippery like poppy seeds;

atoms of salt were sharp and pointed and pricked the tongue; whirling atoms

of air pervaded all matter.

Later philosophers were inclined to discredit the atomic theory. They
found it hard to explain the many qualities of materials, color, form, taste,

and odor, in terms of naked, colorless, tasteless, odorless atoms. Many
followed the lead of Heraclitus and Aristotle, considering matter to be

formed from the four "elements," earth, air, fire, and water, in varying

160
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proportions. Among the alchemists there came into favor the tria prima of

Paracelsus (1493-1541), who wrote:

Know, then, that all the seven metals are born from a threefold matter, namely,

Mercury, Sulphur, and Salt, but with distinct and peculiar colorings.

Atoms were almost forgotten till the seventeenth century, as the al-

chemists sought the philosopher's stone by which the "principles" could be

blended to make gold.
2. The renascence of the atom. The writings of Descartes (1596-1650)

helped to restore the idea of a corpuscular structure of matter. Gassendi

(1592-1655) introduced many of the concepts of the present atomic theory;
his atoms were rigid, moved at random in a void, and collided with one

another. These ideas were extended by Hooke, who first proposed (1678)

that the "elasticity" of a gas was the result of collisions of its atoms with

the retaining walls.

The necessary philosophic background for the rapid development of

atomism was now provided by John Locke. In his Essay on Human Under-

standing (1690), he took up the old problem of how the atoms could account

for all the qualities perceived by the senses in material things. The qualities

of things were divided into two classes. The primary qualities were those of

shape, size, motion, and situation. These were the properties inherent in the

corpuscles or atoms that make up matter. Secondary qualities, such as color,

odor, and taste, existed only in the mind of the observer. They arose when

certain arrangements of the atoms of matter interacted with other arrange-

ments of atoms in the sense organs of the observer.

Thus a "hot object" might produce a change in the size, motion, or

situation of the corpuscles of the skin, which then produces in the mind the

sensations of warmth or of pain. The consequences of Locke's empiricism
have been admirably summarized by J. C. Gregory.

1

The doctrine of qualities was a curiously dichotomized version of perception.
A snowflake, as perceived, was half in the mind and half out of it, for its shape was

seen but its whiteness was only in the mind. . . . This had quick consequences
for philosophy. . . . The division between science and philosophy began about the

time of Locke, as the one turned, with its experimental appliances, to the study of

the corpuscular mechanism, and the other explored the mind and its ideas. The
severance had begun between science and philosophy and, although it only gradually

progressed into the nineteenth century cleft between them, when the seventeenth

century closed, physical science was taking the physical world for her domain, and

philosophy was taking the mental world for hers.

In the early part of the eighteenth century, the idea of the atom became

widely accepted. Newton wrote in 1718:

It seems probable to me that God in the beginning formed matter in solid,

massy, hard, impenetrable, movable particles, of such sizes and figures, and with

such other properties, and in such proportion, as most conduced to the end for

which He formed them.

1 A Short History of Atomism (London: A. & C. Black, Ltd., 1931).
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Newton suggested, incorrectly, that the pressure of a gas was due to repulsive
forces between its constituent atoms. In 1738, Daniel Bernoulli correctly
derived Boyle's Law by considering the collisions of atoms with the container

wall.

3. Atoms and molecules. Boyle had discarded the alchemical notion of

elements and defined them as substances that had not been decomposed in

the laboratory. Until the work of Antoine Lavoisier from 1772 to 1783,

however, chemical thought was completely dominated by the phlogiston

theory of Georg Stahl, which was actually a survival of alchemical concep-
tions. With Lavoisier's work the elements took on their modern meaning,
and chemistry became a quantitative science. The Law of Definite Propor-
tions and The Law of Multiple Proportions had become fairly well established

by 1808, when John Dalton published his New System ofChemical Philosophy .

Dalton proposed that the atoms of each element had a characteristic

atomic weight, and that these atoms were the combining units in chemical

reactions. This hypothesis provided a clear explanation for the Laws of
Definite and Multiple Proportions. Dalton had no unequivocal way of

assigning atomic weights, and he made the unfounded assumption that in

the most common compound between two elements, one atom of each was
combined. According to this system, water would be HO, and ammonia NH.
If the atomic weight of hydrogen was set equal to unity, the analytical data

would then give O = 8, N - 4.5, in Dalton's system.
At about this time, Gay-Lussac was studying the chemical combinations

of gases, and he found that the ratios of the volumes of the reacting gases
were small whole numbers. This discovery provided a more logical method
for assigning atomic weights. Gay-Lussac, Berzelius, and others felt that the

volume occupied by the atoms of a gas must be very small compared with
the total gas volume, so that equal volumes of gas should contain equal
numbers of atoms. The weights of such equal volumes would therefore be

proportional to the atomic weights. This idea was received coldly by Dalton
and many of his contemporaries, who pointed to reactions such as that

which they wrote as N + O NO. Experimentally the nitric oxide was
found to occupy the same volume as the nitrogen and oxygen from which
it was formed, although it evidently contained only half as many "atoms."2

Not till 1860 was the solution to this problem understood by most

chemists, although half a century earlier it had been given by Amadeo
Avogadro. In 1811, he published in the Journal de physique an article that

clearly drew the distinction between the molecule and the atom. The "atoms"
of hydrogen, oxygen, and nitrogen are in reality "molecules" containing two
atoms each. Equal volumes of gases should contain the same number of
molecules (Avogadro's Principle).

Since a molecular weight in grams-(mole) of any substance contains the

same number of molecules, 'according to Avogadro's Principle the molar
2 The elementary corpuscles of compounds were then called "atoms" of the compound.
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volumes of all gases should be the same. The extent to which real gases

conform to this rule may be seen from the molar volumes in Table 7.1 cal-

culated from the measured gas densities. For an ideal gas at 0C and 1 atm,

the molar volume would be 22,414 cc. The number of molecules in one mole

is now called Avogadro's Number N.

TABLE 7.1

MOLAR VOLUMES OF GASES IN cc AT 0C AND 1 ATM PRESSURE

Hydrogen . . 22,432
Helium . . . 22,396
Methane . . . 22,377

Nitrogen . . . 22,403

Oxygen . . . 22,392
Ammonia . . 22,094

Argon . . . 22,390
Chlorine . . . 22,063
Carbon dioxide . . 22,263
Ethane . . . 22,172

Ethylene . . . 22,246

Acetylene . . . 22,085

The work of Avogadro was almost completely neglected until it was

forcefully presented by Cannizzaro at the Karlsruhe Conference in 1860.

The reason for this neglect was probably the deeply rooted feeling that

chemical combination occurred by virtue of an affinity between unlike ele-

ments. After the electrical discoveries of Galvani and Volta, this affinity

was generally ascribed to the attraction between unlike charges. The idea

that two identical atoms of hydrogen might combine into the compound
molecule H2 was abhorrent to the chemical philosophy of the early nineteenth

century.

4. The kinetic theory of heat. Even among the most primitive peoples
the connection between heat and motion was known through frictional

phenomena. As the kinetic theory became accepted during the seventeenth

century, the identification of heat with the mechanical motion of the atoms

or corpuscles became quite common.
Francis Bacon (1561-1626) wrote:

When I say of motion that it is the genus of which heat is a species I would be

understood to mean, not that heat generates motion or that motion generates heat

(though both are true in certain cases) but that heat itself, its essence and quiddity,
is motion and nothing else. . . . Heat is a motion of expansion, not uniformly of

the whole body together, but in the smaller parts of it ... the body acquires a

motion alternative, perpetually quivering, striving, and struggling, and initiated by

repercussion, whence springs the fury of fire and heat.

Although such ideas were widely discussed during the intervening years,

the caloric theory, considering heat as a weightless fluid, was the working

hypothesis of most natural philosophers until the quantitative work of Rum-
ford and Joule brought about the general adoption of the mechanical theory.

This theory was rapidly developed by Boltzmann, Maxwell, Clausius, and

others, from 1860 to 1890.

According to the tenets of the kinetic theory, both temperature and

pressure are thus manifestations of molecular motion. Temperature is a

measure of the average translational kinetic energy of the molecules, and
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pressure arises from the average force resulting from repeated impacts of

molecules with the containing walls.

5. The pressure of a gas. The simplest kinetic-theory model of a gas

assumes that the volume occupied by the molecules may be neglected com-

pletely compared to the total volume. It is further assumed that the molecules

behave like rigid spheres, with no forces of attraction or repulsion between

them except during actual collisions.

In order to calculate the pressure in terms of molecular quantities, let us

consider a volume of gas contained in a cubical box of side /. The velocity

c of any molecule may be resolved into components u, v, and w, parallel to

the three mutually perpendicular axes X, Y, and Z, so that its magnitude is

given by
C2^_ U2 +V2 + W2

(7.1)

Collisions between a molecule and the walls are assumed to be perfectly

elastic; the angle of incidence equals the angle of reflexion, and the velocity

changes in direction but not in magnitude. At each collision with a wall

that is perpendicular to X, the velocity component u changes sign from

} u to -
w, or vice versa; the momentum component of the molecule accord-

ingly changes from imw to ^mu, where m is the mass of the molecule. The

magnitude of the change in momentum is therefore 2 mu.

The number of collisions in unit time with the two walls perpendicular

to X is equal to w//, and thus the change in the X component of momentum
in unit time is 2mu -

(u/l)
-- 2mu2

/l.

If there are N molecules in the box, the change in momentum in unit

time becomes 2(/Ww(
2
)//), where (w

2
) is the average value of the square of

velocity component
3
u. This rate of change of momentum is simply the force

exerted by the molecules colliding against the two container walls normal to

X, whose area is 2/2 . Since pressure is defined as the force normal to unit area,

_ 2Nm(u2
) Nm(rf)

P ^
21* -I

" ~
V~

Now there is nothing to distinguish the magnitude of one particular

component from another in eq. (7.1) so that on the average (u
2
)
=

(v
2
)
=

(w
2
). Thus 3(w

2
) (c

2
) and the expression for the pressure becomes

(7.2)V '
3K

The quantity (c
2
) is called the mean square speed of the molecules, and

may be given the special symbol C2
. Then C = (c

2
)
172

is called the root mean

3 Not to be confused with the square of the average value of the velocity component,
which would be written (w)

2
. In this derivation we are averaging w2

, not //.
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square speed. The total translational kinetic energy EK of the molecules is

iNmC*. Therefore from eq. (7.2):

PV = \NrnC* ^%EK (7.3)

Since the total kinetic energy is a constant, unchanged by the elastic

collisions, eq. (7.3) is equivalent to Boyle's Law.

If several different molecular species are present in a gas mixture, their

kinetic energies are additive. From eq. (7.3), therefore, the total pressure is

the sum of the pressures each gas would exert if it occupied the entire volume

alone. This is Dalton's Law of Partial Pressures.4

6. Kinetic energy and temperature. The concept of temperature was first

introduced in connection with the study of thermal equilibrium. When two

bodies are-placed in contact, energy flows from one to the other until a state

of equilibrium is reached. The two bodies are then at the same temperature.

We have found that the temperature can be measured conveniently by means

of an ideal-gas thermometer, this empirical scale being identical with the

thermodynamic scale derived from the Second Law.

A distinction was drawn in thermodynamics between mechanical work

and heat. According to the kinetic theory, the transformation of mechanical

work into heat is simply a degradation of large-scale motion into motion on

the molecular scale. An increase in the temperature of a body is equivalent
to an increase in the average translational kinetic energy of its constituent

molecules. We may express this mathematically by saying that the tempera-
ture is a function of EK alone, T -^ f(EK). We know that this function must

have the special form T %EK/R, or

EK - $RT (7.4)

so that eq. (7.3) may be consistent with the ideal-gas relation, PV RT.

Temperature is thus not only a function of, but in fact proportional to,

the average translational kinetic energy of the molecules. The kinetic-theory

interpretation of absolute zero is thus the complete cessation of all molecular

motion the zero point of kinetic energy.
5

The average translational kinetic energy may be resolved into components
in the three degrees offreedom corresponding to velocities parallel to the

three rectangular coordinates. Thus, for one mole of gas, where TV is

Avogadro's Number,

EK =

For each translational degree of freedom, therefore, from eq. (7.4),

E'K - \Nm^f) - \RT (7.5)

* PV = l(EKl \ EK2 + ...); P,V - \EKl \
P2 y =- E

Therefore, P = /\ + P2 + . . ., Dalton's Law.
5

It will be seen later that this picture has been somewhat changed by quantum theory,
which requires a small residual energy even at the absolute zero.
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This is a special case of a more general theorem known as the Principle of

the Equipartition of Energy.
7. Molecular speeds. Equation (7.3) may be written

C2 =--=

3/>
(7.6)

P

where
/>

-= NmjV is the density of the gas. From eqs. (7.3) and (7.4) we

obtain for the root mean square speed C, if M is the molecular weight,

2
3RT 3RT^ ~ ~ ~

The average speed c, as we shall see later, differs only slightly from the root

mean square speed :

From eq. (7.6), (7.7), or (7.8), we can readily calculate average or root

mean square speeds of the molecules of any gas at any temperature. Some

results are shown in Table 7.2. The average molecular speed of hydrogen at

25C is 1768 m per sec or 3955 mi per hr, about the speed of a rifle bullet.

The average speed of a mercury vapor atom would be only about 400 mi

per *hr.

TABLE 7.2

AVERAGE SPEEDS OF GAS MOLECULES AT 0C
Meters/sec

. 1692.0

. 1196.0

. 170.0

. 600.6

. 454.2

. 425.1

. 566.5

We note that, in accordance with the principle of equipartition of energy,
at any constant temperature the lighter molecules have the higher average

speeds. This principle extends even to the phenomena of Brownian motion,

where the dancing particles are some thousand times heavier than the

molecules colliding with them, but nevertheless have the same average
kinetic energy.

8. Molecular effusion. A direct experimental illustration of the different

average speeds of molecules of different gases can be obtained from the

phenomenon called molecular effusion. Consider the arrangement shown in

(a), Fig. 7.1. Molecules from a vessel of gas under pressure are permitted to

escape through a tiny orifice, so small that the distribution of the velocities
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of the gas molecules remaining in the vessel is not affected in any way; that

is, no appreciable mass flow in the direction of the orifice is set up. The

number of molecules escaping in unit time is then equal to the number that,

in their random motion, happen to hit the orifice, and this number is pro-

portional to the average molecular speed.

In (b), Fig. 7.1 is shown an enlarged view of the orifice, having an area

ds. If all the molecules were moving directly perpendicular to the opening
with their mean speed r, in one second all those molecules would hit the

opening that were contained in an element of volume of base ds and height c,

or volume c ds, for a molecule at a distance c will just reach the orifice at

(b)

Fig. 7.1. Effusion of gases.

the end of one second. If there are n molecules per cc, the number striking

would be nc ds. To a first approximation only one-sixth of all the molecules

are moving toward the opening, since there are six different possible direc-

tions of translation corresponding to the three rectangular axes. The number

of molecules streaming through the orifice would therefore be \nc ds, or per
unit area \nc.

Actually, the problem is considerably more complicated, since half the

molecules have a component of motion toward the area, and one must

average over all the different possible directions of motion. This gives the

result: number of molecules striking unit area per second = number of

molecules effusing through unit area per second = \nc.

It is instructive to consider how this result is obtained, since the averaging
method is typical of many kinetic-theory calculations. This derivation will be

the only one in the chapter that makes any pretense of exactitude, and may
therefore serve also to inculcate a proper suspicion of the cursory methods

used to obtain subsequent equations.
If the direction of the molecules is no longer normal to the wall, instead

of the situation of Fig. 7. 1 , we have that of Fig. 7.2(a). For^any given direction

the number of molecules hitting ds in unit time will be those contained in a

cylinder of base ds and slant height c. The volume of this cylinder is c cos ds,

and the number of molecules in it is nc cos 6 ds.

The next step is to discover how many molecules out of the total have
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NORMAL

velocities in the specified direction. The velocities of the molecules will be

referred to a system of polar coordinates [Fig. 7.2.(b)] with its origin at the

wall of the vessel. We call such a representation a plot of the molecular

velocities in "velocity space." The

distance from the origin c defines

the magnitude of the velocity, and

the angles and
<f> represent its

direction. Any particular direction

from the origin is specified by the

differential solid angle doj. The

fraction of the total number of

molecules having their velocities

within this particular spread of

directions is */a>/477 since 4?r is the

total solid angle subtended by the

surface of a sphere. In polar co-

(c)

(a)

(b)

Fig. 7.2. Calculation of gaseous effusion.

Element of solid angle is shown in (c).

ordinates this solid angle is given
6

by sin 6 dO
d<f>.

The number of molecules hit-

ting the surface ds in unit time

from the given direction (6, (/>)
be-

comes ( 1 /47r)nc cos sin 6 dO
dc/>

ds.

Or, for unit surface, it is (l/47r)rtccos sin 6 dO
d<j>.

In order to find the

total number striking from all directions, dn'/dt, this expression must be

integrated :

dn f
w/2

f
2"

1

-y = --nccosO sin
d<f>

dO
at Jo Jo 4-7T

The limits of integration of
<f>

are from to 2?r, corresponding to ail the

directions around the circle at any given 0. Then is integrated from to

7T/2. The final result for the number of molecules striking unit area in unit

time is then

^ -
i nc (7.9)

The steps of the derivation may be reviewed by referring to Fig. 7.2.

If p is the gas density, the weight of gas that effuses in unit time is

From eq. (7.8)

dW^ _
~dt

"

dW _ /

~dt

~~ n
vl/2

P \bM)

(7.10)

(7.11)

6 G. P. Harriwell, Principles of Electricity and Electromagnetism (New York: McGraw-
Hill, 1949), p. 649.
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For the volume rate of flow, e.g., cc per sec per cm
2
,

1/2

dt

- (--V\l-nMJ
(7.12)

It follows that at constant temperature the rate of effusion varies in-

versely as the square root of the molecular weight. Thomas Graham (1848)

was the first to obtain experimental evidence for this law, which is now
named in his honor. Some of his data are shown in Table 7.3.

TABLE 7.3

THE EFFUSION OF GASES*

Gas

Air .

Nitrogen ,

Oxygen
Hydrogen
Carbon dioxide .

* Source: Graham, "On the Motion of Gases," Phil. Trans. Roy. Soc. (London), 136,

573 (1846).

It appears from Graham's work, and also from that of later experi-

menters, that eq. (7.12) is not perfectly obeyed. It fails rapidly when one

goes to higher pressures and larger orifices. Under these conditions the

molecules can collide many times with one another in passing through the

orifice, and a hydrodynamic flow towards the orifice is set up throughout
the container, leading to the formation of a jet of escaping gas.

7

It is evident from eq. (7.12) that the effusive-flow process provides a

good method for separating gases of different molecular weights. By using

permeable barriers with very fine pores, important applications have been

made in the separation of isotopes. Because the lengths of the pores are

considerably greater than their diameters, the flow of gases through such

barriers does not follow the simple orifice-effusion equation. The dependence
on molecular weight is the same, since each molecule passes through the

barrier independently of any others.

9. Imperfect gases van der Waals' equation, The calculated properties

of the perfect gas of the kinetic theory are the same as the experimental

properties of the ideal gas of thermodynamics. It might be expected then

that extension and modification of the simplified model of the perfect gas

should provide an explanation for observed deviations from ideal-gas

behavior.

7 For a discussion of jet flow, see H. W. Liepmann and A. E. Puckett, Introduction to

Aerodynamics ofa Compressible Fluid (New York: Wiley, 1947), pp. 32 et seq.
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The first improvement of the model is to abandon the assumption that

the volume of the molecules themselves can be completely neglected in com-

parison with the total gas volume. The effect of the finite volume of the

molecules is to decrease the available void space in which the molecules are

free to move. Instead of the V in the perfect gas equation, we must write

V b where b is called the excluded volume. This is not just equal to the

volume occupied by the molecules, but actually to four times that volume.

This may be seen in a qualitative way by considering the two molecules of

Fig. 7.3 (a), regarded as impenetrable spheres each with a diameter d. The

QD o
o. o

o

(o)

o
o

o
(b)

Fig. 7.3. Corrections to perfect gas law. (a) Excluded volume,

(b) Intermolecular forces.

centers of these two molecules cannot approach each other more closely

than the distance d\ the excluded volume for the pair is therefore a sphere
of radius d 2r (where r is the radius of a molecule). This volume is JTrrf

3 --

8 . |77r
3
per pair, or 4 . ^vrr

3 which equals 4Vm per molecule (where Vm is the

volume of the molecule).

The consideration of the finite molecular volumes leads therefore to a

gas equation of the form: P(V b) ---- RT. A second correction to the perfect

gas formula comes from consideration of the forces of cohesion between the

molecules. We recall that the thermodynamic definition of the ideal gas
includes the requirement that (dE/dV)T 0. If this condition is not fulfilled,

when the gas is expanded work must be done against the cohesive forces

between the molecules. The way in which these attractive forces enter into

the gas equation may be seen by considering Fig. 7.3. (b). The molecules

completely surrounded by other gas molecules are in a uniform field of

force, whereas the molecules near to or colliding with the container walls

experience a net inward pull towards the body of the gas. This tends to

decrease the pressure compared to that which would be exerted by molecules

in the absence of such attractive forces.

The total inward pull is proportional to the number of surface-layer
molecules being pulled, and to the number of molecules in the inner layer

of the gas that are doing the pulling. Both factors are proportional to the
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density of the gas, giving a pull proportional to p
2

, or equal to c/>
2

, where

c is a constant. Since the density is inversely proportional to the volume

at any given pressure and temperature, the pull may also be written a/V2 .

This amount must therefore be added to the pressure to make up for the

effect of the attractive forces. Then,

(Y- b)^RT (7.13)

This is the famous equation of state first given by van der Waals in 1873.

It provides a good representation of the behavior of gases at moderate

densities, but deviations become very appreciable at higher densities. The

values of the constants a and b are obtained from the experimental PVT
data at moderate densities, or more usually from the critical constants of

the gas. Some of these values were collected in Table 1.1 on p. 14.

Equation (7.13) may also be written in the form

PV-^RT+bP -^+^2 (7.14)

The way in which this equation serves to interpret PV vs. P data may be

seen from an examination of the compressibility factor curves at different

temperatures, shown in Fig. 1.5 (p. 15). At sufficiently high temperatures
the intermolecular potential energy, which is not temperature dependent,
becomes negligible compared to the kinetic energy of the molecules, which

increases with temperature. Then the equation reduces to PV -= RT + bP.

At lower temperatures, the effect of intermolecular forces becomes more

appreciable. Then, at moderate pressures the ~a\ V term becomes important,
and there are corresponding declines in the PV vs. P curves. At still higher

pressures, however, the term +ab/V2
predominates, and the curves eventually

rise again.

10. Collisions between molecules. Now that the oversimplification that

the molecules of a gas occupy no volume themselves has been abandoned,

it is possible to consider further the phenomena that depend on collisions

between the molecules. Let us suppose that all the molecules have a diameter

d, and consider as in Fig. 7.4 the approach of a molecule A toward another

molecule B.

A "collision" occurs whenever the distance between their centers becomes

as small as d. Let us imagine the center of A to be surrounded by a sphere of

radius d. A collision occurs whenever the center 'of another molecule comes

within this sphere. If A is traveling with the average speed c, its "sphere
of influence" sweeps out in unit time a volume nd^c. Since this volume

contains n molecules per cc, there are -nnd^c collisions experienced by A per
second.

A more exact calculation takes into consideration that only the speed of
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a molecule relative to other moving molecules determines the number of

collisions Zx that it experiences. This fact leads to the expression

Zj -^ V27wd2c (7.15)

The origin of the A/2 factor may be seen by considering, in Fig. 7.5, the

relative velocities of two molecules just before or just after a collision. The

2d

Fig. 7.4. Molecular collisions.

limiting cases are the head-on collision and the grazing collision. The average
case appears to be the 90 collision, after which the magnitude of the relative

velocity is V2c.

If we now examine the similar motions of all the molecules, the total

(b) (C)

Fig. 7.5. Relative speeds, (a) Head-on collision.

(b) Grazing collision, (c) Right-angle collision.

number of collisions per second of all the n molecules contained in one cc

of gas is found, from eq. (7.15), to be

Zn - (7.16)

The factor J is introduced so that each collision is not counted twice (once
as A hits B, and once as B hits A).

11. Mean free paths. An important quantity in kinetic theory is the

average distance a molecule travels between collisions. This is called the

mean free path. The average number of collisions experienced by one mole-

cule in one second is, from eq. (7.15)^ -=- \^2irnd 2
c. In this time the
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molecule has traveled a distance c. The mean free path A is therefore c/Zlt or

(7.17)

In order to calculate the mean free path, we must know the molecular

diameter d. This might be obtained, for example, from the van der Waals
b ( 4Vm) if the value of Avogadro's Number N were known. So far, our

development of kinetic theory has provided no method for obtaining this

number. The theory of gas viscosity as developed by James Clerk Maxwell

presents a key to this problem, besides affording one of the most striking
demonstrations of the powers of the kinetic theory of gases.

12. The viscosity of a gas. The concept of viscosity is first met in problems
of fluid flow, treated by hydrodynamics and aerodynamics, as a measure of

-AREA

Fig. 7.6. Viscosity of fluids.

the frictional resistance that a fluid in motion offers to an applied shearing
force. The nature of this resistance may be seen from Fig. 7.6 (a). If a fluid

is flowing past a stationary plane surface, the layer of fluid adjacent to the

plane boundary is stagnant; successive layers have increasingly higher
velocities. The frictional force /, resisting the relative motion of any two

adjacent layers, is proportional to S, the area of the interface between them,
and to dvjdr, the velocity gradient between them. This is Newton's Law of

Viscous Flow,

dv
f^viS-j- (7.18)

dr

The proportionality constant r\
is called the coefficient of viscosity. It is

evident that the dimensions of rj
are ml~l

t~~
l

. In the COS system, the unit is

g per cm sec, called the poise.



174 THE KINETIC THEORY [Chap. 7

The kind of flow governed by this relationship is called laminar or

streamline flow. It is evidently quite different in character from the effusive

(or diffusive) flow previously discussed, since it is a massive flow of fluid, in

which there is superimposed on all the random molecular velocities a com-

ponent of velocity in the direction of flow.

An especially important case of viscous flow is the flow through pipes or

tubes when the diameter of the tube is large compared with the mean free

path in the fluid. The study of flow through tubes has been the basis for

many of the experimental determinations cf the viscosity coefficient. The

theory of the process was first worked out by J. L. Poiseuille, in 1844.

Consider an incompressible fluid flowing through a tube of circular cross

section with radius R and length L. The fluid at the walls of the tube is

assumed to be stagnant, and the rate of flow increases to a maximum at the

center of the tube [see Fig. 7.6 (b)]. Let v be the linear velocity at any distance

r from the axis of the tube. A cylinder of fluid of rad'"<; r experiences a

viscous drag given by eq. (7.18) as

V dv
i r

Jr --1J/ *L

For steady flow, this force must be exactly balanced by the force driving
the fluid in this cylinder through the tube. Since pressure is the force per unit

area, the driving force is _

/,
= wVi -

J*a)

where Pl is the fore pressure and P% the back pressure.

Thus, for steady flow, fr fr

fp _ p \

On integration, v =--- -----\ r
-- r2 + const&

According to our hypothesis, v = when /-=/?; this boundary condition

enables us to determine the integration constant, so that we obtain finally

The total volume of fluid flowing through the tube per second is calculated

by integrating over each element of cross-sectional area, given by 2-nr dr [see

Fig. 7.6 (c)]. Thus

dv f\ J ^Pi ~^2)*
4

~dt^k
2 dr ^ """

*>^ (7 - 19>
ZLrj
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This is Poiseuille's equation. It was derived for an incompressible fluid

and therefore may be satisfactorily applied to liquids but not to gases. For

gases, the volume is a strong function of the pressure. The average pressure

along the tube is (Pl + ^2)/2- If ^o is tne pressure at which the volume is

measured, the equation becomes

dV

dt
(7.20)

By measuring the volume rate of flow through a tube of known dimen-

sions, the viscosity i]
of the gas can be determined. Some results of such

measurements are collected in Table 7.4.

TABLE 7.4

TRANSPORT PHENOMENA IN GASES

(At 0C and 1 aim)

13. Kinetic theory of gas viscosity. The kinetic picture of gas viscosity

has been represented by the following analogy: Two railroad trains are

moving in the same direction, but at different speeds, on parallel tracks. The

passengers on these trains amuse themselves by jumping back and forth

from one to the other. When a passenger jumps from the more rapidly

moving train to the slower one he transports momentum of amount mv,

where m is his mass and v the velocity of his train. He tends to speed up the

more slowly moving train when he lands upon it. A passenger who jumps
from the slower to the faster train, on the other hand, tends to slow it down.

The net result of the jumping game is thus a tendency to equalize the velocities

of the two trains. An observer from afar who could not see the jumpers

might simply note this result as a frictional drag between the trains.

The mechanism by which one layer of flowing gas exerts a viscous drag
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on an adjacent layer is exactly similar, the gas molecules taking the role of

the playful passengers. Consider in Fig. 7.7 a gas in a state of laminar flow

parallel to the Y axis. Its velocity increases from zero at the plane x to

larger and larger values of v with increasing x. If a molecule at P crosses to

g, in one of its free paths between collisions, it will bring to Q, on the

average, an amount of momentum which is less than that common to the

position Q by virtue of its distance along the A' axis. Conversely, if a molecule

travels from Q to P it will transport to the lower, more slowly moving layer,

an amount of momentum in excess of that belonging to that layer. The net

result of the random thermal motions of the molecules is to decrease the

average velocities of the molecules in

the layer at Q and to increase those

in the layer at P. This transport of

momentum tends to counteract the

velocity gradient set up by the shear

forces acting on the gas.

The length of the mean free path
X may be taken as the average dis-

tance over which momentum is trans-

ferred. 8 If the velocity gradient is

du/dx, the difference in velocity be-

tween the two ends of the free path
is X du/dx. A molecule of mass m,

passing from the upper to the lower

layer, thus transports momentum

equal to wA du/dx. On the average,

one-third of the molecules are moving up and down; if n is the number

of molecules per cc and c their average speed, the number traveling up and

down per second per square cm is
-J-

nc. The momentum transport per
second is then \nc mX(du/dx)*

This momentum change with time is equivalent to the frictional force of

eq. (7.18) which was/^~ r)(du/dx) per unit area. Hence

Fig. 7.7. Kinetic theory of gas

viscosity.

du
~Tdx

du
- -

dx

(7.21)

The measurement of the viscosity thus allows us to calculate the value of

the mean free path A. Some values obtained in this way are included in

Table 7.4, in Angstrom units (1 A = 10~8
cm).

8 This is not strictly true, and proper averaging indicates f A should be used.
9 The factor J obtained here results from the cancellation of two errors in the derivation.

From eq. (7.9) one should take nc as the molecules moving across unit area but proper
averaging gives the distance between planes as JA instead of A.
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By eliminating A between eqs. (7.17) and (7.21), one obtains

n - -^- (7.22)
3\/2W2

This equation indicates that the viscosity of a gas is independent of its

density. This seemingly improbable result was predicted by Maxwell on

purely theoretical grounds, and its subsequent experimental verification was

one of the great triumphs of the kinetic theory. The physical reason for the

result is clear from the preceding derivation: At lower densities, fewer

molecules jump from layer to layer in the flowing gas, but, because of the

longer free paths, each jump carries proportionately greater momentum.
For imperfect gases, the equation fails and the viscosity increases with

density.

The second important conclusion from eq. (7.22) is that the viscosity of

a gas increases with increasing temperatuie, linearly with the \/T. This con-

clusion has been well confirmed by the experimental results, although the

viscosity increases somewhat more rapidly than predicted by the \/T law.

14. Thermal conductivity and diffusion. Gas viscosity depends on the

transport of momentum across a momentum (velocity) gradient. It is a

typical transport phenomenon. An exactly similar theoretical treatment is

applicable to thermal conductivity and to diffusion. The thermal conductivity
of gases is a consequence of the transport of kinetic energy across a tem-

perature (i.e., kinetic energy) gradient. Diffusion of gases is the transport of

mass across a concentration gradient.

The thermal conductivity coefficient K is defined as the heat flow per unit

time q, per unit temperature gradient across unit cross-sectional area, i.e., by

c
dT

q =. K- S-
ax

By comparison with eq. (7.21),

dT 1
,
de

K nc/.
ax 3 ax

where de/dx is the gradient of e, the average kinetic energy per molecule.

Now
de dT de

where m is the molecular mass and c v is the specific heat (heat capacity per

gram). It follows that

K -^ lnmcvch \pcvcX ^ r\cv (7.23)

Some thermal conductivity coefficients are included in Table 7.4. It

should be emphasized that, even for an ideal gas, the simple theory is approxi-

mate, since it assumes that all the molecules are moving with the same speed,

c, and that energy is exchanged completely at each collision.
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The treatment of diffusion is again similar. Generally one deals with the

diffusion in a mixture of two different gases. The diffusion coefficient D is

the number of molecules per second crossing unit area under unit con-

centration gradient. It is found to be10

D -
-JVi*2 +- iVa*i

where X
l and X2 are the mole fractions of the two gases in the mixture. If

the two kinds of molecules are essentially the same, for example radioactive

chlorine in normal chlorine, the self-diffusion coefficient is obtained as

D &c (7.24)

The results of the simple mean-free-path treatments of the transport

processes may be summarized as follows:

Now van der Waals' b is given by

b - - 47V

15. Avogadro's number and molecular dimensions. Equation (7.22) may be

written, from eq. (7.8),

Me 2V1RTM
71
^

(7.25)

(7.26)

Let us substitute the appropriate values for the hydrogen molecule, H2 ,

all in CGS units.

M= 2.016 6-26.6

?7-0.93 x 10~4 r= 298K
R = 8.314 x 107

Solving for d, we find d -=-- 2.2 x 10~8 cm.

6 3

Multiplying these two equations, and solving for d,

10 For example, see E. H. Kennard, Kinetic Theory of Gases (New York: McGraw-HilJ,
1938), p. 188.
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This value may be substituted back into eq. (7.25) to obtain a value for

Avogadro's Number TV equal to about 1024 .

Because of the known approximations involved in the van der Waals

formula, this value of TV is only approximate. It is nevertheless of the correct

order of magnitude, and it is interesting that the value can be obtained

purely from kinetic-theory calculations. Later methods, which will be dis-

cussed in a subsequent chapter, give the value TV 6.02 x 1023 .

We may use this figure to obtain more accurate values for molecular

diameters from viscosity or thermal conductivity measurements. Some of

these values are shown in Table 7.5, together with values obtained from

van der Waals' b, and by the following somewhat different method.

TABLE 7.5

MOLECULAR DIAMETERS

(Angstrom Units)

* The theory of this method is discussed in Section 1 1-18.

In the solid state the molecules are closely packed together. If we assume

that these molecules are spherical in shape, the closest possible packing of

spheres leaves a void space of 26 per cent of the total volume. The volume

occupied by a mole of molecules is M/p, where M is the molecular weight
and p the density of the solid. For spherical molecules we may therefore

write (7r/6)Nd* = Q.14(M/p). Values of d obtained from this equation may
be expected to be good approximations for the nionatomic gases (He, Ne,

A, Kr) and for spherical molecules like CH4 , CC1 4 . The equation is only

roughly applicable to diatomic molecules like N2 or O2 .

The rather diverse values often obtained for molecular diameters calcu-

lated by different methods are indications of the inadequacy of a rigid-sphere

model, even for very simple molecules.

The extreme minuteness of the molecules and the tremendous size of the
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Avogadro Number N are strikingly shown by two popular illustrations given

by Sir James Jeans. If the molecules in a glass of water were turned into

grains of sand, there would be enough sand produced to cover the whole

United States to a depth of about 100 feet. A man breathes out about 400 cc

at each breath, or about 1022 molecules. The earth's atmosphere contains

about 1044 molecules. Thus, one molecule is the same fraction of a breath

of air as the breath is of the entire atmosphere. If the last breath of Julius

Caesar has become scattered throughout the entire atmosphere, the chances

are that we inhale one molecule from it in each breath we take.

16. The softening of the atom. We noted before that the viscosity of a gas

increases more rapidly with temperature than is predicted by the \/T law.

This is because the molecules are not actually hard spheres, but must be

regarded as being somewhat soft, or surrounded by fields of force. This

is true even for the atom-molecules of the inert gases. The higher the tem-

perature, the faster the molecules are moving, and hence the further one

molecule can penetrate into the field of force of another, before it is repelled

or bounced away. The molecular diameter thus appears to be smaller at

higher temperatures. This correction has been embodied in a formula due to

Sutherland (1893)

d*--<Il\\\-) (7.27)

Here d^ and C are constants, d^ being interpreted as the value of d as T

approaches infinity.

More recent work has sought to express the temperature coefficient of

the viscosity in terms of the laws of force between the molecules. Thus here,

just as in the discussion of the equation of state, the qualitative picture of

rigid molecules must be modified to consider the fields of force between

molecules.

We recall from Chapter 1 that forces may be represented as derivatives

of a potential-energy function,/^ (<3(7/cV), and a representation of this

function serves to illustrate the nature of the forces. In Fig. 7.8 we have

drawn the mutual potential energy of pairs of molecules of several different

gases. We may imagine the motion of one molecule as it approaches rapidly
toward another to be represented by that of a billiard ball rolled with con-

siderable force along a track having the shape of the potential curve. As the

molecule approaches another it is accelerated at first, but then slowed down
as it reaches the steep ascending portion of the curve. Finally it is brought
to a halt when its kinetic energy is completely used up, and it rolls back down
and out the curve again. Since the kinetic energy is almost always greater
than the depth of the potential-energy trough, there is little chance of a

molecule's becoming trapped therein. (If it did, another collision would soon

knock it out again.)

This softening of the original kinetic-theory picture of the atom as a
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hard rigid sphere was of the greatest significance. It immediately suggested
that the atoms could not be the ultimate building units in the construction

of matter, and that man must seek still further for an indestructible reality

to explain the behavior of material things.

So far in this chapter we have dealt with average properties of large
collections of molecules : average velocities, mean free paths, viscosity, and

DISTANCE BETWEEN
MOLECULES

-15

Fig. 7.8. Mutual potential energy of pairs of molecules.

so on. In what follows, the contributions of the individual molecules to these

averages will be considered in some detail.

17. The distribution of molecular velocities. The molecules of a gas in

their constant motion collide many times with one another, and -these

collisions provide the mechanism through which the velocities of individual

molecules are continually changing. As a result, there exists a distribution

of velocities among the molecules; most have velocities with magnitudes
close to the average, and relatively few have velocities much above or much
below the average.
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A molecule may acquire an exceptionally high speed as the result of a

series of especially favorable collisions. The theory of probability shows

that the chance of a molecule's experiencing a series of n lucky hits is pro-

portional to a factor of the form e~an
,
where a is a constant.11 Thus the

probability of the molecule's having the energy E above the average energy
is likewise proportional to e~bE . The exact derivation of this factor may be

carried out in several ways, and the problems involved in the distribution of

velocities, and hence of kinetic energies, among the molecules, form one of

the most important parts of the kinetic theory.

18. The barometric formula. It is common knowledge that the density of

the earth's atmosphere decreases with increas-

ing altitude. If one makes the simplifying

assumption that a column of gas extending

upward into the atmosphere is at constant

temperature, a formula may be derived for

this variation of gas pressure in the gravita-

tional field. The situation is pictured in

Fig. 7.9.

The weight of a thin layer of gas of thick-

ness dx and one cm2 cross section is its mass

Fig. 7.9. Barometric formula, times the acceleration due to gravity, or pg

dx, where
/>

is the gas density. The difference

in pressure between the upper and lower boundaries of the layer is

( -dP/dx)dx, equal to the weight of the layer of unit cross section. Thus

dP = pgdx

A ^

PM
ror an ideal gas, p -=

D_Kl

Therefore
RT

dx

Integrating between the limits P PQ at x 0, and P P at x --= x,

P Mgx
In

RT
n r> _ -MgxIRT ("l *)Q\r r e \i .LO)

Now, Mgx is simply the gravitational potential energy at the point x,

which may be written as E^ per mole. Then

P^PQ e~
E IHT

(7.29)

If, instead of the molar energy, we consider that of the individual mole-

cule, ep , eq. (7.29) becomes

. P = P e" e *lltr
(7.30)

11 If the chance of one lucky hit is 1/c, the chance P for n in a row is P - (I/c)
w

. Then
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The constant k is called the Bohzmann constant. Ft is the gas constant per
molecule.

Equation (7.30) is but one special case of a very general expression
derived by L. Boltzmann in 1886. This states that if A?O is the number of

molecules in any given state, the number n in a state whose potential energy
is e above that of the given state is

n = n^e-
hlkT

(7.31)

19. The distribution of kinetic energies.
12 To analyze more closely the

kinetic picture underlying the barometric formula, let us consider the in-

dividual gas molecules moving with their diverse velocities in the earth's

gravitational field. The velocity components parallel to the earth's surface

(in the y and z directions along which no field exists) are not now of interest

and only the vertical or x component u need be considered.

The motion of a molecule with an upward velocity u is just like that of

a ball thrown vertically into the air. If its initial velocity is w , it will rise

with continuously decreasing speed, as its kinetic energy is transformed into

potential energy according to the equation

mgx i/w/ 2 iww2

At the height, x =- uQ
2
/2g, it will stop, and then fall back to earth.

The gravitational field acts as a device that breaks up the mixture of

various molecular velocities into a "spectrum" of velocities. The slowest

molecules can rise only a short distance; the faster ones can rise propor-

tionately higher. By determining the number of molecules that can reach

any given height, we can likewise determine how many had a given initial

velocity component.
As is to be expected from the physical picture of the process, the dis-

tribution of kinetic energies k among the molecules must follow an ex-

ponential law just as the potential energy distribution does. Representing
the fraction of molecules having a velocity between u and u f du by dnfn^
this law may be written from eq. (7.31) as

- Ae~^lkT du (7.32)
"o

Here A is a constant whose value is yet to be determined.

20. Consequences of the distribution law. This distribution law is com-

pletely unaffected by collisions between molecules, since a collision results

only in an interchange of velocity components between two molecules.

Expressions exactly similar to eq. (7.32) must also hold for the velocity

12 The method suggested here is given in detail by K. F. Herzfeld in H. S. Taylor's
Treatise on Physical Chemistry, 2nd ed. (New York: Van Nostrand, 1931), p. 93.
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distributions in the y and z directions, since it is necessary only to imagine
some sort of potential field in these directions in order to analyze the

velocities into their spectrum.

I50 r

OJ

ca

I ~

(T
UJ

50

1C

200 400 600 800 1000 2000

u, METERS /SECOND

Fig. 7.10. One-dimensional velocity distribution (nitrogen at 0C).

The constant A 9 in eq. (7.32), may be evaluated from the fact that the

sum of all the fractions of molecules in all the velocity ranges must be unity.

Thus, integrating over all possible velocities from oo to + oo, we have

r+oo _WM /2JITA e du -~
1

J - oo

mu2

2

2kT
^ X

+oo

A
' ^ ' ^

Letting

2^7^\i/2 /*+

V/ J-c

Since

Therefore, eq. (7.32) becomes

1/2

(7.33)

This function is shown plotted in Fig. 7.10. It will be noted that the

fraction of the molecules with a velocity component in a given range declines
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at first slowly and then rapidly as the velocity is increased. From the curve

and from a consideration of eq. (7.33), it is evident that as long as Jmw
2 < kT

the fraction of molecules having a velocity u falls off slowly with increasing u.

When %mu
2 = \QkT, the fraction has decreased to e~10 , or 5 x 10~5 times its

value at \rn\f
1 = kT. Thus only a very small proportion of any lot of mole-

cules can have kinetic energies much greater than kT per degree of freedom.

If, instead of a one-dimensional gas (one degree of freedom of trans-

lation), a two-dimensional gas is considered, it can be proved
13 that the

probability of a molecule having a given x velocity component u in no way

depends on the value of its y component v. The fraction of the molecules

having simultaneously velocity components between u and u + du, and v

and v -f- dv, is then simply the product of the two individual probabilities.

dn I m \

^
=

\27Tkf)
(7.34)

This sort of distribution may be graphically represented as in Fig. 7.11,

where a coordinate system with u and v axes has been drawn. Any point in

the (w, v) plane represents a simul-

taneous value of u and v\ the plane
is a two-dimensional velocity space
similar to that used on p. 168. The

dots have been drawn so as to

represent schematically the density

of points in this space, i.e., the

relative frequency of occurrence of

sets of simultaneous values of u

and v.

The graph bears a striking re-

semblance to a target that has been

peppered with shots by a marks-

man aiming at the bull's-eye. In

the molecular case, each individual
Fig. 1Mm Distribution of points in two-

molecular-velocity component, u or dimensional velocity space: vx = u; vv
- v.

v, aims at .the value zero. The

resulting distribution represents the statistical summary of the results. The

more skilful the marksman, the more closely will his results cluster around

the center of the target. For the molecules, the skill of the marksman has its

analogue in the temperature of the gas. The lower the temperature, the better

the chance a molecular-velocity component has of coming close to zero.

If, instead of the individual components u and v, the resultant speed c

is considered, where c2 = u2 + v29 it is evident that its most probable value

is not zero. This is because the number of ways in which c can be made up
18 For a discussion of this theorem see, for example, J. Jeans, Introduction to the

Kinetic Theory of Gases (London: Cambridge, 1940), p. 1Q5.
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from u and v increases in direct proportion with c, whereas at first the prob-

ability of any value of u or v declines rather slowly with increasing velocity.

From Fig. 7.11, it appears that the distribution of c, regardless of direc-

tion, is obtainable by integrating over the annular area between c and
c | dc, which is 2nc dc. The required fraction is then

dn m .,.., .

__ e (7.35)

21. Distribution law in three dimensions. The three-dimensional distribu-

tion law may now be obtained by a simple extension of this treatment. The

200

1000 2000
C, METERS /SECOND

Fig. 7.12. Distribution of molecular speeds (nitrogen).

3000

fraction of molecules having simultaneously a velocity component between

u and u + du, v and v + dv, and w and w + dw, is

dn_ 1
""

m
\2irkTj

(7.36)
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We wish an expression for the number with a speed between c and c + dc,

regardless of direction, where c2 = u2 + v2 + w2
.

These are the molecules whose velocity points lie within a spherical shell

of thickness dc at a distance c from the origin. The volume of this shell is

477-cVc, and therefore the desired distribution function is

*

This is the usual expression of the distribution equation derived by James

Clerk Maxwell in 1860.

The equation is plotted in Fig. 7.12 at several different temperatures,

showing how the curve becomes broader and less peaked at the higher tem-

peratures, as relatively more molecules acquire kinetic energies greater than

the average of fkT.

22. The average speed. The average value f of any property r of the

molecules is obtained by multiplying each value of r, r,, by the number of

molecules n
l having this value, adding these products, and then dividing by

the total number of molecules. Thus

where 2 n
i

=~ no *s the total number of molecules.

In case n is known as a continuously varying function of r, n(r), instead

of the summations of eq. (7.38) we have the integrations

Jo
rdn\r) 1 Too

-r - = --L rdnw (7 -39>
'

dn(r) "o
j

This formula may be illustrated by the calculation of the average mole-

cular speed c. Using eq. (7.37), we have

c - - f c dn - 47r (^r\
m

I" e -""V^V jc
nQ

J o xlirkT] J o

The evaluation of this integral can be obtained14 from

1
>~~ (

2a*

Making the appropriate substitutions, we find

c'=O
1/2

<>
14

Letting x
2 =

z,

Too if 00 l/C~ a2:
\

00
1

Jo
e
'aXxdx ^2J^ e aZdz =

2 I'^/o
=

2a

Too

I pux
J Q

e
d
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Similarly, the average kinetic energy can readily be evaluated as

\
& dn

2/7 Jo

This yields
- \kT (7.41)

23. The equipartition of energy. Equation (7.41) gives the average trans-

lational kinetic energy of a molecule in a gas. It will be noted that the average

energy is independent of the mass of the molecule. Per mole of gas,

/C(t,a,,)
- INkT- $RT (7.42)

For a monatomic gas, like helium, argon, or mercury vapor, this translational

kinetic energy is the total kinetic energy of the gas. For diatomic gases, like

N 2 or C1 2 ,
and polyatomic gases, like CH 4 or N 2O, there may also be energy

associated with rotational and vibrational motions.

A useful model for a molecule is obtained by supposing that the masses

of the constituent atoms are concentrated at points. As will be seen in

Chapter 9, almost all the atomic mass is in fact concentrated in a tiny

nucleus, the radius of which is about 10 13 cm. Since the over-all dimensions

of molecules are of the order of 10~8
cm, a model based on point masses is

physically most reasonable. Consider a molecule composed of n atoms. In

order to represent the instantaneous locations in space of A? mass points, we
should require 3/7 coordinates. The number of coordinates required to locate

all the mass points (atoms) in a molecule is called the number of its degrees

offreedom. Thus a molecule of n atoms has 3/7 degrees of freedom.

The atoms within each molecule move through space as a connected

entity, and we can represent the translational motion of the molecule as a

whole by the motion of the center of mass of its constituent atoms. Three

coordinates (degrees of freedom) are required to represent the instantaneous

position of the center of mass. The remaining (3/7 3) coordinates represent
the so-called internal degrees offreedom.

The internal degrees of freedom may be further subdivided into rotations

and vibrations. Since the molecule has moments of inertia / about suitably

chosen axes, it can be set into rotation about these axes. If its angular velocity
about an axis is (, the rotational kinetic energy is i/o>

2
. The vibratory

motion, in which one atom in a molecule oscillates about an equilibrium

separation from another, is associated with both kinetic and potential

energies, being in this respect exactly like the vibration of an ordinary spring.

The vibrational kinetic energy is also represented by a quadratic expression,

*,mv
2

. The vibrational potential energy can in some cases be represented also

by a quadratic expression, but in the coordinates q rather than in the

velocities, for example, i/o/
2

. Each vibrational degree of freedom would then

contribute two quadratic r
terms to the total energy of the molecule.

By an extension of the derivation leading to eq. (7.41), it can be shown
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that each of these quadratic terms that comprise the total energy of the

molecule has an average value of \kT. This conclusion, a direct consequence
of the Maxwell-Boltzmann distribution law, is the most general expression
of the Principle of Equipartition of Energy.

24. Rotation and vibration of diatomic molecules. The rotation of a di-

atomic molecule may be visualized by reference to the so-called dumbbell

model in Fig. 7.13, which might represent a molecule such as H2 , N 2 , HCI,

(b)

Fig. 7.13. Dumbbell rotator.

or CO. The masses of the atoms, mr and w2 , are concentrated at points,

distant rx and r2 , respectively, from the center of mass. The molecule there-

fore has moments of inertia about the X and Z axes, but not about the Y
axis on which the mass points lie.

The energy of rotation of a rigid body is given by

rot
- Uco* (7.43)

where o> is the angular velocity of rotation, and / is the moment of inertia.

For the dumbbell model, / = w^2 + w2r2
2

.

The distances rx and r2 from the center of mass are

m2 mi

Thus (7.44)

The quantity (7.45)

is called the reduced mass of the molecule. The rotational motion is equivalent

to that of a mass p at a distance r from the intersection of the axes.

Only two coordinates are required to describe such a rotation com-

pletely; for example, two angles 6 and
<f>

suffice to fix the orientation of the

rotator in space. There are thus two degrees of freedom for the rotation of

a dumbbell-like structure. According to the principle of the equipartition of
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energy, the average rotational energy should therefore be rot
=

- RT.

The simplest model for a vibrating diatomic molecule (Fig. 7.14) is the

harmonic oscillator. From mechanics we know that simple harmonic motion

occurs when a particle is acted on by a restor-

ing force directly proportional to its distance

, t*99$w$9999f{pt ,
ft from the equilibrium position. Thus

Fig. 7.14. Harmonic oscil-

lator. The constant K is called the force constant.

The motion of a particle under the influ-

ence of such a restoring force may be represented by a potential energy
function U(r).

f Pu
\f= -\Sr-)^-

lcr

U(r) -
Jicr

2
(7.47)

This is the equation of a parabola and the potential-energy curve is

drawn in Fig. 7.15. The motion of the partide, as has been pointed out in

previous cases, is analogous to that of a ball moving on such a surface.

Starting from rest at any position r, it has

only potential energy, U = i/cr
2

. As it rolls

down the surface, it gains kinetic energy up
to a maximum at position r 0, the equi-

librium interatomic distance. The kinetic

energy is then reconverted to potential

energy as the ball rolls up the other side of

the incline. The total energy at any time is

always a constant,

U(r)

Evih

-r +r ^

Fig. 7.15. Potential curve of

harmonic oscillator.
It is apparent, therefore, that vibrating

molecules when heated can take up energy as both potential and kinetic

energy of vibration. The equipartition principle states that the average

energy for each vibrational degree of freedom is therefore kT, \kT for the

kinetic energy plus \kT for the potential energy.

For a diatomic molecule the total average energy per mole therefore

becomes
~

^tnms + rot + ^vib
=- $RT + RT + RT -

25. Motions of polyatomic molecules. The motions of polyatomic mole-

cules can also be represented by the simple mechanical models of the rigid
rotator and the harmonic oscillator. If the molecule contains n atoms, there
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are (3n 3) internal degrees of freedom. In the case of the diatomic molecule,

3n 3 -- 3. Two of the three internal coordinates are required to represent

the rotation, leaving one vibrational coordinate.

In the case of a triatomic molecule, 3/7 3 6. In order to divide these

six internal degrees of freedom into rotations and vibrations, we must first

consider whether the molecule is linear or bent. If it is linear, all the atomic

mass points lie on one axis, and there is therefore no moment of inertia about

this axis. A linear molecule behaves like a diatomic molecule in regard to

rotation, and there are only two rotational degrees of freedom. For a linear

triatomic molecule, there are thus 3n 3 2 4 vibrational degrees of

freedom. The average energy of the molecules according to the Equipartition

Principle would therefore be

E ~~~
^trans I ^rot ^ ^vih

=- 3(\RT) + 2(\RT) ^ 4(RT] 6 1

2 RT per mole

A nonlinear (bent) triatomic molecule has three principal moments of

inertia, and therefore three rotational degrees of freedom. Any nonlinear

polatomic molecule has 3/76 vibrational degrees of freedom. For the

triatomic case, there are therefore three vibrational degrees of freedom. The

average energy according to the Equipartition Principle would be

E 3(1 RT) ~\ 3(1 RT) f 3(RT)

6RT per mole

Examples of linear triatomic molecules are HCN, CO2 , and CS2 . Bent

triatomic molecules include H2O and SO2 .

The vibratory motion of a collection of mass points bound together by
linear restoring forces [i.e., a polyatomic molecule in which the individual

atomic displacements obey eq. (7.46)] may be quite complicated. It is always

possible, however, to represent the complex vibratory motion by means of

a number of simple motions, the so-called normal modes of vibration. In a

normal mode of vibration, each atom in the molecule is oscillating with the

same frequency. Examples of the normal modes for linear and bent triatomic

molecules are shown in Fig. 7.16. The bent molecule has three distinct

normal modes, each with a characteristic frequency. The frequencies of

course have different numerical values in different compounds. In the case

of the linear molecule, there are four normal modes; two correspond to

stretching of the molecule (vl9 v3) and two correspond to bending (v2a ,
v
2b).

The two bending vibrations differ only in that one is in the plane of the

paper and one normal to the plane (denoted by + and ). These vibrations

have the same frequency, and are called degenerate vibrations.

When we described the translational motions of molecules and their

consequences for the kinetic theory of gases, it was desirable at first to employ
a very simplified model. The same procedure has been followed in this dis-

cussion of the internal molecular motions. Thus diatomic molecules do not
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really behave as rigid rotators, since, at rapid rotation speeds, centrifugal

force tends to separate the atoms by stretching the bond between them.

9 6 '2a

I/I V2 1/3

Fig. 7.16. Normal modes of vibration of triatomic molecules.

Likewise, a more detailed theory shows that the vibrations of the atoms are

not strictly harmonic.

26. The equipartition principle and the heat capacity of gases. According
to the equipartition principle, a gas on warming should take up energy in

all its degrees of freedom, \RT per mole for each translational or rotational

coordinate, and RT per mole for each vibration. The heat capacity at con-

stant volume, Cv --= (3E/DTV, could then be readily calculated from the

average energy.
From eq. (7.42) the translational contribution to Cv is (f)/?. Since

R *= 1 .986 cal per degree C, the molar heat capacity is 2.98 cal per degree C.

When this figure is compared with the experimental values in Table 7.6, it

is found to be confirmed for the monatomic gases, He, Ne, A, Hg, which

TABLE 7.6

MOLAR HEAT CAPACITY C v OF GASES

Gas

He, Ne, A, Hg
H2 .

N2 . .

Oa . .

CI2 . .

H 2O
C0a . .

Temperature (C)

-100

2.98

4.18

4.95

4.98
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have no internal degrees of freedom. The observed heat capacities of the

diatomic and polyatomic gases are always higher, and increase with tem-

perature, so that it may be surmised that rotational and vibrational contri-

butions are occurring.
For a diatomic gas, the equipartition principle predicts an average energy

of (%)RT, or Cv ()R -= 6.93. This value seems to be approached at high

'temperatures for H2 , N2 , O2 , and C12 , but at lower temperatures the experi-

mental Cv values fall much below the theoretical ones. For polyatomic gases,

the discrepancy with the simple theory is even more marked. The equi-

partition principle cannot explain why the observed Cr is less than predicted,

why Cv increases with temperature, nor why the Cr values differ for the

different diatomic gases. The theory is t)ius satisfactory for translational

motion, but most unsatisfactory when applied to rotation and vibration.

Since the equipartition principle is a direct consequence of the kinetic

theory, and in particular of the Maxwell-Boltzmann distribution law, it is

evident that an entirely new basic theory will be required to cope with the

heat capacity problem. Such a development is found in the quantum theory
introduced in Chapter 10.

27. Brownian motion. In 1827, shortly after the invention of the achro-

matic lens, the botanist Robert Brown15 studied pollen grains under his

microscope and watched a curious behavior.

While examining the form of these particles immersed in water, I observed many
of them very evidently in motion; their motion consisting not only of a change of

place in the fluid, manifested by alterations of their relative positions, but also not

infrequently of a change in form of the particle itself; a contraction or curvature

taking place repeatedly about the middle of one side, accompanied by a correspond-

ing swelling or convexity on the opposite side of the particle. In a few instances the

particle was seen to turn on its longer axis. These motions were such as to satisfy

me, after frequently repeated observations, that they arose neither from currents in

the fluid, nor from its gradual evaporation, but belonged to the particle itself.

In 1888, G. Gouy proposed that the particles were propelled by collisions

with the rapidly moving molecules of the suspension liquid. Jean Perrin

recognized that the microscopic particles provide a visible illustration of

many aspects of the kinetic theory. The dancing granules should be governed

by the same laws as the molecules in a gas.

One striking confirmation of this hypothesis was discovered in Perrin's

work on the distribution of colloidal particles in a gravitational field, the

sedimentation equilibrium. By careful fractional centrifuging, he was able

to prepare suspensions of gamboge
16

particles that were spherical in shape
and very uniform in size. It was possible to measure the radius of the particles

either microscopically or by weighing a counted number. If these granules

15 Brown, Phil. Mag., 4, 161 (1828); 6, 161 (1829); 8, 41 (1830).
18

Gamboge is a gummy material from the desiccation of the latex secreted by garcinia
more/la (Indo-China). It is used as a bright yellow water color.
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behave in a gravitational field like gas molecules, their equilibrium distribu-

tion throughout a suspension should obey the Boltzmann equation

(7.48)

Instead of m we may write $7rr
3
(p p t ) where r is the radius of the particle,

and p and p t
are the densities of the gamboge and of the suspending liquid.

Then eq. (7.48) becomes
-

Pi)

RT
N (7.49)

Fig. 7.17. Sedimentation

equilibrium.

By determining the difference in the numbers of particles at heights separated

by h, it is possible to calculate a value for

Avogadro's Number N.

A drawing of the results of Perrin's micro-

scopic examination of the equilibrium distri-

bution with granules of gamboge 0.6/* in

diameter17
is shown in Fig. 7.17. The relative

change in density observed in 10/j of this

suspension is equivalent to that occurring in

6 km of air, a magnification of six hundred

million.

The calculation from eq. (7.49) resulted

in a value of N 6.5 x 1023 . This value is

in good agreement with other determinations, and is evidence that the visible

microscopic particles are behaving as giant molecules in accordance with

the kinetic theory. These studies were welcomed at the time as a proof of

molecular reality.

28. Thermodynamics and Brownian motion. A striking feature of the

Brownian motion of microscopic particles is that it never stops, but goes on

continuously without any diminution of its activity. This perpetual motion

is not in contradiction with the First Law, for the source of the energy that

moves the particles is the kinetic energy of the molecules of the suspending

liquid. We may assume that in any region where the colloid particles gain
kinetic energy, there is a corresponding loss in kinetic energy by the molecules

of the fluid, which undergoes a localized cooling. This amounts to perpetual
motion of the second kind, for the transformation of heat into mechanical

energy is prohibited by the Second Law, unless there is an accompanying
transfer of heat from a hot to a cold reservoir.

The study of Brownian motion thus reveals an important limitation of

the scope of the Second Law, which also allows us to appreciate its true

nature. The increase in potential energy in small regions of a colloidal sus-

pension is equivalent to a spontaneous decrease in the entropy of the region.

On the average, of course, over long periods of time the entropy of the entire

17
1 micron (/<)

- 10~3 mm = I0~6 m.
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system does not change. In any microscopic region, however, the entropy

fluctuates, sometimes increasing and sometimes decreasing.

On the macroscopic scale such fluctuations are never observed, and the

Second Law is completely valid. No one observing a book lying on a desk

would expect to see it spontaneously fly up to the ceiling as it experienced a

sudden chill. Yet it is not impossible to imagine a situation in which all the

molecules in the book moved spontaneously in a given direction. Such a

situation is only extremely improbable, since there are so many molecules in

any macroscopic portion of matter.

29. Entropy and probability. The law of the increase of entropy is thus

a probability law. When the number of molecules in a system becomes

sufficiently small, the probability of observing a spontaneous decrease in

entropy becomes appreciable.

The relation between entropy and probability may be clarified by con-

sidering (Fig. 7.18) two different gases, A and /?, in separate containers.

oo oo
00 00 O

00 ~ _ *T.

B A+B
Fig. 7.18. Increase in randomness and entropy on mixing.

Mien the partition is removed the gases diffuse into each other, the process

Continuing until they are perfectly mixed. If they were originally mixed, we
should never expect them to become spontaneously unmixed by diffusion,

since this condition would require the simultaneous adjustment of some 1024

different velocity components per mole of gas.

The mixed condition is the condition of greater randomness, of greater

disorder; it is the condition of greater entropy since it arises spontaneously
from unmixed conditions. [The entropy of mixing was given in eq. (3.42).]

Hence entropy is sometimes considered a measure of the degree of disorder

or of randomness in a system. The system of greatest randomness is also

the system of highest statistical probability, for there are many arrange-
ments of molecules that can comprise a disordered system, and much fewer

for an ordered system. When one considers how seldom thirteen spades
are dealt in a bridge hand,

18 one can realize how much more probable is the

mixed condition in a system containing 1024 molecules.

Mathematically, the probabilities of independent individual events are

multiplied together to obtain the probability of the combined event. The

18 Once in 653,013,559,600 deals, if the decks are well-shuffled and the dealers virtuous.
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probability of drawing a spade from a pack of cards is 1/4; the probability

of drawing two spades in a row is (1/4)(12/51); the probability of drawing
the ace of spades is (1/4)0/13) - 1/52. Thus W12

= WJV<^ Entropy, on the

other hand, is an additive function, S12
= Sl + S2 . This difference enables us

to state that the relation between entropy S and probability W must be a

logarithmic one. Thus,

S - a In W f- b (7.50)

The value of the constant a may be derived by analyzing from the view-

point of probability a simple change for which the AS is known from

thermodynamics. Consider the expansion of one mole of an ideal gas,

originally at pressure Pl in a container of volume V
l9

into an evacuated

container of volume K2 . The final pressure is P2 and the final volume, K,

I
V2 . For this change,

-*

(7.5,,

When the containers are connected, the probability w
l
of finding one

given molecule in the first container is simply the ratio of the volume Vl to

the total volume V
l -(- K2 or vv

t
--=

V^\(V^ !
K2). Since probabilities are

multiplicative, the chance of finding all TV molecules in the first container,

I.e., the probability Wl of the original state of the system, is

Since in the final state all the molecules must be in one or the other of

the containers, the probability W2
~

\
N

1.

Therefore from eq. (7.50),

Comparison with eq. (7.51) shows that a is equal to k, the Boltzmann

constant. Thus

S - k In W + b

W
AS - S2

- Sl
-.-- k In y/

2

(7.52)W
v

This relation was first given by Boltzmann in 1896.

For physicochemical applications, we are concerned always with entropy

changes, and may conveniently set the constant b equal to zero. 19

The application of eq. (7.52) cannot successfully be made until we have

more detailed information about the energy states of atoms and molecules.

19 A further discussion of this point is to be found in Chapter 12.
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This information will allow us to calculate W and hence the entropy and

other thermodynamic functions.

The relative probability of observing a decrease in entropy of AS below

the equilibrium value may be obtained by inverting eq. (7.52):

~ -=- *-**'* (7.53)
rreq

For one mole of helium, S/k at 273 -^ 4 x 1025 . The chance of observing
an entropy decrease one-millionth of this amount is about e~w". It is evi-

dent, therefore, that anyone observing a book flying spontaneously into the

air is dealing with a poltergeist and not an entropy fluctuation (probably!).

Only when the system is very small is there an appreciable chance of ob-

serving a large relative decrease in entropy.

A further analysis may be made of the driving force of a chemical re-

action or other change, AF =^ - A// -f T&S. It is made up of two terms,

the heat of the reaction and the increase in randomness times the tempera-
ture. The higher the temperature, the greater is the driving force due to the

increase in disorder. This may be physically clearer in the converse state-

ment: The lower the temperature, the more likely it is that ordered states

can persist. The drive toward equilibrium is a drive toward minimum

potential energy and toward maximum randomness. In general, both can-

not be achieved in the same system under any given set of conditions. The

free-energy minimum represents (at constant T and P) the most satisfactory

compromise that can be attained.

PROBLEMS

1. At what speeds would molecules of hydrogen and oxygen have to

leave the surface of (a) the earth, (b) the moon, in order to escape into

space? At what temperatures would the average speeds of these molecules

equal these "speeds of escape"? The mass of the moon can be taken as

-fa that of the earth.

2. Calculate the number of (a) ergs per molecule, (b) kcal per mole

corresponding to one electron volt per molecule. The electron volt is the

energy acquired by an electron in falling through a potential difference of

one volt. What is the mean kinetic energy of a molecule at 25C in ev?

What is A: in ev per C?

3. The density of nitrogen at 0C and 3000 atm is 0.835 g per cc. Cal-

culate the average distance apart of the centers of the molecules. How does

this compare with the molecular diameter calculated from van der Waals'

b = 39.1 cc per mole?

4. In the method of Knudsen [Ann. Physik, 29, 179 (1909)], the vapor
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pressure is determined by the rate at which the substance, under its equi-

librium pressure, diffuses through an orifice. In one experiment, beryllium

powder was placed inside a molybdenum bucket having an effusion hole

0.318 cm in diameter. At 1537K, it was found that 0.00888 g of Be effused

in 15.2 min. Calculate the vapor pressure of Be at 1537K.

5. Two concentric cylinders are 10cm long, and 2.00 and 2.20cm in

diameter. The space between them is filled with nitrogen at 10~2 mm pressure.

Estimate the heat flow by conduction between the two cylinders when they

differ in temperature by 10C.

6. At 25 C what fraction of the molecules in hydrogen gas have a kinetic

energy within kT 10 per cent? What fraction at 500C? What fraction of

molecules in mercury vapor?

7. Derive an expression for the fraction of molecules in a gas that have

an energy greater than a given value E in two degrees of freedom.

8. Show that the most probable speed of a molecule in a gas equals

V2kT/m.

9. Derive the expression (\mc
2
) %kT from the Maxwell distribution

law.

10. In a cc of oxygen at 1 atm and 300K, how many molecules have

translational kinetic energies greater than 2 electron volts? At 1000K?

11. What is the mean free path of argon at 25C and a pressure of I atm?

Of 10-5 atm?

12. A pinhole 0.2 micron in diameter is punctured in a liter vessel con-

taining chlorine gas at 300 K and 1 mm pressure. If the gas effuses into a

vacuum, how long will it take for the pressure to fall to 0.5 mm?
13. Perrin studied the distribution of uniform spherical (0.212^ radius)

grains of gamboge (p
= 1.206) suspended in water at 15C by taking counts

on four equidistant horizontal planes across a cell 100/< deep. The relative

concentrations of grains at the four levels were

level: 5/< 35 // 65 /< 95 ju

concentration: 100 47 22.6 12

Estimate Avogadro's Number from these data.

14. Show that the number of collisions per second between unlike mole-

cules, A and 8, in one cc of gas is

where the reduced mass, JLI (tnAmIi)/(mA + mB). In an equimolar mixture

of H2 and I2 at 500K and 1 atm calculate the number of collisions per sec

per cc between H 2 and H 2 , H 2 and I2 , I2 and I2 . For H 2 take d =r 2. 18A, for

U, d -- 3.76 A.
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15. The f )rce constant of O2 is 1 1.8 x 105 dynes per cm and r
(>

1.21 A.

Estimate the potential energy per mole at r = 0.8r .

16. Calculate the moments of inertia of the following molecules: (a)

NaCl, r -= 2.51 A; (b) H2O, 'OH = -957 A, L HOH - 105 3'.

17. In Fig. 7.18, assume that there are 10 white balls and 10 black balls

distributed at random between the two containers of equal volume. What is

the AS between the random configuration and one in which there are 8 white

balls and 2 black balls in the left-hand container, and 2 whites and 8 blacks

in the right. Calculate the answer by eq. (7.52) and also by eq. (3.42). What

is the explanation of the different answers?

18. In a carefully designed high vacuum system it is possible to reach a

pressure as low as 10~10 mm. Calculate the mean free path of helium at this

pressure and 25C.

19. The permeability constant at 20C of pyrex glass to helium is given

as 6.4 x 10~12 cc sec" 1
per cm

2 area per mm thickness per cm of Hg pressure

difference. The helium content of the atmosphere at sea level is about

5 x 10~4 mole per cent. Suppose a 100 cc round pyrex flask with walls

2 mm thick was evacuated to 10~10 mm and sealed. What would be the

pressure at the end of one year due to inward diffusion of helium?
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CHAPTER 8

The Structure of the Atom

1. Electricity. The word "electric" was coined in 1600 by Queen Eliza-

beth's physician, William Gilbert, from the Greek, r/Aocrpov, "amber."

It was applied to bodies that when rubbed with fur acquired the property
of attracting to themselves small bits of paper or pith. Gilbert was un-

willing to admit the possibiliy of "action at a distance," and in his treatise

De Magnete he advanced an ingenious theory for the electrical attraction.

An effluvium is exhaled by the amber and is sent forth by friction. Pearls

carnelian, agate, jasper, chalcedony, coral, metals, and the like, when rubbed are

inactive; but is there nought emitted from them also by heat and friction? There

is indeed, but what is emitted from the dense bodies is thick and vaporous [and thus

not mobile enough to cause attractions].

A breath, then . . . reaches the body that is to be attracted and as soon as it is

reached it is united to the attracting electric. For as no action can be performed by
matter save by contact, these electric bodies do not appear to touch, but of necessity

something is given out from the one to the other to come into close contact therewith,

and to be a cause of incitation to it.

Further investigation revealed that materials such as glass, after rubbing
with silk, exerted forces opposed to those observed with amber. Two varieties

of electricity were thus distinguished, the vitreous and the resinous. Two
varieties of effluvia, emanating from the pores of the electrics, were invoked

in explanation. Electricity was supposed to be an imponderable fluid similar

in many ways to "caloric." Frictional machines for generating high electro-

static potentials were devised, and used to charge condensers in the form of

Leiden jars.

Benjamin Franklin (1747) considerably simplified matters by proposing
a one-fluid theory. According to this theory, when bodies are rubbed together

they acquire a surplus or deficit of the electric fluid, depending on their

relative attraction for it. The resultant difference in charge is responsible for

the observed forces. Franklin established the convention that the vitreous

type of electricity is positive (fluid in excess), and the resinous type is negative

(fluid in defect).

In 1791, Luigi Galvani accidentally brought the bare nerve of a partially

dissected frog's leg into contact with a discharging electrical machine. The

sharp convulsion of the leg muscles led to the discovery of galvanic elec-

tricity, for it was soon found that the electric machine was unnecessary and

that the twitching could be produced simply by bringing the nerve ending
and the end of the leg into contact through a metal strip. The action was
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enhanced when two dissimilar metals completed the circuit. Galvani, a

physician, named the new phenomenon "animal electricity" and believed

that it was characteristic only of living tissues.

Alessandro Volta, a physicist, Professor of Natural Philosophy at Pavia,

soon discovered that the electricity was of inanimate origin; and using
dissimilar metals in contact with moist paper, he was able to charge an

electroscope. In 1800 he constructed his famous "pile," consisting of many
consecutive plates of silver, zinc, and cloth soaked in salt solution. From the

terminals of the pile the thitherto static-electrical manifestations of shock

and sparks were obtained.

The news of Volta's pile was received with an enthusiasm and amazement

akin to that occasioned by the uranium pile in 1945. In May of 1800,

Nicholson and Carlyle decomposed water into hydrogen and oxygen by
means of the electric current, the oxygen appearing at one pole of the pile

and the hydrogen at the other. Solutions of various salts were soon decom-

posed, and in 1806-1807, Humphry Davy used a pile to isolate sodium and

potassium from their hydroxides. The theory that the atoms in a compound
were held together by the attraction between unlike charges immediately

gained a wide acceptance.

2. Faraday's Laws and electrochemical equivalents. In 1813 Michael

Faraday, then 22 years old and a bookbinder's apprentice, went to the

Royal Institution as Davy's laboratory assistant. In the following years,

he carried out the series of researches that were the foundations of electro-

chemistry and electromagnetism.

Faraday studied intensively the decomposition of solutions of salts, acids,

and bases by the electric current. With the assistance of the Rev. William

Whewell, he devised the nomenclature universally used in these studies:

electrode, electrolysis, electrolyte, ion, anion, cation. The positive electrode

is called the anode (oo>, "path"); the negative ion (IOP, "going"), which

moves toward the anode, is called the anion. The positive ion, or cation, moves

toward the negative electrode, or cathode.

Faraday proceeded to study quantitatively the relation between the

amount of electrolysis, or chemical action produced by the current, and the

quantity of electricity. The unit of electric quantity is now the coulomb or

ampere second. The results were summarized as follows: 1

The chemical power of a current of electricity is in direct proportion to the

absolute quantity of electricity which passes. . . . The substances into which these

[electrolytes] divide, under the influence of the electric current, form an exceedingly

important general class. They are combining bodies, are directly associated with the

fundamental parts of the doctrine of chemical affinity; and have each a definite

proportion, in which they are always evolved during electrolytic action. I have

proposed to call . . . the numbers representing the proportions in which they are

evolved electrochemical equivalents. Thus hydrogen, oxygen, chlorine, iodine, lead,

1 Phil. Trans. Roy. Soc., 124, 77 (1834).
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tin, are ions\ the three former are anions, the two metals are cations, and 1, 8, 36,

125, 104, 58 are their electrochemical equivalents nearly.
Electrochemical equivalents coincide, and are the same, with ordinary chemical

equivalents. I think I cannot deceive myself in considering the doctrine of definite

electrochemical action as of the utmost importance. It touches by its facts more

directly and closely than any former fact, or set of facts, have done, upon the

beautiful idea that ordinary chemical affinity is a mere consequence of the electrical

attractions of different kinds of matter. . . .

A very valuable use of electrochemical equivalents will be to decide, in cases of

doubt, what is the true chemical equivalent, or definite proportional, or atomic

number [weight] of a body. ... I can have no doubt that, assuming hydrogen as

1, and dismissing small fractions for the simplicity of expression, the equivalent
number or atomic weight of oxygen is 8, of chlorine 36, of bromine 78.4, of lead

103.5, of tin 59, etc , notwithstanding that a very high authority doubles several of

these numbers.

The "high authority" cited was undoubtedly Jons Jakob Berzelius, who
was then using atomic weights based on combining volumes and gas-density

measurements. Faraday believed that when a substance was decomposed, it

always yielded one positive and one negative ion. Since the current liberates

from water eight grams of oxygen for each gram of hydrogen, he concluded

that the formula was HO and that the atomic weight of oxygen was equal
to 8. It will be recalled that the work of Avogadro, which held the key to

this problem, was lying forgotten during these years.

3. The development of valence theory. Much new knowledge about the

combinations of atoms was being gained by the organic chemists. Especially

noteworthy was the work of Alexander Williamson. In 1850 he treated

potassium alcoholate with ethyl iodide and obtained ordinary ethyl ether.

At that time, most chemists, using O 8, C 6, were writing alcohol

as C4H 5OOH, and ether C
4
H 5O. If O 1 6, C 1 2 were used, the formulas

would be

Williamson realized that his reaction could be readily explained on this

basis as

r\ i p if i _ i/i
i

-25 r\

K f W ~ K1 * C2HJ

The older system could still be maintained, however, if a two-step reaction

was postulated :

C 4H5O-OK KO I C4H 5O
C

4H 5 l 4 KO - KI + C4H5O

Williamson settled the question by treating potassium ethylate with methyl
iodide. If the reaction proceeded in two steps, he should obtain equal
amounts of diethyl and dimethyl ethers:

C 4H 5O pK ------ KO + C 4
H5O

'

C2H 3 l + 'KO - KI + C2H 3O
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On the other hand, if the oxygen atom held two radicals, a new compound,

methyl ethyl ether, should be the product :

4-
3 - KI + 25

K t-
j j-

iu+ CH

The new compound was indeed obtained. This was the first unequivocal
chemical demonstration that the formulas based on C 12, O --

16, must

be correct. The concept of valence was gradually developed as a result of

such organic-chemical researches.

It should be mentioned that as early as 1819 two other important criteria

for establishing atomic weights were proposed. Pierre Dulong and Alexis

Petit pointed out that, for most solid elements, especially the metals, the

product of the specific heat and the atomic weight appeared to be a constant,

with a value of around 6 calories per C. If this relation is accepted as a

general principle, it provides a guide by which the proper atomic weight can

be selected from a number of multiples.

In the same year, Eilhard Mitscherlich published his work on isomor-

phism of crystals, based on an examination of such series as the alums and

the vitriols. He found that one element could often be substituted for an

analogous one in such a series without changing the crystalline form, and

concluded that the substitute elements must enter into the compound in the

same atomic proportions. Thus if alum is written KA1(SO4)2-12 H2O,

ferric alum must be KFe(SO4 )2-12 H2O, and chrome alum must be

KCr(SO4 )2-12 H2O. The analyst is thus enabled to deduce a consistent set

of atomic weights for the analogous elements in the crystals.

Avogadro's Hypothesis, when resurrected at the 1860 conference, re-

solved all remaining doubts, and the old problem of how to determine the

atomic weights was finally solved.

We now recognize that ions in solution may bear more than one elemen-

tary charge, and that the electrochemical equivalent weight is the atomic

weight M divided by the number of charges on the ion z. The amount of

electricity required to set free one equivalent is called the faraday, and is

equal to 96,519 coulombs.

The fact that a definite quantity of electric charge, or a small integral

multiple thereof, was always associated with each charged atom in solu-

tion strongly suggested that electricity was itself atomic in nature. Hence,

in 1874, G. Johnstone Stoney addressed the British Association as

follows:

Nature presents us with a single definite quantity of electricity which is inde-

pendent of the particular bodies acted on. To make this clear, I shall express

Faraday's Law in the following terms. . . . For each chemical bond which is

ruptured within an electrolyte a certain quantity of electricity traverses the electrolyte

which is the same in all cases.

In 1891, Stoney proposed that this natural unit of electricity should be
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given a special name, the electron. Its magnitude could be calculated by

dividing the faraday by Avogadro's Number.

4. The Periodic Law. The idea that matter was constituted of some ninety

different kinds of fundamental building blocks was not one that could appeal
for long to the mind of man. We have seen how during the nineteenth

century evidence was being accumulated from various sources, especially

the kinetic theory of gases, that the atom was not merely a minute billiard

ball, a more detailed structure being required to explain the interactions

between atoms.

In 1815, William Prout proposed that all atoms were composed of atoms

of hydrogen. In evidence for this hypothesis, he noted that all the atomic

weights then known were nearly whole numbers. Prout's hypothesis won

many converts, but their enthusiasm was lessened by the careful atomic

weight determinations of Jean Stas, who found, for example, that chlorine

had a weight of 35.46.

Attempts to correlate the chemical properties of the elements with their

atomic weights continued, but without striking success till after 1860, when

unequivocal weights became available. In 1865, John Newlands tabulated

the elements in the order of their atomic weights, and noted that every

eighth element formed part of a set with very similar chemical properties.

This regularity he unfortunately called "The Law of Octaves." The suggested

similarity to a musical scale aroused a good deal of scientific sarcasm, and

the importance of Newland's observations was drowned in the general

merriment.

From 1868 to 1870, a series of important papers by Julius Lothar Meyer
and Dmitri Mendeleev clearly established the fundamental principles of the

Periodic Law. Meyer emphasized the periodic nature of the physical pro-

perties of the elements. This periodicity is illustrated by the well-known

graph of atomic volume vs. atomic weight. Mendeleev arranged the elements

in his famous Periodic Table. This Table immediately systematized inorganic

chemistry, made it possible to predict the properties of undiscovered elements,

and pointed strongly to the existence of an underlying regularity in atomic

architecture.

Closer examination revealed certain defects in the arrangement of ele-

ments according to their atomic weights. Thus the most careful determina-

tions showed that tellurium had a higher atomic weight than iodine, despite

the positions in the Table obviously required by their properties. After

Sir William Ramsay's discovery of the rare gases (1894-1897), it was found

that argon had an atomic weight of 39. 88, which was greater than that of

potassium, 39.10. Such exceptipns to the arrangement by weights suggested
that the whole truth behind the Periodic Law was not yet realized.
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5. The discharge of electricity through gases. The answer to this and

many other questions about atomic structure was to be found in a quite

unexpected quarter the study of the discharge of electricity through gases.

William Watson,
2 who proposed a one-fluid theory of electricity at the

same time as Franklin, was the first to describe the continuous discharge of

an electric machine through a rarefied gas (1748).

It was a most delightful spectacle, when the room was darkened, to see the

electricity in its passage: to be able to observe not, as in the open air, its brushes or

pencils of rays an inch or two in length, but here the corruscations were of the whole

length of the tube between the plates, that is to say, thirty-two inches.

Progress in the study of the discharge was retarded by the lack of suitable

air pumps. In 1855, Geissler invented a mercury pump that permitted the

attainment of higher degrees of vacuum. In 1858, Julius Pliicker observed

the deflection of the negative glow in a magnetic field and in 1869 his student,

Hittorf, found that a shadow was cast by an opaque body placed between

the cathode and the fluorescent walls of the tube, suggesting that rays from

the cathode were causing the fluorescence. In 1876, Eugen Goldstein called

these rays cathode rays and confirmed the observation that they traveled

in straight lines and cast shadows. Sir William Crookes (1879) regarded the

rays as a torrent of negatively ionized gas molecules repelled from the

cathode. The charged particle theory was contested by many who believed

the rays were electromagnetic in origin, and thus similar to light waves. This

group was led by Heinrich Hertz, who showed that the cathode radiation

could pass through thin metal foils, which would be impossible if it were

composed of massive particles.

Hermann von Helmholtz, however, strongly championed the particle

theory; in a lecture before the Chemical Society of London in 1881 he

declared :

If we accept the hypothesis that the elementary substances are composed of

atoms, we cannot avoid concluding that electricity also, positive as well as negative,
is divided into definite elementary portions which behave like atoms of electricity.

6. The electron. In 1895, Wilhelm Roentgen discovered that a very pene-

trating radiation was emitted from solid bodies placed in the path of cathode

rays. An experimental arrangement for the production of these "X rays" is

shown in Fig. 8.1.

J. J. Thomson in his Recollections and Reflections* has described his first

work in this field:

It was a most fortunate coincidence that the advent of research students at the

Cavendish Laboratory came at the same time as the announcement by Roentgen of

his discovery of the X rays. I had a copy of his apparatus made and set up at the

Laboratory, and the first thing I did with it was t6 see what effect the passage of

2 Phil. Trans. Roy. Soc., 40, 93 (1748); 44, 362 (1752).
3 G. Bell and Sons, London, 1933.
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these rays through a gas would produce on its electrical properties. To my great

delight I found that this made it a conductor of electricity, even though the electric

force applied to the gas was exceedingly small, whereas the gas when it was not

exposed to the rays did not conduct electricity unless the electric force were in-

creased many thousandfold. . . The X rays seemed to turn the gas into a gaseous

electrolyte.
I started at once, in the late autumn of 1895, on working at the electric properties

of gases exposed to Roentgen rays, and soon found some interesting and suggestive

HIGH VOLTAGE
SOURCE

\kANODE
(TARGET)

CATHODE

////>.,^X-RAYS

Fig. 8.1. Production of X-rays.

results. . . . There is an interval when the gas conducts though the rays have

ceased to go through it. We studied the properties of the gas in this state, and found

that the conductivity was destroyed when the gas passed through a filter of glass
wool.

A still more interesting discovery was that the conductivity could be filtered out

without using any mechanical filter by exposing the conducting gas to electric forces.

The first experiments show that the conductivity is due to particles present in the

gas, and the second shows that these particles are charged with electricity. The

conductivity due to the Roentgen rays is caused by these rays producing in the gas
a number of charged particles.

7. The ratio of charge to mass of the cathode particles. J. J. Thomson
next turned his attention to the behavior of cathode rays in electric and

magnetic fields,
4
using the apparatus shown in Fig. 8.2.

Fig. 8.2. Thomson's apparatus for determining e\m of cathode

particles.

The rays from the cathode C pass through a slit in the anode A, which is a metal

plug fitting tightly into the tube and connected with the earth; after passing through
a second slit in another earth-connected metal plug B, they travel between two

parallel aluminium plates about 5 cm apart; they then fall on the end of the tube

4
Phil. Mag., 44, 293 (1897).
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and produce a narrow well-defined phosphorescent patch. A scale pasted on the

outside of the tube serves to measure the deflection of this patch.
At high exhaustions the rays were deflected when the two aluminium plates

were connected with the terminal of a battery of small storage cells; the rays were

depressed when the upper plate was connected with the negative pole of the battery,
the lower with the positive, and raised when the upper plate was connected with

the positive, the lower with the negative pole.

In an electric field of strength , a particle with charge e will be subject
to a force of magnitude Ee. The trajectory of an electron in an electric field

of strength E perpendicular to its direction of motion may be illustrated by

Fig. 8.3. Deflection of electron in an electric field.

the diagram in Fig. 8.3. If m is the mass of the electron, the equations of

motion may be written :

rin ~~ --- Ee
dt*

(8.2)

With /
- as the instant the particle enters the electric field, its velocity

in the y direction is zero at / -= 0. This velocity increases while the electron

is in the field, while its initial velocity in the x direction, r
() ,
remains constant.

Integrating eqs. (8.2) we obtain

eE ,

x =- V =
2m

(8.3)

Equations (8.3) define a parabolic path, as is evident when t is eliminated

from the equations, giving

*8
(8.4)

After the electron leaves the field, it travels along a straight line tangent

to this parabolic path. In many experimental arrangements, its total path is
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considerably longer than the length of the electric field, so that the deflection

in the^ direction experienced while in the field is comparatively small com-

pared to the total observed deflection. To a good approximation, therefore,

the parabolic path can be considered as a circular arc of radius RE , with the

force exerted by the field equal to the centrifugal force on the electron in this

circular path,

eE- ^ (8.5)
KK

The time required to traverse the field of length / is simply l/v so that

the deflection in eq. (8.3) becomes

eE /
2

2m r 2

Thus 1 ?*
(8.6)m rE

The ratio of charge to mass may be calculated from the deflection in the

electric field, provided the velocity of the particles is known. This may be

obtained by balancing the deflection in the electric field by an opposite
deflection in a magnetic field. This magnetic field is applied by the pole

pieces of a magnet M mounted outside the apparatus in Fig. 8.2, so that the

field is at right angles to both the electric field and to the direction of motion

of the cathode rays.

A moving charged particle is equivalent to a current of electricity, the

strength of the current being the product of the charge on the particle and

its velocity. From Ampere's Law, therefore, the magnitude of the force on

the moving charge is given by

/-= evBunO (8.7)

where is the angle between the velocity vector v and the magnetic induction

vector B. When the magnetic field is perpendicular to the direction of

motion, this equation becomes

/- evB (8.8)

Figure 8.4 illustrates the directional factors involved.

The force on the electron due to the magnetic field is always perpendicular
to its direction of motion, and thus a magnetic field can never change the

speed of a moving charge, but simply changes its direction. As in eq. (8.5),

the force may be equated to the centrifugal force on the electron, which in

this case moves in a truly circular path. Thus

mv2

Bev -

(8.9)KH

If now the force due to the, magnetic field exactly balances that due to

the electric field, the phosphorescent patch in Thomson's apparatus will be
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brought back to its initial position. When this occurs, evB
- Ee and v

-

EjB.
When this value is substituted in eq, (8.6) one obtains

m
2yE

(8.10)

The units in this equation may be taken to be those of the absolute

practical (MKS) system. The charge e is in coulombs; the electric field E in

volts per meter; the magnetic induction B in webers per square meter

(1 weber per meter2 ~ 104 gausses); and lengths and masses are in meters

and kilograms, respectively.

MAGNETIC
FIELD
B

Fig. 8.4. Deflection of moving electron in magnetic field.

Thomson found the experimental ratio of charge to mass to be of the

order of 1011 coulombs per kilogram. The most recent value of e/m for the

electron is e/m 1.7589 x 1011 coulomb per kilogram 5.273 x 1017 esu

per gram.
The value found for the hydrogen ion, H+, in electrolysis was 1836 times

less than this. The most reasonable explanation seemed to be that the mass

of the cathode particle was only j-8
~
c
that of the hydrogen ion ; this presumption

was soon confirmed by measurements of e, the charge borne by the particle.

8. The charge of the electron. In 1898, Thomson succeeded in measuring
the charge of the cathode particles. Two years before, C. T. R. Wilson had

shown that gases rendered ionizing by X rays caused the condensation of

clouds of water droplets from an atmosphere supersaturated with water

vapor. The ions formed acted as nuclei for the condensation of the water

droplets. This principle was later used in the Wilson Cloud Chamber to

render visible the trajectories of individual charged corpuscles, and thus

made possible much of the experimental development of modern nuclear

physics.

Thomson and Townsend observed the rate of fall of a cloud in air and
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from this calculated an average size for the water droplets. The number of

droplets in the cloud could then be estimated from the weight of water

precipitated. The total charge of the cloud was measured by collecting the

charged droplets on an electrometer. The conditions of cloud formation

were such that condensations occurred only on negatively charged particles.

Making the assumption that each droplet bore only one charge, it was now

possible to estimate that the value of the elementary negative charge was

e ~ 6.5 x 10~10 esu. This was of the same order of magnitude as the charge
on the hydrogen ion, and thus further evidence was provided that the cathode

particles themselves were "atoms" of negative electricity, with a mass ~^
that of the hydrogen atom.

The exact proof of this hypothesis of the atomic nature of electricity and

a careful measurement of the elementary electronic charge were obtained in

1909 by Robert A. Millikan in his beautiful oil-drop experiments. Millikan

was able to isolate individual droplets of oil bearing an electric charge, and

to observe their rate of fall under the combined influences of gravity and

an electric field.

A body falls in a viscous medium with an increasing velocity until the

gravitational force is just balanced by the frictional resistance, after which

it falls at a constant "terminal velocity," v. The frictional resistance to a

spherical body is given by Stoke's equation of hydrodynamics as

f-=-(mYirv (8.11)

where
rj

is the coefficient of viscosity of the medium and r the radius of the

sphere. The gravitational force (weight) is equal to this at terminal velocity,

so that, if p is the density of the body, and
/>

that of the fluid medium,

far*g(p
-

Po)
^ 67T

*l
rv (8 - 12)

If a charged oil droplet falls in an electric field, it can be brought to rest

when the upward electric force is adjusted to equal the downward gravita-

tional force,

eE = fri*g(P
-

ft) (8.13)

Since r may be calculated from the terminal velocity in eq. (8.12), only the

charge e remains unknown in eq. (8.13). Actually, somewhat better results

were obtained in experiments in which the droplet was observed falling

freely and then moving in an electric field. In all cases, the charge on the

oil droplets was found to be an exact multiple of a fundamental unit charge.
This is the charge on the electron, whose presently accepted value is

5

e = (4.8022 0.0001) x 10~10 esu

= (1.6018 0.00004) x 10-19 coulomb

5 Millikan's result of 4.774 x 10~10 esu was low, owing to his use of an erroneous value

for the viscosity of air. J. D. Stranathan, The Particles of Modern Physics (Philadelphia:
BJakiston, 1954), Chap. 2, gives a most interesting account of the measurements of e.
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9. Radioactivity. The penetrating nature of the X rays emitted when
cathode rays impinged upon solid substances was a matter of great wonder

and interest for the early workers in the field, and many ingenious theories

were advanced to explain the genesis of the radiation. It was thought at one

time that it might be connected with the fluorescence observed from the

irradiated walls of the tubes. Henri Becquerel therefore began to investigate

a variety of fluorescent substances to find out whether they emitted pene-

trating rays. All trials with various minerals, metal sulfides, and other com-

pounds known to fluoresce or phosphoresce on exposure to visible light

gave negative results, until he recalled the striking fluorescence of a sample
of potassium uranyl sulfate that he had prepared 15 years previously. After

exposure to an intense light, the uranium salt was placed in the dark-room

under a photographic plate wrapped in "two sheets of thick black paper."
The plate was darkened after several hours' exposure.

Becquerel soon found that this amazing behavior had nothing to do with

the fluorescence of the uranyl salt, since an equally intense darkening could

be obtained from a sample of salt that had been kept for days in absolute

darkness, or from other salts of uranium that were not fluorescent. The

penetrating radiation had its source in the uranium itself, and Becquerel

proposed to call this new phenomenon radioactivity*

It was discovered that radioactive materials, like X rays, could render

gases conducting so that charged bodies would be discharged, and the dis-

charge rate of electroscopes could therefore be used as a measure of the

intensity of the radiation. Marie Curie examined a number of uranium com-

pounds and ores in this way, and found that the activity of crude pitchblende
was considerably greater than would be expected from its uranium content.

In 1898, Pierre and Marie Curie announced the separation from pitchblende
of two extremely active new elements, polonium and radium.

Three different types of rays have been recognized and described in the

radiation from radioactive materials. The ft rays are high-velocity electrons,

as evidenced by their deviation in electric and magnetic fields, and ratio of

charge to mass. Their velocities range from 0.3 to 0.99 that of light. The

a rays are made up of particles of mass 4 (O = 16 scale) bearing a positive

charge of 2 (e 1 scale). They are much less penetrating than ft rays, by a

factor of about 100. Their velocity is around 0.05 that of light. The y rays

are an extremely penetrating (about 100 times ft rays) electromagnetic radia-

tion, undeflected by either magnetic or electric fields. They are similar to

X rays, but have a much shorter wave length.

Owing to their large mass, the a particles travel through gases in essen-

tially straight lines, producing a large amount of ionization along their paths.

The paths of ft particles are longer than those of a's, but are much more

irregular on account of the easy deflection of the lighter ft particle.

The phenomena of radioactivity as well as the observations on the

6
Compt. rend., 127, 501, March 2 f 1896.
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electrical discharge in gases provided evidence that electrons and positive

ions were component parts of the structure of atoms.

10. The nuclear atom. The problem of the number of electrons contained

in an atom attracted the attention of Thomson and of C. G. Barkla. From

measurements of the scattering of light, X rays, and beams of electrons, it

was possible to estimate that this number was of the same order as the

atomic weight. To preserve the electrical neutrality of the atom, an equal

number of positive charges would then be necessary. Thomson proposed an

atom model that consisted of discrete electrons embedded in a uniform

sphere of positive charge.

Lord Rutherford7 has told the story of the next great development in the

problem, at the University of Manchester in 1910.

In the early days I had observed the scattering of a particles, and Dr. Geiger in

my laboratory had examined it in detail. He found in thin pieces of heavy metal

that the scattering was usually small, of the order of one degree. One day Geiger
came to me and said, "Don't you think that young Marsden, whom I am training
in radioactive methods, ought to begin a small research?" Now 1 had thought that

too, so I said, "Why not let him see if any a particles can be scattered through a

large angle?" I may tell you in confidence that 1 did not believe they would be,

since we knew that the a particle was a very fast massive particle, with a great deal

of energy, and you could show that if the scattering was due to the accumulated

effect of a number of small scatterings, the chance of an a particle's being scattered

backwards was very small. Then I remember two or three days later Geiger coming
to me in great excitement and saying, "We have been able to get some of the a

particles coming backwards. . . ." It was quite the most incredible event that has

ever happened to me in my life. It was almost as incredible as if you fired a 15-inch

shell at a piece of tissue paper and it came back and hit you.
On consideration I realized that this scattering backwards must be the result of

a single collision and when I made calculations I saw it was impossible to get any-

thing of that order of magnitude unless you took a system in which the greater part
of the mass of the atom was concentrated in a minute nucleus. . . .

~

In the experimental arrangement used by Marsden and Geiger, a pencil

of a particles was passed through a thin metal foil and its deflection observed

on a zinc sulfide screen, which scintillated whenever struck by a particle.

Rutherford enunciated the nuclear model of the atom in a paper pub-
lished8 in 1911. The positive charge is concentrated in the massive center of

the atom, with the electrons revolving in orbits around it, like planets around

the sun. Further scattering experiments indicated that the number of elemen-

tary positive charges in the nucleus of an atom is equal within the experi-
mental uncertainty to one-half its atomic weight. Thus carbon, nitrogen, and

oxygen would have 6, 7, and 8 electrons, respectively, revolving around a

like positive charge. It follows that the charge on the nucleus or the number
of orbital electrons may be set equal to the atomic number of the element,

the ordinal number of the position that it occupies in the periodic table.

7 Ernest Rutherford, Lecture at Cambridge, 1936, in Background to Modern Science,
ed. by J. Needham and W. Pagel (London: Cambridge, 1938).

8
Phil. Mag., 21, 669 (1911).
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According to the nuclear hypothesis, the a particle is therefore the nucleus

of the helium atom. It was, in fact, known that a particles became helium

gas when they lost their energy.

11. X rays and atomic number. The significance of atomic number was

strikingly confirmed by the work of H. G. J. Moseley.
9 Barkla had discovered

that in addition to the general or white X radiation emitted by all the ele-

ments, there were several series of characteristic X-ray lines peculiar to each

element. Moseley found that the frequency v of a given line in the character-

istic X radiation of an element depended on its atomic number Z in such a

way that

Vv-=fl(Z-6) (8.14)

where, for each series, a and b are constant for all the elements. The method

by which the wave length of X rays is measured by using the regular inter-

atomic spacings in a crystal as a diffraction grating will be discussed in

Chapter 13.

When the Moseley relationship was plotted for the K* X-ray lines of the

elements, discontinuities in the plot appeared corresponding te missing
elements in the periodic table. These vacant spaces have since been filled.

This work provided further convincing evidence that the atomic number

and not the atomic weight governs the periodicity of the properties of the

chemical elements.

12. The radioactive disintegration series. Rutherford in 1898, soon after

the discovery of radioactivity, observed that the activity from thorium would

diffuse through paper but not through a thin sheet of mica. The radioactivity

could also be drawn into an ionization chamber by means of a current of

air. It was therefore evident that radioactive thorium was continuously pro-

ducing an "emanation" that was itself radioactive. Furthermore, this emana-

tion left a deposit on the walls of containers, which was likewise active.

Each of these activities could be quantitatively distinguished from the others

by its time of decay. As a result of a large amount of careful research by
Rutherford, Soddy, and others, it was gradually established that a whole

series of different elements was formed by consecutive processes of radio-

active change.
The number of radioactive atoms that decomposes per second is directly

proportional to the number of atoms present. Thus

Jf
=e~"

(8 - 15)

if NQ is the number of radioactive atoms present at t - 0. The constant A is

9 Phil. Mag., 26, 1024 (1913); 27, 703 (1914).
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called the radioactive-decay constant', the larger the value of A, the more

rapid the decay of the radioactivity.

The exponential decay law of eq. (8.15) is plotted in curve A, Fig. 8.5,

the experimental points being those obtained from uranium Xl9 the first

product in the uranium series. A sample of uranium or of any of its salts is

found to emit both a and ft particles. If an iron salt is added to a solution

100

60 80 100

TIME, DAYS

Fig. 8.5. Radioactive decay and regeneration of UX t .

of a uranium salt, and the iron then precipitated as the hydroxide, it is found

that the ft activity is removed from the uranium and coprecipitated with the

ferric hydroxide. This ft activity then gradually decays according to the

exponential curve A of Fig. 8.5. The original uranium sample gradually

regains ft activity, according to curve B. It is apparent that the sum of the

activities given by curves A and B is always a constant. The amount of UX1

(the ft emitter) decomposing per second is just equal to the amount being
formed from the parent uranium.
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element is the half-life period r, the time required for the activity to be

reduced to one-half its initial value. From eq. (8.15), therefore,

In 2

r
0.693

(8.16)

The half life of uranium is 4.4 x 109 years, whereas that of UX^ is 24.5

days. Because of the long life of uranium compared to UX t ,
the number of

uranium atoms present in a sample is effectively constant over measurable

experimental periods, and the recovery curve of Fig. 8.5 reaches effectively

the same initial activity after repeated separations of daughter UX t
from the

parent uranium.

Many careful researches of this sort by Rutherford, Soddy, A. S. Russell,

K. Fajans, R. Hahn, and others, are summarized in the complete radioactive

series, such as that for the uranium family shown in Table 8.1. Examination

TABLE 8.1

RADIOACTIVE SERIES URANIUM FAMILY

of the properties of the elements in this table established two important

general principles. When an atom emits an a particle, its position is shifted

two places to the left in the periodic table; i.e., its atomic number is decreased

by two. The emission of a ft particle shifts the position one place to the

right, increasing the atomic number by one. It is evident, therefore, that the

source of the ft particles is in the nucleus of the atom, and not in the orbital

electrons. No marked change in atomic weight is associated with the ft

emission, whereas a emission decreases the atomic weight by four units.
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13. Isotopes. An important consequence of the study of the radioactive

series was the demonstration of the existence of elements having the same

atomic number but different atomic weights. These elements were called

isotopes by Soddy, from the Greek taos TOKOS, "the same place" (i.e., in

the periodic table).

It was soon found that the existence of isotopes was not confined to the

radioactive elements. The end product of the uranium series is lead, which,

from the number of intermediate a particle emissions, should have an

atomic weight of 206, compared to 207.21 for ordinary lead. Lead from the

mineral curite (containing 21.3 per cent lead oxide and 74.2 per cent uranium

trioxide), which occurs at Katanga, Belgian Congo, was shown to have an

atomic weight of 206.03. This fact provided confirmation of the existence of

nonradioactive isotopes and indicated that substantially all the lead in curite

had arisen from the radioactive decay of uranium. The time at which the

uranium was originally deposited can therefore be calculated from the

amount of lead that has been formed. The geologic age of the earth obtained

in this way is of the order of 5 X 109
years. This is the time elapsed since the

minerals crystallized from the magma.
The existence of isotopes provided the solution to the discrepancies in

the periodic table and to the problem of nonintegral atomic weights. The

measured atomic weights are weighted averages of those of a number of

isotopes, each having a weight that is nearly a whole number. The generality

of this solution was soon shown by the work of Thomson on positive rays.

14. Positive-ray analysis. In 1886, Eugen Goldstein, using a discharge
tube with a perforated cathode, discovered a new type of radiation streaming

Fig. 8.6. Thomson's apparatus for positive-

ray analysis.

into the space behind the cathode, to which he gave the name Kanahtrahlen.

Eleven years later the nature of these rays was elucidated by W. Wien, who
showed that they were composed of positively charged particles with ratios

e/m of the same magnitude as those occurring in electrolysis. It was reason-

able to conclude that they were free positive ions.

In 1912, Thomson took up,the problem of the behavior of positive rays
in electric and magnetic fields, using the apparatus shown in Fig. 8.6. The
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positive rays, generated by ionization of the gas in a discharge tube A, were

drawn out as a thin pencil through the elongated hole in the cathode B.

They were then subjected in the region EE' simultaneously to a magnetic
and to an electric field.

This was accomplished by inserting strips of mica insulation (D, D') in

the soft iron pole pieces of the magnet. Then by connecting E and
"

to a

bank of batteries, it was possible to supply an electric field that would act

parallel to the magnetic field of the magnet.
The trace of the deflected positive rays was

recorded on the photographic plate P.

The effect of the superimposed fields may
be seen from Fig. 8.7. Consider a positive ion

with charge e to be moving perpendicular to

the plane of the paper so that, if undeflected,

it would strike the origin O. If it is subjected

somewhere along its path to the action of an

electric field directed along the positive X
direction, it will be deflected from O to P,

the deflection being inversely proportional to

the radius of curvature of the approximately
circular path traveled in the electric field

between the plates at EE' in Thomson's apparatus. The actual magnitude
of the deflection depends on the dimensions of the apparatus. From

eq. (8.5) and Fig. 8.3, the deflection may therefore be written, taking /q as a

proportionality constant,

x = ^ =
^jr (8.17)

If instead of the electric field a magnetic field in the same direction acts

on the moving ion, it will be deflected upwards from O to Q 9 the deflection

being given from eq. (8.9) by

Fig. 8.7. Thomson's parabola
method.

mv (8-18)^ '

The constants k
l are the same in eqs. (8.17) and (8.18) if the electric and

magnetic fields act over the same length of the ion's path, as is the case in

Thomson's apparatus.
If the electric and magnetic fields act simultaneously, the ion will be

deflected to a point R dependent on its velocity v, and its ratio of charge to

mass. In general, the individual positive ions in a beam are traveling with

different velocities, and the pattern they form on a viewing screen may.be
calculated by eliminating v between eqs. (8.17) and (8.18). Thus

if C

*1 ~TT
' XEm (8.19)
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This is the equation of a parabola. The important conclusion is thereby

established that all ions of given ratio of charge to mass will strike the screen

along a certain parabolic curve. Since the charge e' must be an integral

multiple of the fundamental electronic charge e, the position of the parabola
will effectively be determined only by the mass of the positive ion.

The first evidence that isotopes existed among the stable elements was

found in Thomson's investigation of neon in 1912. He observed a weak

parabola accompanying that of Neon 20, which could be ascribed only to a

Neon 22.

As a result of the work of A. J. Dempster, F. W. Aston, and others,

positive-ray analysis has been developed into one of the most precise

methods for measuring atomic masses. The existence of isotopes has been

shown to be the rule rather than the exception among the chemical elements.

Apparatus for measuring the masses of positive ions are known as mass

spectrographs when a photographic record is obtained, and otherwise as

mass spectrometers.

15. Mass spectra The Dempster method. The disadvantage of the para-
bola method is that the ions of any given e/m are spread out along a curve

so that the density of the pictures ob-

tained is low at reasonable times of

exposure. It was most desirable to make
use of some method that would bring all

I 1

~
II y ions of the same e/m to a sharp focus.

-L fi*t
A ^ S\\ ^ne way ^ doing tn *s devised by

A. J. Dempster in 1918, is shown in

Fig. 8.8. The positive ions are obtained

by vaporizing atoms from a heated fila-

ment A, and then ionizing them by means

of a beam of electrons from an "electron

gun"
10 at B. Alternatively, ions can be

Fig. 8.8. Dempster's mass spectrom-
eter (direction focusing).

formed by passing the electron beam

through samples of gas. A potential

difference V between A and the slit C
accelerates the ions uniformly, so that they issue from the slit with approxi-

mately the same kinetic energies,

V - e (8.20)

The region D is a channel between two semicircular pieces of iron, through
which is passed the field from a powerful electromagnet. The field direction

is perpendicular to the plane of the paper. The ions emerge from the slit C
in various directions, but since they all have about the same velocity, they

10 An electron gun is an arrangement by which electrons emitted from a filament are

accelerated by an electric field and focused into a beam with an appropriate slit system.
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are bent into circular paths of about the same radius, given by eq. (8.9) as

R = mv/Be . Therefore, from eq. (8.20),

m
7' 2V (8.21)

It is apparent that for any fixed value of the magnetic field B, the accelera-

ting potential can be adjusted to bring the ions of the same m/e' to a focus
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Fig. 8.9. Isotopes of xenon.

136 138

at the second slit F, through which they pass to the electrometer G. The

electrometer measures the charge collected or the current carried through
the tube by the ions. This was the method used by Dempster in operating
the apparatus; it is called "direction focusing." A typical curve of ion current

vs. the mass number calculated from eq. (8.21) is shown in Fig. 8.9, the

heights of the peaks corresponding to the relative abundances of the isotopes.

16. Mass spectra Aston's mass spectrograph. A different method of

focusing was devised by F. W. Aston in 1919, and used by him in the first

extensive investigations of the occurrence of stable isotopes. The principle

of this method may be seen from Fig. 8.10.

Positive ions are generated in a gas discharge tube (not shown) and drawn

off through the very narrow parallel slits Sl and S2 . Thus, in contrast with
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Dempster's system, a thin ribbon of rays of closely defined direction is taken

for analysis ; the velocities of the individual ions may vary considerably, since

they have been accelerated through different potentials in the discharge tube.

The thin beam of positive rays first passes through the electric field

between parallel plates P
l and P2 . The slower ions experience a greater

deflection, since they take longer to traverse the field ; the beam is accordingly

spread out, as well as being deflected as shown.

A group of these rays, selected by the diaphragm D, next passes between

the parallel pole pieces of the magnet M. The slower ions again experience

the greater deflection. If the magnetic deflection $ is more than twice the

S,S2

Fig. 8.10. Aston's mass spectrograph (velocity focusing).

electric deflection 0, all the ions, regardless of velocity, will be brought to a

sharp focus at some point on the photographic plate P. Aston's method is

therefore called "velocity focusing."

More recent developments in mass spectrometry have combined velocity

and direction focusing in a single instrument. The design has been refined to

such an extent that it is possible to determine atomic masses to an accuracy
of one part in 100,000. The precise determination of atomic weights with

the mass spectrometer is accomplished by carefully comparing sets of closely

spaced peaks. Thus one may resolve doublets such as H2
+ and He++,

16O+
and CH 4+, C lf and D3+.

n
By working with such doublets, instrumental

errors are minimized.

Mass spectrometers are finding increasing application in the routine

analysis of complex mixtures of compounds, especially of hydrocarbons.
For example, a few tenths of a milliliter of a liquid mixture of isomeric

hexanes and pentanes can be quantitatively analyzed with a modern mass

spectrometer, a task of insuperable difficulty by any other method. Hydro-
carbon isomers do not differ in mass, but each isomer ionizes and decom-

poses in a different way as a result of electron impact. Therefore each isomer

yields a characteristic pattern of mass peaks in the spectrometer. Most com-
mercial mass spectrometers follow the Dempster-type design.

11 The symbol D stands for deuterium or heavy hydrogen, H2
, which will be discussed

in
following sections.
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It may be noted that mass-spectrometer chemistry often seems to have

little respect for our preconceived notions of allowable ionic species. Thus

Ha4" and D3
+ are observed, and benzene vapor yields some C6+, a benzene

ring completely stripped of its hydrogens. Such ions have, of course, a less

than ephemeral lifetime, since they take only about a microsecond (10~
6
sec)

to traverse the spectrometer tube.

17. Atomic weights and isotopes. A partial list of naturally occurring
stable isotopes and their relative abundance is given in Table 8.2. Not all of

these isotopes were first discovered by positive-ray analysis, one notable

exception being heavy hydrogen or deuterium, whose existence was originally

demonstrated from the optical spectrum of hydrogen.
The isotopic weights in Table 8.2 are not exactly integral. Thus the old

TABLE 8.2
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hypothesis of Prout is nearly but not exactly confirmed. The nearest whole

number to the atomic weight is called the mass number of an atomic species.

A particular isotope is conventionally designated by writing the mass number
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Fig. 8.11. Packing fraction curves, (a) Curve for light elements,

(b) Curve for heavy elements.

as a left- or right-hand superscript to the symbol of the element; e.g.,
2H,

U235
, and so on.

The packing fraction of an isotope is defined by

atomic weight mass number
packing fraction =

mass number

The curves in Fig. 8.11 show how the packing fraction varies with mass

number, according to the latest atomic-weight data. The further discussion

of these curves, whose explanation requires an enquiry into the structure of

the atomic nucleus, will be postponed till the following chapter.
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It will be noted that oxygen, the basic reference element for the calcula-

tion of atomic weights, is itself composed of three isotopes, 16, 17, and 18.

Chemists have been unable to abandon the convention by which the mixture

of isotopes constituting ordinary oxygen is assigned the atomic weight
O ~

16. Weights calculated on this basis are called chemical atomic weights.

The physicists prefer to call O16
16, whence ordinary oxygen becomes

O -^ 16.0043. This leads to a set of physical atomic weights.

18. Separation of isotopes. For a detailed discussion of separation

methods, reference may be made to standard sources. 12 Several of the more

important procedures will be briefly discussed.

1. Gaseous diffusion. This was the method used to separate
235UF6 from

238UF6 in the plant at Oak Ridge, Tennessee. The fundamental principle

involved has been discussed in connection with Section 7-8 on the effusion

of gases.

The separation factor f of a process of isotope separation is defined as

the ratio of the relative concentration of a given species after processing to

its relative concentration before processing. Thus/ (fli7AI2

/

)/( /7i/AI2) where

(nl9 A?/) and (>*2> "2') are tne concentrations of species 1 and 2 before and

after processing. Uranium 235 occurs in natural uranium to the extent of

one part in 140 (njn^ -=
1/140). If it is desired to separate 90 per cent

pure U 235 from U238
, therefore, the over-all separation factor must be

/- (9/l)/(l/140)
- 1260.

For a single stage of diffusion the separation factor cannot exceed the

ideal value a, given from Graham's Law, as a VM2/Mly where M2 and

M
1
are the molecular weights of the heavy and light components, respec-

tively. For the uranium hexafluorides, a = A/352/349 1.0043.

Actually, the value of/for a single stage will be less than this, owing to

diffusion in the reverse direction, nonideal mixing at the barrier surface, and

partially nondiffusive flow through the barrier. It is therefore necessary to

use several thousand stages in a cascade arrangement to effect a considerable

concentration of 235UF6 . The theory of a cascade is very similar to that of

a fractionating column with a large number of theoretical plates. The

light fraction that passes through the barrier becomes the feed for the next

stage, while the heavier fraction is sent back to an earlier stage.

It may be noted that UF6 has at least one advantage for use in a process for

separating uranium isotopes, in that there are no isotopes of fluorine except
19F.

2. Thermal diffusion. This method was first successfully employed by
H. Clusius and G. Dickcl,

13 and the experimental arrangement is often

12 H. S. Taylor and S. Glasstone, Treatise on Physical Chemistry, 3rd ed. (New York:

Van Nostrand, 1941); H. D. Smyth, Atomic Energyfor Military Purposes (Princeton Univ.

Press, 1945); F. W. Aston, Mass Spectra and Isotopes, 4th ed. (New York: Longmans, 1942).
13

Naturmssenschaften, 26, 546 (1938). For the theory of the thermal diffusion separa-
tion see K. Schafer, Angew. Chem., 59, 83 (1947). The separation depends not only on mass

but also on difference in intermodular forces. With isotopic molecules the mass effect

predominates and the lighter molecules accumulate in the warmer regions.
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called a Clusius column. It consists of a long vertical cylindrical pipe with

an electrically heated wire running down its axis. When a temperature

gradient is maintained between the hot inner wire and the cold outer walls,

the lighter isotope diffuses preferentially from the cold to the warmer regions.

The separation is tremendously enhanced by the convection currents in the

tube, which carry the molecules arriving near the warm inner wire upwards
to the top of the column. The molecules at the cold outer wall are carried

downwards by convection.

With columns about 30 meters high and a temperature difference of

about 600C, Clusius was able to effect a virtually complete separation of

the isotopes of chlorine, Cl35 and Cl37 .

The cascade principle can also be applied to batteries of thermal diffusion

columns, but for mass production of isotopes this operation is in general

less economical than pressure-diffusion methods.

3. Electromagnetic separators. This method employs large mass spectro-

meters with split collectors, so that heavy and light ions are collected separ-

ately. Its usefulness is greatest in applications in which the throughput of

material is comparatively small.

4. Separation by exchange reactions. Different isotopic species of the

same element differ significantly in chemical reactivity. These differences are

evident in the equilibrium constants of the so-called isotopic exchange
reactions. If isotopes did not differ in reactivity, the equilibrium constants

of these reactions would all be equal to unity. Some actual examples follow:

J S16
2 + H2

18 -=
i S18

2 + H2
16 K =-- 1.028 at 25C

i3CO + i2CQ2
= 12CO + 13CO2 K = 1.086 at 25C

15NH3(g) + 14NH4+(aq.)
= 14NH3(g) + 15NH4+(aq.) K - 1.023 at 25C

Such differences in affinity are most marked for the lighter elements, for

which the relative differences in isotopic masses are greater.

Exchange reactions can be applied to the separation of isotopes. The

possible separation factors in a single-stage process are necessarily very

small, but the cascade principle is again applicable. H. C. Urey and H. G.

Thode concentrated 15N through the exchange between ammonium nitrate

and ammonia. Gaseous ammonia was caused to flow countercurrently to a

solution of NH4
4

ions, which trickled down columns packed with glass
helices or saddles. After equilibrium was attained in the exchange columns,
8.8 grams of 70.67 per cent 15N could be removed from the system, as nitrate,

every twelve hours.

As a result of exchange reactions, the isotopic compositions of naturally

occurring elements show small but significant variations depending on their

sources . If we know the equilibrium constant of an exchange reaction over

a range of temperatures, it should be possible to calculate the temperature
at which a product was formed, from a measurement of the isotopic ratio

in the product. Urey has applied this method, based on O18
: O16

ratios, to
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the determination of the temperature of formation of calcium carbonate

deposits. The exchange equilibrium is that between the oxygen in water and

in bicarbonate ions. The temperature of the seas in remote geologic eras can

be estimated to within 1C from the O18
: O16 ratio in deposits of the shells

of prehistoric molluscs.

19. Heavy hydrogen. The discovery of the hydrogen isotope of mass 2,"

which is called deuterium, and the investigation of its properties comprise
one of the most interesting chapters in physical chemistry.

In 1931, Urey, Brickwedde, and Murphy proved the existence of the

hydrogen isotope of mass 2 by a careful examination of the spectrum of a

sample of hydrogen obtained as the residue from the evaporation of several

hundred liters of liquid hydrogen. Deuterium is contained in hydrogen to the

extent of one part in 4500.

In 1932, Washburn and Urey discovered that an extraordinary concen-

tration of heavy water, D2O, occurred in the residue from electrolysis of

water. 14 The production of 99 per cent pure D2O in quantities of tons per

day is now a feasible operation. Some of the properties of pure D2O as

compared with ordinary H2O are collected in Table 8.3.

TABLE 8.3

PROPERTIES OF HEAVY WATER AND ORDINARY WATER

Property

Density at 25C ....
Temperature of maximum density .

Melting point ....
Boiling point ....
Heat of fusion ....
Heat of vaporization at 25 .

Dielectric constant

Refractive index at 20 (Na D line)

Surface tension (20C) .

Viscosity (10C) .

PROBLEMS

1. An Na4"

ion is moving through an evacuated vessel in the positive

x direction at a speed of 107 cm per sec. At x 0, y =~ 0, it enters an

electric field of 500 volts per cm in the positive y direction. Calculate its

position (;c, y) after 10~6 sec.

2. Make calculations as in Problem 1 except that the field is a magnetic
field of 1000 gauss in the positive z direction.

14 The mechanism of the separation of H 1 from H2
during electrolysis is still obscure.

For discussions see Eyring, et aL, J. Chem. Phys., 7, 1053 (1939); Urey and Teal, Rev. Mod.

Phys., 7, 34(1935).
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3. Calculate the final position of the Na+ ion in the above problems if

the electric and magnetic fields act simultaneously.

4. Consider a Dempster mass spectrometer, as shown in Fig. 8.8, with a

magnetic field of 3000 gauss and a path radius of 5.00 cm. At what accelera-

ting voltage will (a) H+ ions, (b) Na^ ions be brought to focus at the ion

collector ?

5. Radium-226 decays by a particle emission with a half life of 1590

years, the product being radon-222. Calculate the volume of radon evolved

from 1 g of radium over a period of 50 years.

6. The half life of radon is 3.825 days. How long would it take for 90 per

cent of a sample of radon to disintegrate? How many disintegrations per

second are produced in a microgram ( 1 0~6
g) of radium ?

7. Derive an expression for the average life of a radioactive atom in

terms of the half life r.

8. The half life of thorium-C is 60.5 minutes. How many disintegrations

would occur in 15 minutes from a sample containing initially 1 mg of Th-C

(at wt. 212)?

9. Radioactivity is frequently measured in terms of the curie (c) defined

as the quantity of radioactive material producing 3.7 X 1010 disintegrations

per sec. The millicurie is 10~3 c, the microcurie, 10~ 6
c. How many grams of

(a) radium, (b) radon are there in one curie?

10. It is found that in 10 days 1.07 x 10~3 cc of helium is formed from

the a particles emitted by one gram of radium. Calculate a value for the

half life of radium from this result.

11. The half life of U-238 is 4.56 x 109 years. The final decay product is

Pb-206, the intermediate steps being fast compared with the uranium dis-

integration. In Lower Pre-Cambrian minerals, lead and uranium are found

associated in the ratio of approximately 1 g Pb to 3.5 g U. Assuming that all

the Pb has come from the U, estimate the age of the mineral deposit.

12. A ft particle moving through a cloud chamber under a magnetic field

of 10 oersteds traverses a circular path of 18 cm radius. What is the energy
of the particle in ev?
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CHAPTER 9

Nuclear Chemistry and Physics

1. Mass and energy. During the nineteenth century, two important prin-

ciples became firmly established in physics : the conservation of mass and

the conservation of energy. Mass was the measure of matter, the substance

out of which the physical world was constructed. Energy seemed to be an

independent entity that moved matter from place to place and changed it

from one form to another.

In a sense, matter contained energy, for heat was simply the kinetic

energy of the smallest particles of matter, and potential energy was associated

with the relative positions of material bodies. Yet there seemed to be one

instance, at Jeast, in which energy existed independently of matter, namely
in the form of radiation. The electromagnetic theory of Clerk Maxwell

required an energy in the electromagnetic field and the field traversed empty

space. Yet no experiments can be performed in empty space, so that actually

this radiant energy was detected only when it impinged on matter. Now a

very curious fact was observed when this immaterial entity, light energy,
struck a material body.

The observation was first made in 1628 by Johannes Kepler, who noted

that the tails of comets always curved away from the sun. He correctly-

assigned the cause of this curvature to a pressure exerted by the sun's rays.

In 1901 this radiation pressure was experimentally demonstrated in the

laboratory, by means of delicate torsion balances. Thus the supposedly
immaterial light exerts a pressure. The pressure implies a momentum asso-

ciated with the light ray, and a momentum implies a mass. If we return to

Newton's picture of a light ray as made up of tiny particles, simple calcula-

tions show that the energy of the particles E is related to their 'mass by the

equation
E - c2m (9.1)

where c is the speed of light.

As a result of Albert Einstein's special theory of relativity (1905) it

appeared that the relation E c*m was applicable to masses and energies
of any origin. He showed first of ail that no particle could have a speed

greater than that of light. Thus the inertial resistance that a body offers to

acceleration by an applied force must increase with the speed of the body.
As the speed approaches that of light, the mass must approach infinity. The

relation between mass and speed v is found to be

(9.2)

228
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When v = the body has a rest mass, mQ . Only at speeds comparable with

that of light does the variation of mass with speed become detectable.

Equation (9.2) has been confirmed experimentally by measurements of e/m
for electrons accelerated through large potential differences.

If a rapidly moving particle has a larger mass than the same particle

would have at rest, it follows that the larger the kinetic energy, the larger

the mass, and once again it turns out that the increase in mass Am and the

increase in kinetic energy AE are related by A" - c2 AAW. As we shall see

in the next section, the Einstein equation E = c2m has been conclusively

checked by experiments on nuclear reactions.

The situation today is therefore that mass and energy are not two distinct

entities. They are simply two different names for the same thing, which for

want of a better term is called mass-energy. We can measure mass-energy in

mass units or in energy units. In the COS system, the relation between the

two is: 1 gram ^ c2
ergs

= 9 x 1020 ergs. One gram of energy is sufficient to

convert 30,000 tons of water into steam.

2. Artificial disintegration of atomic nuclei. In 1919, Rutherford found

that when a particles from Radium C were passed through nitrogen, protons
were ejected from the nitrogen nuclei. This was the first example of the dis-

integration of a normally stable nucleus. It was soon followed by the demon-

stration of proton emission from other light elements bombarded with

a particles.

In 1923, P. M. S. Blackett obtained cloud-chamber photographs showing
that these reactions occurred by capture of the a particle, a proton and a new

nucleus then being formed. For example,

7N14 + 2He
4 > (9P) -> iH

1 + 8
17

This type of reaction does not occur with heavy elements because of the

large electrostatic repulsion between the doubly charged alpha and the high

positive charges of the heavier nuclei.

It was realized that the singly charged proton, 1H 1
,
would be a much

more effective nuclear projectile, but it was not available in the form of

high-velocity particles from radioactive materials. J. D. Cockroft and

E. T. S. Walton1 therefore devised an electrostatic accelerator. This appara-
tus was the forerunner of many and ever more elaborate machines for pro-

ducing high-velocity particles. The protons produced by ionization of

hydrogen in an electric discharge were admitted through slits to the accel-

erating tube, accelerated across a high potential difference, and finally

allowed to impinge on the target.

The energy unit usually used in atomic and nuclear physics, the electron

volt, is the energy acquired by an electron in falling through a potential

difference of one volt. Thus 1 ev = eV ~ 1.602 x 10~19 volt coulomb

1 Proc. Roy. Soc., A 729, 477 (1930); 136, 619 (1932).
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(joule)
= 1.602 x 10~12 erg. The usual chemical unit is the kiiocalorie per

mole.

1.602 x 10~19 x 6.02 x 1023
,

.

,

! ev ____ ^ 23.05 kcal per mole

One of the first reactions to be studied by Cockroft and Walton was

iH
1

-f 3Li
7 -> 2 2He

4

The bombarding protons had energies of 0.3 million electron volt (mev.)

From the range of the emergent a particles in the cloud chamber, 8.3 cm,

their energy was calculated to be 8.6 mev each, or more than 17 mev for the

pair. It is evident that the bombarding proton is merely the trigger that sets

off a tremendously exothermic nuclear explosion.

The energies involved in these nuclear reactions are several million times

those in the most exothermic chemical changes. Thus an opportunity is pro-

vided for the quantitative experimental testing of the E = c2m relation. The

mass-spectrographic values for the rest masses of the reacting nuclei are

found to be

H + Li = 2 He

1.00812 + 7.01822 2 x 4.00391

Thus the reaction occurs with a decrease in rest mass Aw of 0.01852 g per

mole. This is equivalent to an energy of

0.01852 x 9 x 1020 - 1.664 x 1019 erg per mole

I 664 x 1019

or -' - 2.763 x 10~5
erg per lithium nucleus

O.v/^c X L\J

or 2.763 x 10~5 x 6.242 x 1011 - 17.25 x 106 - 17.25 mev

This figure is in excellent agreement with the energy observed from the

cloud-chamber experiments. Nor is this an isolated example, for hundreds

of these nuclear reactions have been studied and completely convincing
evidence for the validity of the equation E = c2m has been obtained.

It has become rather common to say that a nuclear reaction like this

illustrates the conversion of mass to energy, or even the annihilation of

matter. This cannot be true in view of the fact that mass and energy are the

same. It is better to explain what happens as follows: Rest mass is a par-

ticularly concentrated variety of energy; Jeans once called it bottled energy.
When the reaction 1H1 + 3Li

7 -> 2 2He
4 takes place, a small amount of this

bottled energy is released ; it appears as kinetic energy of the particles re-

acting, which is gradually degraded into the random kinetic energy or heat

of the environment. As the molecules of the environment gain kinetic energy,

they gain mass. The hotter a substance, the greater is its mass. Thus, in the

nuclear explosion, the concentrated rest mass (energy) is degraded into the

heat mass (energy) of the environment. There has been no over-all change
in mass and no over-all change in energy; mass-energy is conserved.
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The measurement of the large amounts of energy released in nuclear

reactions now provides the most accurate known means of determining small

mass differences. The reverse process of calculating atomic masses from the

observed energies of nuclear reactions is therefore widely applied in the

determination of precise atomic weights. A few of the values so obtained

are collected in Table 9.1 and compared with mass-spectrometer data. The

TABLE 9.1

ATOMIC WEIGHTS (O16 - 16.0000)

agreement between the two methods is exact, within the probable error of the

experiments. It would be hard to imagine a more convincing proof of the

equivalence of mass and energy. The starred isotopes are radioactive, and

the only available mass values are those from the E = c2m relation.

3. Methods for obtaining nuclear projectiles. It was at about this point in

its development that nuclear physics began to outgrow the limitations of

small-scale laboratory equipment. The construction of machines for the pro-

duction of enormously accelerated ions, capable of overcoming the repulsive

forces of nuclei with large atomic numbers, demanded all the resources of

large-scale engineering.
One of the most generally useful of these atom-smashing machines has

been the cyclotron, shown in the schematic drawing of Fig. 9.1, which was

invented by E. O. Lawrence of the University of California. The charged

particle is fed into the center of the "dees" where it is accelerated by a strong
electric field. The magnetic field, however, constrains it to move in a circular

path. The time required to traverse a semicircle is t ^R^v = (TT/B) (m/e)

from eq. (8.9); this is a constant for all particles having the same ratio e/m.

The electric field is an alternating one, chosen so that its polarity changes
with a frequency twice that of the circular motion of the charged particle.

On each passage across the dees, therefore, the particle receives a new for-

ward impulse, and describes a trajectory of ever increasing radius until it is

drawn from the accelerating chamber of the cyclotron. The 184-in. machine

at Berkeley, California, will produce a beam of 100 mev deuterons (nuclei of

deuterium atoms) having a range in air of 140 fe'et.
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A limit to the energy of ions accelerated in the original type of cyclotron

is the relativistic increase of mass with velocity; this eventually destroys the

synchronization in phase between the revolving ions and the accelerating

field across the dees. This problem has been overcome in the synchro-

cyclotron, in which frequency modulation, applied to the alternating accel-

erating potential, compensates for the relativistic defocusing. This modifica-

tion of the original design of the Berkeley instrument has more than doubled

the maximum ion energies obtained.

Iniulotor Feed lines

Oee

Internal beam

Electric

deflector

Vacuum can

Lower pole

Magnet
pole piece

Fig. 9.1. Schematic diagram of the cyclotron. (From Lapp and Andrews,

Nuclear Radiation Physics, 2nd Ed. Prentice-Hall, 1954.)

The synchrotron employs modulation of both the electric accelerating

field and the magnetic focusing field. With this principle, it is possible to

achieve the billion-volt range for protons. The cosmotron, a synchrotron

completed in 1952 at Brookhaven National Laboratory, accelerates protons
in a toroidal vacuum chamber with orbits 60 ft in diameter. The C-shaped

magnets are placed around the vacuum chamber. Pulses of about 1011 protons
at 3.6 mev are fired into the chamber. After about 3 x 106 revolutions, the

pulse of protons has reached 3 bev (3000 mev), and is brought to the target.

A similar machine at Berkeley is designed to produce 10 bev protons. These

particles are thus well within the energy range of cosmic rays.

4. The photon. The essential duality in the nature of radiation has already
been remarked: sometimes it is appropriate to treat it as an electromagnetic

wave, while at other times a corpuscular behavior is displayed. The particle

of radiation is called the photon.
A more detailed discussion of the relation between waves and particles

will be given in the next chapter. One important result may be stated here.

A homogeneous radiation of wave length A or frequency v = cjX may be

considered to be composed of photons whose energy is given by the relation,

= hv (9.3)
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Here h is a universal constant, called Planck's constant, with the value

6.624 x 10~27
erg sec. A photon has no rest mass, but since e me2

, its

mass is m hv/c
2

.

The corpuscular nature of light was first clearly indicated by the photo-
electric effect, discovered by Hertz in 1887, and theoretically elucidated by
Einstein in 1905. Many substances, but notably the metals, emit elections

when illuminated with light of appropriate wave lengths. A simple linear

relation is observed between the maximum kinetic energy of the photo-
electrons emitted and the frequency of the incident radiation. The slope of

the straight line is found to be Planck's constant h. Thus,

\mv
2 = hv ~ < (9.4)

Such an equation can be interpreted only in terms of light quanta, or

photons, which in some way transmit their energy hv to electrons in the

metal, driving them beyond the field of attraction of the metal ions. The

term
<f> represents the energy necessary

to overcome the attractive force tending
to hold the electron within the metal.

If a photon (e.g., from X or y rays)

strikes an electron, an interchange of

energy may take place during the collision.

The scattered photon will have a higher

frequency if it gains energy, a lower fre-

quency if it loses energy. This is called the

Compton effect.

Consider in Fig. 9.2 a photon, with Fig. 9.2. The Compton effect,

initial energy hv, hitting an electron at

rest at O. Let hv' be the energy of the scattered photon and let the scattered

electron acquire a speed v. Then ifm is the mass of the electron, its momentum
will be mv and its kinetic energy \mv

2
. The scattering angles are a and ft.

The laws of conservation of energy and of momentum both apply to the

collision. From the first,

hv = hv' + \mv
2

From the second, for the jc and y components of the momentum,

hv hv'
r^ cos a + mv cos p

c c

hv' .= sin a mv sin p
c

Eliminating ft from the momentum equations by setting sin2 ft + cos2
ft

=
1, and assuming that v' v <^ v, we find for the momentum imparted to

the electron,

2hv . a-*
(9 '5)
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Then from the energy equation, by eliminating v, the change in frequency of

the photon is

hv*
&v -- v _ v

' ~
( 1
_ cos a )

me2

The predicted angular dependence of the change in frequency has been

confirmed experimentally in studies of the Compton scattering of X rays by
electrons in crystals. The Compton effect has also been observed in cloud-

chamber photographs.
5. The neutron. In 1930, W. Bothe and H. Becker discovered that a very

penetrating secondary radiation was produced when a particles from polo-

nium impinged on light elements such as beryllium, boron, or lithium. They
believed this radiation to consist of 7 rays of very short wavelength, since no

track was made in a cloud chamber, and therefore charged particles were

not being formed.

In 1932, Frederic and Irene Curie-Joliot found that this new radiation

had much greater ionizing power after it had passed through paraffin, or

some other substance having a high hydrogen content, and during its passage

protons were emitted from these hydrogen-rich materials.

James Chadwick2 solved the problem of the new "radiation." He realized

that it was made up of particles of a new kind, having a mass comparable
with that of the proton, but bearing no electric charge. These particles were

called neutrons. Because of its electrical neutrality, forces between the neutron

and other particles become appreciable only at very close distances of

approach. The neutron, therefore, loses energy only slowly as it passes

through matter; in other words, it has a great penetrating power. The

hydrogen nucleus is most effective in slowing a neutron, since it is of com-

parable mass, and energy exchange is a maximum between particles of like

mass, during actual collisions or close approaches.
The reaction producing the neutron can now be written

2He
4

4- 4Be* - 6C12 + ^
Neutrons can be produced by similar reactions of other light elements with

high energy a particles, protons, deuterons, or even y rays, for example :

1H 2 + /n>-> 1
H l + /2

1

Hl + 3Li
7 ~>

4Be
7 + o/?

1

Beams of neutrons can be formed by means of long pinholes or slits in

thick blocks of paraffin, and methods are available for producing beams of

uniform energy.
3

Because it can approach close to an atomic nucleus without being electro-

statically repelled, the neutron is an extraordinarily potent reactant in nuclear

processes.
2 Proc. Roy. Soc., A 136, 692 (1932).
3 E. Fermi, J. Marshall, and L. Marshall, Phys. Rev., 72, 193 (1947); W. Zinn, ibid., 71,

757 (1947).
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6. Positron, meson, neutrino. The year 1932 was a successful one for

nuclear physics, because two new fundamental particles were discovered,

the neutron and the positron. The latter was detected by Carl D. Anderson

in certain cloud-chamber tracks from cosmic rays. The positron is the

positive electron e+. It had previously been predicted by the theoretical work

of Dirac. In 1933 Frederic and Irene Curie-Joliot found that a shower of

positrons was emitted when a rays from polonium impinged on a beryllium

target. When targets of boron, magnesium, or aluminum were used, the

emission of p6sitrons was observed to continue for some time after the

particle bombardment was stopped. This was the first demonstration of

artificial radioactivity.
4 A typical reaction sequence is the following:

5B
10 + 2He

4 ->
On

l + 7N 1:i

; 7N 13 ->
6C13 + e+

More than a thousand artificially radioactive isotopes are now known,

produced in a variety of nuclear reactions. 5

The positron escaped detection for so long because it can exist only
until it happens to meet an electron. Then a reaction occurs that annihilates

both of them, producing a y-ray photon:

e -\

f e~~ -> hv

The energy equivalent to the rest mass of an electron is:

f - me2 - 9.11 x 10-28 x (3.00 x 1010)
2 --- 8.20 x 10 7

erg

If this is converted into a single y-ray photon, the wavelength would be

A -

n,c
~

9.U X-IO

The y radiation obtained in 'the annihilation of electron-positron pairs has

either this wavelength or one-half of it. The latter case corresponds to the

conversion of the masses of both e+ and e~~ into a single y-ray photon. The

reverse process, the production of an electron-positron pair from an energetic

photon, has also been observed.

In 1935, H. Yukawa proposed for the structure of the nucleus a theory
that postulated the existence of a hitherto unknown kind of particle, which

would be unstable and have a mass of about 150 (electron
~

1). From 1936

to 1938 Anderson's work at Pasadena revealed the existence of particles,

produced by cosmic rays, which seemed to have many of the properties

predicted by Yukawa. These particles are the ^-mesons, which may be

charged plus or minus, have a mass of 209 2, and a half life of 2.2 x 10~6

sec. The particles required by the theory, however, resemble more closely

the 7r-mesons, discovered in 1947 by the Bristol cosmic-ray group headed by
C. F. Powell. These have a mass of 275, and decay to /^-mesons, with a

half life of 2.0 x 10~8
sec. Several other particles, with masses of 800 to

4 C. R. Acad. Set. Paris, 198, 254, 559 (1934).
5 G. Seaborg and I. Perlman, Rev. Mod. Phys., 20, 585 (1948).
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1300, have also been discovered. The theoretical interpretation of the variety

of particles now known will require some new great advance in fundamental

theory.

In order to satisfy the law of conservation of mass-energy in radioactive

decays, decay of mesons, and similar processes, it is necessary to postulate

the existence of neutral particles with rest masses smaller than that of the

electron. These neutrinos have not yet been detected by physical methods,

since their effects are necessarily small.

7. The structure of the nucleus. The discovery of the neutron led to an

important revision in the previously accepted picture of nuclear structure.

Instead of protons and electrons, it is now evident that protons and neutrons

are the true building units. These are therefore called nucleons.

Each nucleus contains a number of protons equal to its atomic number

Z, plus a number of neutrons /?, sufficient to make up the observed mass

number A. Thus, A n + Z.

The binding energy E of the nucleus is the sum of the masses of the

nucleons minus the actual nuclear mass M. Thus,

E -=- Zmn + (A
- Z)m n M (9.6)

The proton mass m ir
= 1.00815, the neutron mass m n 1.00893 in atomic

mass units. To convert this energy from grams per mole to mev per nuclcon, it

must be multiplied by
C2

.
_ 934

W x 10 x 1.602 x 10
~12

One of the convincing arguments against the existence of electrons as

separate entities in the nucleus is based on the magnitude of the observed

binding energies. For example, if the deuteron 1H 2 were supposed to be

made up of two protons and an electron, the binding energy would be

0.001 53 gram per mole. Yet the electron's mass is only 0.00055 gram per

mole. For the electron to preserve its identity in the nucleus while creating
a binding energy about three times its own mass would seem to be physically

most unreasonable.

We do not yet know the nature of the forces between nucleons. The

nuclear diameter is given approximately by d 1.4 x 10~13 Am cm, A being
the mass number. The forces therefore must be extremely short-range, unlike

electrostatic or gravitational forces. The density of nuclear material is around

1014 g per cc. A drop big enough to see would weigh 107 tons. There is an

electrostatic repulsion between two protons, but this longer-range (inverse

square) force is outweighed by the short-range attraction, so that at separa-
tions around 10~13 cm the attraction between two protons is about the same

as that between two neutrons or a neutron and a proton. According to

Yukawa's theory, the attractive forces between nucleons are due to a new

type of radiation field, in which the mesons play a role like that of the

photons in an ordinary electromagnetic field.
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A further insight into nuclear forces can be obtained by examining the

composition of the stable (nonradioactive) nuclei. In Fig. 9.3 the number of

neutrons in the nucleus is plotted against the number of protons. The line

has an initial slope of unity, corresponding to a one-to-one ratio, but it

curves upward at higher atomic numbers. The reason for this fact is that

the electrostatic repulsion of the protons increases as the nucleus becomes

larger, since it is a longer range force than the attraction between protons.
To compensate for this repulsion more neutrons are necessary. Yet there is
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Fig. 9.3. Number of neutrons vs. number of protons in stable nuclei.

a limit to the number of extra neutrons that can be accommodated and still

produce added stability, so that the heavier nuclei become less stable.

This effect is illustrated clearly in Fig. 9.4, which shows the binding

energy per nucleon as a function of the mass number. Only the stable iso-

topes lie on this reasonably smooth curve. Natural or artificial radioactive

elements fall below the curve by an amount that is a measure of their in-

stability relative to a stable isotope of the same mass number.

The successive maxima in the early part of the curve occur at the following

nuclei: He4
, Be8

, C12
,
O16

,
Ne20

. These are all nuclei containing an equal

number of protons and neutrons, and in fact they are all polymers of He4
.

It is possible to say, therefore, that the forces between nucleons become

saturated, like the valence bonds between atoms. The unit He4
, two protons

and two neutrons, appears to be one of exceptional stability. The nuclear

shell structure is also clearly indicated in the packing-fraction vs. mass number
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curves of Fig. 8.1 1 . The lower the packing fraction, the greater is the binding

energy per nucleon.

Another viewpoint is to consider that there are certain allowed energy
levels in the nucleus. Each level can hold either two neutrons or two protons.

6

The upper proton levels become raised in energy owing to the coulombic

50 200 250100 150

MASS NUMBER

Fig. 9.4. Binding energy per nucleon as a function of atomic mass

number.

repulsion. Of all the stable nuclei, 152 have both n and Z even; 52 have Z
odd, n even; 55, Z even, n odd; and only 4 have both n and Z odd. The four

odd-odd nuclei are H2
,
Li6

, B10
,
N14

. Not only are the even-even nuclei the

most frequent, they also usually have the greatest relative abundance. It can

be concluded that filled nuclear energy levels confer exceptional stability.

8. Neutrons and nuclei. Since the neutron is an uncharged particle, it is

not repelled as it approaches a nucleus, even if its energy is very low. We
often distinguish fast neutrons, with a kinetic energy of > 100 ev, and slow

neutrons, with energies from 0.01 to 10 ev. If the energies have the same

magnitude as those of ordinary gas molecules (kT), the neutrons are called

thermal neutrons. At 300K, kT --= 0.026 ev.

The interaction of a neutron and a nucleus can be represented by the

intermediate formation of a compound nucleus which may then react in

several ways. If the neutron is released again, with the reformation of the

original nucleus, the process is called scattering. If the neutron is retained

for some time, although there may be a subsequent decomposition of the

compound nucleus into new products, the process is called capture or

absorption .

* See Section 10-25 and discussion of nuclear spin on p. 247.
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A quantitative description of the interaction between a nucleus and a

neutron is given in terms of the effective nuclear cross section, a. Consider

a beam of neutrons in which the neutron flux is n per cnv2

per sec. If the

beam passes through matter in which there are c nuclei of a given kind per

cc, the number of neutrons intercepted per sec in a thickness fix is given by

- dn nac dx (9.7)

An initial flux of n is therefore reduced after a distance .v to nx n c
cax

.

The scattering cross section as is distinguished from the absorption cross

section cr
rt ,
and a as \

a
(l

. Nuclear cross sections are generally of the order

10~24 cm2
, and the whimsical physicists have called this unit the barn.
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Nuclear cross section of silver. [From Rainwater, Havens, Wu,
and Dunning, Phys. Rev. 71, 65 (1947),]

The cross sections depend on the kinetic energy of the neutrons and may
be quite different in the low- and high-velocity ranges. The dependence of a

on energy yields important information about energy levels in the nucleus,

for when the neutron energy is very close to a nuclear energy level, a

"resonance" occurs that greatly facilitates capture of the neutron, and

hence greatly increases the value of au . For example, for thermal neutrons,

a^H1
)
= 0.31 barn, a^H2

)
- 0.00065 barn. Both ^H

1 and
X
H 2 have high

scattering cross sections, and are therefore effective in slowing fast neutrons,

but many of the thermal neutrons produced would be lost by capture to

jH
1 dH 1 + Q/2

1 ->
1H2

). It is for this reason that heavy water is a much more
efficient neutron moderator than light water. In H2O a thermal neutron



240 NUCLEAR CHEMISTRY AND PHYSICS [Chap. 9

would have, on the average, 150 collisions before capture; in D2O, 104
;
in

pure graphite, 103 .

A particularly important scattering cross section is that of cadmium.

The cadmium nucleus has a resonance level in the thermal neutron region,

leading to the tremendously high a = 7500 at 0.17ev. Thus a few milli-

meters of cadmium sheet is practically opaque to thermal neutrons.

The cross section for silver is shown in Fig. 9.5 as a function of neutron

energy. The peaks in the curve correspond to definite neutron energy levels

in the nucleus. The task of the nuclear physicist is to explain these levels, as

the extranuclear energy levels of the electrons have been explained by
the Bohr theory and quantum mechanics. (See Chapter 10.)

9. Nuclear reactions. The different types of nuclear reactions are con-

veniently designated by an abbreviated notation that shows the reactant

particle and the particle emitted. Thus an (n, p) reaction is one in which

a neutron reacts with a nucleus to yield a new nucleus and a proton, e.g.,

7N14 + X -*
6C14 + iH

1 would be written 7N14
(/i,/7)6C14

.

In Table 9.2 the various nuclear reaction types are summarized. The

TABLE 9.2

TYPES OF NUCLEAR REACTIONS

Reaction

Type

n capture

np

no.

n,2n

p capture

pn

pen

Normal Mass
Change

Slightly +

si 4 light clem,
si heavy

Very -

si 4- light elem.

heavy
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second column gives the normal rest-mass change for the reaction. A positive
mass change is equivalent to an endothermic reaction, a negative mass

change to an exothermic reaction. The next column indicates how the yield

depends on the energy of the bombarding particle. In most cases there is a

smooth increase in yield with increasing energy, but for capture processes
there is a marked resonance effect.

10. Nuclear fission. Perusal of the binding energy curve in Fig. 9.4 reveals

that a large number of highly exothermic nuclear reactions are possible,

since the heavy nuclei toward the end of the periodic table are all unstable

relative to the nuclei lying around the maximum of the curve.

In the January 1939 number of Naturwissenschaften, Otto Hahn and

S. Strassman reported that when the uranium nucleus is bombarded with

neutrons it may split into fragments, one of which they identified as an

isotope of barium. About 200 mev of energy is released at each fission.

It was immediately realized that secondary neutrons would very possibly

be emitted as a result of uranium fission, making a chain reaction possible.

The likelihood of this may be seen as follows: Consider the fission of a

92U235 nucleus to yield, typically, a 56Ba
139 as one of the observed disintegra-

tion products. If balance is to be achieved between the numbers of protons
and neutrons before and after fission, the other product would have to be

36Kr
98

. This product would be far heavier than any previously known krypton

isotope, the heaviest of which was 36Kr
87

, a ft" emitter of 4 hours half-life.

Now the hypothetical 36Kr
96 can get back to the proton-neutron curve of

Fig. 9.3 by a series of ft" emissions, and in fact a large number of new ft"

emitters have been identified among the fission products. The same result

can be achieved, however, if a number of neutrons are set free in the fission

process. Actually, both processes occur.

The fission process usually consists, therefore, of a disintegration of

uranium into two lighter nuclei, one of mass number from 82 to 100, and

the other from 128 to 150, plus a number, perhaps about three, of rapidly

moving neutrons. In only about one case in a thousand does symmetrical
fission into two nuclei of approximately equal mass occur.

To determine which isotope of uranium is principally responsible for

fission, A. O. Nier and his coworkers separated small samples of U235

(0.7 per cent abundance) and U238
(99.3 per cent) with a mass spectrometer.

It was found that U 235
undergoes fission even when it captures a slow

thermal neutron, but U238
is split only by fast neutrons with energies greater

than 1 mev. As usual, the capture cross section for slow neutrons is much

greater than that for fast neutrons, so that U235 fission is a much more likely

process than that of U238
. The process of fission can be visualized by con-

sidering the nucleus as a drop of liquid. When a neutron hits it, oscillations

are set up. The positive charges of the protons acquire an unsymmetrical

distribution, and the resulting repulsion can lead to splitting of the nuclear

drop. Since U 235 contains an odd number of neutrons, when it gains a
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neutron considerable energy is set free. This kinetic energy starts the dis-

turbance within the nucleus that leads to fission. The isotope U238
already

contains an even number of neutrons, and the capture process is not so

markedly exothermic. Therefore the neutron must be a fast one, bringing

considerable kinetic energy into the nucleus, in order to initiate fission.

Fission of other heavy elements, such as lead, has been produced by bom-

bardment with 200 mev deuterons produced by the Berkeley cyclotron.

Fission can also be induced by y rays with energies greater than about 5 mev

(photofissiori).

In Fig. 9.6 are shown the mass distributions of the fission products in

three different cases that have been carefully studied. When fission is produced

uj 6

u. (/)

O <

50 IOO

MASS NUMBER

ISO

Fig. 9.6. Mass distribution of products in three different fission reactions. The

energies of the particles initiating the fission are: n, thermal; a, 38 mev; rf, 200 mev.

Note how the distribution becomes more symmetrical as the energy of the incident

particle increases. (From P. Morrison, "A Survey of Nuclear Reactions" in Experi-
mental Nuclear Physics, ed. E. Segre, Wiley, 1953.)

by highly energetic particles, the distribution of masses is quite symmetrical,
and the most probable split is one that yields two nuclei of equal mass. This

is the result that would be expected from the liquid-drop model. The un-

symmetrical splitting that follows capture of slower particles has not yet

received a satisfactory theoretical explanation, but it is undoubtedly related

to the detailed shell structure inside the nucleus.

A nuclear reaction of great interest is spontaneous fission, discovered in

1940 by Flerov and Petrzhak in the U.S.S.R. It cannot be attributed to cosmic

radiation or to any other known external cause, and it must be considered to
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be a new type of natural radioactivity. For example, when about 6 g of Th232

were observed for 1000 hr, 178 spontaneous fissions were detected. Sponta-
neous fission is usually a very rare reaction, but it becomes much more

frequent in some of the transuranium elements.

11. The transuranium elements. In 1940, E. McMillan and P. H. Abelson7

found that when U 238
is irradiated with neutrons, a resonance capture can

occur that leads eventually to the formation of two new transuranium

elements.

U238 f"1 -
92

92U 239 23inin
->

93Np239
-f

The 94Pu
239

is a weakly radioactive a emitter (r 2.4 x 104 years). Its

most important property is that, like U235
,

it undergoes fission by slow

neutrons.

It was shown by G. T. Seaborg
8 and his coworkers that bombardment

of U 238 with a particles leads by an (a, n) reaction to Pu241
. This is a ft emitter

and decays to give 95Am 241
, an isotope of americium which is a-radioactive

with 500 years half-life. By 1954, the last of the transuranium elements to have

been prepared were curium (96), berkelium (97), californium (98), and

elements (99) and (100). Curium can be made by an (a, ri) reaction on Pu239
:

94Pu
239 f 2He

4 ^ ^ + 96Cm242

The preparation of new examples of the transuranium elements has been

facilitated by the technique of using heavy ions accelerated in the cyclotron.

Thus high energy beams of carbon ions, (6C12
)
6 !

, can increase the atomic

number of a target nucleus by six units in one step. For example, isotopes of

californium have been synthesized as follows: 9

92U238 + 6C12 -> 98Cf
244 + 6/1

Element (99) was prepared by:

92U 238 + 7N 14 -> 99X247 + 5/i

12. Nuclear chain reactions. Since absorption of one neutron can initiate

fission, and more than one neutron is produced at each fission, a branching
chain can occur in a mass of fissionable material. The rate of escape of

neutrons from a mass of U 235
,
for example, depends on the area of the

mass, whereas the rate of production of neutrons depends on the volume.

As the volume of the mass is increased, therefore, a critical point is finally

reached at which neutrons are being produced more rapidly than they are

being lost.

7
Phys. Rev., 57, 1185 (1940).

8
Science, 104, 379 (1946); Chem. Eng. News, 25, 358 (1947).

9 A. Ghiorso, S. G. Thompson, K. Street, and G. T. Seaborg, Phys. Rev. 81, 1954 (1951).



244 NUCLEAR CHEMISTRY AND PHYSICS [Chap. 9

If two masses of U235 of subcritical mass are suddenly brought together
a nuclear explosion can take place.

For the continuous production of power, a nuclear pile is used. The

fissionable material is mixed with a moderator such as graphite or heavy

water, to slow down the neutrons. Control of the rate of fission is effected

by introducing rods of a material such as cadmium, which absorbs the

thermal neutrons. The depth to which the cadmium rods are pushed into

the pile controls the rate of fission.

The pile also serves as a source of intense beams of neutrons for research

purposes. As shown in Fig. 9.7, a diagram of the Brookhaven pile, these

REMOVABLE PLUG

ION CHAMBER FOR
PILE CONTROL

PNEUMATIC TUBE
RABBIT"

Fig. 9.7. Diagrammatic sketch of the Brookhaven pile showing the features of

importance for pile neutron research. (From D. J. Hughes, Pile Neutron Research,

Addison-Wesley, 1953.)

beams can be either fast neutrons from the center of the pile, or thermal

neutrons drawn out through a layer of moderator.

13. Energy production by the stars. The realization of the immense

quantities of energy that are released in exothermic nuclear reactions has

also provided an answer to one of the great problems of astrophysics the

source of the energy of the stars. At the enormous temperatures prevailing
in stellar interiors (e.g., around 10 million degrees in the case of our sun) the

nuclei have been stripped of electrons and are moving with large kinetic-

theory velocities. Thus the mean thermal kinetic energy of an a particle at

room temperature is of the order of^ ev, but at the temperature of the sun
it has become 104 ev. In other words, at stellar temperatures many of the

nuclei have attained energies comparable with those of the high-velocity

particles produced on earth by means of the cyclotron and similar devices.

Nuclei with these high energies will be able to overcome the strong
electrostatic repulsion between their positive charges and approach one
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another sufficiently closely to initiate various nuclear reactions. It is these

so-called thermonuclear reactions that account for the energy production of

the stars.

In 1938, Carl von Weizsacker and Hans Bethe independently proposed
a most ingenious mechanism for stellar-energy production. This is a cycle

proceeding as follows:

C 12 + H 1 ->N 13
-\- hv

N 13 -C 13
I- <?-

C 13 f H 1 -^ N 14
|- hv

N u
I H 1 ^O irM hv

O15 ^N 15
4-e'-

N 15
-h H 1 >C12

-|- He4

The net result is the conversion of four H nuclei into one He nucleus through
the mediation of C 12 and N 14 as "catalysts" for the nuclear reaction; 30mev
are liberated in each cycle. This carbon cycle appears to be the principal

source of energy in very hot stars (T> 5 x 10s
K).

The energy of somewhat cooler stars, like our sun (T ~ 10" K), appears
to be generated by the proton-proton cycle :

iH
1 + t

H l -- jH- | H |
0.42 mev

^ + XH 2 --
2He

3
4- y f 5.5 mev

2He
3 + 2He

3 -
2He

4 f 2
1
H 1

f 12.8 mev

The net result is the conversion of 4 protons to one helium nucleus, with the

liberation of 24.6 mev plus the annihilation energy of the positron.

Gamow has estimated10 that reactions between hydrogen nuclei ^H 1
-|

tH2 ->
2He3

4- y; 2 jH
2 ->

2He
4

-1 y) would have an appreciable rate at

temperatures below 106 degrees; reactions of protons with lithium nuclei

( XH 1
-f 3Li

6 -^
2He

4
-f 2He

3
; XH 1

f 3Li
7 -> 2 2He

4
) require about 6 x 106

degrees; reactions such as jH
1 + 5B

10 -->
6CX1

h y require about 107
degrees.

The temperatures attainable by means of uranium or plutonium fission

are high enough to initiate thermonuclear reactions of the lighter elements.

The fission reaction acts as a "match" to start the fusion reactions. Easiest

of all to "ignite" should be mixtures containing tritium, the hydrogen isotope

of mass 3.

XH3 + jH
2 --

2He
4
4 On

l f 17.6 mev (y)

!H
3 f 1H1 -

2He
4 + 19.6 mev (y)

The tritium can be prepared by pile reactions such as 3 Li
(J

f A?
1 ^

2He
4 f 1

H3
.

The isotope Li6 has an abundance of 7.52 atom per cent.

14. Tracers. The variety of radioactive isotopes now available has made

possible many applications in tracer experiments, in which a given type of

atom can often be followed through a sequence of chemical or physical

10
George Gamow, The Birth and Death of the Sun (frew York: Penguin, 1945), p. 128.
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changes. Stable isotopes can also be used as tracers, but they are not so

easily followed and are available for relatively few elements. Radioactive

isotopes can be obtained from four principal sources: (1) natural radio-

activity; (2) irradiation of stable elements with beams of ions or electrons

obtained from accelerators such as cyclotrons, betatrons, etc.; (3) pile

irradiation with neutrons; (4) fission products. In Table 9.3 are listed a few

of the many available isotopes.

TABLE 9.3

ARTIFICIAL RADIOACTIVE ELEMENTS

Nucleus Activity HalfLife

One of the earliest studies with radioactive tracers used radioactive lead

to follow the diffusion of lead ions in solid metals and salts. For example,
a thin coating of radiolead can be plated onto the surface of a sample of

metallic lead. After this is maintained at constant temperature for a definite

time, thin slices are cut off and their radioactivity measured with a Geiger
counter. The self-diffusion constant of Pb in the metal can readily be cal-

culated from the observed distribution of activity. Many such diffusion

studies have now been made in metals and in solid compounds. The results

obtained are of fundamental importance in theories of the nature and prop-
erties of the solid state. Diffusion in liquids, as well as the permeability of

.natural and synthetic membranes, can also be conveniently followed by
radioactive tracer methods.

The solubility of water in pure hydrocarbons is so low that it is scarcely

measurable by ordinary methods. If water containing radioactive hydrogen,
or tritium, ^^ a ft~~ emitter of 12 years half life, is used, even minute amounts

dissolved in the hydrocarbons are easily measured.11

A useful tracer method is isotopic dilution analysis. An example is the

determination of amino acids in the products of protein hydrolysis. The

conventional method would require the complete isolation of each amino

acid in pure form. Suppose, however, a known amount of an amino acid

11 C. Black, G. G. Joris, and H. S. Taylor, /. Chem. Phys., 16, 537 (1948).
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labeled with deuterium or carbon-14 is added to the hydrolysate. After

thorough mixing, a small amount of the given acid is isolated and its activity

measured. From the decrease in activity, the total concentration of the acid

in the hydrolysate can be calculated.

Tracers are used to elucidate reaction mechanisms. One interesting

problem was the mechanism of ester hydrolysis. Oxygen does not have a

radioactive isotope of long enough half life to be a useful tracer, but the

stable O18 can be used. By using water enriched with heavy oxygen (O*) the

reaction was $hown to proceed as follows:

O O
R C/ + HO*H -, R-C< I

R'OH
XOR' XO*H

The tagged oxygen appeared only in the acid, showing that the OR group is

substituted by O*H in the hydrolysis.
12

Radioactive isotopes of C, Na, S, P, etc., are of great use in investigations

of metabolism. They supplement the stable isotopes of H, N, and O. For

^example it has been found that labeled phosphorus tends to accumulate

preferentially in rapidly metabolizing tissues. This has led to its trial in cancer

therapy. The results in this case have not been particularly encouraging, but

it may be possible to find metabolites or dyes that are specifically concen-

trated in tumor tissues, and then to render these compounds radioactive by
inclusion of appropriate isotopic atoms. 13

15. Nuclear spin. In addition to its other properties, the nucleus may
have an intrinsic angular momentum or spin. All elementary particles (i.e.,

neutrons, protons, and electrons) have a spin of one-half in units of h/27r.

The spin of the electron will be considered in some detail in the next chapter.

The spin of the elementary particles can be either plus or minus. If an axis is

imagined passing through the particle, the sign corresponds to a clockwise or

counterclockwise spin, although this picture is a very crude one. The spin of

a nucleus is the algebraic sum of the spins of the protons and neutrons that

it contains.

The hydrogen nucleus, or proton, has a spin of one-half. If two hydrogen
atoms are brought together to form H2 , the nuclear spins can be either

parallel ( 1f ) or antiparallel ( 11, ). Thus there are two nuclear spin isomers of

H2 . The molecule with parallel spins is called "orthohydrogen," the one

with antiparallel spins is called "parahydrogen." Since spins almost never

change their orientation spontaneously, these two isomers are quite stable.

They have different heat capacities and different molecular spectra. Other

molecules composed of two identical nuclei having nonzero spin behave

similarly, but only in the cases of H2 and D2 are there marked differences in

physical properties.

12 M. Polanyi and A. L. Szabo, Trans. Farad. Soc., 30, 508 (1934).
13 M. D. Kamen, Radioactive Tracers in Biology (New York: Academic, 1947).
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PROBLEMS

1. What is the Am in g per mole for the reaction H2 -f t O2 H2O for

which A// - - 57.8 kcal per mole?

2. From the atomic weights in Table 9.1, calculate the AE in kcal per

mole for the following reactions:

^ + o/;'
- ^2, tH2

f- o*
1 =^ 1H 1

f e - X, 2 tH2 -
2He

4

3. Calculate the energies in (a) ev (b) kcal per mole of photons having

wavelengths of 2.0 A, 1000 A, 6000 A, 1 mm, 1 m.

4. To a hydrolysate from 10 g of protein is added 100 mg of pure

CD3CHNH2COOH (deuterium-substituted alanine). After thorough mixing,

100 mg of crystalline alanine is isolated which has a deuterium content of

1.03 per cent by weight. Calculate the per cent alanine in the protein.

5. A 10-g sample of iodobenzene is shaken with 100 ml of a 1 M KI solu-

tion containing 2500 counts per min radio-iodine. The activity of the iodo-

benzene layer at the end of 2 hours is 250 cpm. What per cent of the iodine

atoms in the iodobenzene have exchanged with the iodide ions in solution?

6. Calculate the mass of an electron accelerated through a potential of

2 x 108 volts. What would the mass be if the relativity effect is ignored?

7. Naturally occurring oxygen consists of 99.76 per cent O16
, 0.04 per

cent O17
, and 0.20 per cent O18

. Calculate the ratio of atomic weights on the

physical scale to those on the chemical scale.

8. The work function of a cesium surface is 1.81 volts. What is the

longest wavelength of incident light that can eject a photoelectron from Cs?

9. The 77-meson has a mass about 285 times that of the electron; the

/t-meson has a mass about 215 times that of the electron. The 7r-meson

decays into a //-meson plus a neutrino. Estimate A for the reaction in ev.

10. Calculate the energy necessary to produce a pair of light mesons.

This pair production has been accomplished with the 200-in. California

cyclotron.

11. The scattering cross section, a, of lead is 5 barns for fast neutrons.

How great a thickness of lead is required to reduce the intensity of a neutron

beam to 5 per cent of its initial value? How great a thickness of magnesium
with a = 2 barns?

12. According to W. F. Libby [Science, 109, 22V (1949)] it is probable
that radioactive carbon- 14 (r

= 5720 years) is produced in the upper atmo-

sphere by the action of cosmic-ray neutrons on N 14
, being thereby main-

tained at an approximately constant concentration of 12.5 cpm per g of

carbon. A sample of wood from an ancient Egyptian tomb gave an activity

of 7.04 cpm per g C. Estimate the age of the wood.

13. A normal male subject weighing 70.8 kg was injected with 5.09 ml

of water containing tritium (9' x 109 cpm). Equilibrium with body water was
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reached after 3 hr when a 1-ml sample of plasma water from the subject had

an activity of 1.8 x 105 cpm. Estimate the weight per cent of water in the

human body.

14. When 38Sr
88

is bombarded with deuterons, 38Sr
89

is formed. The cross

section for the reaction is 0.1 barn. A SrSO4 target 1.0 mm thick is exposed
to a deuteron beam current of 100 microamperes. If scattering of deuterons

is neglected, compute the number of Sr atoms transmuted in 1.0 hr. The
Sr88 is 82.6 per cent of Sr, and Sr89 is a Remitter of 53-day half life. Compute
the curies of Sr89 produced.

15. When 79Au
197

(capture cross section a
c

=-- 10~22 cm2
) is irradiated with

slow neutrons it is converted into 79Au198
(r --= 2.8 days). Show that in general

the number of unstable nuclei present after irradiation for a time / is

o^
(1
_ e^

A

Here nQ is the number of target atoms and
<f>

is the slow neutron flux. For the

case in question, calculate the activity in microcuries of a 100-mg gold sample

exposed to a neutron flux of 200/cm
2 sec for 2 days.

16. The conventional unit of quantity of X radiation is the roentgen, r.

It is the quantity of radiation that produces 1 esu of ions in 1 cc of air at

STP (1 esu === 3.3 x 10~10 coulomb). If 32.5 ev are required to produce a

single ion pair in air, calculate the energy absorbed in 1 liter of air per

roentgen.

17. Potassium-40 constitutes 0.012 per cent of natural K, and K is 0.35

per cent of the weight of the body. K40 emits /? and y rays and has r

4.5 x 108 yr. Estimate the number of disintegrations per day of the K40 in

each gram of body tissue.

18. The isotope 89Ac
225 has r 10 days and emits an a with energy of

5.80 mev. Calculate the power generation in watts per 100 mg of the isotope.
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CHAPTER 10

Particles and Waves

1. The dual nature of light. It has already been noted that in the history
of light two different theories were alternately in fashion, one based on the

particle model and the other on the wave model. At the present time both

must be regarded with equal respect. In some experiments light displays

notably corpuscular properties: the photoelectric and Compton effects can

be explained only by means of light particles, or photons, having an energy
s hv. In other experiments, which appear to be just as convincing, the

wave nature of light is manifest: polarization and interference phenomena
require an undulatory theory.

This unwillingness of light to fit neatly into a single picture frame has

been one of the most perplexing problems of natural philosophy. The situa-

tion recalls the impasse created by the "null result" of the Michelson-Morley

experiment. This result led Einstein to examine anew one of the most basic

of physical concepts, the idea of the simultaneity of events in space and time.

The consequence of his searching analysis was the scientific revolution

expressed in the relativity theories.

An equally fundamental enquiry has been necessitated by the develop-
ments arising from the dual nature of light. These have finally required a

re-examination of the meaning and limitations of physical measurement

when applied to systems of atomic dimensions or smaller. The results of

this analysis are as revolutionary as the relativity theory; they are embodied

in what is called quantum theory or wave mechanics. Before discussing the

significant experiments that led inexorably to the new theories, we shall

review briefly the nature of vibratory and wave motions.

2. Periodic and wave motion. The vibration of a simple harmonic oscilla-

tor, discussed on page 190, is a good example of a motion that is periodic

in time. The equation of motion (/= ma) is md2
x/dt

2
--== KX. This is a

simple linear differential equation.
1

It can be solved by first making the sub-

stitution p dx/dt. Then d*x/dt* =--
dpjdt

-=
(dp/dx)(dx/dt)

=
p(dp/dx), and

the equation becomesp(dp\dx) + (K/W)X 0. Integrating,p
2
+(t</m)x

2 = const.

The integration constant can be evaluated from the fact that when the

oscillator is at the extreme limit of its vibration, x = A, the kinetic energy
is zero, and hence p 0. Thus the constant = (K/m)A

2
. Then

1
See, for example, Granvi lie et al., Calculus, p. 383..
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~~df
V/,4 2 - *2

. ,
X IK

sin" 1 -

/ t -\ const
A *< m

This integration constant can be evaluated from the initial condition that at

/ =-- 0, A- ---=-- 0; therefore constant 0.

The solution of the equation of motion of the simple harmonic oscillator

is accordingly:

x -= AsmJ-~t (10.1)

If we set VK//W ---
2771-, this becomes

x ^ A sin 2irvt (10.2)

The simple harmonic vibration can be represented graphically by this

sine function, as shown in Fig. 10.1. A cosine function would do just as

well. The constant v is called the

frequency of the motion; it is the

number of vibrations in unit time.

The reciprocal of the frequency,
r -=

]/v, is called the period of the

motion, the time required for a single

vibration. Whenever t
--

n(r/2),

where n is an integer, the displace-

ment x passes through zero.

Fig. 10.1. Simple harmonic vibration. The quantity A, the maximum
value of the displacement, is called

the amplitude of the vibration. At the position x =- A, the oscillator reverses

its direction of motion. At this point, therefore, the kinetic energy is zero,

and all the energy is potential energy Ep . At position x 0, all the energy is

kinetic energy Ek . Since the total energy, E = Ep + Ek , is always a constant,

it must equal the potential energy at x -= A. On page 190 the potential

energy of the oscillator was shown to be equal to }2KX
2

, so that the total

energy is

E - \KA
2

(10.3)

The total energy is proportional to the square of the amplitude. This im-

portant relation holds true for all periodic motions.

The motion of a harmonic oscillator illustrates a displacement periodic

with time, temporally periodic. If such an oscillator were immersed in a

fluid medium it would set up a disturbance which would travel through the
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medium. Such a disturbance would be not only temporally periodic but also

spatially periodic. It would constitute what is called a wave. For example, a

tuning fork vibrating in air sets up sound waves. An oscillating electric dipole
sets up electromagnetic waves in space.

Let us consider a simple harmonic wave moving in one dimension, x. If

one takes an instantaneous "snapshot" of the wave, it will have the form of

a sine or cosine function. This snapshot is the profile of the wave. If at a

point x = the magnitude of the disturbance
<f> equals 0, then at some

further point x = A, the magnitude will again be zero, and so on at 2A,

3A . . . A. This quantity A is called the wavelength. It is the measure of the

wave's periodicity in space, just as the period T is the measure of its periodicity
in time. The profile of the simple sine wave has the form:

<-,4sin27r~ (10.4)
X.

Now consider the expression for the wave at some later time /. The idea

of the velocity of the wave must then be introduced. If the disturbance is

moving through the medium with a velocity c in the positive x direction, in

a time t it will have moved a distance ct. The wave profile will have exactly
the same form as before if the origin is shifted from ;c = to a new origin

at x = ct. Referred to this moving origin, the wave profile always maintains

the form of eq. (10.4). To refer the disturbance back to the stationary origin,

it is necessary only to subtract the distance moved in time t from the value

of x. Then the equation for the moving wave becomes

f\

<f>^-Asm~(x-ct) (10.5)

Note that the nature of the disturbance
<f>

need not be specified: in the case

of a water wave it is the height of the undulation ; in the case of an electro-

magnetic wave it is the strength of an electric or magnetic field.

Now it is evident that c/A is simply the frequency: v = c/A. The number
of wavelengths in unit distance is called the wave number, k I/A, so that

eq. (10.5) can be written in the more convenient form:

<f>
= A sin 27r(kx

-
vt) (10.6)

3. Stationary waves. In Fig. 10.2, two waves, fa and fa, are shown that

have the same amplitude, wavelength, and frequency. They differ only in

that fa has been displaced along the X axis relative to fa by a distance d/2,7rk.

Thus they may be written

fa = A sin 2ir(kx vt)

fa = A sin [2ir(kx vt) + d]

The quantity d is called the phase of fa relative to fa.
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When the displacement is exactly an integral number of wavelengths,
the two waves are said to be in phase \ this occurs when d = 2?r, 4?r, or any
even multiple of 77. When d --=

77, 3rr 9 or any odd multiple of n, the two waves

are exactly out of phase. Interference phenomena are readily explained in

terms of these phase relationships, for when two superimposed waves of

equal amplitude are out of phase, the resultant disturbance is reduced to zero.

Fig. 10.2. Waves differing in phase.

The expression (10.6) is one solution of the general partial differential

equation of wave motion, which governs all types of waves, from tidal waves

to radio waves. In one dimension this equation is

In three dimensions the equation becomes

v a;2

(10.7)

(10.8)

The operator V2
(del squared) is called the Laplacian.

One important property of the wave equation is apparent upon inspec-

tion. The disturbance $ and all its partial derivatives appear only in terms

of the first degree and there are no other terms. This is therefore a linear

homogeneous differential equation.
2

It can be verified by substitution that if

fa and <^2 are any two solutions of such an equation, then a new solution can

be written having the form
i i

i
i / 1 r\ r>\

<p
-

fli9i ~r #2r2 (10.9)

where al and a2 are arbitrary constants. This is an illustration of the principle

of superposition. Any number of solutions can be added together in this way
to obtain new solutions. This is essentially what is done when a complicated

vibratory motion is broken down into its normal modes (page 191), or when
a periodic function is represented by a Fourier series.

An important application of the superposition principle is found in the

addition of two waves of the form of eq. (10.6) that are exactly the same

8
Granvilie, he. c//., pp. 372, 377.
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except that they are going in opposite directions. Then the new solution

will be

</>
-^ A sin 2rr(kx vt) + A sin 2v(kx } vt)

or ^ 2A sin 27r&jc cos 27rvt (10.10)

. x
\ y xv

since sin x + sin j 2 sin cos

This new wave, which does not move either forward or backward, is a

stationary wave. The waves of the original type [eq. (10.6)] are called pro-

gressive waves. It will be noted that in the stationary wave represented by

eq. (10.10), the disturbance
<f> always vanishes, irrespective of the value of /,

for points at which sin 2-nkx = or x 0, iAr, $A% S/v . . . (n/2)k. These

points are called nodes. The distance between successive nodes is Ik or A/2,

one-half a wavelength. Midway between the nodes are the positions of

maximum amplitude, or antinodes.

Solutions of the one-dimensional type, which have just been discussed,

will apply to the problem of a vibrating string in the idealized case in which

there is no damping of the vibrations. In a string of infinite length one can

picture the occurrence of progressive waves. Consider, however, as in Fig.

10.2, a string having a certain finite length L. This limitation imposes certain

boundary conditions on the permissible solutions of the wave equation. If the

ends of the string are held fixed: at x and at x L, the displacement

<f)
must 0. Thus there must be an integral number of nodes between and

L, so that the allowed wavelengths are restricted to those that obey the

equation

nY L (10.11)

where n is an integer. This occurrence of whole numbers is very typical of

solutions of the wave equation under definite boundary conditions. In order

to prevent destruction of the wave by interference, there must be an integral

number of half wavelengths fitted within the boundary. This principle will

be seen to have important consequences in quantum theory.

4. Interference and diffraction. The interference of light waves can be

visualized with the aid of the familiar construction of Huygens. Consider,

for example, in (a) Fig. 10.3, an effectively plane wave front from a single

source, incident upon a set of slits. The latter is the prototype of the well

known diffraction grating. Each slit can now be regarded as a new light

source from which there spreads a semicircular wave (or hemispherical in

the three-dimensional case). If the wavelength of the radiation is A, a series

of concentric semicircles of radii A, 2A, 3A . . . may be drawn with these

sources as centers. Points on these circles represent the consecutive maxima

in amplitude of the new wavelets. Now, following Huygens, the new resultant

wave fronts are the curves or surfaces that are simultaneously tangent to the
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a cos oi

secondary wavelets. These are called the "envelopes" of the wavelet curves

and are shown in the illustration.

The important result of this construction is that therfe are a number of

possible envelopes. The one that moves straight ahead in the same direction

as the original incident light is called the zero-order beam. On either side of

this are first-, second-, third-, etc., order diffracted beams. The angles by
which the diffracted beams deviate from the original direction evidently

depend on the wavelength of the incident radiation. The longer the wave-

length, the greater is the diffraction. This is, of course, the basis for the use

of the diffraction grating in the measurement of the wavelength of radiation.

l*
f ORDER

ORDER

2nd ORDER

(a) (b)

Fig. 10.3. Diffraction: (a) Huygens* construction; (b) path difference.

The condition for formation of a diffracted beam can be derived from a

consideration of (b) Fig. 10.3, where attention is focused on two adjacent slits.

If the two diffracted rays are to reinforce each other they must be in phase,
otherwise the resultant amplitude will be cut down by interference. The
condition for reinforcement is therefore that the difference in path for the two

rays must be an integral number of wavelengths. If a is the angle of diffraction

and a the separation of the slits, this path difference is a cos a and the

condition becomes

a cos a = /a (10.12)

where h is an integer.

This equation applies to a linear set of slits. For a two-dimensional plane

grating, there are two similar equations to be satisfied. For the case of light

incident normal to the grating,

a cos a = AA

b cos ft
= A

It will be noted that the diffraction is appreciable only when the spacings
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of the grating aj^rftt very much larger than the wavelength of the incident

light. In order /to obtain diffraction effects with X rays, for example, the

spacings should be of the order of a few Angstrom units.3

Max von Laue, in 1912, realized that the interatomic spacings in crystals

were probably of the order of magnitude of the wavelengths of X rays.

Crystal structures should therefore serve as three-dimensional diffraction

gratings for X rays. This prediction was immediately verified in the critical

experiment of Friedrich, Knipping, and Laue. A typical X-ray diffraction

picture is shown in Fig. 13.7 on page 375. The far-reaching consequences of

Laue's discovery will be considered in some detail in a later chapter. It is

mentioned here as a demonstration of the wave properties of X rays.

5. Black-body radiation. The first definite failure of the old wave theory
of light was not found in the photoelectric effect, a particularly clear-cut case,

but in the study of black-body radiation. All objects are continually absorbing
and emitting radiation. Their properties as absorbers or emitters may be

extremely diverse. Thus a pane of window glass will not absorb much of

the radiation of visible light but will absorb most of the ultraviolet. A sheet

of metal will absorb both the visible and the ultraviolet but may be reasonably

transparent to X rays.

In order for a body to be in equilibrium with its environment, the radia-

tion it is emitting must be equivalent (in wavelength and amount) to the

radiation it is absorbing. It is possible to conceive of objects that "are perfect

absorbers of radiation, the so-called ideal black bodies. Actually, no sub-

stances approach very closely to this ideal over an extended range of wave-

lengths. The best laboratory approximation to an ideal black body is not a

substance at all, but a cavity.

This cavity, or hohlraum, is constructed with excellently insulating walls,

in one of which a small orifice is made. When the cavity is heated, the radia-

tion from the orifice will be a good sample of the equilibrium radiation within

the heated enclosure, which is practically ideal black-body radiation.

There is a definite analogy between the behavior of the radiation within

such a hohlraum and that of gas molecules in a box. Both the molecules and

the radiation are characterized by a density and both exert pressure on the

confining walls. One difference is that the gas density is a function of the

volume and the temperature, whereas the radiation density is a function of

temperature alone. Analogous to the various velocities distributed among
the gas molecules are the various frequencies distributed among the oscilla-

tions that comprise the radiation.

At any given temperature there is a characteristic distribution of the gas

velocities given by Maxwell's equation. The corresponding problem of the

spectral distribution of black-body radiation, that is, the fraction of the

8
It is also possible to use larger spacings and work with extremely small angles of

incidence. The complete equation, corresponding to eq. (10.12), for incidence at an angle

oto, is 0(cos a cos ao)
= M.



258 PARTICLES AND WAVES [Chap. 10

total energy radiated that is within each range of wavelength, was first

explored experimentally (1877-1900) by O. Lummer and E. Pringsheim.
Some of their results are shown in Fig. 10.4. These curves indeed have a

marked resemblance to those of the Maxwell distribution law. At high tem-

peratures the position of the maximum is shifted to shorter wavelengths
an iron rod glows first dull red, then orange, then white as its temperature
is raised and higher frequencies become appreciable in the radiation.

140

12345
WAVE LENGTH, MICRONS

Fig. 10.4. Data of Lummer and Pringsheim on spectral distribution

of radiation from a black body at three different temperatures.

When these data of Lummer and Pringsheim appeared, attempts were

made to explain them theoretically by arguments based on the wave theory
of light and the principle of equipartition of energy. Without going into the

details of these efforts, which were uniformly unsuccessful, it is possible to

see why they were foredoomed to failure.

According to the principle of the equipartition of energy, an oscillator in

thermal equilibrium with its environment should have an average energy

equal to kT, \kT for its kinetic energy and \kT for its potential energy,
where k is the Boltzmann constant. This classical theory states that the

average energy depends in no way on the frequency of the oscillator. In a

system containing 100 oscillators, 20 with a frequency v
l of 1010 cycles per

sec and 80 with v2
=-- 1014 cycles per sec, the equipartition principle predicts

that 20 per cent of the energy shall be in the low-frequency oscillators and
80 per cent in the.high-frequency oscillators.

The radiation within a hohlraum can be considered to be made up of
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standing waves of various frequencies. The problem of the energy distribu-

tion over the various frequencies (intensity / vs. v) apparently reduces to

the determination of the number of allowed vibrations in any range of

frequencies.

The possible high-frequency vibrations greatly outnumber the low-

frequency ones. The one-dimensional case of the vibrating string can be

used to illustrate this fact. We have seen in eq. (10.11) that in a string of

length L, standing waves can occur only for certain values of the wavelength

given by X = 2L/n. It follows that the number of allowed wavelengths from

any given value A to the maximum 2L is equal to n -= 2L/A. We wish to find

the additional number of allowed wavelengths that arise if the limiting wave-

length value is decreased from X to A dX. The result is obtained by
differentiation4 as

dn = ^dl (10.13)
A

This indicates that the number of allowed vibrations in a region from A to

A dk increases rapidly as the wavelength decreases (or the frequency

increases). There are many more high-frequency than low-frequency vibra-

tions. The calculation in three dimensions is more involved5 but it yields

essentially the same answer. For the distribution of standing waves in an

enclosure of volume V, the proper formula is dn (Sir F/A
4
)c/A, or

dn^%7T-v*dv (10.14)
c3

Since there are many more permissible high frequencies than low fre-

quencies, and since by the equipartition principle all frequencies have the

same average energy, it follows that the intensity / of black-body radiation

should rise continuously with increasing frequency. This conclusion follows

inescapably from classical Newtonian mechanics, yet it is in complete dis-

agreement with the experimental data of Lummer and Pringsheim, which

show that the intensity of the radiation rises to a maximum and then falls

off sharply with increasing frequency. This abject failure of classical mechani-

cal principles when applied to radiation was viewed with unconcealed dismay

by the physicists of the time. They called it the "ultraviolet catastrophe."
6. Planck's distribution law. The man who first dared to discard classical

mechanics and the equipartition of energy was Max Planck. Taking this

step in 1900, he was able to derive a new distribution law, which explained
the experimental data on black-body radiation.

Newtonian mechanics (and relativity mechanics too) was founded upon
the ancient maxim that natura non facit saltum ("nature does not make a

jump"). Thus an oscillator could be presumed to take up energy continuously

4
It is assumed that in a region of large L and small A, n is so large that it can be con-

sidered to be a continuous function of A.
5 R. H. Fowler, Statistical Mechanics (London: Cambridge, 1936), p. 112.
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in arbitrarily small increments. Although matter was believed to be atomic

in its constitution, energy was assumed to be strictly continuous.

Planck discarded this precept and suggested that an oscillator, for

example, could acquire energy only in discrete units, called quanta. The

quantum theory began therefore as an atomic theory of energy. The magni-
tude of the quantum or atom of energy was not fixed, however, but depended
on the oscillator frequency according to

s - hv (10.15)

Planck's constant h has the dimensions of energy times time (e.g., 6.62 x
10-27 erg sec^ a quantity known as action.

According to this hypothesis it is easy to see qualitatively why the in-

tensity of black-body radiation always falls off at high frequencies. At fre-

quencies such that hv ^> kT, the size of the quantum becomes much larger

than the mean kinetic energy of the atoms comprising the radiator. The

larger the quantum, the smaller is the chance of an oscillator having the

necessary energy, since this chance depends on an e~ h'f*T Boltzmann factor.

Thus oscillators of high frequency have a mean energy considerably less

than the kT of the classical case.

Consider a collection of N oscillators having a fundamental vibration

frequency v. If these can take up energy only in increments of hv, the allowed

energies are 0, hv, 2hv, 3hv, etc. Now according to the Boltzmann formula,

eq. (7.31), if NQ is the number of systems in the lowest energy state, the

number N
{ having an energy e

{
above this ground state is given by

AT,
= TV/**

1

(10.16)

In the collection of oscillators, for example,

NI = N e~ hvlkT

N* = Ne-~2hvlkT

N3
= NQe~*

hvlkT

The total number of oscillators in all energy states is therefore

-tfo 2
t-O

The total energy of all the oscillators equals the energy of each level times

the number in that level.

E = #
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The average energy of an oscillator is therefore

. E _e ~~

~N
~

According to this expression, the mean energy of an oscillator whose
fundamental frequency is v approaches the classical value of kT when hv

becomes much less than kT. 1
Using this equation in place of the classical

equipartition of energy, Planck derived an energy-distribution formula in

excellent agreement with the experimental data for black-body radiation.

The energy density E(v) dv is simply the number of oscillations per unit

volume between v and v + dv [eq. (10.14)] times the average energy of an

oscillation [eq. (10.17)]. Hence Planck's Law is

STT/Zr3 dv
E(v) dv - -

hv/kT
--

(10.18)

7. Atomic spectra. Planck's quantum theory of energy appeared in 1901.

Strong confirmation was provided by the theory of the photoelectric effect

proposed by Einstein in 1905. Another most important application of the

theory was soon made, in the study of atomic spectra.

An incandescent gas emits a spectrum composed of lines at definite wave-

lengths. Similarly if white light is transmitted through a gas, certain wave-

lengths are absorbed, causing a pattern of dark lines on a bright background
when the emergent light is analyzed with a spectrograph. These emission

and absorption spectra must be characteristic of certain preferred frequencies

in the gaseous atoms and molecules. A sharply defined line spectrum is

typical of atoms. Molecules give rise to spectra made up of bands, which

can often be analyzed further into closely packed lines. For example, the

spectra of atomic hydrogen (H) and of molecular nitrogen (N2) are shown

in Fig. 10.5a and b.

In 1885, J. J. Balmer discovered a regular relationship between the fre-

quencies of the atomic hydrogen lines in the visible region of the spectrum.
The wave numbers v' are given by

with Wj
=

3, 4, 5 . . . etc. The constant ^ is called the Rydberg constant,

and has the value 109,677.581 cm"1
. It is one of the most accurately known

physical constants.

6 In eq. (10.17) let e~x = y, then the denominator S/ = 1 + y 4- y* -f
-

. . .
=

1/(1
~
y\ (y< 1). The numerator, Zi>'

=
y(\ + 2v + 3/ +...)= yl(\

-
y)

2
, (y < 1)

so that eq. (10.17) becomes hvy/(l
-

y) = Ar/fr*"/**
1 -

1).
7 When hv < kT, e^/**

1

1 -f (hv/kT).
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Other hydrogen series were discovered later, which obeyed the more

general formula,

JL.-JL)
!/

(10.19)

Lyman found the series with 2
= 1 in the far ultraviolet, and others were

found in the infrared by Paschen (/ 2
=

3), Bracket! (na 4), and Pfund

H, A.

Fig. 10.5a. Spectra of atomic hydrogen. (From Herzberg, Atomic Spectra and

Atomic Structure, Dover, 1944.)

fcjJK-ftfVl^MIBffP 8''' vCTP
Fig. 10.5b. Spectra of molecular nitrogen. (From Harrison, Lord, and

Loofbourow, Practical Spectroscopy, Prentice-Hall, 1948.)

(/?2
=

5). A great number of similar series have been observed in the atomic

spectra of other elements.

8. The Bohr theory. These characteristic atomic line spectra could not be

explained on the basis of the Rutherford atom. According to this model,

electrons are revolving around a positively charged nucleus, the coulombic

attraction balancing the force due to the centripetal acceleration. The classical

theory of electromagnetic radiation demands that an accelerated electric

charge must continuously emit radiation. If this continuous emission of

energy actually occurred, the electrons would rapidly execute a descending

spiral and fall into the nucleus. The Rutherford atom is therefore inherently

unstable according to classical mechanics, but the predicted continuous

radiation does not in fact occur. The fact that the electrons in atoms do not

follow classical mechanics is also clearly shown by the heat-capacity values

of gases. The Cv for monatomic gases equals fR, which is simply the amount

expected for the translation of the atom as a whole. It is evident that the

electrons in the atoms do not take up energy as the gas is heated.

Niels Bohr, in 1913, suggested that the electrons can revolve around the

nucleus only in certain definite orbits, corresponding to certain allowed
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energy states. Radiation is emitted in discrete quanta whenever an electron

falls from an orbit of high to one of lower energy, and is absorbed whenever

an electron is raised from a low to a higher energy orbit. If E
ni
and E

nt
are

the energies of two allowed states of the electron, the frequency of the spectral

line arising from a transition is

A 1

v = = -(Eni
-E

nt) (10.20)

A separate and arbitrary hypothesis is needed to specify which orbits are

allowed. The simplest orbits of one electron moving in the field of force of

a positively charged nucleus are the circular ones. For these orbits, Bohr

postulated the following frequency condition: 8
only those orbits occur for

which the angular momentum mvr is an integral multiple of h\2-n.

mvr = n~> n - 1, 2, 3 . . . (10.21)
ITT

The integer n is called a quantum number.

The mechanics of motion of the electron in its circular orbit of radius r

can be analyzed starting with Newton's equation,/ ma. The force is the

coulombic attraction between nucleus, with charge Ze, and electron, i.e.,

Ze2
/r

2
. The acceleration is the centripetal acceleration, v2/r. Therefore

Ze2
/r

2 mv2
/r, and

(10.22)
mv*

h2

Then, from eq. (10.21) r - n2 -
(10.23)

In the case of a hydrogen atom Z ==-
1, and the smallest orbit, n 1,

would have a radius,

"o
= TT~2 - '529 A (10 '24)

4n2me2

This radius is of the same order of magnitude as that obtained from the

kinetic theory of gases.

It may be noted that the radii of the circular Bohr orbits depend on the

square of the quantum number. It can now be demonstrated that the Balmer

series arises from transitions between the orbit with n = 2 and outer orbits;

in the Lyman series, the lower term is the orbit with n = 1 ; the other series

are explained similarly. These results are obtained by calculating the energies

corresponding to the different orbits and applying eq. (10.20). The energy
level diagram for the hydrogen atom is shown in Fig. 10.6.

8 It will be seen a little later that this condition is simply another form of Planck's

hypothesis that h is the quantum of action.
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Fig. 10.6. Energy levels of the H atom. (After G. Herzberg,
Atomic Spectra, Dover, 1944.)

The total energy E of any state is the sum of the kinetic and potential

energies:

^
^

* p
r

Ze* Ze2

From eq. (10.22), E =

/

Therefore from eq. (10.23), E ==

The frequency of a spectral line is then

2r

Z2

l2"""^2 (10.25)

(10.26)
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Comparison with the experimental eq. (10.19) yields a theoretical value of

the Rydberg constant for atomic hydrogen of

.^-~ 109,737 cm-
ch3

This is in excellent agreement with the experimental value.

This pleasing state of affairs represented a great triumph for the Bohr

theory and lent some solid support to the admittedly ad hoc hypothesis on

which it is based.

Several improvements in the original Bohr theory were made by Arnold

Sommerfeld. He considered the possible elliptical orbits of an electron

around the nucleus as one focus. Such orbits are known to be stable con-

figurations in dynamical systems such as the planets revolving around the

sun.

For a circular orbit, the radius r is constant so that only angular momen-

tum, associated with the variable 6, need be considered. For elliptical orbits

two quantum numbers are needed, for the two variables r and 0. The

azimutha! quantum number k was introduced to give the angular momentum
in units of h\1-n. The principal quantum number n was defined9 so that the

ratio of the major axis to the minor axis of the elliptical orbit was n\k.

Then k can take any value from 1 to /?, the case n k corresponding to

a circular orbit.

9. Spectra of the alkali metals. An electron moving about a positively

charged nucleus is moving in a spherically symmetrical coulombic field of

force. Besides the hydrogen atom, a series of hydrogenlike ions satisfy this

condition. These ions include He^, Li++, and Be l+
+, each of which has a

single electron. Their spectra are observable when electric sparks discharge

through the vapour of the element (spark spectra). They are very similar in

structure to the hydrogen spectrum, but the different series are displaced to

shorter wavelengths, as a consequence of the dependence of frequency on

the square of the nuclear charge, given by eq. (10.26).

If an electron is moving in a spherically symmetrical field, the energy
level is the same for all elliptical orbits of major axis a as it is for the circular

orbit of radius a. In other words, the energy is a function only of the principal

quantum number n. All energy levels with the same n are the same, irrespec-

tive of the value of k, the azimuthal quantum number. For example, if

n = 3, there are three superimposed levels or terms of identical energy,

having k = 1, 2, or 3. Such an energy level is said to have a threefold de-

generacy. Actually, even in hydrogen, a very slight splitting of these degener-

ate levels is found in the fine structure of the spectra, revealed by spectro-

graphs of high resolving power.

9 Derivations and detailed discussions of these aspects of the old quantum theory may
be found in S. Dushman's article in Taylor's Treatise on Physical Chemistry, 2nd ed., p. 1 170.
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EV
5.37

5
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For most of the atoms and ions that may give rise to spectra the electrons

concerned in the transitions are not moving in spherically symmetric fields.

Consider, for example, the case of the lithium atom, which is typical of the

alkali metals. The electron whose transitions are responsible for the observed

spectrum is the outer, valence, or optical electron. This electron does not
move in a spherical field, since its position at any instant is influenced by
the positions of the two inner electrons. If the outer electron is on one side

of the nucleus, it is less likely that the other two will be there also, because
of the electrostatic repulsions. Thus the field is no longer spherical, and the

elliptical orbits can no longer have the same energy as a circular orbit of the

same n value. The elliptical orbits will have
different energy levels depending on their

ellipticity, which is governed by the allowed
values of the azimuthal quantum number k.

For each n, there will be n different energy
levels characterized by different k's.

The lowest ojr ground state is that for

which n = 1 and k ^ 1. States with k ~ 1

are called s states. This is therefore a Is

state. When n = 2, k can be either 1 or 2.

States with k = 2 are called p states. We
therefore have a 2s state and a 2p state.

Similarly, when n = 3, we have 3s, 3p, and
3d (k = 3) states; when n = 4, we have

4s, 4/?, 4J, and 4f(k = 4) states.

In this discussion there has been a tacit

assumption that the energy levels of the

atom are determined solely by the quan-
tum states of the valence electrons. This

is actually not true, and all the electrons and even the nucleus should be
considered in discussing the allowed energy states. Then, instead of the

quantum number k, which gives the angular momentum of the single
electron, a new quantum number L must be used that gives the resultant

angular momentum of all the electrons. According as L ~ 0, 1, 2, 3 .

etc., we refer to the atomic states as S, P, A F . . . etc. In the case of atoms
like the alkali metals, which have only one valence electron, it turns out
that the resultant angular momenta of the inner electrons add vectorially to

zero. Therefore in this case only ttie single electron need be considered after

all.
10 Nevertheless we shall use the more proper notation, 5, />, D, F, to

refer to the energy levels.

The energy-level diagram for lithium is shown in Fig. 10.7. The observed

10 The situation becomes more complicated when there are two or more optical electrons.An excellent discussion is given by G. H. Herzberg, Atomic Spectra and Atomic Structure
(New York: Dover Publications, 1944).

Fig. 10.7. Energy levels and spec-
tral transitions in the lithium atom.
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spectral series arise from the combinations of these terms, as shown in the

diagram. It will be noted that only certain transitions are allowed; others are

forbidden. Certain selection rules must be obeyed, as for example in this case

the rule that AL must be + 1 or 1 .

Experimentally four distinct series have been observed in the atomic

spectra of the alkalis. The principal series is the only one found in absorption

spectra and arises from transitions between the ground state 1*9 and
fc

the

various P states. It may be written symbolically :

v^ 15 - mP

Absorption spectra almost always arise from transitions from the ground
state only, since at ordinary temperatures the proportion of atoms in excited

states is usually vanishingly small, being governed by the exponential Boltz-

mann factor e
~^ElkT

. At the much higher temperatures required to excite

emission spectra, some of the higher states are sufficiently populated by
atoms to give rise to a greater variety of lines.

Thus in the emission spectra of the alkali metals, in addition to the prin-

cipal series, three other series appear. These may be written symbolically as

v 2P - mS the sharp series

v 2P - mD the diffuse series

v --= 3D mF the fundamental series

The names are not notably descriptive, although the lines in the sharp series

are indeed somewhat narrower than the others.

10. Space quantization. So far in the discussion of allowed Bohr orbits,

we have not considered the question of how the orbits can be oriented in

space. This is because in the absence of an external electric or magnetic
field there is no way of distinguishing between different orientations, since

there is no physically established axis of reference. If an atom is placed in a

magnetic field, however, one can ask how the orbits will be oriented relative

to the field direction.

The answer given by the Bohr theory is that only certain orientations

are allowed. These are determined by the condition that the component of

angular momentum in the direction of the magnetic field, e.g., in the Z
direction, must be an integral multiple of h/27r. Thus

P.
- % (10.27)

where m is the magnetic quantum number. This behavior is called space

quantization.

The allowed values of m are 1, 2, 3, etc., up to &, k being the

azimuthal quantum number, which gives the magnitude of the total angular
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k3
Fig. 10.8. Spatial quantiza-

tion of angular momentum in a

magnetic field H.

momentum in units of h/2ir. An example of space quantization for the case

k = 3 is illustrated in Fig. 10.8.

For any value of k, there are 2k allowed orientations corresponding to

the different values of m. In the absence of an external field, the correspond-

ing energy level will be 2/r-fold degenerate.

In the presence of an electric or magnetic
field this energy level will be split into its

individual components. This splitting gives

rise to a splitting of the corresponding spec-

tral lines. In a magnetic field this is called

the Zeeman effect', in an electric field, the

Stark effect. This observed splitting of the

spectral lines is the experimental basis for the

introduction into the Bohr theory of space

quantization and the quantum number m.

11. Dissociation as series limit. It will be

noted in the term diagram for lithium that the

energy levels become more closely packed as

the height above the ground state increases.

They finally converge to a common limit

whose height above the ground level corresponds to the energy necessary to

remove the electron completely from the field of the nucleus. In the observed

spectrum, the lines become more and more densely packed and finally

merge into a continuum at the onset of dissociation. The reason for the

continuous absorption or emission is that the free electron no longer has

quantized energy states but can take up kinetic energy of translation

continuously.

The energy difference between the series limit and the ground level

represents the ionization potential I of the atom or ion. Thus thefast ionization

potential of Li is the energy of the reaction Li+ 4- e -> Li. The second

ionization potential is the energy of Li+ f + e -> Li+.

Examples of ionization potentials are given in Table 10.1. The way in

which the values of / vary with position in the periodic table should be

noted. This periodicity is very closely related to the periodic character of the

chemical properties of the elements, for it is the outer electrons of an atom

that enter into its chemical reactions. Thus the alkali metals have low

ionization potentials; the inert gases, high ionization potentials.

12. The origin of X-ray spectra. The origin of the characteristic X-ray
line series studied by Moseley (see Chapter 8) is readily understood in terms

of the Bohr theory. The optical spectra are caused by transitions of outer or

valence electrons, but the X-ray spectra are caused by transitions of the

inner electrons. X rays are generated when high-velocity particles such as

electrons impinge upon a suitable target. As the result of such a collision,

an electron may be driven completely from its orbit, leaving a "hole" in the
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TABLE 10.1

IONIZATION POTENTIALS OF CHEMICAL ELEMENTS (IN ELECTRON VOLTS)

target atom. When electrons in outer shells, having larger values of the

principal quantum number n, drop into this hole, a quantum of X radiation

is emitted.

13. Particles and waves. One might go on from here to describe the

further application of the Bohr theory to more complex problems in atomic

structure and spectra. Many other quite successful results were obtained,

but there were also a number of troublesome failures. Attempts to treat

cases in which more than one outer electron is excited, as in the helium

spectrum, were in general rather discouraging.

The Bohr method is essentially nothing more than the application of a

diminutive celestial mechanics, with coulombic rather than gravitational

forces, to tiny solar-system models of the atom. Certain quantum conditions

have been arbitrarily superimposed on this classical foundation. The rather

capricious way in which the quantum numbers were introduced and adjusted

always detracted seriously from the completeness of the theory.

Now there is one branch of physics in which, as we have seen, integral

numbers occur very naturally, namely in the stationary-state solutions of

the equation for wave motion. This fact suggested the next great advance in

physical theory: the idea that electrons, and in fact all material particles,

must possess wavelike properties. It was already known that radiation

exhibited both corpuscular and undulatory aspects. Now it was to be shown,

first theoretically and soon afterwards experimentally, that the same must

be true of matter.
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This new way of thinking was first proposed in 1923 by Due Louis

de Broglie. In his Nobel Prize Address he has described his approach as

follows. 11

. . . When 1 began to consider these difficulties [of contemporary physics] I

was chiefly struck by two facts. On the one hand the quantum theory of light cannot

be considered satisfactory, since it defines the energy of a light corpuscle by the

equation E ---= hv, containing the frequency v. Now a purely corpuscular theory
contains nothing that enables us to define a frequency; for this reason alone, there-

fore, we are compelled, in the case of light, to introduce the idea of a corpuscle and

that of periodicity simultaneously.
On the other hand, determination of the stable motion of electrons in the atom

introduces integers; and up to this point the only phenomena involving integers
in Physics were those of interference and of normal modes of vibration. This fact

suggested to me the idea that electrons too could not be regarded simply as corpus-

cles, but that periodicity must be assigned to them also.

A simple two-dimensional illustration of this viewpoint may be seen in

Fig. 10.9. There are shown two possible electron waves of different wave-

lengths for the case of an electron revolving
around an atomic nucleus. In one case, the

circumference of the electron orbit is an

integral multiple of the wavelength of the

electron wave. In the other case, this condi-

tion is not fulfilled and as a result the wave

is destroyed by interference, and the supposed
state is nonexistent. The introduction of in-

tegers associated with the permissible states
Fig. 10.9. Schematic drawing Qf e|ectronic motjon therefore occurs quiteof an electron wave constrained

~

to move around nucleus. The naturally once the electron is given wave

solid line represents a possible properties. The situation is exactly analogous

stationary wave. The dashed line with the occurrence of stationary waves on
shows how a wave of somewhat a vibrating string. The necessary condition
different wavelength would be

for a staWc^ Qf radius
.

fc

destroyed by interference.
e

27rr
e

=-. nX (10.28)

A free electron is associated with a progressive wave so that any energy
is allowable. A bound electron is represented by a standing wave, which can

have only certain definite frequencies.

In the case of a photon there are two fundamental equations to be

obeyed : e ~ hv, and e = me2
. When these are combined, one obtains

hv = me2 or X ----
c/v

-= h/mc hip, where p is the momentum of the

photon. Broglie considered that a similar equation governed the wave-

length of the electron wave. Thus,

* *
A = = -

(10.29)mv p
11 L. de Broglie, Matter and Light^ (New York: Dover Publications [1st ed., W. W.

Norton Co.], 1946).
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The original Bohr condition for a stable orbit was given by eq. (10.21)

as 27Ttnvre
= nh. By combination with eq. (10.28), one again obtains eq.

(10.29) so that the Broglie formulation gives the Bohr condition directly.

The Broglie relation, eq. (10.29), is the fundamental one between the

momentum of the electron considered as a particle and the wavelength of its

associated wave. Consider, for example, an electron that has been accelerated

through a potential difference V of 10 kilovolts. Then Ve ~ -i/w2
, and its

velocity would be 5.9 x 109 cm per sec, about one-fifth that of light. The

wavelength of such an electron would be

h 6.62 x 10~27

~
mv

~
(9AI x \Q

r
)(53~

0.12 A

This is about the same wavelength as that of rather hard X rays.

H2

a F
22-

Golf ball

Baseball

TABLE 10.2

WAVELENGTHS OF VARIOUS PARTICLES

Table 10.2 lists the theoretical wavelengths associated with various

particles.
12 The wavelengths of macroscopic bodies are exceedingly short,

so that any wave properties will escape our observation. Only in the atomic

world does the wave nature of matter become manifest.

14. Electron diffraction. If any physical reality is to be attached to the

idea that electrons have wave properties, a 1 .0 A electron wave should be

diffracted by a crystal lattice in very much the same way as an X-ray wave.

Experiments along this line were first carried out by two groups of workers,

who shared a Nobel prize for their efforts. C. Davisson and L. H. Germer

worked at the Bell Telephone Laboratories in New York, and G. P. Thom-

son, the son of J. J. Thomson, and A. Reid were at the University of Aber-

deen. Diffraction diagrams obtained by Thomson by passing beams of

12 After J. D. Stranathan, The Particles of Modern physics (Philadelphia: Blakiston,

1942), p. 540.
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electrons through thin gold foils are shown in Fig. 10.10. The wave nature

of the electron was unequivocally demonstrated by these researches. More

recently, excellent diffraction patterns have been obtained from crystals

placed in beams of neutrons.

Electron beams, owing to their negative charge, have one advantage not

possessed by X rays as a means of investigating the fine structure of matter.

Appropriate arrangements of electric and magnetic fields can be designed to

act as "lenses" for electrons. These arrangements have been applied in the

[The photograph below

was one of the first ob-

tained. The one at the

right is a recent example.]

Fig. 10.10. Diffraction diagrams obtained by passing beams of electrons

through thin gold foils. (Courtesy Professor Sir George Thomson.)

development of electron microscopes capable of resolving images as small as

20 A in diameter. We could wish for no clearer illustrations of the wave

properties of electrons than the beautiful electron micrographs of viruses,

fibers, and colloidal particles that have been obtained with these instruments.

15. The uncertainty principle. In the development of atomic physics we
have noted the repeated tendency toward the construction of models of the

atom and its constituents from building blocks that possess all the normal

properties of the sticks and stones of everyday life. One fundamental axiom

of the classical mechanics developed for commonplace occurrences was the

possibility of simultaneously measuring different events at different places.

Such measurement appears at first to be perfectly possible because to a first

approximation the speed of light is infinitely large, and it takes practically

no time to signal from place to place. More refined measurements must

consider the fact that this speed is really not infinite, but only 3 x 1010 cm

per sec. This speed is indeed large compared with that of a rocket, but not

compared with that of an accelerated electron. As a result, attempts to apply
the old mechanics to moving electrons were a failure, and the new relativisitic

mechanics of Einstein was needed to correct the situation.
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In a similar way, in our ordinary macroscopic world, the value of the

Planck constant h may be considered to be effectively zero. The Broglie

wavelengths of ordinary objects are vanishingly small, and a batter need

not consider diffraction phenomena when he swings at an inside curve. If

we enter into the subatomic world, h is no longer so small as to be negligible.

The Broglie wavelengths of electrons are of such a magnitude that diffraction

effects occur in crystal structures.

One of the fundamental tenets of classical mechanics is that it is possible

to specify simultaneously the position and momentum of any body. The

strict determinism of mechanics rested upon this basic assumption. Knowing
the position and velocity of a particle at any instant, Victorian mechanics

would venture to predict its position and velocity at any other time, past or

future. Systems were completely reversible in time, past configurations being
obtained simply by substituting / for t in the dynamical equations. But, is

it really possible to measure simultaneously the position and momentum of

any particle? The possible methods of measurement must be analyzed in

detail before an answer can be given.

To measure with precision the position of a very small object, a micro-

scope of high resolving power is required. With visible light one cannot

expect to locate objects much smaller than a tenth of a micron. The size of

the smallest body that can be observed is limited by diffraction effects, which

begin to create a fuzziness in the image when the object is of the same order

of magnitude as the wavelength of the incident light. The limit of resolution

is given according to the well known formula of Abbe as R A/2/4, and

the maximum value of the numerical aperture A is unity.

In order to determine the position of an electron to within a few per cent

uncertainty, radiation of wavelength around 10~10 cm or 10~2 A would have

to be used. We shall conveniently evade the technical problems involved in

the design and manufacture of a microscope using these y rays. With such

very short rays, there will be a very large Compton effect, and the y ray will

impart considerable momentum to the electron under observation. This

momentum is given by eq. (9.5) as mv = 2(hv/c) sin a/2. Since the range in

scattering angle is from to 7T-/2, corresponding to the aperture of the micro-

scope (A = 1), the momentum is determined only to within an uncertainty

of A/?
= mv & A/A. On account of diffraction, the error A^ in the determina-

tion of position is of the order of the wavelength A.

The product of the uncertainty in momentum times the uncertainty in

position is therefore of the order of h,

&p-&q~h (10.30)

This is the famous uncertainty principle of Werner Heisenberg (1926). It is

impossible to specify simultaneously the exact position and momentum of a

particle because our measuring instruments necessarily disturb the object

being measured. This disturbance is negligible with man-sized objects, but
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the disturbance of atom-sized particles cannot be neglected. Herein is the

essential meaning of the failure of classical mechanics and the success of

wave mechanics. 13

16. Waves and the uncertainty principle. Some kind of uncertainty prin-

ciple is always associated with a wave motion. This fact can be seen very

clearly in the case of sound waves. Consider the case of an organ pipe, set

into vibration by depressing a key, whose vibration is stopped as soon as the

key is released. The vibrating pipe sets up a train of sound waves in the air,

which we hear as a note of definite frequency. Now suppose the time between

the depression and the release of the key is gradually shortened. As a result,

the length of the train of waves is shortened also. Finally the time will come

when the period during which the key is depressed is actually less than the

period r of the sound wave, the time required for one complete vibration.

Once this happens, the frequency of the wave is no longer precisely deter-

mined, for at least one complete vibration must take place to define the

frequency. It appears, therefore, that the time and the frequency cannot both

be fixed at any arbitrary value. If a very small time is chosen, the frequency
becomes indeterminate.

When waves are associated with particles, a similar uncertainty principle

is a necessary consequence. If the wavelength or frequency of an electron

wave, for example, is to be a definitely fixed quantity, the wave must be

infinite in extent. Any attempt to confine a wave within boundaries requires

destructive interference at these boundaries in order to reduce the resultant

amplitudes there to zero. This interference can be secured only by super-

imposing waves of different frequencies. It follows that an electron wave of

perfectly definite frequency, or momentum, must be infinitely extended and

therefore must have a completely indeterminate position. In order to fix

the position, superimposed waves of different frequency are required, and

as the position becomes more closely defined the momentum becomes

fuzzier.

The uncertainty relation eq. (10.30) can be expressed not only in terms

of position and momentum but also for energy and time. Thus,

A/? A? - AF A/ ?v h (10.31)

This equation is used to estimate the sharpness of spectral lines. In general,

lines arising from transitions from the ground state of an atom are sharp.
This is because the optical electron spends a long time in the ground state

and thus A", the uncertainty in the energy level, is very small. On the other

hand, the lifetime of excited states may sometimes be very short, and trans-

itions between such excited energy levels may give rise to diffuse or broad-

ened lines as a result of the uncertainty A in the energy levels, which is

18
Many natural philosophers would, not agree with this statement. See H. Margenau,

Physics Today, 7, 6 (1954).
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reflected in an uncertainty, Av -= A//z, in the frequency of the observed

line.
14

17. Zero-point energy. According to the old quantum theory, the energy
levels of a harmonic oscillator were given by En nhv. If this were true the

lowest energy level would be that with n 0, and would therefore have zero

energy. This would be a state of complete rest, represented by the minimum
in the potential energy curve in Fig. 7.15.

The uncertainty principle does not allow such a state of completely
defined position and completely defined (in this case, zero) momentum. As

a result, the wave treatment shows that the energy levels of the oscillators

are given by

*
=

( + I)'"' 0- 32)

Now, even when n 0, the ground state, there is a residual zero-point energy

amounting to

=-, \hv (10.33)

This must be added to the Planck expression for the mean energy of an

oscillator, which was derived in eq. (10.17).

18. Wave mechanics the Schrodinger equation. In 1926, Erwin Schr5-

dinger and W. Heisenberg independently laid the foundations for a distinctly

new sort of mechanics which was expressive of the wave-particle duality of

matter. This is called wave or quantum mechanics.

The starting point for most quantum mechanical discussions is the

Schrodinger wave equation. We may recall that the general differential

equation of wave motion in one dimension is given by eq. (10.7) as

_

dx*
~

&
'

a/ 2

where
<f>

is the displacement and v the velocity. In order to separate the

variables, let
<f>

=---
y(x) sin 2-nvt. On substitution in the original equation,

this yields

d*W 47T2V2

T? + ^T-V = (10-34)
dx* v2

This is the wave equation with the time dependence removed. In order

to apply this equation to a "matter wave," the Broglie relation is introduced,

as follows: The total energy E is the sum of the potential energy U and the

kinetic energy p
2
j2m. E = p*/2m + U. Thus, p = [2m(E - (7)]

1/2
, or

X = hip
= h[2m(E U)]~

m
. Substituting this in eq. (10.34), one obtains:

(,0.35)

14 This is not the only cause of broadening of spectral lines. There is in addition a

pressure broadening due to interaction with the electric fields of neighboring atoms or

molecules, and a Doppler broadening, due to motion of the radiating atom or molecule

with respect to the observer.
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This is the famous Schrftdinger equation in one dimension. For three

dimensions it takes the form
o2.*|W + -r^-(E- U)y>

= (10.36)
rr

Although the equation has been obtained in this way from the ordinary
wave equation and Broglie's relation, it is actually so fundamental that it is

now more usual simply to postulate the equation as the starting point of

quantum mechanics, just as Newton's/^ ma is postulated as the starting

point of ordinary mechanics.

As is usual with differential equations, the solutions of eq. (10.36) for

any particular set of physical conditions are determined by the particular

boundary conditions imposed upon the system. Just as the simple wave

equation for a vibrating string yields a discrete set of stationary-state solutions

when the ends of the string are held fixed, so in general solutions are obtained

for the SchrOdinger equation only for certain energy values E. In many cases

the allowed energy values are discrete and separated, but in certain other

cases they form a continuous spectrum of values. The allowed energy values

are called the characteristic, proper, or eigen- values for the system. The

corresponding wave functions y am called the characteristic functions or

eigenfunctions.

19. Interpretation of the y functions. The eigenfunction ip is by nature a

sort of amplitude function. In the case of a light wave, the intensity of the

light or energy of the electromagnetic field at any point is proportional to

the square of the amplitude of the wave at that point. From the point of

view of the photon picture, the more intense the light at any place, the more

photons are falling on that place. This fact can be expressed in another way

by saying that the greater the value of y>, the amplitude of a light wave in

any region, the greater is improbability of a photon being within that region.

It is this interpretation that is most useful when applied to the eigen-

functions of Schrftdinger's equation. They are therefore sometimes called

probability amplitudefunctions. If y(x) is a solution of the wave equation for

an electron, then the probability of finding the electron within the range
from x to x + dx is given

16
by y>

2
(x)dx.

The physical interpretation of the eigenfunction as a probability ampli-
tude function is reflected in certain mathematical conditions that it must

obey. It is required that y>(x) be singleTvalued, finite, and continuous for all

physically possible values of x. It must be single-valued, since the probability

of finding the electron at any point x must have one and only one value. It

cannot be infinite at any point, for then the electron would be fixed at exactly

that point, which would be inconsistent with the wave properties. The require-

ment of continuity is helpful in the selection of physically reasonable solutions

for the wave equation.
15 Since the function y may be a complex quantity, the probability is written more

generally as ^v>, where $ is the complex conjugate of y>. Thus, e.g., if y>
= e~ ix

t y>
= *'*
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20. Solution of wave equation the particle in a box. The problem of

finding the solution of the wave equation in any particular case may be an

extremely difficult one. Sometimes a solution can be devised in principle that

in practice would involve several decades of calculations. The recent develop-
ment of high-speed calculating machines has greatly extended the range of

problems for which numerical solutions can be obtained.

The simplest case to which the wave equation can be applied is that of a

free particle; i.e., one moving in the absence of any potential field. In this

case we may set U = and the one-dimensional equation becomes

87T
2/M-- EV =

A solution of this equation is readily found16 to be

y A sin (
-^
V2mE x \

(10.37)

(10.38)

where A is an arbitrary constant. This is a perfectly allowable solution as

long as E is positive, since the sine of a real quantity is everywhere single-

valued, finite, and continuous. Thus all positive values of E are allowable

w
(a) (b) (0

Fig. 10.11. Electron in a one-dimensional box. (a) the potential function,

(b) allowed electron waves, (c) tunnel effect.

and the free particle has a continuous spectrum of energy states. This con-

clusion is in accord with the picture previously given of the onset of the

continuum in atomic spectra as the result of dissociation of an electron from

the atom.

What is the effect of imposing a constraint upon the free particle by

requiring that its motion be confined within fixed boundaries? In three

16
See, for example, Granville et-aL, op. ciY., p. 390. The solution can be verified by

substitution into the equation.
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dimensions this is the problem of a particle enclosed in a box. The one-

dimensional problem is that of a particle required to move between set

points on a straight line. The potential function that corresponds to such a

condition is shown in (a), Fig. 10.11. For values of x between and a the

particle is completely free, and U =- 0. At the boundaries, however, the

particle is constrained by an infinite potential wall over which there is no

escape; thus U --= oo when x ^ 0, x - a.

The situation now is similar to thcit of the vibrating string considered at

the beginning of the chapter. Restricting the electron wave within fixed

boundaries corresponds to seizing hold of the ends of the string. In order

to obtain stable standing waves, it is again necessary to restrict the allowed

wavelengths so that there is an integral number of half wavelengths between

and a; i.e., n(A/2) a. Some of the allowed electron waves are shown in

(b), Fig. 10.11, superimposed upon the potential-energy diagram.
The permissible values of the kinetic energy En of the electron in a box

can be obtained from the Broglie relation X -

hjmv.

2

i= \m

(10.39)

From this equation, two important consequences can be deduced which

will hold true for the energy of electrons, not only in this special case, but

quite generally. First of all, it is apparent that as the value of a increases,

the energy decreases. Other factors being the same, the more room the

electron has to move about in, the lower will be its energy. The more localized

is its motion, the higher will be its energy. Remember that the lower the

energy, the greater the stability of a system.

Secondly, the integer n is a typical quantum number, which now appears

quite naturally and without any ad hoc hypotheses. It determines the number

of nodes in the electron wave. When n 1 there are no nodes. When n 2

there is a node in the center of the box; when n -- 3 there are two nodes, and

so on. The value of the energy depends directly on 2
, and therefore rises

rapidly as the number of nodes increases.

The extension of the one-dimensional result to a three-dimensional box

of sides a, b, and c is very simple. The allowed energy levels for the three-

dimensional case depend on a set of three integers (n l9 2 , %): since there are

three dimensions, there are three quantum numbers.

h* In* TV* 3
2\

=o-(-V + 7J + -r) 00.40)
8/w \ a2 b* c* /

This result shows that according to wave mechanics even the trans-

lational motion of a particle in a box is quantized. Because of the extremely
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small value of h2 these levels lie very closely packed together except in cases

where the dimensions of the box are vanishingly small.

If electron waves in one dimension are comparable with vibrations of a

violin string, those in two dimensions are like the pulsations of a drumhead,
whereas those in three dimensions are like the vibrations of a block of steel.

The waves can then have nodes along three directions, and the three quantum
numbers determine the number of nodes.

21. The tunnel effect. Let us take a baseball, place it in a well constructed

box, and nail the lid down tightly. Now any proper Newtonian will assure

us that the ball is in the box and is going to stay there until someone takes

it out. There is no probability that the ball will be found on Monday inside

the box and on Tuesday rolling along outside it. Yet if we transfer our

attention from a baseball in a box to an electron in a box, quantum mechanics

predicts exactly this unlikely behavior.

To be more precise, consider in (c), Fig. 10.11, a particle moving in a

"one-dimensional box" with a kinetic energy Ek . It is confined by a potential-

energy wall of thickness d and height UQ . Classical mechanics indicates that

the particle can simply move back and forth in its potential energy well;

since the potential-energy barrier is higher than the available kinetic energy,

the possibility of escape is absolutely nil.

Quantum mechanics tells a different story. The wave equation (10.35) for

the region of constant potential energy UQ is

*) 4 (87T
2
w/7*

2
) (E - U )y>

-

This equation has the general solution

W -- ^ e^^!/i)^2m(E'-Un )x

In the region within the box E ^ U
(}
and this solution is simply the familiar

sine or cosine wave of eq. (10.38) written in the complex exponential form. 17

In the region within the potential-energy barrier, however, UQ > ",
so that

the expression under the square root sign is, negative. One can therefore

multiply out a V 1 term, obtaining the following result:

y>
-= Ae-V*1^***^'*

(10.41)

This exponential function describes the behavior of the wave function

within the barrier. It is evident that according to wave mechanics the prob-

ability of finding an electron in the region of negative energy is not zero,

but is a certain finite number that falls off exponentially with the distance

of penetration within the barrier . The behavior of the wave function is shown

in (c), Fig. 10.11. So long as the barrier is not infinitely high nor infinitely

wide there is always a certain probability that electrons (or particles in

general) will leak through. This is called the tunnel effect.

17
See, for example, Courant and Robbins, What Is Mathematics (New York: Oxford,

1941), p. 92, for a description of this notation: eio =- cos -f / sin 0.
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The phenomenon is not observed with baseballs in boxes or with cars in

garages,
18

being rendered extremely improbable by the various parameters
in the exponential. In the world of atoms, however, the effect is a common
one. One of the best examples is the emission of an a particle in a radio-

active disintegration. The random nature of this emission is a reflection of

the fact that the position of the particle is subject to probability laws.

22. The hydrogen atom. If the translational motion of the atom as a

whole and the motion of the atomic nucleus are neglected, the problem of

the hydrogen atom can be reduced to that of a single electron in a coulombic

field. This is in a sense a modification of the problem of a particle in a three-

dimensional box, except that now the box is spherical. Also, instead of steep

walls and zero potential energy within, there is now a gradual rise in potential

with distance from the nucleus: at r = oo, U 0; at r = 0, U = oo.

The potential energy of the electron in the field of the nucleus is given by
U -= e2/r. The Schrddinger equation therefore becomes

In view of the spherical symmetry of the potential field, it is convenient to

transform this expression into spherical coordinates,

i a / a^A i a2
^ i a / a^A

r* Or V Or /
+

r2 sin2 6

*

M>*
+
^sinO

'

00 \
Sm

OO/
+

The polar coordinates r, 0, and
<f>

have their usual significance (Fig. 7.2,

page 168). The coordinate r measures the radial distance from the origin;

is a "latitude"; and
<f>

a "longitude." Since the electron is moving in three

dimensions, three coordinates obviously suffice to describe its position at

any time.

In this equation, the variables can be separated, since the potential is a

function of r alone. Let us substitute

That is, the wave function is a product of three functions, one of which

depends only on r, one only on 6, and the last only on
<f>.
We shall skip the

intervening steps in the solution and the application of the boundary con-

ditions that permit only certain allowed eigenfunctions to be physically

meaningful.
19 From our previous experience, however, we shall not be sur-

prised to find that the final solutions represent a set of discrete stationary

18 This extreme example is described by G. Gamow in Mr. Tompkins in Wonderland
(New York: Macmillan, 1940), which is recommended as an introduction to this chapter in

Physical Chemistry.
19 For the steps in the solution see, for example, L. Pauling and E. B. Wilson, Introduc-

tion to Quantum Mechanics (New York: McGraw-Hill, 1935), Chap. V.
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energy states for the hydrogen atom, characterized by certain quantum
numbers, n, /, and m. Nor is it surprising that exactly three quantum numbers
are required for this three-dimensional motion, just as one sufficed for the

waves on a string, whereas three were needed for the particle in a box.

The allowed eigenfunctions are certain polynomials whose properties had

been extensively studied by mathematicians well before the advent of quan-
tum mechanics. In order to give them a measure of concreteness, some

examples of these hydrogen wave functions are tabulated in Table 10.3 for

the lower values of the quantum numbers n, /, and m.

TABLE 10.3

THE HYDROGENLIKE WAVE FUNCTIONS

K Shell

n = i, / = o, m = 0:

/2T\ 3
/
2

1 /2T\ 3

--^ ~
V-rr \<V

L Shell

n = 2, / = 0, m = 0:

-!=(?)''' (2 -*)*-*
4X/27TW V <*J

Y>2P .
- -44V 2-

=
2, /= 1,/n = 1:

v = L^ (? )

3/2
5: e -Zr/2 sin cos

4V/27T ^o 7
flb

_

4V27

These quantum numbers can be assigned a significance purely in terms

of the wave-mechanical picture, but they are also the logical successors to

the numbers of the old quantum theory.

Thus n is still called the principal quantum number. It determines the total

number of nodes in the wave function, which is equal to n 1 . These nodes

may be either in the radial function R(r), or in the azimuthal function 0(0).

When the quantum number / is zero, there are no nodes in the function.

In this case the number of nodes in R(r) equals n 1 .

The azimuthal quantum number /replaces the k(= I + 1) of old quantum

theory. The angular momentum is given by Vl(l + 1) H/2iT. Now / can take

any value from to n 1 ; then / is the number of nodal surfaces passing

through the origin.

The magnetic quantum number m still gives the value of the components
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of angular momentum along the r axis, since p0tZ mh/27T9 exactly as in

eq. (10.27). The allowed values of m now run from / to {-/, including zero.

The great advantage of the new theory is that these numbers all arise

quite naturally from Schrodinger's equation.

n = 3

(a)

mo 6

Fig. 10.12. (a) Radial part of wave functions for hydrogen atom, (b) Radial

distribution functions giving probability of finding electrons at a given distance

from nucleus. (After G. Herzberg, Atomic Spectra, Dover, 1944.)

23. The radial wave functions. In (a), Fig. 10.12, the radial wave functions

have been plotted for various choices of n and /. In case / 0, all the nodes

appear in the radial function.

The value of ^
2
(r) is proportional to the probability of finding the electron

at any particular distance r in some definite direction from the nucleus. More

important physically is the radial distribution function, 47rr2^
2
(r), which gives

the probability of finding the electron within a spherical shell of thickness dr
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at a distance r from the nucleus, irrespective of direction. (Compare the

problem of gas-velocity distribution on page 187.) The radial distribution

functions are shown in (b), Fig. 10.12. In place of the sharply defined electron

orbits of the Bohr theory, there is a more diffuse distribution of electric

charge. The maxima in these distribution curves, however, correspond closely

with the radii of the old Bohr orbits. Yet there is always a definite probability

n -2
/ -o

> 2, m - 1 3, m -

n = 3, m 2 n =
3, m = db 1 n =

3, w = n = 4, m

Fig. 10.13. Electron clouds of the H atom. (From Herzberg, Atomic Spectra and

Atomic Structure, Dover, 1944.)

of finding the electrons much closer to or much farther from the nucleus.

The strict determinism of position in the classical description has been

replaced by the probability language of wave mechanics.

A particularly clear illustration of the wave mechanical representation of

the hydrogen atom can be obtained from the illustrations in Fig. 10.13.

Here the intensity of the shading is proportional to the value of y>
2
, the

probability distribution function. There is a greater probability of an electron

being in a light-colored region. It should be clearly understood that quantum
mechanics does not say that the electron itself is smeared out into a cloud.
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It is still to be regarded as a point charge. Its position and momentum cannot

be simultaneously fixed, and all that the theory can predict that has physical

meaning is the probability that the electron is in any given region.

A wave function for an electron is sometimes called an orbital. When
/ = we have an 5 orbital, which is always spherically symmetrical. When
/ = 1 we have a p orbital. The p orbitals can have various orientations in

space corresponding to the allowed values of w, which may be 1, 0, or +L
In Fig. 10.14, the angular parts of the wave functions are represented for s

z

Fig. 10.14. Polar representation of absolute values of angular part of wave

function for the H atom. The j-type function (/
== 0) is spherically symmetrical.

There are three possible />-type functions, directed along mutually perpendicular
axes (x, y. z).

and p orbitals, and the directional
1

character of the p orbitals is very evident.

It will be shown later that the directional character of certain chemical

bonds is closely related to the directed orientations of these orbitals.

24. The spinning electron. There is one aspect of atomic spectra that

cannot be explained on the basis of either the old quantum theory or the

newer wave mechanics. This is the multiplicity or multiple! structure of

spectral lines. Typical of this multiplicity are the doublets occurring in the

spectra of the alkali metals: for example, in the principal series each line is

in reality a closely spaced double line. This splitting is revealed immediately
with a spectroscope of good resolving power. The occurrence of double lines

indicates that each term or energy level for the optical electron must also be

split into two.
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A satisfactory explanation for the occurrence of multiple energy levels

was first proposed in 1925 by G. E. Uhlenbeck and S. Goudsmit. They
postulated that an electron itself may be considered to be spinning on its

axis.20 As a result of spin the electron has an inherent angular momentum.

Along any prescribed axis in space, for example, the direction of a magnetic
field, the components of the spin angular momentum are restricted to values

given by sh/2-rr, where s can have only a value of + J or -J.

In effect, the electron spin adds a new quantum number s to those re-

quired to describe completely the state of an electron. We now have, therefore,

the following quantum numbers:

n the principal quantum number; allowed values 1, 2, 3, . . .

/ the azimuthal quantum number, which gives the orbital angular
momentum of the electron; allowed values 0, 1, 2, . . ., n I.

m the magnetic quantum number, which gives the allowed orientation

of the "orbits" in an external field; allowed values /, / + 1

-/ + 2, . . ., + /.

s the spin quantum number; allowed values \-\ or J.

25. The Pauli Exclusion Principle. An exact solution of the wave equation
for an atom has been obtained only in the case of hydrogen; i.e., for the

motion of a single electron in a spherically symmetric coulombic field.

Nevertheless, in more complex atoms the energy levels can still be specified

in terms of the four quantum numbers n, /, m, s 9 although in many cases the

physical picture of the significance of the numbers will be lost. This is

especially true of electrons in inner shells, for which a spherically symmetric
field would be a very poor approximation. On the other hand, the behavior

of an outer or valence electron is sometimes strikingly similar to that of the

electron in the hydrogen atom. In any case, the important fact is that the

four quantum numbers still suffice to specify completely the state of an

electron even in a complex atom.

There is a most important principle that determines the allowable quan-
tum numbers for an electron in an atom and consequently has the most

profound consequences for chemistry. It is the Exclusion Principle, first

enunciated by Wolfgang Pauli. In a single atom no two electrons can have

the same set offour quantum numbers, n, /, m, s. At present this principle

cannot be derived from fundamental concepts, but it may have its ultimate

origin in relativity theory. It is suggestive that relativity theory introduces a

"fourth dimension," so that a fourth quantum number becomes necessary.

26. Structure of the periodic table. The general structure of the periodic

table is immediately clarified by the Exclusion Principle. We recall that even

in a complex atom the energy levels of the electrons can be specified by

80 No attempt will be made to reconcile this statement with the idea that an electron is

x>int charge. It is merely

properties of electrons, ab
.a point charge. It is merely a convenient pictorial way of speaking of one of the fundamental

about which the complete story is not yet written.
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means of four quantum numbers : , /, m, s. The Exclusion Principle requires

that no two electrons in an atom can have the same values for all four quan-
tum numbers. The most stable state, or ground state, of an atom will be that

in which the electrons are in the lowest possible energy levels that are con-

sistent with the Exclusion Principle. The structure of the periodic table is a

direct consequence of this requirement.

The lowest atomic energy state is that for which the principal quantum
number n is 1, and the azimuthal quantum number / is 0. This is a Is state.

The hydrogen atom has one electron and this goes therefore into the \s level.

The helium atom has two electrons, which may both be accommodated in

the \s state if they have opposing spins. With two electrons in the \s state,

there is an inert gas configuration since the shell n 1 or K shell is com-

pleted. The completed shell cannot add electrons and a large energy would

be needed to remove an electron.

Continuing to feed electrons into the lowest lying energy levels, we come

to lithium with 3 electrons. The first two go into the Is levels, and the third

electron must occupy a 2s level. The 2s electron is much less tightly bound

than the Is electrons. The first ionization potential of Li is 5.39 ev, the second

75.62 ev. This is true because the 2s electron is usually much farther from

the nucleus than the Is, and besides it is partially shielded from the +3
nuclear charge by the two Is electrons. A Is electron, on the other hand, is

held by the almost unshielded +3 nuclear charge.

The L shell, with n --=
2, can hold 8 electrons two 2s and six 2p electrons,

the quantum numbers being as follows :

n I

2

m

-1

+ 1

s

4

4

4

4

When the L shell is filled, the next electron must enter the higher-lying

M shell of principal quantum number n = 3.

A qualitative picture of the stability of the complete octet is obtained by

considering the elements on either side of neon.

The attraction of an electron by the positively charged nucleus is governed

by Coulomb's Law, but for electrons outside the innermost shell the shielding

effect of the other electrons must be taken into consideration. For a given
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electron, the shielding effect of other electrons is pronounced only if they
lie in a shell between the given electron and the nucleus. Electrons in the

same shell as the given electron have little shielding effect.

Thus in fluorine, the nuclear charge is -f 9; each of the five 2p electrons

is attracted by this +9 charge minus the shielding of the Is and 2s electrons,

four in all, resulting in an effective nuclear charge of about 4 5. The 2p
electrons in fluorine are therefore tightly held, the first ionization potential

being about 18 volts. If an extra electron is added to the 2p level in fluorine,

forming the fluoride ion F~, the added electron is also tightly held by the

effective +5 nuclear charge. The electron affinity of F is 4.12ev; that is,

F + e->F- + 4.12ev.

Now suppose one attempted to add another electron to F~ to form F 53
.

This electron would have to go into the 3s state. In this case, all ten of the

inner electrons would be effective in shielding the -f 9 nucleus, and indeed

the hypothetical eleventh electron would be repelled rather than attracted.

Thus the fluoride ion is by far the most stable configuration and the -
1

valence of fluorine is explained. If the tendency of one atom to add an

electron (electron affinity) is of the same magnitude as the tendency of

another atom to lose an electron (ionization potential) a stable electrovalent

bond is possible.

Considering now the sodium atom, we can see that its eleventh electron,

3s1
,

is held loosely (/
~ 5.11 ev). It is shielded from the +11 nucleus by

10 inner electrons.

If we continue to feed electrons into the allowed levels, we find that the

3/? level is complete at argon (Is
22s2

2/?
63s23/?

6
), which has the stable s2

/?
6 octet

associated with inert gas properties.

27. Atomic energy levels. In Table 10.4 the assignment of electrons to

levels is shown for all the elements, in accordance with our best present

knowledge as derived from chemical and spectroscopic data.

In the element following argon, potassium with Z = 19, the last electron

enters the 4s orbital. This is required by its properties as an alkali metal, and

the fact that its spectral ground state is *S as in Li and Na. We may well

ask, however, why the 4s orbitals are lower than the 3d orbitals, which pro-

vide 10 vacant places. The answer to this question should help to clarify the

structure of the remainder of the periodic table and the properties of the

elements in the transition series. It may be noted that in this section we are

speaking of orbitals, or quantum mechanical wave functions y> for the elec-

trons. The Bohr picture was useful in dealing with the lighter elements (up to

A) but it gives an inadequate picture of the remainder of the periodic table.

The reason why the 4s orbital for potassium has a lower energy than a

3d orbital arises from the fundamental difference in form of s, p, and d

orbitals. The electron distributions in. the 3s, 3/?, and 3d orbitals for the

hydrogen atom were shown in (b), Fig. 10.12. The ordinates of the curves

are proportional to the radial distribution functions, and therefore to the
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probability of finding an electron within a given region. Now, of course,

these hydrogen wave functions are not a completely accurate picture of the

orbitals in a more complex atom with many electrons. The approximation
is satisfactory, however, for valence electrons, which move in the hydrogen-
like field of a nucleus shielded by inner electrons.

The 4s and 3p orbitals predict a considerable concentration of the charge

cloud closely around the nucleus,
21 whereas the 3d orbital predicts an ex-

tremely low probability of finding the electron close to the nucleus. As a

result of this penetration of the 4s orbital inward towards the nucleus, a

4s electron will be more tightly bound by the positive nuclear charge, and

will therefore be in a lower energy state than a 3d electron, whose orbital

does not penetrate, and which is therefore more shielded from the nucleus

by the inner shells. It is true that the most probable position for a 4s electron

is farther from the nucleus than that for a 3d electron; the penetration effect

more than makes up for this, since the coulombic attraction decreases as

the square of r, the distance of the electron from the nucleus. Since 4s lies

lower than 3d, the nineteenth electron in potassium enters the 4s rather than

the 3d level, and potassium is a typical alkali metal.

In Fig. 10.15 the relative energies of the orbitals are plotted as functions

of the atomic number (nuclear charge). This graph is not quantitatively

exact, but is designed to show roughly how the relative energy levels of the

various orbitals change with increasing nuclear charge. The energies are

obtained from atomic spectra.

Although the effect is not shown in the figure, it should be noted that the

energy levels of the s and p orbitals fall steadily with increasing atomic

number, since the increasing nuclear charge draws the penetrating s and p
orbitals closer and closer to the nucleus. At low atomic numbers, up to

Z ^ 20 (Ca), the 3d levels are not lowered, since there are not yet sufficient

electrons present for the d's to penetrate the electron cloud that surrounds

and shields the nucleus. As more electrons are added, however, the 3d

orbitals eventually penetrate the shielding electrons and begin to fall with

increasing Z. This phenomenon is repeated later with the 4rfand 4f orbitals.

At high Z, therefore, orbitals with the same principal quantum number tend

to lie together; at low Z they may be widely separated because of different

penetration effects.

Following calcium, the 3d orbitals begin to be filled rather than the 4p.

One obtains the first transition series of metals, Sc, Ti, V, Cr, Mn, Fe, Co, Ni.

These are characterized by variable valence and strongly colored compounds.
Both these properties are associated with the closeness of the 4s and 3d levels,

21 The distinct difference between this quantum-mechanical picture and the classical

Bohr orbits should be carefully noted. There are four successive maxima in the y function

for the 4s orbital, at different distances from the nucleus. The quantum mechanical picture
of an atom is a nucleus surrounded by a cloud of negative charge. There are differences in

density of the cloud at different distances from the nucleus. The cloud is the superposition
of the v> functions for all the orbitals occupied by electrons.
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which provide a variable number of electrons for bond formation, and

possible excited levels at separations corresponding with the energy available

in visible light (~ 2 ev).

The filling of the 3d shell is completed with copper, which has the con-

figuration \s*2s*2p*3s*3p*3d
l 4sl

. Copper is not an alkali metal despite the

outer 4s electron, since the 3d level is only slightly below the 4s and Cu++

ions are readily formed.

2s

Fig. 10.15. Dependence of energies of orbitals on the nuclear charge Z.

The next electrons gradually fill the 4s and 4p levels, the process being

completed with krypton. The next element, rubidium, is a typical alkali with

one 5s electron outside the 4s24p
B octet. Strontium, with two 5s electrons, is

a typical alkaline earth of the Mg, Ca, Sr, Ba series.

Now, however, the 4d levels become lowered sufficiently to be filled

before the 5p. This causes the second transition series, which is completed
with palladium. Silver follows with the copper type structure, and the filling

of the 5,y and 5p levels is completed with xenon. A typical alkali (Cs) and

alkaline earth (Ba) follow with one and two 6s electrons.

The next electron, in lanthanum, enters the 5d level, and one might

suspect that a new transition series is underway. Meanwhile, however, with
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increasing nuclear charge, the 4forbitals have been drastically lowered. The

4/ levels can hold exactly 14 electrons.22 As these levels are filled, we obtain

the 14 rare earths with their remarkably similar chemical properties, deter-

mined by the common 5s25p
6 outer configuration of their ions. This process

is complete with lutecium.

The next element is hafnium, with 5d26s2 . Its properties are very similar

to those of zirconium with 4d25s2 . This similarity in electronic structures was

predicted before the discovery of hafnium, and led Coster and Hevesy to look

for the missing element in zirconium minerals, where they found it in 1923.

Following Hf the 5d shell is filled, and then the filling of the 6p levels is

completed, the next s2p* octet being attained with radon. The long missing

halogen (85) and alkali (87) below and above radon have been found as

artificial products from nuclear reactions. 23
They are called "astatine" and

"francium."

Radium is a typical alkaline earth metal with two Is electrons. In the

next element, actinium, the extra electron enters the 6d level, so that the

outer configuration is 6d lls2
; this is to be compared with lanthanum with

5d*6s2
. It was formerly thought that the filling of the 6d levels continued in

the elements following actinium. As i result of studies of the properties of

the new transuranium elements it now appears more likely that actinium

marks the beginning of a new rare-earth group, successive electrons entering
the 5f shell. Thus the trivalent state becomes more stable compared to the

quadrivalent state as one proceeds through Ac, Th, Pa, U, Np, Pu, Am, Cm,
just as it does in the series La, Ce, Pr, Nd, Pm, Sm, Eu, etc. This is true because

successive electrons added to the/shell are more tightly bound as the nuclear

charge increases. The actinide "rare earths" therefore resemble the lanthanide

rare earths rather than the elements immediately above themselves in the

periodic table.

PROBLEMS

1. What is the average energy, , of a harmonic oscillator of frequency
1013 sec-1 at 0, 200, 1000C? What is the ratio ejkT at each temperature?

2. The K* X-ray line of iron has a wavelength of 1 .932 A. A photon of

this wavelength is emitted when an electron falls from the L shell into a

vacancy in the K shell. Write down the electronic configuration of the ions

before and after emission of this line. What is the energy difference in kcal

per mole between these two configurations?

" As follows:

n 4

/ 3

m 3, -2, -1, 0, 4-1, +2, -fl

* i, i, i, i, t, t, *

23 For an excellent account, see Glenn T. Seaborg, "The Eight New Synthetic Elements,"
American Scientist, 36, 361 (1948).
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3. The fundamental vibration frequency of N 2 corresponds to a wave
number of 2360 cm"1

. What fraction of N2 molecules possess no vibrational

energy (except their zero-point energy) at 25C ?

4. The first line in the Lyman series lies at 1216 A, in the Balmer series,

at 6563 A. In the absorption spectra of a certain star, the Balmer line appears
to have one-fourth the intensity of the Lyman line. Estimate the temperature
of the star.

5. Calculate the ionization potential of hydrogen as the energy required
to remove the electron from r r - 0.53A to infinity against the coulombic

attraction of the proton.

6. An excited energy level has a lifetime of 10~10 sec. What is the mini-

mum width of the spectral line arising in a transition from the ground state

to this level ?

7. Calculate the wavelength of a proton accelerated through a potential

difference of 1 mev.

8. For a particle of mass 9 x 10~28
g confined to a one-dimensional box

100 A long, calculate the number of energy levels lying between 9 and 10 ev.

9. Consider an electron moving in a circular path around the lines of

force in a magnetic field. Apply the Bohr quantum condition eq. (10.21) to

this rotation. What is the radius of the orbit of quantum number n 1 in

a magnetic field of 105 gauss?

10. The Kal X-ray line is emitted when an electron falls from an L level

to a hole in the K level. Assume that the Rydberg formula holds for the

energy levels in a complex atom, with an effective nuclear charge 7! equal
to the atomic number minus the number of electrons in shells between the

given electron and the nucleus. On this basis, estimate the wavelength of

the Afal X-ray line in chromium. The experimental value is 2.285 A.

11. The wave function for the electron in the ground state of the hydrogen
atom is yls

=
(7ra

3
)~

1/2e~r/a
,
where a is the radius of the Bohr orbit.

Calculate the probability that an electron will be found somewhere between

0.9 and 1.1 a . What is the probability that the electron will be beyond 2 a ?

12. Write an account of the probable inorganic chemistry of Np, Pu,

Am, Cm, in view of their probable electron configurations. Compare the

chemistry of astatine and iodine, francium and cesium.
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CHAPTER 11

The Structure of Molecules

1. The development of valence theory. The electrical discoveries at the

beginning of the nineteenth century strongly influenced the concept of the

chemical bond. Indeed, Berzelius proposed in 1812 that all chemical com-

bination was caused by electrostatic attraction. As it turned out 115 years

later, this theory happened to be true, though not in the sense supposed by
its originator. It did much to postpone the acceptance of diatomic structures

for the common gaseous elements, such as H^ N2 , and O2 . It was admitted

that most organic compounds fitted very poorly into the electrostatic scheme,

but until 1828 it was widely believed that these compounds were held together

by "vital forces," arising by virtue of their formation from living things. In

that year, Wohler's synthesis of urea from ammonium cyanate destroyed this

distinction between organic and inorganic compounds, and the vital forces

gradually retreated to their present refuge in living cells.

Two general classes of compounds came to be distinguished, with an

assortment of uncomfortably intermediate specimens. The polar compounds,
of which NaCl was a prime example, could be adequately explained as being

composed of positive and negative ions held together by coulombic attrac-

tion. The nature of the chemical bond in the nonpolar compounds, such as

CH 4 , was completely obscure. Nevertheless, the relations of valence with

the periodic table, which were demonstrated by Mendeleev, emphasized the

remarkable fact that the valence of an element in a definitely polar compound
was usually the same as that in a definitely nonpolar compound, e.g., O in

K 2O and (C2H5)2O.

In 1904 Abegg pointed out the rule of eight: To many elements in the

periodic table there could be assigned a negative valence and a positive valence

the sum of which was eight, for example, Cl in LiCl and C12O7 , N in NH3

and N2O5 . Drude suggested that the positive valence was the number of

loosely bound electrons that an atom could give away, and the negative
valence was the number of electrons that an atom could accept.

Once the concept of atomic number was clearly established by Moseley

(1913), further progress was possible, for then the number of electrons in an

atom became known. The special stability of a complete outer octet of

electrons was soon noticed. For example: He, 2 electrons; Ne, 2 + 8 elec-

trons; A, 2 4- 8 + 8 electrons. In 1916, W. Kossel made an important con-

tribution to the theory of the electrovalent bond, and in the same year
G. N. Lewis proposed a theory for the nonpolar bond.

Kossel explained the formation of stable ions by a tendency of the atoms

295
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to gain or lose electrons until they achieve an inert-gas configuration. Thus

argon has a completed octet of electrons. Potassium has 2 + 8 + 8 + 1, and

it tends to lose the outer electron, becoming the positively charged K+ ion

having the argon configuration. Chlorine has 2 + 8 + 7 electrons and tends

to gain an electron, becoming Cl with the argon configuration. If an atom

of Cl approaches one of K, the K donates an electron to Cl, and the resulting

ions combine as K f
Cl:, the atoms displaying their valences of one. The

extension to other ionic compounds is familiar.

G. N. Lewis proposed that the links in nonpolar compounds resulted

from the sharing of pairs of electrons between atoms in such a way as to

form stable octets to the greatest possible extent. Thus carbon has an atomic

number of 6; />., 6 outer electrons, or 4 less than the stable neon configura-
tion. It can share electrons with hydrogen as follows:

H
xo

XO
H

Each pair of shared electrons constitutes a single covalent bond. The Lewis

theory explained why the covalence and electrovalence of an atom are usually

identical, for an atom usually accepts one electron for each covalent bond

that it forms.

The development of the Bohr theory led to the idea that the electrons

were contained in shells or energy levels at various distances from the nucleus.

These shells were specified by the quantum numbers. By about 1925, a

systematic picture of electron shells was available that represented very well

the structure of the periodic table and the valence properties of the elements.

The reason why the electrons are arranged in this way was unknown. The

reason why a shared electron pair constitutes a stable chemical bond was

also unknown.

An answer to both these fundamental chemical problems was provided

by the Pauli Exclusion Principle. Its application to the problem of the

periodic table was shown in the previous chapter. Its success in explaining
the nature of the chemical bond has been equally remarkable.

2. The ionic bond. The simplest type of molecular structure to understand

is that formed from two atoms, one of which is strongly electropositive (low
ionization potential) and the other, strongly electronegative (high electron

affinity). Such, for example, would be sodium and chlorine. In crystalline

sodium chloride, one cannot speak of an NaCl molecule since the stable

arrangement is a three-dimensional crystal structure of Na+ and Cl~ ions.

In the vapor, however, a true NaCl molecule exists, in which the binding is

almost entirely ionic.

The attractive force between two ions with charges q and q2 can be

represented at moderate distances of separation r by the coulombic force
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or ty a potential V ~q\q^r. If the ions are brought so close to-

gether that their electron clouds begin to overlap, a mutual repulsion between

the positively charged nuclei becomes evident. Born and Mayer have sug-

gested a repulsive potential having the form U be~r/a
,
where a and b are

constants.

The net potential for two ions is therefore

+ be r/a
(11-1)

This potential-energy function is plotted in Fig. 11.1 for NaCl, the minimum

in the curve representing the stable internuclear separation for a Na+Cl~

5 10 15 20

INTERNUCLEAR SEPARATION, r, A

Fig. 11.1. Potential energy of Na+
}- Cl . (The internuclear distance in the stable

molecule is 2.51 A. Note the long range of the coulombic attraction.)

molecule. Spectra of this molecule are observed in the vapor of sodium

chloride.

3. The covalent bond. One of the most important of all the applications

of quantum mechanics to chemistry has been the explanation of the nature

of the covalent bond. The simplest example of such a bond is found in the

H2 molecule. Although Lewis, in 1918, declared that this bond consists of a

shared pair of electrons, it was in 1927 that a real understanding of the

nature of the binding was provided by the work of W. Heitler and F. London.

If two H atoms are brought together there results a moderately com-

plicated system consisting of two 4- 1 charged nuclei and two electrons. If

the atoms are very far apart their mutual interaction is effectively nil. In
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other words, the potential energy of interaction V ~ when the internuclear

distance r oo. At the other extreme, if the two atoms are forced very

closely together, there is a large repulsive force between the two positively

charged nuclei, so that as r -> 0, U > oo. Experimentally we know that two

hydrogen atoms can unite to form a stable hydrogen molecule, whose dis-

sociation energy is 4.48 ev, or 103.2 kcal per mole. The internuclear separation
in the molecule is 0.74 A.

-5 -

0.5 2.5I 1.5 2

ANGSTROMS
Fig. 11.2. Potential energy curve for hydrogen molecule. (Note the shorter

range of the valence forces in H2 , as compared with the ionic molecule NaCl
shown in Fig. 11.1.)

These facts about the interaction of two H atoms are summarized in the

potential-energy curve of Fig. 11.2. The problem before us is to explain the

minimum in the curve. This is simply another way of asking why a stable

molecule is formed, or what is the essential nature of the covalent bond in H2 .

The quantum-mechanical problem is to solve the Schrodinger equation
for the system of two electrons and two protons. Consider the situation in

Fig. 11.3, where the outer electron orbits overlap somewhat. According to

quantum mechanics, of course, these orbits are not sharp. There are eigen-
functions ^(1) for electron (1) and y(2) for electron (2), which determine

the probability of finding the electrons at any point in space. As long as the

atoms are far apart, the eigenfunction for electron (1) on nucleus (a) will be

simply that found on page 281 for the ground state of a hydrogen atom

namely, yls(\)
-

(7ra *)-
l/2e~r/a:
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For the two electrons, a wave function is required that expresses the

probability of simultaneously finding electron (1) on nucleus (a) and electron

(2) on nucleus (b). Since the combined probability is the product of the two

individual probabilities, such a function would be a(\)b(2). Here a(\) and

b(2) represent eigenfunctions for electron (1) on nucleus (a) and electron (2)

on nucleus (b).

A very important principle must now be considered. There are no physical

differences and no way of distinguishing between a system with (1) on (a)

and (2) on (b) and a system with (2) on

(a) and (1) on (b). The electrons cannot

be labeled. The proper wave function

for the system must contain in itself an

expression of this fundamental truth.

To help solve this problem we need

only recall from page 254 that if ^i

and y>2 are two solutions of the wave

equation, then any linear combination
Fig< u 3 , nteract,on of two h>drogen

of these solutions is also a solution, e.g., atoms.

ciVi + C21/V There are two particular

linear combinations that inherently express the principle that the electrons

are indistinguishable. These are

Vf = fl(l)A(2) + a(2)b(\)

V_ -a(\)b(2) -a(

If the electrons are interchanged in these functions, y>+ is not changed at all;

it is called a symmetricfunction. y_ is changed to y>_, but this in itself does

not change the electron distribution since it is y>* which gives the probability

of finding an electron in a given region, and ( 1/>)

2 =
y>
2

. The function ^_
is called antisymmetric.

So far the spin properties of the electrons have not been included, and

this must be done in order to obtain a correct wave function. The electron-

spin quantum number s, with allowed values of either + 1 or I, determines

the magnitude and orientation of the spin. We introduce two spin functions

a and ft corresponding to s - +A and s = \. For the two-electron system
there are then four possible complete spin functions:

Spin Function Electron 1 Electron 2

a(l)a(2) -ft +i
0)0(2) +J -1
00M2) -J -fj

00)0(2) -t -*

When the spins have the same direction they are said to be parallel', when

they have opposite directions, antiparallel.

Once again, however, the fact that the electrons are indistinguishable



300 THE STRUCTURE OF MOLECULES [Chap. 11

forces us to choose linear combinations for the two-electron system which

are either symmetric or antisymmetric. There are three possible symmetric

spin functions:

a(l)a(2) \

sym

There is one antisymmetric spin function :

<x(l)/3(2) oc(2)/?(l) antisym

The possible complete wave functions for the H-H system are obtained

by combining these four possible spin functions with the two possible orbital

wave functions. This leads to eight functions in all.

At this point in the argument the Pauli Principle enters in an important

way. The Principle is stated in a more general form than was used before:

"Every allowable eigenfunction for a system of two or more electrons must

be antisymmetric for the interchange of the coordinates of any pair of

electrons." It will be shown a little later that the prohibition against four

identical quantum numbers is a special case of this statement.

As a consequence of the exclusion principle, the only allowable eigen-

functions are those made up either of symmetric orbitals and antisymmetric

spins or of antisymmetric orbitals and symmetric spins. There are four such

combinations for the H-H system:

'

The term symbol S expresses the fact that the molecular state has a

total angular momentum of zero, since it is made up of two atomic S terms.

The multipliu.y of the term, or number of eigenfunctions corresponding
with it, is added as a left-hand superscript. This multiplicity is always
2f? + 1 where & is the total spin.

The way in which the general statement of the exclusion principle reduces

to that in terms of quantum numbers can readily be seen in a typical example.

Multiplying out the *X function gives y>
= aa(l)6(2) aa(2)6(l). If the

quantum numbers n, /, m are the same for both electrons, their orbital func-

tions are identical, a = b, so that y = a<x.(\)afi(2) aa(2)00(l). If the fourth

quantum number s is also the same for both, either or
,
the spin

functions must be either both a or both /?. Then y = 0, that is, the proba-

bility of such a system is zero, In other words, eigenfunctions that assign
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identical values of n, /, m, and s to two electrons are outlawed. This result

was shown in a special case, but it is in fact a completely general consequence
of the requirement of antisymmetry.

4. Calculation of the energy in H-H molecule. The next step is to calculate

the energy for the interaction of two hydrogen atoms using the allowed

wave functions. The different electrostatic interactions are shown in Fig. 1 1 .3:

i. electron (1) with electron (2), potential, (7,
2
/ri2

ii. electron (1) with nucleus (/>), /2 e2
/rlb

iii. electron (2) with nucleus (a\ t/3
^ ez/r2a

iv. nucleus (a) with nucleus (/?), (74
^ e2/ratt

Note that the interactions of electron (1) with its own nucleus (a) and of

electron (2) with nucleus (b) are already taken into account by the fact that

we are starting with two hydrogen atoms.

The potential for the interaction of two electrons a distance r12 apart is

/! -e2/rl2 . In order to find the energy of interaction, we must multiply
this by the probability of finding an electron in a given element of volume

dv, and then integrate over all of space. Since the required probability is

ifdv, this gives E ---

J U^dv. Since the total potential is U U -f t/2 +
U3 + t/4 ,

the total energy of interaction of the two hydrogen atoms becomes

--=
J t/yVr (11.2)

This energy must now be calculated for both the symmetric and the anti-

symmetric orbital wave functions. Squaring these functions, one obtains

y
2 -02

(l)/>*(2) f <P(2)b\ I) 2a( 1)6(2X2)6(1)

The f sign is for the XS function, the sign for the 32 function.

The integral in eq. (1 1.2) can therefore be written

E^2C2A (11.3)

where C = J Ua\\}b*(2)dv

A -
J Ua(\)b(\)a(2)b(2)dv

( ' '

C is called the coulombic energy , and A is called the exchange energy.

The coulombic energy is the result of the ordinary electrostatic interaction

between the charges of the electrons and the nuclei. The behavior of this

coulombic energy as the two hydrogen atoms approach each other can be

estimated qualitatively as follows, although the actual integration is not too

difficult if we use the simple Is orbitals for a and b. At large intern uclear

distances, C is zero. At very small distances C approaches infinity owing to

the strong repulsions between the nuclei. At intermediate distances where

the electron clouds overlap there is a net attractive potential since portions

of the diffuse electron clouds are close to the nuclei and the resulting attrac-

tion more than compensates for the repulsions between different parts of tL

diffuse clouds and between the still relatively distant nuclei. The resulting
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dependence of the coulombic energy on the internuclear distance r is shown
as curve C in Fig. 1 1 .4.

The depth of the minimum in the coulombic potential energy curve is

only about 0.6 ev compared to the observed 4.75 ev for the H-H bond. The
classical electrostatic interaction between two hydrogen atoms is thus com-

pletely inadequate to explain the strong covalent bond. The solution to the

problem must be in the specifically quantum mechanical phenomenon of the

exchange energy A.

The exchange energy arises from the fact that the electrons are indis-

tinguishable, and besides considering the interaction of electron 1 on nucleus

a, we have to consider interactions

occurring as if electron 1 were on

nucleus b. Since quantum mechanics

is expressed in the language of y>

functions, we even have to consider

interactions arising between charge
densities that represent electron 1 on

both a and b simultaneously. Even

to try to express the phenomenon in

terms of artificially labeled electrons

involves us in difficulties, but it is

clear qualitatively that "exchange"

may increase the density of electronic

charge around the positive nuclei

and so increase the binding energy.
Like the coulombic energy, the

exchange energy is zero when there

is no overlap. At a position of large

overlap it may lead to a large attrac-

tive force and large negative potential

energy. The exact demonstration of this fact would require the evaluation

of the integral. When this is done we obtain a curve for the variation of

A with r.

The total energy of interaction 2C 2A can now be plotted. It is clear

that 2C I 2A leads to a deep minimum in the potential energy curve. This

is the solution for the symmetric orbital wave function; i.e., the anti-

symmetric spin function. It is the case, therefore, in which the electron spins
are antiparallel. The spin of one electron is -| i, and that of the other is i.

The other curve, 2C-2/4, corresponds to the antisymmetric orbital wave

function, which requires symmetric spin functions, or parallel spins. The
two curves are drawn as *S and 3X in Fig. 11.4. The deep minimum in the
1S curve indicates that the Heitler-London theory has successfully explained
the covalent chemical bond in the hydrogen molecule. The binding energy
is about 10 per cent coulombic, and 90 per cent exchange energy.

o -I
Ul
_i
u -2

-3

-4
/EXPERIMENTAL

"
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Fig. 11.4. Heitler-London treatment of

the H 2 molecule.
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Since the covalent bond is formed between atoms that share a pair of

electrons with opposite spins, covalence is often called spin valence. Only
when the spins are opposed is there an attractive interaction due to the

exchange phenomenon. If the spins are parallel, there is a net repulsion
between two approaching hydrogen atoms. It is interesting to note that if

two H atoms are brought together, there is only one chance in four that

they will attract each other, since the stable state is a singlet and the repulsive

state is a triplet.

The Heitler-London theory is an example of the valence-bond (V.B.)

approach to molecular structure.

5. Molecular orbitals. An alternative to the Heitler-London method of

applying quantum mechanics to molecular problems is the method of mole-

cular orbitals, developed by Hund, Mulliken, and Lennard-Jones. Instead of

starting with definite atoms, it assumes the nuclei in a molecule to be held

fixed at their equilibrium separations, and considers the effect of gradually

feeding the electrons into the resulting field of force. Just as the electrons in

an atom have definite orbitals characterized by quantum numbers, n, /, m,
and occupy the lowest levels consistent with the Pauli Principle, so the elec-

trons in a molecule have definite molecular orbitals and quantum numbers,
and only two electrons having opposite spins can occupy any particular

molecular orbital. In our description of the molecular orbital (M.O.) method

we shall follow an excellent review by C. A. Coulson. 1

For diatomic molecules, the molecular quantum numbers include a prin-

cipal quantum number n, and a quantum number A, which gives the com-

ponents of angular momentum in the direction of the internuclear axis.

This A takes the place of the atomic quantum number /. We may have states

designated <r, TT, <5 . . . as A 0, 1
,
2 . . . .

6. Homonuclear diatomic molecules. Homonuclear diatomic molecules

are those that are formed from two identical atoms, like H2 , N2 , and O2 .

Such molecules provide the simplest cases for application of the M.O.

method.

If a hydrogen molecule, H2 ,
is pulled apart, it gradually separates into

two hydrogen atoms, Ha and H6 , each with a single \s atomic orbital. If the

process is reversed and the hydrogen atoms are squeezed together, these

atomic orbitals coalesce into the molecular orbital occupied by the electrons

in H 2 . We therefore adopt the principle that the molecular orbital can be

constructed from a linear combination of atomic orbitals (L.C.A.O.). Thus

y y(A : Is) -}- yy(B : Is)

Since the molecules are completely symmetrical, y must be 1. Then

there are two possible molecular orbitals :

v,
- y(A : Is) + y(B : Is)

^M
= y(A : Is)

~ y(B : Is)

1

Quarterly Reviews, 1, 144 (1947).
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These molecular orbitals are given a pictorial representation in (a), Fig.

11.5. The Is A.O.'s are spherically symmetrical (see page 283). If two of

these are brought together until they overlap, the M.O. resulting can be

represented as shown. The additive one, vv leads to a building up of charge

(o)

J V"(A U)t^(B'U)

B A^(A
2Py 2Py

2P)

F'ig. 11.5. Formation of molecular orbitals by linear combinations of

atomic orbitals.

density between the nuclei. The subtractive one, yu ,
has an empty space free

of charge between the nuclei. Both these M.O.'s are completely symmetrical
about the internuclear axis; the angular momentum about the axis is zero,

and they are called a orbitals. The first one is designated as a a\s orbital.

It is called a bonding orbital, for the piling up of charge between the nuclei

tends to bind them together. The second one is written as a* Is, and is an

antibonding orbital, corresponding to a net repulsion, since there is no
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shielding between the positively charged nuclei. Antibonding orbitals will

be designated with a star.

A further insight into the nature of these orbitals is obtained if we

imagine the H nuclei squeezed so tightly together that they coalesce into

the united nucleus of helium. Then the bonding orbital a\s merges into the

Is atomic orbital of helium. The antibonding o*\s must merge into the next

lowest A.O. in helium, the 2s. This 2s level is 19.7 ev above the Lv, and this

energy difference is further evidence of the antibonding nature of the a* Is.

The electron configurations of the molecules are built up just as in the

atomic case, by feeding electrons one by one into the available orbitals. In

accordance with the Pauli Principle, each M.O. can hold two electrons with

opposite spins.

In the case of H2 , the two electrons enter the o\s orbital. The configura-

tion is (als)
2 and corresponds to a single electron pair bond between the

H atoms.

The next possible molecule would be one with three electrons, He2+.

This has the configuration (orl,s)
2
(cr*l,s)

1
. There are two bonding electrons

and one antibonding electron, so that a net bonding is to be expected. The

molecule has, in fact, been observed spectroscopically and has a dissociation

energy of 3.0 ev.

If two helium atoms are brought together, the result is (crls)
2
(tf* Is)

2
.

Since there are two bonding and two antibonding electrons, there is no ten-

dency to form a stable He2 molecule. We have now used up all of our avail-

able M.O.'s and must make some more in order to continue the discussion.

The next possible A.O.'s are the 2s, and these behave just like the Is

providing a2s and a*2s M.O.'s with accommodations for four more elec-

trons. If we bring together two lithium atoms with three electrons each, the

molecule Li2 is formed. Thus

Li[]s*2s
l
] 4 Li[\s*2s

l
] ->Li2[(a\s)*(o*\s)*(a2s)*]

Actually, only the outer-shell or valence electrons need be considered, and

the M.O.'s of inner #-shell electrons need not be explicitly designated.

The Li2 configuration is therefore written as [KK(a2s)'
2
] . The molecule

has a dissociation energy of 1.14ev. The hypothetical molecule Be2 , with

eight electrons, does not occur, since the configuration would have to be

[KK(a2s)
2
(a*2s)*\.

The next atomic orbitals are the 2/?'s shown in Fig. 10.14. There are

three of these, pX9 pv , pZ9 mutually perpendicular and with a characteristic

wasp-waisted appearance. The most stable M.O. that can be formed from

the atomic p orbitals is one with the maximum overlap along the inter-

nuclear axis. This M.O. is shown in (b), Fig. 1 1.5, and with the corresponding

antibonding orbital can be written

y>
=

ip(A : 2px) + y(B : 2Px) <*lp

: 2px)
- y(B : 2px) o*2p
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These orbitals have the same symmetry around the internuclear axis as the

a orbitals formed from atomic s orbitals. They also have a zero angular
momentum around the axis.

The M.O.'s formed from the p v
and p z A.O.'s have a distinctly different

form, as shown in (c), Fig. 1 1.5. As the nuclei are brought together, the sides

of the py or p z orbitals coalesce, and finally form two streamers of charge

density, one above and one below the internuclear axis. These are called

TT orbitals; they have an angular momentum of one unit.

We can summarize the available M.O.'s as follows, in order of increasing

energy:

crhy < cr*l s < o2s < o*2s < o2p < 7T
y2p 7r

z2p < Try*2p rr
z*2p < o*2p

With the good supply of M.O.'s now available, the configurations of

other homonuclear molecules can be determined, by feeding pairs of electrons

with opposite spins into the orbitals.

The formation of N2 proceeds as follows :

There are six net bonding electrons, so that it can be said that there is a

triple bond between the two N's. One of these bonds is a a bond; the other

two are TT bonds at right angles to each other.

Molecular oxygen is an interesting case:

O[\s
2
2s*2p*] f- O(\s

22s2
2p

4
]
-> O2[KK(a2s)

2
(o*2s)

2
(o2p)

2
(7r2p)*(TT*2p)

2
]

There are four net bonding electrons, or a double bond consisting of a a and

a TT bond. Note that a single bond is usually a a bond, but a double bond is

not just two equivalent single bonds, but a a plus a TT. In O2 ,
the (n*2p)

orbital, which can hold 4 electrons, is only half filled. Because of electrostatic

repulsion between the electrons, the most stable state will be that in which

the electrons occupy separate orbitals and have parallel spins. Thus these

two electrons are assigned as (TTy*2p)
l
(7r.*2p)

1
. The total spin of O2 is then

if = 1, and its multiplicity, 2^ + 1
~

3. The ground state of oxygen is
32.

TABLE 11.1

PROPERTIES OF HOMONUCLEAR DIATOMIC MOLECULES

Molecule
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In the M.O. method, all the electrons outside closed shells make a con-

tribution to the binding energy between the atoms. The shared electron pair

bond is not particularly emphasized. The way in which the excess of bonding
over antibonding orbitals determines the tightness of binding may be seen by
reference to the simple diatomic molecules in Table 11.1.

7. Heteronuclear diatomic molecules. If the two nuclei in a diatomic

molecule are different, it is still possible to build up molecular orbitals by
an L.C.A.O., but now the symmetry of the homonuclear case is lost. Con-

sider, for example, the molecule HC1. The bond between the atoms is un-

doubtedly caused mainly by electrons in an M.O. formed from the \s A.O.

of H and a 3/7 A.O. of Cl.

The M.O. can be written as

:\s) + yy(Q\ :

3/7)

Now y is no longer 1, but there are still a bonding orbital for f-y and an

antibonding orbital for y. Actually, the chlorine has a greater tendency
than the hydrogen to hold electrons, and thus the resulting M.O. partakes
more of the chlorine A.O. than of the hydrogen A.O.

The larger y, the more unsymmetrical is the orbital, or the more polar

the bond. Thus in the series HI, HBr, HC1, HF, the value of y increases as

the halogen becomes more electronegative.

8. Comparison of M.O. and V.B. methods. Since the M.O. and the V.B.

methods are the two basic approaches to the quantum theory of molecules,

it is worth while to summarize the distinctions between them.

The V.B. treatment starts with individual atoms and considers the inter-

action between them. Consider two atoms a and b with two electrons (I)

and (2). A possible wave function is ^, a(\)b(2). Equally possible is

i/>2
^

b(\)a(2), since the electrons are indistinguishable. Then the valence

bond (Heitler-London) wave function is

The M.O. treatment of the molecule starts with the two nuclei. If a(\) is

a wave function for electron (I) on nucleus (a), and b(\) is that for electron (I)

on nucleus (b\ the wave function for the single electron moving in the field

of the two nuclei is y>i
= cva(\) + c2b(\) (L.C.A.O.). Similarly for the second

electron, y2
= ^0(2) + c2b(2). The combined wave function is the product

of these two, or

VMO ViVa --= c^a(\)a(2) + c* b(\)b(2) + Clc2[a(\)b(2) f- a(2)b(\)}

Comparing the yVB with the ^MO> we see that VMO gives a Iarge weight

to configurations that place both electrons on one nucleus. In a molecule

AB, these are the ionic structures A+Br and A~B+ . The ^vn neglects these

ionic terms. Actually, for most molecules, M.O. considerably overestimates

the ionic terms, whereas V.B. considerably underestimates them. The true
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structure is usually some compromise between these two extremes, but the

mathematical treatment of such a compromise is much more difficult.

9. Directed valence. In the case of polyatomic molecules, a rigorous M.O.

treatment would simply set up the nuclei in their equilibrium positions and

pour in the electrons. It is, however, more desirable to preserve the idea of

definite chemical bonds, and to do this we utilize bond orbitals, or localized

molecular orbitals.

For example, in the water molecule, the A.O.'s that take part in bond

formation are the \s orbitals of hydrogen, and the 2px and 2py of oxygen.

The stable structure will be that in which there is maximum overlap of these

orbitals. Since px and pv are at right angles to each other, the situation in

Fig. 11.6 is obtained. The observed valence angle in H2O is not exactly 90

y

Fig. 11.6. Formation of a molecular orbital for H2O.

but actually 105. The difference can be ascribed in part
2 to the polar nature

of the bond; the electrons are drawn toward the oxygen, and the residual

positive charge on the hydrogens causes their mutual repulsion. In H2S the

bond is less polar and the angle is 92. The important point is the straight-

forward fashion in which the directed valence is explained in terms of the

shapes of the atomic orbitals.

The most striking example of directed valence is the tetrahedral orienta-

tion of the bonds formed by carbon in aliphatic compounds. To explain

these bonds, it is necessary to introduce a new principle, the formation of

hybrid orbitals. The ground state of the carbon atom is \s
22s22p*. There are

two uncoupled electrons 2px , 2pu , and one would therefore expect the carbon

to be bivalent. In order to display a valence of four, the carbon atom must

have four electrons with uncoupled spins. The simplest way to attain this

condition is to excite or promote o,ne of the 2s electrons into the/? state, and

to have all the resulting p electrons with uncoupled spins. Then the outer

configuration would be 2s2/?
3

, with 2,?f 2/?J.J2/? 1/f2/^j.
This excitation requires

the investment of about 65 kcal per mole of energy, but the extra binding

energy of the four bonds that are formed more than compensates for the

promotion energy, and carbon is normally quadrivalent rather than bivalent.

If these four 2s2p* orbitals of carbon were coupled with the Is orbitals

2 A more detailed theory shows that the 2s electrons of the oxygen also take part in the

bonding, forming hybrid orbitals like those discussed below for carbon.
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of hydrogen to yield the methane molecule, it might at first be thought that

three of the bonds would be different from the remaining one. Actually, of

course, the symmetry of the molecule is such that all the bonds must be

exactly the same.

Pauling
3 showed that in a case like this it is possible to form four

identical hybrid orbitals that are a linear combination of the s and p orbitals.

These are called tetrahedral orbitals, tl9 /2 > 'a *4 since they are spatially

directed to the corners of a regular tetrahedron. One of them is shown in

(a), Fig. 11.7. In terms of the 2s and 2p orbitals it has the form: y^) =

\\p(2s) + (V3/2)y(2px). The hybrid / orbitals then combine with the Is

orbitals of hydrogen to form a set of localized molecular orbitals for methane.

(0)

Fig. 11.7. Hybrid atomic orbitals for carbon: (a) a single tetrahedral

orbital; (b) three trigonal orbitals.

The tetrahedral orbitals are exceptionally stable since they allow the electron

pairs to avoid one another to the greatest possible extent.

In addition to the tetrahedral hybrids, the four sp
3 orbitals of carbon

can be hybridized in other ways. The so-called trigonal hybrids mix the 2s,

2px ,
and 2py to form three orbitals at angle of 120. These hybrids are shown

in (b), Fig. 11.7. For example, y - Viy<2s) -f V|y<2/7x). The fourth A.O.,

2/? z , is perpendicular to the plane of the others. This kind of hybridization

is that used in the aromatic carbon compounds like benzene, and also in

ethylene, which are treated separately in the next section.

Hybrid orbitals are not restricted to carbon compounds. An interesting

instance of their occurrence is in the compounds of the transition elements.

It will be recalled that these elements have a d level that is only slightly

lower than the outer s level. Cobalt, for example, has an outer configuration

of 3d 74s2 . The cobaltic ion, Co+++, having lost three electrons, has 3*/
8

. It is

noted for its ability to form complexes, such as the hexamminocobaltic ion,

H.N^ /NH3 1

H3N Co NH3

\NHa

8 L. Pauling, Nature of the Chemical Bond (Ithaca, N.Y.: Cornell Univ. Press, 1940),

p. 85.
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This characteristic can be explained by the fact that there are six low-lying

empty orbitals, each of which can hold a pair of electrons:

O OOOi
Is 2s 2p 3s 3p 3d 4s 4p

These cPspP orbitals can be filled by taking twelve electrons from six NH3

groups, forming the hexamminocobaltic ion with the stable rare gas con-

figuration. Once again, hybridization takes place, and six identical orbitals

are formed. Pauling's calculation showed that these orbitals should be

oriented toward the vertices of an octahedron, and the octahedral arrange-

ment is confirmed by the crystal structures of the compounds.
10. Nonlocalized molecular orbitals. It is not always possible to assign

the electrons in molecules to molecular orbitals localized between two nuclei.

The most interesting examples of delocalization are found in conjugated and

aromatic hydrocarbons.

Consider, for example, the structure of butadiene, usually written

CH2=CH~-CH=CH2 . The molecule is coplanar, and the C C C bond

angles are close to 120. The M.O.'s are evidently formed from hybrid
carbon A.O.'s of the trigonal type. Three of these trigonal orbitals lie in

a plane and are used to form localized bonds with C and H as follows:

CH2 CH CH CH2 . The fourth orbital is a /?-shaped one, perpendicular

(a) (b)

Fig. 11.8. Nonlocalized IT orbital in butadiene.

to the others. These orbitals line up as shown in (a), Fig. 11.8, for the in-

dividual atoms. When the atoms are pushed together, the orbitals overlap
to form a continuous sheet above and below the carbon nuclei as in (b).

This typical nonlocalized orbital is called a n orbital, and it can hold four

electrons.

It is important to note that the four TT electrons are not localized in

particular bonds, but are free to move anywhere within the region in the

figure. Since a larger volume is available for the motion of the electrons,

their energy levels are lowered, just as in the case of the particle in a box.

Thus delocalization results in an extra binding energy, greater than would

be achieved in the classical structure of alternating double and single bonds.

In the case of butadiene, this delocalization energy, often called the resonance

energy, amounts to about 7 kcal per mole.
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Benzene and other aromatic molecules provide the most remarkable

instances of nonlocalized orbitals. The discussion of benzene proceeds very

similarly to that of butadiene. First the carbon A.O.'s are prepared as trigonal

hybrids and then brought together with the hydrogens. The localized orbitals

formed lie in a plane, as shown in (a), Fig. 1 1.9. The p orbitals extend their

sausage-shaped sections above and below the plane, (b), and when they

overlap they form two continuous bands, (c), the TT orbitals, above and below

the plane of the ring. These orbitals hold six mobile electrons, which are

Fig. 11.9. Localized trigonal orbitals (a) and nonlocalized -n orbitals (c)

in benzene.

completely delocalized. The resulting resonance energy is about 40 kcal per
mole.

The properties of benzene bear out the existence of these mobile -n elec-

trons. All the C C bonds in benzene have the same length, 1.39 A compared
to 1.54 in ethane and 1.30 in ethylene. The benzene ring is like a little loop
of metal wire containing electrons; if a magnetic field is applied normal to

the planes of the rings in solid benzene, the electrons are set in motion, and

experimental measurements show that an induced magnetic field is caused

that opposes the applied field.

11. Resonance between valence-bond structures. Instead of the M.O.

method it is often convenient to imagine that the structure of a molecule is

made up by the superposition of various distinct valence-bond structures.

Applying this viewpoint to the case of benzene, one would say that the

actual structure is formed principally by resonance between the two Kekule"

structures,

and



312 THE STRUCTURE OF MOLECULES

with smaller contributions from the three Dewar structures,

[Chap. 11

According to the resonance theory, the eigenfunction ^ describing the

actual molecular structure is a linear combination of the functions for

possible valence bond structures,

This is an application of the general superposition principle for wave func-

tions. Each eigenfunction y corresponds to some definite value E for the

energy of the system. The problem is to determine the values of a
l9

a2 , #3 ,

etc., in such a way as to make E a minimum. The relative magnitude of these

coefficients when E is a minimum is then a measure of the contribution to

the over-all structure of the different special structures represented by

Vi ^2 Y>3 1* must be clearly understood that the resonance description

does not mean that some molecules have one structure and some another.

The structure of each molecule can only be described as a sort of weighted

average of the resonance structures.

Two rules must be obeyed by possible resonating structures: (1) The

structures can differ only in the position of electrons. Substances that differ

in the arrangement of the atoms are ordinary isomers and are chemically
and physically distinguishable as

dis^jjact* compounds. (2) The resonating

structures must have the same number of paired and unpaired electrons,

otherwise they would have different total spins and be physically distinguish-

able by their magnetic properties.

In substituted benzene compounds, the contributions of various ionic

structures must be included. For example, aniline has the following resonance

structures :

H H H

N

H H H H

covalent ionic

The ionic structures give aniline an additional resonance energy of 7 kcal,

compared with benzene. The increased negative charge at the ortho and para

positions in aniline accounts for the fact that the NH2 group in aniline directs

positively charged approaching substituents (NOa+, Br+) to these positions.

The way in which the V.B. method would treat the hydrogen halides is
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instructive. Two important structures are postulated, one purely covalent

and one purely ionic :

H+ :C1:~ and H:C1:

The actual structure is visualized as a resonance hybrid somewhere between

these two extremes. Its wave function is

V ~~
^covalent +

The value of a is adjusted until the minimum energy is obtained. Then

(a
2
/! + a2

) 100 is called the per cent ionic character of the bond. For the

various halides the following results are found :

The bond in HI is predominantly covalent; in HF, it is largely ionic. The

distinction between these different bond types is thus seldom clearcut, and

most bonds are of an intermediate nature.

The tendency of a pair of atoms to form an ionic bond is measured by
the difference in their power to attract an electron, or in their electronegativity.

Fluorine is the most, and the alkali metals are the least, electronegative of

the elements. The fractional ionic character of a bond then depends upon
the difference in electronegativity of its constituent atoms.

12. The hydrogen bond. It has been found that in many instances a

hydrogen atom can act as if it formed a bond to two other atoms instead of

to only one. A typical example is the dimer of formic acid, which has the

structure

O H O
/ \

H C C H
\ /
O H O

This hydrogen bond is not very strong, usually having a dissociation energy
of about 5 kcal, but it is extremely important in many structures, such as the

proteins. It occurs in general between hydrogen and the electronegative

elements N, O, F, of small atomic volumes.

We know that hydrogen can form only one covalent bond, since it has

only the single Is orbital available for bond formation. Therefore the hydro-

gen bond is essentially an ionic bond. Since the proton is extremely small,

its electrostatic field is very intense. A typical hydrogen-bonded structure is

the ion (HF2)~, which occurs in hydrofluoric acid and in crystals such as

KHF2 . It can be represented as a resonance hybrid of three structures,

:F: H F- F~ H :F: F- H+ F-
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The ionic F H fF~ structure is the most important. It is noteworthy that

electroneg^Hve elements with large ionic radii, e.g., Cl, have little or no

tendenc^o form hydrogen bonds, presumably owing to their less concen-

trates electrostatic fields.

13. Dipole moments. If a bond is formed between two atoms that differ

in electronegativity, there is an accumulation of negative charge on the

more electronegative atom, leaving a positive charge on the more electro-

positive atom. The bond then constitutes an electric dipole, which is by
definition an equal positive and negative charge, _q, separated by a distance

r. A dipole, as in (a), Fig. 11.10, is

characterized by its dipole moment, a

vector having the magnitude qr and

the direction of the line joining the

positive to the negative charge. The
dimensions of a dipole moment are

charge times length. Two charges with

the magnitude of e(4.80 x 10~10
esu)

separated by a distance of I A would

have a dipole moment of 4.80 x 10~~
18

csu cm. The unit 10~18 esu cm is

called the debye, (d).

If a polyatomic molecule contains

two or more dipoles in different bonds, the net dipole moment of the mole-

cule is the resultant of the vector addition of the individual bond moments.

An example of this is shown in (b), Fig. 11.10.

The measurement of tha dipole moments of molecules provides an insight

into their geometric structure and also into the character of their valence

bonds. Before we can discuss the determination of dipole moments, however,

it is necessary to review some aspects of the theory of dielectrics.

14. Polarization of dielectrics. Consider a parallel-plate capacitor with

the region between the plates evacuated, and let the charge on one plate be

-for and on the other a per square centimeter. The electric field within the

capacitor is then directed perpendicular to the plates and has the magnitude
4

EQ
-- 47TCT. The capacitance is

q aA A

Fig. 11.10. (a) Definition of dipole

moment; (b) vector addition of dipole

moments in orthodichlorobenzene.

where A is the area of the plates, rfthe distance, and (/the potential difference

between them.

Now consider the space between the plates to be filled with some material

substance. In general, this substance falls rather definitely into one of two

classes, the conductors or the insulators. Under the influence of small fields,

electrons move quite freely through conductors, whereas in insulators or

4
See, for example, G. P. Harnwell, Electricity and Magnetism (New York: McGraw-

Hill, 1949), p. 26.
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dielectrics these fields displace the electrons only slightly from their equi-
librium positions.

An electric field acting on a dielectric thus causes a separation of positive

and negative charges. The field is said to polarize the dielectric. This polarizo-
tion is shown pictorially in (a), Fig. 11.11. The polarization can occur in twa

ways: the induction effect and the orientation effect. An electric field always
induces dipoles in molecules on which it is acting, whether or not they contain

dipoles to begin with. If the dielectric does contain molecules that are per-

manent dipoles, the field tends to align these dipoles along its own direction.

The random thermal motions of the molecules oppose this orienting action.

I CM

(a) (b)

Fig. 11.11. (a) Polarization of a dielectric; (b) definition of the

polarization vector, P.

Our main interest is in the permanent dipoles, but before these can be studied,

effects due to the induced dipoles must be clearly distinguished.

It is found experimentally that when a dielectric is introduced between

the plates of a capacitor the capacitance is increased by a factor e, called the

dielectric constant. Thus if C is the capacitance with a vacuum, the capaci-

tance with a dielectric is C eC . Since the charges on the capacitor plates

are unchanged, this must mean that the field between the plates is reduced

by the factor e, so that E = EQ/e.

The reason why the field is reduced is clear from the picture of the

polarized dielectric, for all the induced dipoles are aligned so as to produce
an over-all dipole moment that cuts down the field strength. Consider in

(b), Fig. 11.11, a unit cube of dielectric between the capacitor plates, and

define a vector quantity P called the polarization, which is the dipole moment

per unit volume. Then the effect of the polarization is equivalent to that

which would be produced by a charge of -fP on one face and ~P on the

other face (1 cm2
) of the cube. The field in the dielectric is now determined

by the net charge on the plates, so that

J-47r(er-P) (11.5)

A new vector has been defined, called the displacement D, which depends

only on the charge or, according to D = 47ror. It follows that

D-J5+4rrP, and DIE = e (11.6)

It is apparent that in a vacuum, where e = 1, D = E.
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15. The induced polarization. Let us consider the induced or distortion

polarization, PI} , produced by an electric field acting on a dielectric that does

not contain permanent dipoles.

The first problem to be solved is the magnitude of the dipole moment m
induced in a molecule by the field acting on it. It may be assumed that this

induced moment is proportional to the intensity of the field5 F, so that

m-aoF (11.7)

The proportionality constant OQ is called the distortion polarizability of the

molecule. It is the induced moment per unit field strength, and has the

dimensions of a volume, since q r/(q/r
2
) r

3
v.

At first it might seem that the field acting on a molecule should be simply
the field E of eq. (1 1.5). This would be incorrect, however, for the field that

polarizes a molecule is the local field immediately surrounding it, and this is

different from the average field E throughout the dielectric. For an isotropic

substance this local field can be calculated6 to be

F-B + *?-*
(I I J)

In the absence of permanent dipoles, the polarization or dipole moment

per unit volume is the number of molecules per cc, , times the average
moment induced in a molecule, m. Thus, from eqs. (11.7) and (11.8),

- /7<x (E +

Since, from eq. (11.6), E(e 1)
^-- 4*rPD ,

477/700

3
(H.9)

This is the Clausius-Mossotti equation.

Multiplying both sides by the ratio of molecular weight to density M/p,

4

B + 2 p 3p 3

The quantity PM is called the molar polarization. So far it includes only the

contribution from induced dipoles, and in order to obtain the complete
molar polarization, a term due to permanent dipoles must be added. ->

16. Determination of the dipole moment. Having examined the effect of

induced dipoles on the dielectric constant, we are in a position to consider

5 This is true only for isotropic substances; otherwise, for example in nonisotropic

crystals, the direction of the moment may not coincide with the field direction. This dis-

cussion therefore applies only to gases, liquids, and cubic crystals.
6 A good derivation is given by Slater and Frank, Introduction to Theoretical Physics

(New York: McGraw-Hill, 1933), p. 278; also, Syrkin and Dyatkina, The Structure of
Molecules (New York: Interscience, 1950), p. 471.
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the influence of permanent dipoles. If the bonds in a molecule are ionic or

partially ionic, the molecule has a net dipole moment, unless the individual

bond moments add vectorially to zero.

It is now possible to distinguish an orientation polarization of a dielectric,

which is that caused by permanent dipoles, from the distortion polarization,

caused by induced dipoles.

There will always be an induced moment. It is evoked almost instanta-

neously in the direction of the electric field. It is independent of the tempera-

ture, since if the molecule's position is disturbed by thermal collisions, the

dipole is at once induced again in the field direction. The contribution to the

polarization caused by permanent dipoles, however, is less at higher tem-

peratures, since the random thermal collisions of the molecules oppose the

tendency of their dipoles to line up in the electric field.

It is necessary to calculate the average component of a permanent dipole
in the field direction as a function of the temperature. Consider a dipole with

random orientation. If there is no field, all orientations are equally probable.
This fact can be expressed by saying that the number of dipole moments
directed within a solid angle da) is simply Adw, where A is a constant depend-

ing on the number of molecules under observation.

If a dipole moment //
is oriented at angle to a field of strength F its

potential energy
7

is U - //Fcos 0. According to the Boltzmann equation,
the number of molecules oriented within the solid angle da} is then

Ae-' ulkT dco = A

The average value of the dipole moment in the direction of the field, by

analogy with eq. (7.39), can be written

A* cos (>lkT
1 cos Oda>

To evaluate this expression, let [iFjkT x, cos =
y; then dw -- 2-n- sin 9 dO

- 277 dy.

Thus
*

i (e
x e~x)

Since e**dy
~- ----------

_ s

m ex -- = coth x -- = L(x)
p ex e~

x x x

Here L(x) is called the "Langevin function," in honor of the inventor of this

treatment.

7
Harnwell, op. cit., p. 64.

M
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In most cases x =
[iF/kTis a very small number8 so that on expanding L(x)

in a power series, only the first term need be retained, leavingL(x) = x/3, or

/|2

The total polarizability of a dielectric is found by adding this contribution

due to permanent dipoles to the distortion polarizability, and may be written

a = ao 4- CM
2
/3*r). Instead of eq. (1 1.10), the total polarization is therefore

This equation was first derived by P. Debye.

40

i 30
O

NJ

5 20
.j
o
a.

3 .0

1.0 5.02.0 3.0 4.0

1/TXlO
3

Fig. 11.12. Application of the Debye equation to the polarizations of

the hydrogen ha 1ides.

When the Clausius-Mossotti treatment is valid,
9

e -
1 M /

PU - - - - ^
e + 2 P

For gases, e is not much greater than 1, so that

E -
1 M 4n=

"=- ^ ao (11.13)

8 Values of n range around 10"18
(esu) (cm). If a capacitor with 1 cm between plates is

(3

x 10^\

airiov
" 10

"17
erg comPared witn kT = 10

~14 er

at room temperature.
9 This is the case only for gases or for dilute solutions of dipolar molecules in non-polar

solvents. If there is a high concentration of dipolar molecules, as in aqueous solutions, there

are localized polarization fields that cannot be treated by the Clausius-Mossotti method. In

other words, the permanent dipoles tend to influence the induced polarization.
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It is now possible to evaluate both OQ and // from the intercept and slope

ofPM vs. l/T^plots, as shown in Fig. 11.12. The necessary experimental data

are values of the dielectric constant over a range of temperatures. They are

obtained by measuring the capacitance of a capacitor using the vapor or

solution under investigation as the dielectric between the plates. A number

of dipole-moment values are collected in Table 11.2.

17. Dipole moments and molecular structure. Two kinds of information

about molecular structure are provided by dipole moments: (1) The extent

to which a bond is permanently polarized, or its per cent ionic character;

and (2) an insight into the geometry of the molecule, especially the angles be-

tween its bonds. Only a few examples of the applications will be mentioned. 10

The H Cl distance in HC1 is 1.26 A (found by methods described on

page 334). If the structure were H+C1
,
the dipole moment would be

H - (1.26)(4.80)
- 6.05d

The actual moment of 1.03 suggests therefore that the ionic character of

the bond is equivalent to a separation of charges of about \e.

Carbon dioxide has no dipole moment, despite the difference in electro-

negativity between carbon and oxygen. It may be concluded that the molecule

is linear, O C O; the moments due to the two C O bonds, which are

surely present owing to the difference in electronegativity of the atoms,

exactly cancel each other on vector addition.

On the other hand, water has a moment of 1.85d, and must have a

triangular structure (see Fig. 1 1 .6). It has been estimated that each O H
bond has a moment of 1.60d and the bond angle is therefore about 105,

as shown by a vector diagram.

10 R. J. W. LeFevre, Dipole Moments (London: Methiien, 1948) gives many interesting

examples.



320 THE STRUCTURE OF MOLECULES [Chap. 11

A final simple example is found in the substituted benzene derivatives:

OH OH

- 1.55 1.70

The zero moments of /?-dichloro- and sym-trichlorobenzene indicate that

benzene is planar and that the C -Cl bond moments are directed in the

plane of the ring, thereby adding to zero. The moment of />di-OH benzene,

on the other hand, shows that the O H bonds are not in the plane of the

ring, but directed at an angle to it, thus providing a net moment.

18. Polarization and refractivity. It may be recalled that one of the most

interesting results of Clerk Maxwell's electromagnetic theory of light
11 was

the relationship f /r^
2

,
where nR is the index of refraction. Thus the

refractive index is related through eq. (11.10) to the molar polarization.

The physical reason for this relationship can be understood without

going into the details of the electromagnetic theory. The refractive index of

a medium is the ratio of the speed of light in a vacuum to its speed in the

medium, nR - c/cm . Light always travels more slowly through a material

substance than it does through a vacuum. A light wave is a rapidly alternating

electric and magnetic field. This field, as any other, acts to polarize the

dielectric through which it passes, pulling the electrons back and forth in

rapid alternation. The greater the polarizability of the molecules, the greater

is the field induced in opposition to the applied field, and the greater therefore

is the "resistance" to the transmission of the light wave. Thus high polariz

ability means low cm and high refractive index. We have already seen that

increasing the polarization increases the dielectric constant. The detailed

theory leads to the Maxwell relation, e -= nn
2

.

This relation is experimentally confirmed only under certain conditions:

(1) The substance contains no permanent dipoles.

(2) The measurement is made with radiation of very long wavelength, in

the infrared region.

(3) The refractive index is not measured in the neighborhood of a wave-

length where the radiation is absorbed.

The first restriction arises from the fact that dielectric constants are

measured at low frequencies (500 to 5000 kc), whereas refractive indices are

measured with radiation of frequency about 1012 kc. A permanent dipole

cannot line up quickly enough to follow an electric field alternating this

rapidly. Permanent dipoles therefore contribute to the dielectric constant

but not to the refractive index.

The second restriction is a result of the effect of high frequencies on the

11 G. P. Harnwell, opt cit., p. 579.
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induced polarization. With high-frequency radiation (in the visible) only the

electrons in molecules can adjust themselves to the rapidly alternating electric

fields; the more sluggish nuclei stay practically in their equilibrium positions.

With the lower-frequency infrared radiation the nuclei are also displaced.

It is customary, therefore, to distinguish, in the absence of permanent

dipoles, an electronic polarization PK and an atomic polarization PA . The

total polarization, PA \ PK , is obtained from dielectric-constant measure-

ments or infrared determinations of the refractive index. The latter are hard

to make, but sometimes results with visible light can be successfully extra-

polated. The electronic polarization PK can be calculated from refractive

index measurements with visible light. Usually PA is only about 10 per cent

of PE ,
and may often be neglected.

When the Maxwell relation is satisfied, we obtain from eq. (11.10) the

Lorenz-Lorentz equation:
n 2 t AY

vri'7
=

/>A/ (1L14)

The quantity at the left of eq. (11.14) is often called the molar refraction

RM . When the Maxwell relation holds, RM - PM .

It will be noted that the molar refraction RM has the dimensions of

volume. It can indeed be shown from simple electrostatic theory
12 that a

sphere of conducting material of radius r, in an electric field F, has an induced

electric moment of m = r3/7. According to this simple picture, the molar

refraction should be equal to the true volume of the molecules contained in

one mole. A comparison of some values of molecular volume obtained in

this way from refractive index measurements with those obtained from

van der Waal's b was shown in Table 7.5.

19. Dipole moments by combining dielectric constant and refractive index

measurements. The Lorenz-Lorentz equation also provides an alternative

method of separating the orientation and the distortion polarizations, and

thereby determining the dipole moment. A solution of the dipolar compound
in a nonpolar solvent e.g., nitrobenzene in benzene-- is prepared at various

concentrations. The dielectric constant is measured and the apparent molar

polarization calculated from eq. (1J.10). This quantity is made up of the

distortion polarizations of both solute and solvent plus the orientation

polarization of the polar solute. The molar polarizations due to distortion

can be set equal to the molar refractions RM , calculated from the refractive

indices of the pure liquids. When these RM are subtracted from the total

apparent PM ,
the remainder is the apparent molar orientation polarisation

for the solute alone. This polarization is plotted against the concentration in

the solution and extrapolated to zero concentration. 13 A value is obtained in

12 Slater and Frank, op. r/7., p. 275.
13 E. A. Guggenheim, Trans. Faraday Soc., 47, 573 (1951), gives an improved method

for extrapolation.
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this way from which the effect of dipole interaction has been eliminated.

From eq. (11.13), therefore, it is equal to (4n/3)N([i*/3kT) and the dipole

moment of the polar solute can be calculated.

20. Magnetism and molecular structure. The theory for the magnetic

properties of molecules resembles in many ways that for the electric polariza-

tion. Thus a molecule can have a permanent magnetic moment and also a

moment induced by a magnetic field.

Corresponding to eq. (11.6), we have

B H + 4nI (11.15)

where B is the magnetic induction, H is the field strength, and / is the in-

tensity of magnetization or magnetic moment per unit volume. These

quantities are the magnetic counterparts of the electrical D, /?, and P. In a

vacuum B H, but otherwise B -= e'H, where t', the permeability, is the

magnetic counterpart of the dielectric constant F. Usually, however, mag-
netic properties are discussed in terms of

~
X (H.16)

where % is called the magnetic susceptibility per unit volume of the medium.

(Electric susceptibility would be P/E.)
The susceptibility per mole is %M - (M/p)x- The magnetig^fffialogue of

eq. (11. 13) is

(1U7)

where a is the induced moment and JUM is the permanent magnetic dipole

moment. Just as before, the two effects can be experimentally separated by

temperature-dependence measurements.

An important difference from the electrical case now appears, in that

> or XM> can be either positive or negative. If %M is negative, the medium
is called diamagnetic; if %M is positive, it is called paramagnetic. For iron,

nickel, and certain alloys, %M is positive and much larger than usual, by a

factor of about a million. Such substances are called ferromagnetic. From

eq. (11.15) it can be seen that the magnetic field in diamagnetic substances

is weaker than in a vacuum, whereas in paramagnetic substances it is

stronger.

An experimental measurement of susceptibility can be made with the

magnetic balance. The specimen is suspended so that it is partly inside and

partly outside a strong magnetic field. When the magnet is turned on, a

paramagnetic substance tends to be drawn into the field region, a dia-

magnetic tends to be pushed out of the field. From the weight required to

restore the original balance point, the susceptibility is calculated.
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The phenomenon of diamagnetism is the counterpart of the distortion

polarization in the electrical case. The effect is exhibited by all substances

and is independent of the temperature. A simple interpretation is obtained

if one imagines the electrons to be revolving around the nucleus. If a mag-
netic field is applied, the velocity of the moving electrons is changed, pro-

ducing a magnetic field that, in accordance with Lenz's Law, is opposed in

direction to the applied field. The diamagnetic susceptibility is therefore

always negative.

When paramagnetism occurs, the diamagnetic effect is usually quite over-

shadowed, amounting to only about 10 per cent of the total susceptibility.

Paramagnetism is associated with the orbital angular momentum and the

spin of uncoupled electrons, i.e., those that are not paired with others having

equal but opposite angular momentum and spin.

An electron revolving in an orbit about the nucleus is like an electric

current in a loop of wire, or a turn in a solenoid. The resultant magnetic
moment is a vector normal to the plane of the orbit, and proportional to

the angular momentum p of the revolving electron. In the MKS system of

units (charge in coulombs) the magnetic moment is (e/2m)p (weber meters).
14

Since p can have only quantized values, m^l-n, where m
l
is an integer, the

allowed values of the magnetic moment are m^eh^nm). It is evident, there-

fore, that there is a natural unit of magnetic moment, eh/47rm. It is called the

Bohr magneton.
The ratio of magnetic moment to angular momentum is called the gyro-

magnetic ratio, R . For the orbital motion of an electron, Rg e/2m. The

spinning electron also acts as a little magnet. For electron spin, however,

R
g
= e/m. Since the intrinsic angular momentum of an electron can have

only quantized values %(h/2ir), the magnetic moment of an unpaired
electron is eh/fam, or one Bohr magneton.

In the case of molecules, only the contributions due to spin are very

important. This is true because there is a strong internal field within a mole-

cule. In a diatomic molecule, for example, this field is directed along the

internuclear axis. This internal field holds the orbital angular momenta of

the electrons in a fixed orientation. They cannot line up with an external

magnetic field, and thus the contribution they would normally make to the

susceptibility is ineffective. It is said to be quenched. There remains only the

effect due to the electron spin, which is not affected by the internal field.

Thus a measurement of the permanent magnetic moment of a molecule tells

us how many unpaired spins there are in its structure.

There have been many applications of this useful method,
15 of which

only one can be mentioned here. Let us consider two complexes of cobalt,

14 A derivation is given by C. A. Coulson, Electricity (New York: Interscience, 1951),

p. 91. In electrostatic units the magnetic moment is (e/2mc)p t
where c is the speed of light

i/i vacuo.
16 P. W. Selwood, Magnetochemistry (New York: Interscience, 1943).
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{Co(NH3)6} C13 and K 3{CoF6}. Two possible structures may be suggested for

such complexes, one covalent and one ionic, as follows:

3d 4s 4p Unpaired Spins

Covalent . 11 11 11 11 ft 11 ft ft ft

Ionic . . 11 t t t t .. 4

The hexammino complex is obviously covalent, but the structure of the

hexafluoro complex is open to question. It is found that the hexammino

complex has zero magnetic moment, whereas the {CoF6}
r̂

complex has a

moment of 5.3 magnetons. The structures can thus be assigned as follows:

NR,
H3N

Co

NFi,

NFL

C1= and

21. Nuclear paramagnetism. In addition to the magnetism due to the

electrons in an atom there is also magnetism due to the nuclei. We may
consider a nucleus to be composed of protons and neutrons, and both these

nucleons have intrinsic angular momenta or spins, and hence act as ele-

mentary magnets. In most nuclei these spins add to give a nonzero resultant

nuclear spin. It was first predicted that the magnetic moment of the proton
would be 1 nuclear magneton, ehl^-nM, where M is the proton mass. Actually,

however, the proton has a magnetic moment of 2.79245 nuclear magnetons,
and the neutron moment is -1.9135. The minus sign indicates that the

moment behaves like that of a negatively charged particle. Since M is almost

2000 times the electronic mass m, nuclear magnetic moments are less than

electronic magnetic moments by a factor of about 1000.

The existence of nuclear magnetism was first revealed in the hyperfine

structure of spectral lines. As an example consider the hydrogen atom, a

proton with one orbital electron. The nucleus can have a spin / i4, and

the electron can have a spin S = i. The nuclear and the electron spins can

be either parallel or antiparallel to each other, and these two different align-

ments will differ slightly in energy, the parallel state being higher. Thus the

ground state of the hydrogen atom will in fact be a closely spaced doublet,

and this splitting is observed in the atomic spectra of hydrogen, if a spectro-

graph of high resolving power is employed. The spacing between the two

levels, A -- hv, corresponds to a frequency v of 1420 megacycles. After the

prediction of the astrophysicist van der Hulst, an intense emission of radia-

tion at this frequency was observed from clouds of interstellar dust. The

study of this phenomenon is an important part of the rapidly developing

subject of radioastronomy, which is providing much information about

hitherto uncharted regions of our universe.
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If a nucleus with a certain magnetic moment is placed in a magnetic

field, we can observe the phenomenon of space quantization (see page 267).

The component of the moment in the direction of the field is quantized, and

for each allowed direction there will be a slightly different energy level. For

readily accessible magnetic fields, the* frequencies v A//i for transitions

between two such levels also lie in the microwave range of radio frequencies.

TEST TUBE
WITH SAMPLE

TRANSMITTER
COIL

Fig. 11.13. Simplified apparatus for basic nuclear magnetic resonance

experiment. (Drawing courtesy R. H. Varian.)

For example, at a field of 7050 gauss, the frequency for protons is 30 mega-

cycles. The earlier attempts to detect these transitions were unsuccessful,

but in 1946 E. M. Purcell and Felix Bloch independently developed the

method of nuclear magnetic resonance.

The principle of this method is shown in Fig. 11.13. The field H of the

magnet is variable from to 10,000 gauss. This field produces an equi-

distant splitting of the nuclear energy levels which arise as a result of space

quantization. The low-power radio-frequency transmitter operates at, for

example, 30 megacycles. It causes a small oscillating magnetic field to be

applied to the sample. This field induces transitions between the energy
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levels, by a resonance effect, when the frequency of the oscillating field equals

that of the transitions. When such transitions occur in the sample, the

resultant oscillation in magnetic field induces a voltage oscillation in the

receiver coil, which can be amplified and detected.

Figure 11.14 shows an oscillographic trace of these voltage fluctuations

over a very small range of magnetic fields (38 milligauss) around 7050

gauss, with ethyl alcohol as the sample. Note that each different kind of

proton in the molecule CH 3-CH2-OH appears at a distinct value of H. The

reason for this splitting is that the different protons in the molecule have a

slightly different magnetic environment, and hence a slightly different

CH 2

ETHYL ALCOHOL

OH

Fig. 11.14. Proton resonance under high resolution at 30 me and 7050 gauss.

Total sweep width 38 milligauss. Field decreases linearly from left to right.

resonant frequency. The areas under the peaks are in the ratio 3:2: 1,

corresponding to the relative number of protons in the different environments.

Each peak also has a fine structure. The structural information that can be

provided by this method is thus almost unbelievably detailed, and a new and

deep insight into the nature of the chemical bond is provided. Applications

have been made to problems ranging from isotope analysis to structure

determinations.

22. Electron diffraction of gases. One of the most generally useful methods

for measuring bond distances and bond angles has been the study of the

diffraction of electrons by gases and vapors. The wavelength of 40,000 volt

electrons is 0.06 A, about one-tenth the order of magnitude of interatomic

distances in molecules, so that diffraction effects are to be expected. The fact

that the electron beam and the electrons in the scattering atoms both are

negatively charged greatly enhances the diffraction.

On page 256 diffraction by a set of slits was discussed in terms of the

Huygens construction. In the same way, if a collection of atoms at fixed

distances apart (i.e., a molecule) is placed in a beam of radiation, each atom

can be regarded as a new source of spherical wavelets. From the interference

pattern produced by these wavelets, the spatial arrangement of the scatter-

ing centers can be determined. The experimental apparatus for electron
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diffraction is illustrated in Fig. 11.15. The type of pattern found is a series

of rings similar to those in Fig. 10.10 but somewhat more diffuse.

The electron beam traverses a collection of many gas molecules, oriented

at random to its direction. It is most interesting that maxima and minima

Fig. 11.15. Schematic diagram of electron diffraction apparatus.

are observed in the diffraction pattern despite the random orientation of the

molecules. This is because the scattering centers occur as groups of atoms

with the same definite fixed arrangement within every molecule. A collection

of individual atoms, e.g., argon gas, would give no diffraction rings. Diffrac-

tion by gases was treated theoretically (for X rays) by Debye in 1915, but

electron-diffraction experiments were not carried out till the work of Wierl

in 1930.

We can show the essential features of the diffraction theory by considering

the simplest case, that of a diatomic molecule. 16 The molecule is represented
in Fig. 11.16 with one atom A, at the origin, and the other B, a distance r

away. The electron beam enters along Y'A

and the diffracted beam, scattered through
an angle 0, is picked up at P on a photo-

graphic film, a distance R from the origin.

The angles a and
<f> give the orientation of

AB to the primary beam.

The interference between the waves

scattered from A and B depends on the

difference between the lengths of the paths
which they traverse. This path difference

is 6 - AP CB - BP. The difference in
Fig . n 16 Scattering of electrons

phase between the two scattered waves is by a diatomic molecule.

In order to add waves that differ in phase and amplitude, it is convenient

to represent them in the complex plane and to add vectorially.
17 In our case

we shall assume for simplicity that the atoms A and B are identical. Then the

resultant amplitude at P is A --= A -f /V"'
2^. A^ called the atomic scatter-

ing factor, depends on the number of electrons in the atom. The intensity of

18 The treatment follows that given by M. H. Pirenne, The Diffraction of X rays and

Electrons by Free Molecules (London: Cambridge, 1946), p. 7.

17 See Courant and Robbins, What Is Mathematics ?

(New York: Oxford, 1941), p. 94.
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radiation is proportional to the square of the amplitude, or in this case to

AA, the amplitude times its complex conjugate. Thus

A 2 /O I ZirioJ* i ,.27n<5/A\
^o v^ ~r c -re ;

- 2/* 2
( 1 + cos

-^- j
- 4^ 2 cos2

It is now necessary to express 6 in terms of r, /, 0, a, and
(/>.

This can

be done by referring to Fig. 11.16. We see first of all that CB -~ r sin a

sin
<f>.

Then BP VR2 + r2 2rR sin a sin (6 + </).
Since r is a few

Angstroms while R is several cm, r <; /?, so that r2 is negligible and the

square root can be expanded
18 to yield BP R r sin <x sin (0 -f- <).

Then we have 6 = AP CB #P r sin a [sin (0 + </>)
sin $ - 2r sin

0/2 sin a cos
[< + (0/2)].

In order to obtain the required formula for the intensity of scattering of

a randomly oriented group of molecules, it is necessary to average the

expression for the intensity at one particular orientation (a, <f>)
over all

possible orientations. The differential element of solid angle is sin a den
d<f>,

and the total solid angle of the sphere around AB is 4-rr. Hence the required

average intensity becomes

,
4^o

2 r r jo r L^ 2
\] , M

lav
~ cos 2

2-rr - sin - sin a cos + -
I sin a da. dd>

4n Jo Jo L A 2 \ 07 J

On integration,
19 fav

- 2 A 2 i\ +

A n

"' '

( 1L18)
47T .

where x = sin -

18 From the binomial theorem, (1 f x)
1

/
2 = 1 + x Jx

2 + . . . .

19 Let

/<,
= L L cos2 (A cos ft) dp sin a da.

IT > >

where

A = ~.
- sin - sin a and p $ -f 0/2

Then since cos2 p = (1 f cos 2/?)/2, we obtain

7- = VJo Jo (y + cos (2

where / is the Bessel function of order zero (see Woods, Advanced Calculus, p. 282). This

can now be integrated by introducing the series expansion of

2 (
"

I
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In Fig. 11.17, }\A is plotted against x, and the maxima and minima in

the intensity are clearly evident.

In a more complex molecule with atoms j, k (having scattering factors

Aj, A k) a distance r
)k apart, the resultant intensity would be

(11.19)

This is called the "Wierl equation." The summation must be carried out

over all pairs of atoms in the molecule.

5

4

C\j O "5

\~ 2

I

27T 67T 87T I07T

Fig. 11.17. Scattering curve for diatomic molecule plot of eq. (11.18).

In the case of the homonuclear diatomic molecule already considered,

eq. (1 1.19) becomes

sin AT22- A A A A Asi i/i j
-

-|- /i i/l 2
A A^ 4- A A

' ^12
Sm

Since ru =-- r22
=- 0, and (sin x)/x -> 1 as x > 0, and rl2

=- r21
=^

r, this

reduces to eq. (1 1.18).

23. Application of Wierl equation to experimental data. The scattering

angles of maximum intensity are calculated from the positions of the dark

rings on the picture and the geometry of the apparatus and camera. This

gives an experimental scattering curve, whose general form resembles that of

the theoretical curve shown in Fig. 11.17, although the positions of the

maxima depend, of course, on the molecule being studied. Then a particular

molecular structure is assumed and the theoretical scattering curve corre-

sponding to it is calculated from eq. (11.19). For example, in the benzene

structure there are three different carbon-carbon distances, six between ortho

positions, six between meta positions, and three between para positions.

Therefore the r
}k terms consist of 6rcc , 6(V3 rcc), and 3(2 rcc). The positions

where in our case x ~ 2B sin a, with B = (2wr/A) sin 6/2. The required integral is given in

Pierce's tables (No. 483) as

C* - r/i f
:

The series that results is that for (sin x)/x. (Pierce No. 772.)
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of hydrogen atoms are generally ignored because of their low scattering

power.
It is often sufficiently accurate to substitute the atomic number Z for the

atomic scattering factor A. For benzene, the Wierl equation would then

become

7(61) 6 sin xr 3 sin 2xr 6 sin A/3 xr

Z*
=
~~x7~

~
f

~~^x7~
+

^~Vlxr~~

This function is plotted for various choices of the parameter r, the inter-

atomic distance, until the best agreement with the experimental curve is

obtained. In other cases bond angles also enter as parameters to be adjusted

to obtain the best fit between the observed and calculated curves. It may be

noted that only the positions of the maxima and not their heights are used.

TABLE 11.3

THE ELECTRON DIFFRACTION OF GAS MOLECULES

Molecule

NaCl
NaBr
Nal

Bond Distance

(A)

Diatomic Molecules

Molecule

2.51 - 0.03

2.64 i_ 0.01

2.90 0.02

C1 2

Br2

Bond Distance

(A)

2.01 -b 0.03

2.28 0.02

2.65 0.10

Polyatomic Molecules

Molecule Configuration Bond Bond Distance

Some results of electron diffraction studies are collected in Table 11.3.

As molecules become more complieated, it becomes increasingly difficult to

determine an exact structure, since usually only a dozen or so maxima are

visible, which obviously will not permit the exact calculation of more than

five or six parameters. Each distinct interatomic distance or bond angle
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constitutes a parameter. It is possible, however, from measurements on

simple compounds, to obtain quite reliable values of bond distances and

angles, which may be used to estimate the structures of more complex
molecules.

Some interesting effects of resonance on bond distances have been

observed. For example, the C Cl distance in CH3C1 is 1.76 A but in

CH2=CHCi it is only 1.69 A. The shortening of the bond is ascribed to

resonance between the following structures:

Cl: Cl^

/' .. /
H2O=C and H2C C

\ \
H H

The C Cl bond in ethylene chloride is said to have about 18 per cent double

bond character.

24. Molecular spectra. Perhaps the most widely useful of all methods

for investigating molecular architecture is the study of molecular spectra. It

affords information about not only the dimensions of molecules but also the

possible molecular energy levels. Thus, other methods pertain to the ground
state of the molecule alone, but the analysis of spectra also elucidates the

nature of excited states.

It has been mentioned that the spectra of atoms consist of sharp lines,

and those of molecules appear to be made up of bands in which a densely

packed line structure is sometimes revealed under high resolving power.

Spectra arise from the emission or absorption of definite quanta of radia-

tion when transitions occur between certain energy levels. In an atom the

energy levels represent different allowed states for the orbital electrons. A
molecule too can absorb or emit energy in transitions between different

electronic energy levels. Such levels would be associated, for example, with

the different 'molecular orbitals discussed on pages 303-311. In addition

there are two other possible ways in which a molecule can change its energy

level, which do not occur in atoms. These are by changes in the vibrations

of the atoms within the molecule and by changes in the rotational energy of

the molecule. These energies, like the electronic, are quantized, so that only
certain distinct levels of vibrational and rotational energy are permissible.

In the theory of molecular spectra it is customary, as a good first approxi-

mation, to consider that the energy of a molecule can be expressed simply
as the sum of electronic, vibrational, and rotational contributions. Thus,

E - Zfelee -} vib + rot (11.20)

This complete separation of the energy into three distinct categories is not

strictly correct. For example, the atoms in a rapidly rotating molecule

are separated by centrifugal forces, which thus affect the character of the
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vibrations. Nevertheless, the approximation of eq. (11.20) suffices to

explain many of the observed characteristics of molecular spectra.

It will be seen in the following discussions that the separations between

electronic energy levels are usually much larger than those between vibra-

tional energy levels, which in turn are much larger than those between

rotational levels. The type of energy-level diagram that results is shown in

Fig. 1 1.18. Associated with each electronic level there is a series of vibrattonal

J'

J'

J'-

Fig. 11.18. Energy-level diagram for a molecule. Two electronic levels

A and B, with their vibrational levels (v) and rotational levels (J)

levels, each of which is in turn associated with a series of rotational levels.

The close packing of the rotational levels is responsible for the banded

structure of molecular spectra.

Transitions between different electronic levels give rise to spectra in the

visible or ultraviolet region; these are called electronic spectra. Transitions

between vibrational levels within the same electronic state are responsible

for spectra in the near infrared (< 20/^), called vibration-rotation spectra.

Finally, spectra are observed in the far infrared (> 20^) arising from transi-

tions between rotational levels belonging to the same vibrational level; these

are called pure rotation spectra.
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25. Rotational levels far-infrared spectra. The model of the rigid rotator,

described on page 189, may be used for the interpretation of pure rotation

spectra. The calculation of the allowed energy levels for such a system is a

straightforward problem in quantum mechanics. The SchrCdinger equation
in this case is very similar to that for the motion of the electron about the

nucleus in the hydrogen atom, except that for a diatomic molecule it is a

question of the rotation of two nuclei about their center of mass. We recall

that the rotation of a dumbbell model is equivalent to the rotation of the

reduced mass // at a distance r from the rotation axis. For a rigid rotator the

potential energy U is zero, so that the wave equation becomes

V ^0 (11.21)

Without too great difficulty this equation can be solved exactly.
20

It is

then found that the eigenfunction y is single valued, continuous, and finite,

as is required for physical meaning, only for certain values of the energy Ey

the allowed eigenvalues. These are

WA./10 _/(/+!)
trai

'

fcrV* ~~"M*r ( }

Here / is the moment of inertia of the molecule and the rotational quantum
number J can have only integral values, 0, 1,2, 3, etc.

The value of J gives the allowed values of the rotational angular momen-

tum
/?,

in units of h/2n: p =-- (h/27r)Vj(J + 1) ^ (h/2n) J. This is exactly

similar to the way in which the quantum number / in the hydrogen-atom

system, and the corresponding A in molecules, determine the orbital angular
momenta of electrons.

The selection rule for rotational levels is found to be A/ = or 1.

Thus an expression for AE for the rigid-rotator model is readily derived

from eq. (11.22). Writing B =--
h/Kir'*!, we obtain for two levels with

quantum numbers J and J': A ^ hv hB[J(J f 1) -J \J' + I)]. Since

v -= (A//0, and7 -J' = 1,

v = 2fl/ (11.23)

The spacing between energy levels increases linearly with 7, as shown in

Fig. 11.18. The absorption spectra due to pure rotation arise from transitions

from each of these levels to the next higher one. By means of a spectrograph

of good resolving power, the absorption band will be seen to consist of a

series of lines spaced an equal distance apart. From eq. (11.23) this spacing

is AT --- v v ----- 2B.

Pure rotation spectra occur only when the m9lecule possesses a permanent

20 K. S. Pitzer, Quantum Chemistry (New York: Prentice-Hall, 1953), p. 53. An

approximate formula is obtained directly from the Bohr hypothesis that the angular
momentum is quantized in units of h/2ir. Thus /co = Jh/2*, and the kinetic energy

rV.
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dipole moment. This behavior has been elucidated by quantum mechanical

arguments, but it can be understood also in. terms of the classical picture

that radiation is produced when a rotating dipole sends out into space a

train of electromagnetic waves. If a molecule has no dipole, its rotation

cannot produce an alternating electric field.

We have discussed only the problem of the diatomic rotator. The rota-

tional energy levels of polyatomic molecules are considerably more complex,
but do not differ much from the diatomic case in the principles involved.

26. Internuclear distances from rotation spectra. The analysis of rotation

spectra can give accurate values of the moments of inertia, and hence inter-

nuclear distances and shapes of molecules. Let us consider the example of

HC1.

Absorption by HC1 has been observed in the far infrared, around

A = 50 microns or v --= 200cm"1
. The spacing between successive lines is

A/ 20.1 to 20.7 cm"1
. Analysis shows that the transition from / = to

J 1 corresponds to a wave number of v' I/A
= 20.6 cm"1

. The frequency
is therefore

v - ~ - (3.00 x 1010)(20.6) - 6.20 x 1011 sec'1

A

The first rotational level, / = 1, lies at an energy of

hv - (6.20 x 10U)(6.62 x 10~27) - 4.10 x 10~15
erg

Fromeq. (11.22),

=
1^=4.10X10-

so that /= 2.72 x 10-40 gcm2

Since / ---
jur

2
,
where // is the reduced mass, we can now determine the inter-

nuclear distance r. For HC1,

72 x i()-40 \ 1/2

(2l

27. Vibrational energy levels. Investigations in the far infrared are difficult

to make, and a much greater amount of useful information has been obtained

from the near-infrared spectra, arising from transitions between different

vibrational energy levels.

The simplest model for a vibrating molecule is that of the harmonic

oscillator, whose potential energy is given by U -=
J/cjt

2
,
the equation of a

parabola. The Schrftdinger equation is therefore:

=
(11.24)
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The solution to this equation can be obtained exactly by quite simple
methods. 21 The result has already been mentioned as a consequence of

uncertainty-principle arguments (page 275), being

vib
=

( + i)** (11.25)

The energy levels are equally spaced, and the existence of a zero point energy,

EQ ~=
\hv$ when v = 0, will be noted. The selection rule for transitions

between vibrationai energy levels is found to be Ai? i I .

Actually, the harmonic oscillator is not a very good model for molecular

vibrations except at low energy levels, near the bottom of the potential-

energy curve. It fails, for example, to represent the fact that a molecule may
dissociate if the amplitude of vibration becomes sufficiently large. The sort

of potential-energy curve that should be used is one like that pictured for

the hydrpgen molecule in Fig. 1 1.2 on page 298.

Two heats of dissociation may be defined by reference to this curve. The

xpectroscopic heat of dissociation, De ,
is the height from the asymptote to the

minimum. The chemical heat ofdissociation, Z)
, is measured from the ground

state of the molecule, at v = 0, to the onset of dissociation. Therefore,

De
= + !Av (11-26)

In harmonic vibration the restoring force is directly proportional to the

displacement r. The potential-energy curve is parabolic and dissociation can

never take place. Actual potential-energy curves, like that in Fig. 1 1.2, corre-

spond to anharmonic vibrations. The restoring force is no longer directly

proportional to the displacement. The force is given by dU/dr, the slope

of the potential curve, and this decreases to zero at large values of r, so that

dissociation can occur as the result of vibrations of large amplitude.
The energy levels corresponding to an anharmonic potential-energy curve

can be expressed as a power series in (v f- i),

vib
= hv[(v \ 1)

- xe(v + i)
2 + yf(v + I)

3 -
. . .] (1 1.27)

Considering only the first anharmonic term, with anharmonicitv constant, xe :

vib MM |) -/iwt,(r f i)
2

(11.28)

The energy levels are not evenly spaced, but lie more closely together as the

quantum number increases. This fact is illustrated in the levels superimposed
on the curve in Fig. 1 1 .2. Since a set of closely packed rotational levels is

associated with each of these vibrationai levels, it is sometimes possible to

determine with great precision the energy level just before the onset of the

continuum, and so to calculate the heat of dissociation from the vibration-

rotation spectra.

As an example of near-infrared spectra, let us consider some observations

with hydrogen chloride. There is an intense absorption band at 2886cm"1
.

21
Pauling and Wilson, he. cit., p. 68. A student might well study this as a typical

quantum mechanical problem, since it is about the simplest one available.
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This arises from transitions from the state with v = to that with v = 1, or

Ay = +1. In addition, there are very much weaker bands at higher fre-

quencies, corresponding to Ai? =-= +2, +3, . . . etc., which are not com-

pletely ruled out for an anharmonic oscillator.

For the v = 1 band in HCl, we have, therefore,

v = (2886) x 3 x 1010 - 8.65 x 1013 sec"1

as the fundamental vibration frequency. This is about one hundred times the

rotation frequency found from the far-infrared spectra.

The force constant of a harmonic oscillator with this frequency, from

eq. (10.2), would be K --=-- 4n*v2
p = 4.81 x 105 dynes per cm. If the chemical

bond is thought of as a spring, the force constant is a measure of its tightness.

Potential-energy curves of the type shown in Fig. 11.2 are so generally

useful in chemical discussions that it is most convenient to have an analytical

expression for them. An empirical function that fits very well is that suggested

by P. M. Morse:

I/- D,(l *-'-'>)* (11.29)

Here /?
is a constant that can be evaluated in terms of molecular parameters

as ft
- v V2n*[i/De .

28. Microwave spectroscopy. Microwaves are those with a wavelength in

or around the range from 1 mm to 1 cm. Their applications were rapidly

advanced as a result of wartime radar research. In recent years, radar tech-

niques have been applied to spectroscopy, greatly extending the accuracy
with which we can measure small energy jumps within molecules.

In ordinary absorption spectroscopy, the source of radiation is usually a

hot filament or high-pressure gaseous-discharge tube, giving in either case a

wide distribution of wavelengths. This radiation is passed through the

absorber and the intensity of the transmitted portion at diffeient wavelengths
is measured after analysis by means of a grating or prism. In microwave

spectroscopy, the source is monochromatic, at a well defined single wave-

length which can, however, be rapidly varied (fiequency modulation). It is

provided by an electronically controlled oscillator employing the recently

developed klystron or magnetron tubes. After passage through the cell con-

taining the substance under investigation, the microwave beam is picked up

by a receiver, often of the crystal type, and after suitable amplification is fed

to a cathode-ray oscillograph acting as detector or recorder. The resolving

power of this arrangement is 100,000 times that of the best infrared grating

spectrometer, so that wavelength measurements can be made to seven

significant figures.

One of the most thoroughly investigated of microwave spectra has been

that of the "umbrella" inversion of the ammonia molecule, the vibration in

which the nitrogen atom passes back and forth through the plane of the

three hydrogen atoms. The rotational fine structure of this transition has

been beautifully resolved, over 40 lines having been catalogued for 14NH3



Sec. 29] THE STRUCTURE OF MOLECULES 337

and about 20 for 15NH3 . Such measurements provide an almost embarrassing
wealth of experimental data, permitting the construction of extremely detailed

theories for the molecular energy levels.

Pure rotational transitions in heavier molecules are inaccessible to ordi-

nary infrared spectroscopy because, in accord with eq. (11.22), the large
moments of inertia would correspond to energy levels at excessively long,

wavelengths. Microwave techniques have made this region readily accessible.

From the moments of inertia so obtained, it is possible to calculate inter-

nuclear distances to better than _t0.002 A. A few examples are shown in

Table 11.4.

TABLE 11.4

INTERNUCIEAR DISTANCES FROM MICROWAVE SPECTRA

By observing the spectra under the influence of an electric field (Stark

effect) the dipole moments of gas molecules can be accurately determined.

Microwave measurements also afford one of the best methods for finding

nuclear spins.

29. Electronic band spectra. The energy differences A between electronic

states in a molecule are in general much larger than those between successive

vibrational levels. Thus the corresponding electronic band spectra are

observed in the visible or ultraviolet region. The A's between molecular

electronic levels ape usually of the same order of magnitude as those between

atomic energy levels, ranging therefore from 1 to 10 ev.

In Fig. 11.19 are shown the ground state of a molecule (Curve A), and

two distinctly different possibilities for an excited state. In one (Curve B),

there is a minimum in the potential energy curve, so that the state is a stable

configuration for the molecule. In the other (Curve C), there is no minimum,
and the state is unstable for all internuclear separations.

A transition from ground state to unstable state would be followed

immediately by dissociation of the molecule. Such transitions give rise to

a continuous absorption band in the observed spectra. Transitions between

different vibrational levels of two stable electronic states also lead to a band

in ihe spectra, but in this case the band can be analyzed into closely packed
lines corresponding to the different upper and lower vibrational and rota-

tional levels. The task of the spectroscopist is to measure the wavelengths of

the various lines and interpret them in terms of the energy levels from which
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they arise. There is obviously a wealth of experimental data here, which

should make possible a profound knowledge of the structure of molecules.

There is a general rule, known as the Franck-Condon principle, which is

helpful in understanding electronic transitions. An electron jump takes place

very quickly, much more quickly than the period of vibration of the atomic

nuclei (~ 10~13
sec), which are heavy and sluggish compared with electrons.

It can therefore be assumed that the positions and velocities of the nuclei are

virtually unchanged during transitions,
22 which can thus be represented by

vertical lines drawn on the potential energy curves, Fig. 11.19.

Fig. 11.19. Transitions between electronic levels in molecules.

By applying the Franck-Condon principle it is possible to visualize how
transitions between stable electronic states may sometimes give rise to dis-

sociation. For example, in Curve A of Fig. 11.19, the transition XX' leads

to a vibrational level in the upper state that lies above the asymptote to the

potential energy curve. Such a transition will lead to dissociation of the

molecule.

If a molecule dissociates from an excited electronic state, the fragments

formed, atoms in the diatomic case, are not always in their ground states.

In order to obtain the heat of dissociation into atoms in their ground states,

it is therefore necessary to subtract the excitation energy of the atoms. For

22
It may be noted that the vertical line for an electronic transition is drawn from a

point on the lower curve corresponding with the midpoint in the internuclear vibration.

This is done because according to quantum mechanics the maximum in \p in the ground
state lies at the mid-point of the vibration. This is not true in higher vibrational states,

for which the maximum probability lies closer to the extremes of the vibration. Classical

theory predicts a maximum probability at the extremes of the vibration.
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example, in the ultraviolet absorption spectrum of oxygen there is a series

of bands corresponding to transitions from the ground state to an excited

state. These bands converge to the onset of a continuum at 1759 A, equiva-
lent to 7.05 ev. The two atoms formed by the dissociation are found to be

a normal atom (3P state) and an excited atom (1 D state). The atomic spec-

trum of oxygen reveals that this 1 D state lies 1 .97 ev above the ground state.

Thus the heat of dissociation of molecular oxygen into two normal atoms

(O2
- 2 O (3P) ) is 7.05 - 1 .97 - 5.08 ev or 1 17 kcal per mole.

30, Color and resonance. The range of wavelengths from the red end of

the visible spectrum at 8000 A to the near ultraviolet at 2600 A corresponds
with a range of energy jumps from 34 to 1 14 kcal per mole/ A compound
with an absorption band in the visible or near ultraviolet must therefore

possess at least one electronic energy level from 34 to 114 kcal above the

ground level. This is not a large energy jump compared with the energy of

binding of electrons in an electron pair bond. It is therefore not surprising

that most stable chemical compounds are actually colorless. In fact, the

appearance of color indicates that one of the electrons in the structure is

loosely held and can readily be raised from the ground molecular orbital to

an excited orbital.

For example, molecules containing an unpaired electron (odd molecules

and free radicals) are usually colored (NO2 ,
CIO2 , triphenylmethyl, etc.).

Groups such as NO2 , C==O, or N N often confer color on a mole-

cule since they contain electrons, in 7r-type orbitais, that are readily raised

to excited orbitais.

In other cases, resonance gives rise to a series of low-lying excited levels.

The ground state in the benzene molecule can be assigned an orbital written

as yA + yRy where A and B denote the two Kekule structures shown on

page 311. The first excited state is then y>A yB . This state lies 115 kcal

above the ground level, and the excitation of an electron into this state is

responsible for the near-ultraviolet absorption band of benzene around

2600 A.

In a series of similar molecules such as benzene, naphthalene, anthracene,

etc., the absorption shifts toward longer wavelength as the molecule becomes

longer. The same effect is observed in the conjugated polyenes; butadiene

is colorless but by the time the chain contains about twelve carbon atoms,

the compounds are deeply colored. This behavior can be explained in terms

of the increasing delocalization of the ^-electrons as the length of the mole-

cule increases. Let us recall the simple expression for the energy levels of an

electron in a box, eq. (10.39), En
= /zV/8m/

2
, where /is the length of the box.

In a transition from n^ to n2 the energy jump is (/i
2
/8m/

2
) (nf w2

2
). Thus

not only the value of the energy but also the size of the energy jump falls

markedly with increasing /. Now the molecular orbitals in organic molecules

are of course not simple potential boxes, but the situation is physically very

similar. Anything that increases the space in which the 7r-electron is free to
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move tends to decrease the energy gap between the ground state and excited

states, and shifts the absorption toward the red.

Most dyes have structures that consist of two resonating forms. For

instance, the phenylene blue ion is

/ vw v +NH NH2

In this and similar cases, the transition responsible for the color can be

ascribed to an electron jump between a yA + y>B anc* a
y>A yB orbital.

31. Raman spectra. If a beam of light is passed through a medium, a

certain amount is absorbed, a certain amount transmitted, and a certain

N

Fig. 11.20. Raman spectrum of O2 excited by Hg 2537-A line. (From Herzberg,
Molecular Spectra and Molecular Structure, Van Nostrand, 1950.)

amount scattered. The scattered light can be studied by observations per-

pendicular to the direction of the incident beam. Most of the light is scattered

without change in wavelength (Rayleigh scattering); but there is in addition

a small amount of scattered light whose wavelength has been altered. If the

incident light is monochromatic, e.g., the Na D line, the scattered spectrum
will exhibit a number of faint lines displaced from the original wavelength.
An example is shown in Fig. 11.20.

This effect was first observed by C. V. Raman and K. S. Krishnan in

1928. It is found that the Raman displacements, Av, are multiples of vibra-

tional and rotational quanta characteristic of the scattering substance. There

are therefore rotational and vibration-rotational Raman spectra, which are

the counterparts of the ordinary absorption spectra observed in the far and

near infrared. Since the Raman spectra are studied with light sources in the

visible or ultraviolet, they provide a convenient means of obtaining the same

sort of information about molecular structure as is given by the infrared

spectra. In many cases, the two methods supplement each other, since vibra-

tions and rotations that are not observable in the infrared (e.g., from mole-

cules without permanent dipoles) may be active in the Raman.
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32. Molecular data from spectroscopy. Table 1 1.5 is a collection of data

derived from spectroscopic observations on a number of molecules.

TABLE 11.5

SPECTROSCOPIC DATA ON THE PROPERTIES OF MOLECULES*

Diatomic Molecules

Triatomic Molecules

* From G. Herzberg, Molecular Spectra and Molecular Structure, Vols. I and II (New York: D. Van Nostrand
Co., 1950).

In this chapter we have not discussed the spectra of polyatomic molecules,

one of the most active branches of modern spectroscopy. It is possible, how-

ever, to evaluate moments of inertia and vibration frequencies for polyatomic
molecules by extensions of the methods described for diatomic molecules.

Generally the high-frequency vibrations are those that stretch the bonds, and

the lower frequencies are bond-bending vibrations.

It is often possible to characterize a given type of chemical bond by a

bond vibration frequency, which is effectively constant in a large number of

different compounds. For example, the stretching frequency of the O-O
bond is 1706 in acetone, 1715 in acetaldehyde, 1663 in actetic acid, and

1736 in methyl acetate.

The approximate constancy of these bond or groupfrequencies is the basis

for the widespread application of infrared spectroscopy to the structure

H^termination r\f* n<\i/ /"\ranir rrmnnnHc anrl th* HftnilpH cnPftrilTTI nrOV1flP.<5
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a method for characterizing a new compound which is as reliable as

the finger-printing of a suspect citizen. Some typical bond frequencies are

summarized in Table 1 1 .6.

TABLE 11.6

BOND-FREQUENCY INTERVALS FOR INFRARED SPECTRA OF GASES*

Group

H--<

H N<

H C=C<
I

H S
N^C
c-c

Frequency Interval

3500-3700

3300-3500
3300-3400

3000-3100

2550-2650
2200-2300
2170-2270

* After B. Bak, Elementary Introduction to Molecular Spectra (Amsterdam: North
Holland Publ. Co., 1954).

33. Bond energies. In discussions of structure, thermodynamics, and

chemical kinetics, it is often necessary to have some quantitative information

about the strength of a certain chemical bond. The measure of this strength

is the energy necessary to break the bond, the so-called bond energy. The

energy of a bond between two atoms, A B, depends on the nature of the

rest of the molecule in which the bond occurs. There is no such thing as a

strictly constant bond energy for A B that persists through a varied series

TABLE 11.7

BOND ENERGIES (KCAL/MOLE)



Sec. 33] THE STRUCTURE OF MOLECULES 343

of compounds. Nevertheless, it is possible to strike an average from which

actual A B bonds do not deviate too widely.

Pauling has reduced a large amount of experimental data to a list of

normal covalent single-bond energies.
23 If the actual bond is markedly

polarized (partial ionic character), or if through resonance it acquires some

double-bond character, its energy may be considerably higher than the norm.

Values from a recent compilation
24 are given in Table 1 1 .7. These values

are obtained by a combination of various methods: (1) spectroscopy, (2)

thermochemistry, and (3) electron impact. The electron impact method

employs a mass spectrometer and gradually increases the energy of the

electrons from the ion gun until the molecule is broken into fragments.
An instance of the application of thermochemical data is the following

determination of the O H bond strength :

H2
~ 2 H AH = 103.4 kcal (spectroscopic)

O2
= 2 O AH 1 18.2 (spectroscopic)

H2 f- * O2
-= H2 AH - - 57.8 (calorimetric)

2 H + O = H2O AH - 220.3

This is A// for the formation of 2 O H bonds, so that the bond strength is

taken as 220.3/2 - 110 kcal.

PROBLEMS

1. Write down possible resonance forms contributing to the structures of

the following: CO2 ,
CH3COO-, CH2.CH-CH:CH 2 , CH3NO2 , C6H5C1,

C6H5NH2 , naphthalene.

2. On the basis of molecular orbital theory, how would you explain the

following? The binding energy of N2
4 is 6.35 and that of N2 7.38 ev, whereas

the binding energy of O2
+

is 6.48 and that of O2 , 5.08 ev.

3. The following results are found for the dielectric constant e of gaseous
sulfur dioxide at 1 atm as a function of temperature:

K 267.6 297.2 336.9 443.8

e . 1.009918 1.008120 1.005477 1.003911

Estimate the dipole moment of SO2 , assuming ideal gas behavior.

4. M. T. Rogers
25 found the following values for the dielectric constant e

and density p of isopropyl cyanide at various mole fractions X in benzene

solution at 25C:

X . . . 0.00301 0.00523 0.00956 0.01301 0.01834 0.02517

e . . . 2.326 2.366 2.442 2.502 2.598 2.718

P . . . 0.87326 0.87301 0.87260 0.87226 0.87121 0.87108

For pure C3H 7NC, p = 0.7'6572, refractive index nD = 1.3712; for pure

23 For a full discussion: L. Pauling, op. cit., p. 53.
24 K. S. Pitzer, J. Am. Chem. Soc., 70, 2140 (1948).
26 J. Am. Chem. Soc.> 69, 457 (1947).
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benzene, p 0.87345, nD -=- 1.5016. Calculate the dipole moment /i of

isopropyl cyanide.

5. Chlorobenzene has /t
-- 1.55 d, nitrobenzene //

= 3.80 d. Estimate the

dipole moments of: metadinitrobenzene, orthodichlorobenzene, metachloro-

nitrobenzene. The observed moments are 3.90, 2.25, 3.40 d. How would you

explain any discrepancies?

6. The angular velocity of rotation o> 27rvrot where vroi is the rotation

frequency of a diatomic rotor. The angular momentum is (h/27r)Vj(J | 1).

Calculate the rotation frequency of the HC1 molecule for the state with

/ --=--- 9. Calculate the frequency of the spectral line corresponding to the

transition J ^ 9 to / - 8.

7. In the far infrared spectrum of HBr is a series of lines having a separa-

tion of 16.94cm *. Calculate the moment of inertia and the internuclear

separation in HBr from this datum.

8. In the near infrared spectrum of carbon monoxide there is an intense

band at 2144cm" 1
. Calculate (a) the fundamental vibration frequency of

CO; (b) the period of the vibration; (c) the force constant; (d) the zero-point

energy of CO in cal per mole.

9. Sketch the potential-energy curve for the molecule Li2 according to

the Morse function, given D - 1.14 ev, v ~- 351.35 cm"1
, rf 2.672 A.

10. The Schumann-Runge bands in the ultraviolet spectrum of oxygen

converge to a well defined limit at 1759 A. The products of the dissociation

are an oxygen atom in the ground state and an excited atom. There are two

low-lying excited states of oxygen,
1 D and 1S at 1.967 and 4.190 volts above

the ground state. By referring to the dissociation data in Table 4.4, page 81,

decide which excited state is formed, and then calculate the spectroscopic

dissociation energy of O2 into two O atoms in the ground state.

11. In a diffraction investigation of the structure of CS2 with 40-kv

electrons, Cross and Brockway
26 found four sharp maxima ( f+) each

followed by a weak maximum ( 4 ) and a deep minimum ( ), at the following
values of 4-77/A (sin 0/2)

4.713 6.312 7.623 8.698 10.63 11.63 12.65 14.58 15.54 16.81

I f- -I -I \ \- -f
- -}-+ 4- + +

CS2 is a linear molecule. Calculate the C S distance from these data,

using the approximation that the scattering factor is equal to the atomic

number Z.

12. With data from Table 11.5, draw to scale the first five rotational

levels in the molecule NaCl. At what frequency would the transition J = 4

to75 be observed? In NaCl vapor at 1000C what would be the relative

numbers of molecules in the states with J = 0, J = 1, and J = 2.

*
J. Chem. Phys., 3, 821 (1935).
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13. In ions of the first transition series, the paramagnetism is due almost

entirely to the unpaired spins, being approximately equal to
/* 2v

/

S(S -f- 1 )

magnetons where S is the total spin. On this basis, estimate // for K13
, Mn f 2

,

Co+ 2
, and Cu+.
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CHAPTER 12

Chemical Statistics

1. The statistical method. If you take a deck of cards, shuffle it well, and

draw a single card at random, it is not possible to predict what the card will

be, unless you happen to be a magician. Nevertheless, a -number of significant

statements can be made about the result of the drawing. For example: the

probability of drawing an ace is one in thirteen
;
the probability of drawing

a spade is one in four; the probability of drawing the ace of spades is one in

fifty-two. Similarly, if you were to ask an insurance company whether a

certain one of its policyholders was going to be alive 10 years from now, the

answer might be: "We cannot predict the individual fate of John Jones, but

our actuarial tables indicate that the chances are nine out of ten that he will

survive."

We are familiar with many statements of this kind and call them "statisti-

cal predictions." In many instances it is impossible to foretell the outcome

of an individual event, but if a large number of similar events are considered,

a statement based on probability laws becomes possible. An example from

physics is found in the disintegration of radioactive elements. No one can

determine a priori whether an isolated radium atom will disintegrate within

the next 10 minutes, the next 10 days, or the next 10 centuries. If a milligram
of radium is studied, however, we know that very close to 2.23 x 1010 atoms

will explode in any 10-minute period.

Some applications of statistical principles to chemical systems were dis-

cussed in Chapter 7. It was pointed out that since the atoms and molecules

of which matter is composed are extremely small, any large-scale body con-

tains an enormous number of elementary particles. It is impossible to keep
track of so many individual particles. Any theory that attempts to interpret

the behavior of macroscopic systems in terms of atoms and molecules must

therefore rely heavily on statistical considerations. But just because a system
does contain so very many particles, its actual behavior will be practically

indistinguishable from.that predicted by statistics. If a man tossed 10 coins,

the result might deviate widely from 50 per cent heads; if he tossed a thous-

and, the percentage deviation would be fairly small; but if some tireless

player were to toss 1023 coins, the result would be to all intents and purposes

exactly 50 per cent heads.

We have seen already that from the molecular-kinetic point of view the

Second Law of Thermodynamics is a statistical law. It expresses the drive

toward randomness or disorder in a system containing a large number of

particles. Applied to an individual molecule it has no meaning, for in this

347
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case any distinction between heat (disordered energy) and work (ordered

energy) disappears. Even for intermediate cases, such as colloidal particles

in Brownian motion, the Second Law is inapplicable, since the particles

contain only about 106 to 109 atoms.

Now that the structures and energy levels of atoms and molecules have

been considered, in Chapters 8 through 11, it is possible to see how the

behavior of macroscopic systems is determined by these atomic and mole-

cular parameters. We shall confine our attention to systems in equilibrium,

which are usually treated by thermodynamics. This is not, however, a necessary

restriction for the statistical method, which is competent to handle also

situations in which the system is changing with time. These are some-

times called "rate processes," and include transport phenomena, such as

diffusion and thermal conductivity, as well as the kinetics of chemical

reactions.

Statistical thermodynamics is still a very young science, and many funda-

mental problems remain to be solved. Thus the only systems that have been

treated at all accurately are ideal gases and perfect crystals. Imperfect gases

and liquids present unsurmounted difficulties.

2. Probability of a distribution. The discussion of statistical thermo-

dynamics upon which we are embarking will not be distinguished for its

mathematical precision, nor will any attempt be made to delve into the

logical foundations of the subject.
1

The general question to be answered is this: given a macroscopic physical

system, composed of molecules (and/or atoms), and knowing from quantum
mechanics the allowed energy states for these molecules, how will we dis-

tribute the large number of molecules among the allowed energy levels? The

problem has already been discussed for certain special cases, the answers

being expressed in the form of "distribution laws," for example, the Maxwell

distribution law for the kinetic energies of molecules, the Planck distribution

law for the energies of harmonic oscillators. We wish now to obtain a more

general formulation.

The statistical treatment is based on an important principle: the most

probable distribution in a system can be taken to be the equilibrium dis-

tribution. In a system containing a very large number of particles, deviations

from the most probable distribution need not be considered in defining the

equilibrium condition. 2

We first require an expression for the probability P of a distribution.

Then the expression for the maximum probability is obtained by setting the

variation of P equal to zero, subject to certain restraining conditions imposed
on the system.

1 For such treatments, see R. H. Fowler and E. A. Guggenheim, Statistical Thermo-

dynamics (London: Cambridge, 1939); and R. C. Tolman, Statistical Mechanics (New
York: Oxford, 1938).

a See J. E. Mayer and M. Mayer, Statistical Mechanics (New York: Wiley, 1940), for

a good discussion of this point.
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The method of defining the probability may be illustrated by an example
that is possibly familiar to some students, the rolling of dice. The probability
of rolling a certain number n will be defined as the number of different ways
in which n can be obtained, divided by the total number of combinations

that can possibly occur. There are six faces on each of two dice so that the

total number of combinations is 62 36. There is only one way of rolling

a twelve; if the dice are distinguished as a and b y this way can be designated
as a(6) b(6). Its probability P(\2) is equal to one in 36. For a seven, there

are six possibilities:

a(6)-b(\) a(l)-b(6)

a(5)-b(2) a(2)~b(5)

a(4)-b(3)

Therefore, P(7) = H\ =-
J.

Just as with the dice, the probability of a given distribution of molecules

among energy levels could be defined as the number of ways of realizing the

particular distribution divided by the total number of possible arrangements.
For a given system, this total number is some constant, and it is convenient

to omit it from the definition of the probability of the system. The new

definition therefore is: the probability of a distribution is equal to the

number of ways of realizing the distribution.

3. The Boltzmann distribution. Let us consider a system that has a total

energy E and contains n identical particles. Let us assume that the allowed

energy levels for the particles (atoms, molecules, etc.) are known from

quantum mechanics and are specified as e
l9 2 , % " " '

K>
' ' ' etc - How will

the total energy E be distributed among the energy levels of the n particles?

For the time being, we shall assume that each particle is distinguishable

from all the others and that there are no restrictions on how the particles

may be assigned to the various energy levels. These assumptions lead to the

"classical" or Boltzmann distribution law. It will be seen later that this law

is only an approximation to the correct quantum mechanical distribution

laws, but the approximation is often completely satisfactory.

Now the n distinguishable particles are assigned to the energy levels in

such a way that there are nt in level e
l9
n2 in 2 ,

or in general nK in level eK .

The probability of any particular distribution, characterized by a particular

set of occupation numbers , is by definition equal to the number of ways of

realizing that distribution. Since permuting the particles within a given

energy level does not produce a new distribution, the number of ways of

realizing a distribution is the total number of permutations !, divided by
the number of permutations of the particles within each level, ^ ! n2 \ . . .nK ! . . .

The required probability is therefore

(.2..)
. nK \

N
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As an example of this formula, consider four particles a, b, c, d distributed

so that two are in e
l9 none in 2 and one ea h in a and 4- The possible

arrangements are as follows :

There are twelve arrangements as given by the formula [0!
=

1]:

,2
2!0! 1! 1! 2- 1 1 1

Note that interchanges of the two particles within level s
l are not significant.

Returning to eq. (12.1), the equilibrium distribution is the one for which

this probability is a maximum. The maximum is subject to two conditions,

the constancy of the number of particles and the constancy of the total

energy. These conditions can be written

= n

Y FI, nKeK - E
2 '2)

By taking the logarithm of both sides of eq. (12.1), the continued product
is reduced to a summation.

In In n\ nK l

The condition for a maximum in P is that the variation of P, and hence of

In P, be zero. Since In A?! is a constant,

Stirling's formula3 for the factorials of large numbers is

In n\ = n In n n

(12.3)

(12.4)

3 For derivation see D. Widder, Advanced Calculus (New York: Prentice-Hall, 1947),

f>.
317.
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Therefore eq. (12.3) becomes

^ 2 nK ^n nK ~ ^ ^ w^ =

or 2 In 77^^ -
(12.5)

The two restraints in eq. (12.2), since n and E are constants, can be

written

(5/2^2 (5 i,- =
AIT v ji n < 12 -6)oE ^= Z, GK onK

These two equations are multiplied by two arbitrary constants,
4 a and /?,

and added to eq. (12.5), yielding

S a a/i^ + S /?eA, a/ijr + Z\nnK SnK - (12.7)

The variations 6nK may now be considered to be perfectly arbitrary (the

restraining conditions having been removed) so that for eq. (12.7) to hold,

each term in the summation must vanish. As a result,

In nK + a f fteK ~

or nK -=e~*e-*** (12.8)

This equation has the same form as the Boltzmann distribution law

previously obtained and suggests that the constant ft equals \jkT. It could

have been calculated anew. Thus

nK ^ e -*e~*KlkT (12.9)

It is convenient at this point to make one extension of this distribution

law. It is possible that there may be more than one state corresponding with

the energy level eK . If this is so, the level is said to be degenerate and should

be assigned a statistical weight gK , equal to the number of superimposed
levels. The distribution law in this more general form is accordingly

e-**t
kT

(12.10)

The constant a is evaluated from the condition

ZnK = n

whence S e~ *gKe~ **lkT = n

Therefore eq. (12.10) becomes

-eKlkT"

* This is an application of Lagrange*s method of undetermined multipliers, the stan-

dard treatment of constrained maxima problems. See, for example, D. Widder, Advanced

Calculus, p. 113
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This is the Boltzmann distribution law in its most general form. The

expression 2 gKe~'*
lkT

*n ^e denominator of eq. (12. 1 1) is very important in

statistical mechanics. It is called the partition function, and will be denoted

by the symbol
-*** (12-12)

The average energy e of a particle is given by (see eq. 7.38)

=

or g = kT* (12.13)oT

4. Internal energy and heat capacity. It is now possible to make use of

the distribution law to calculate the various functions of thermodynamics.

Thermodynamics deals not with individual particles, but with large-scale

systems containing very many particles. The usual thermodynamic measure

is the mole, 6.02 x 1023 molecules.

Instead of considering a large number of individual particles, let us

consider a large number of systems, each containing a mole of the substance

being studied. The average energy of these systems will be the ordinary
internal energy E. We again use eq. (12.13), except that now a whole system
takes the place of each particle. If the allowed energies of the whole system
are El9 2, . . . EK , the average energy will be

Writing Z-S&t*-**'*
71

(12.14)

then, E = kT*--- (12.15)oT

We may call Z the molar partitionfunction to distinguish it from the molecular

partition function/. It is also called the sum-over-states

From eq. (12.15) the heat capacity at constant volume is

5T

5. Entropy and the Third Law. Equation (12.16) can be employed to

calculate the entropy in terms of the molar partition function Z. Thus :
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Integrating by parts, we find

5 = :

) +*r/ v *>o

T /a In Z
dT

E
T

(12.17)

In this equation, only 5 and \k lnZ| T=0 are temperature-independent
terms. The constant term, 5 , the entropy at the absolute zero, is therefore

5 = *lnZ| T. = *In ft (12.18)

Here gQ is the statistical weight of the Jowest possible energy state of the

system. Equation (12.18) is the statistical-mechanical formulation of the

Third Law of Thermodynamics.
If we consider, for example, a perfect crystal at the absolute zero, there

will usually be one and only one equilibrium arrangement of its constituent

atoms, ions, or molecules. In other words, the statistical weight of the lowest

energy state is unity: the entropy at 0K becomes zero. This formulation

ignores the possible multiplicity of the ground state due to nuclear spin. If

the nuclei have different nuclear-spin orientations, there will be a residual

entropy at 0K. In chemical problems such effects are of no importance,
since in any chemical reaction the nuclear-spin entropy would be the same

on both sides of the reaction equation. It is thus conventional to set 5 -=

for the crystalline elements and hence for all crystalline solids.

Many statistical calculations on this basis have been quantitatively

checked by experimental Third-Law values based on heat-capacity data.

Examples are given in Table 12.1.

TABLE 12.1

COMPARISON OF STATISTICAL (SPECTROSCOPIC) AND THIRD-LAW (HEAT-CAPACITY)
ENTROPIES
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In certain cases, however, it appears that even at absolute zero the

particles in a crystal may persist in more than one geometrical arrangement.
An example is crystalline nitrous oxide. Two adjacent molecules of N2O can

be oriented either as (ONN NNO) or as (NNO NNO). The energy difference

A between these alternative configurations is so slight that their relative

probability e
*EIRT

is practically unity even at low temperatures. By the time

the crystal has been cooled to the extremely low temperature at which even

a minute A might produce a reorientation, the rate of rotation of the

molecules within the crystal has become vanishingly slow. Thus the random

orientations are effectively "frozen." As a result, heat-capacity measure-

ments will not include a residual entropy SQ equal to the entropy of mixing
of the two arrangements. From eq. (3.42) this would amount to

5 - -R S X, In X, - R(\ In J + In i)
- R In 2 - 1.38 eu

It is found that the entropy calculated from statistics is actually larger by
1.14eu than the Third-Law value, which is within the experimental uncer-

tainty of iO.25 eu in SQ . A number of examples of this type have been

carefully studied. 5

If the substance at temperatures close to 0K is not crystalline, but a

glass, there is also a residual entropy owing to the randomness characteristic

of vitreous structures.

Another instance of a residual entropy of mixing at 0K arises from the

isotopic constitution of the elements. This effect can usually be ignored since

in most chemical reactions the isotopic ratios change very slightly.

As a result of this discussion, we shall set SQ
~- in eq. (12.18), obtaining

S ~+*lnZ (12.19)

6. Free energy and pressure. From the relation A = E TS and eqs.

(12.15) and (12.19), the work function becomes

A = -kT\nZ (12.20)

The pressure, @A/dV)T , is then

P = kT*^ (12.2.)

The Gibbs free energy is simply F = A -\- PV, and from AF the equi-

librium constants for a reaction can be calculated.

Expressions have now been obtained that enable us to calculate all

thermodynamic properties of interest, once we know how to evaluate the

molar partition function Z.

7. Evaluation of molar partition functions. The evaluation of the molar

partition function Z has not yet been accomplished for all types of systems,
which is of course hardly surprising, for the function Z contains in itself the

5 For the interesting case of ice, see L. Pauling, /. Am. Chem. Soc., 57, 2680 (1935).



Sec. 7] CHEMICAL STATISTICS 355

answer to all the equilibrium properties of matter. If we could calculate Z
from the properties of individual particles, we could then readily calculate

all the energies, entropies, free energies, specific heats, and so forth, that

might be desired.

In many cases, it is a good approximation to consider that EK , an energy
of the system, can be represented simply as the sum of energies EK of non-

interacting individual particles. This would be the case, for example, of a

crystal composed of independent oscillators, or of an almost perfect gas in

which the intermolecular forces were negligible. In such instances we can

write

EK ^ i(0 + 2(2) -I- *3(3) f . . . eN(N) (12.22)

This expression indicates that particle (1) occupies an energy level e
l9 particle

(2) an energy level F
2 , etc. Each different way of assigning the particles to

the energy levels determines <* distinct state of the system EK .

The molar partition function, or sum over the states EK , then becomes

(The statistical weights gK are omitted for convenience in writing the ex-

pressions.) The second summation must be taken over all the different ways
of assigning the particles to the energy levels EK . It can be rewritten as

e

Since each particle has the same set of allowed energy levels, this sum is

equal
6 to

(2 e
- 8*lkT

)
N

K
Thus we find that Z =--/*

The relation Z /'
v
applies to the case in which rearranging the particles

among the energy levels in eq. (12.22) actually gives rise to different states

that must be included in the summation for Z. This is the situation in a

perfect crystal, the different particles (oscillators) occupying distinct localized

positions in the crystal structure.

In the case of a gas, on the other hand, each particle is free to move

throughout the whole available volume. States in the gas that differ merely

*
It may be rather hard to see this equality at first. Consider therefore a simple case in

which there are only two particles (1) and (2) and two energy levels f
t and e

2 . The ways of

assigning the particles to the levels are:

i
=

i (0 Ma (2), 2
=

*i (2) + 2 (1), E* = i (1) t- FI (2),

The sum over states is:

Z = e-W* -f e-E*l*T 4- e
~

which is equal to

*lkT -f e~*

Now it is evident that this is identical with

f
n = (S*-**/**

1

)
1 = (e~*il

kT -f e-
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by the interchange of two particles are not distinguishable and should be

counted only once. If each level in eq. (12.22) contains only one particle,
7

the number of permutations of the particles among the levels is AH We there-

fore divide the expression for Z by this factor, obtaining for the ideal gas

case, Z -(!/#!)/*.
Thus the relations between /and Z in the two extreme cases are

Ideal crystals Z -/*
1 (12.23)

Ideal gases Z =
N J

N

Intermediate kinds of systems, such as imperfect gases and liquids, are much
more difficult to evaluate.

In proceeding to calculate the partition functions for an ideal gas, it is

convenient to make use of a simplifying assumption. The energy of a mole-

cule will be expressed as the sum of translational, rotational, vibrational, and

electronic terms. Thus
= ?trans + *rot +" fvlb + *elec (12.24)

It follows that the partition function is the product of corresponding terms,

/" ftr&nsfiotf\lbfelec (12.25)

The simplest case to be considered is that of the monatomic gas, in which

there are no rotational or vibrational degrees of freedom; except at very high

temperatures the electronic excitation is usually negligible.

8. Monatomic gases translational partition function. In Section 10-20 it

was shown that the translational energy levels for a particle in a one-

dimensional box are given by

The statistical weight of each level is unity, gn = 1. Therefore the molecular

partition function becomes

~*!*
ml

*}

The energy levels are so closely packed together that they can be considered

to be continuous, and the summation can be replaced by an integration,

7 When the volume is large and the temperature not very low, there will be many more

energy levels than there are particles. This will be evident on examination of eq. (10.39) for

the levels of a particle in a box. Since there is no housing shortage, there is no reason for the

particles to "double-up" and hence the assumption of single occupancy is a good one. For
a further discussion, see Tolman, he. cit., pp. 569-572.
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(12.26)

For three degrees of translational freedom this expression is cubed, and

since /
3

K, we obtain

(,2.27)

This is the molecular partition function for translation.

The molar partition function is

(12 28)
\

( }

The energy is therefore

This is, of course, the simple result to be expected from the equipartition

principle.

The entropy is evaluated from eq. (12.19), using the Stirling formula,

AM = (N/e)
N

. It follows that

Nlf

The entropy is therefore

(12.29)
ATT

This is the famous equation that was first obtained by somewhat un-

satisfactory arguments by Sackur and Tetrode (1913). As an example, let

us apply it to calculate the entropy of argon at 273.2K and at one atmosphere

pressure. Then

R = 1.98 cal per C 77 = 3.1416

* = 2.718 m-6.63 X 10"23 g

V = 22,414 cc k - 1.38 x 10~18 erg per C
# = 6.02 x 1023 7- 273.2

h = 6.62 x 10~27 ergsec
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On substituting these quantities into eq. (12.29), the entropy is found to

be 36.2 cal per deg mole.

9. Diatomic molecules rotational partition function. The energy levels

for diatomic molecules, according to the rigid-rotator model, were given by

eq. (11. 22) as

J(J_+ l)/r

fr<)t
^ "

~87T
2/

If the moment of inertia / is sufficiently high, these energy levels become so

closely spaced as to be practically continuous. This condition is, in fact,

realized for all diatomic molecules except H2 , HD, and D2 . Thus for F2 ,

/ - 25.3 x 10~40 gcm2
; for N2 ,

13.8 x lO^40
;
but for H2 , / - 0.47 x 1Q-40 .

These values are calculated from the interatomic distances and the masses

of the molecules, since / = //r
2

.

Now the multiplicity of the rotational levels requires some consideration.

The number of ways of distributing J quanta of rotational energy between

two axes of rotation equals 2J -f 1, for in every case except J there are

two possible alternatives for each added quantum. The statistical weight of

a rotational level J is therefore 2J + 1 .

The rotational partition function now becomes

/rot -= E (27 4 \)e
/<>+ !>*//"'

(12.30)

Replacing the summation by an* integration, since the levels are closely

spaced, we obtain

One further complication remains. In homonuclear diatomic molecules

(N14N 14
, C135C1

35
, etc.) only all odd or all even /'s are allowed, depending on

the symmetry properties of the molecular eigenfunctions. If the nuclei are

different (N14N 15
, HC1, NO, etc.) there are no restrictions on the allowed

7's. A symmetry number a is therefore introduced, which is either a = 1

(heteronuclear) or a = 2 (homonuclear). Then

^ot ~ -

ah2
(12.32)

As an example of the application of this equation, consider the calcula-

tion of the entropy of F2 at 298.2K, assuming translational and rotational

contributions only. From eq. (12.29), the translational entropy is found to

be 36.88 eu. Then the rotational part is
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Note that the rotational energy is simply RT in accordance with the equi-

partition principle. Substituting / 25.3 x lO'40
, Srot 8.74 eu. Adding

the translational term, we have

S =-- Smt f 5tran8
- 8.74 h 36.88 - 45.62 eu

This compares with a total entropy of 5
I

298
- 48.48 eu. The vibrational

contribution at 25C is therefore small.

10. Polyatomic molecules rotational partition function. The partition

function in eq. (12.32) holds also for linear polyatomic molecules, with a - 2

if the molecule has a plane of symmetry (such as O C O), and a -
1 if

it has not (such as N-^N-- O).

For a nonlinear molecule, the classical rotational partition function has

been found to be

/rrot

In this equation A, /?, C are the three principal moments of inertia of the

molecule. The symmetry number a is equal to the number of equivalent

ways of orienting the molecule in space. For example: H 2O, a 2; NH3 ,

a-3;CH4 ,
o- 12;C6H 6 ,

a == 12.

11. Vibrational partition function. In evaluating a partition function for

the vibrational degrees of freedom of a molecule, it is often sufficient to use

the energy levels of the harmonic oscillator, which from eq. (11.25) are

fvib
-~ 0' f i)** (12.34)

At low temperatures vibrational contributions are usually small and this

approximation is adequate. For reasonably exact calculations at higher tem-

peratures the anharmonicity of the vibrations must be considered. Some-

times the summation for f can be made by using energy levels obtained

directly from molecular spectra.

The partition function corresponding to eq. (12.34) would be, for each

vibrational degree of freedom,

f = J e -( p +W' v
ikT -__- e

-i' vW' y e -rWkT

V V

/vil) -f-""
m

'(l -<,-*'/)-! (12.35)

The total vibrational partition function is the product of terms such as eq.

(12.35), one for each of the normal modes of vibration of the molecule,

Aib-'TFAvib < 12 -36>

i

For the purposes of tabulation and facility in calculations, the vibrational

contributions can be put into more convenient forms.

The vibrational energy, from eqs. (12.15), (12.23), and (12.35), is
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Now Nhv/2 is the zero point energy per mole , whence, writing hvjkT = x,

^-^4 (12-37)

(12.38)

Then the heat capacity

JRx*
2(cosh x 1)

From eq. (12.20), since for the vibrational contribution8 A F,

( I --.;
C,, v

Finally the contribution to the entropy is

* ^0 * ''0
o

(12.39)

(12.40)T T

An excellent tabulation of these functions has been given by J. G. Aston. 9

A much less complete set of values is given in Table 12.2. If the vibration

TABLE 12.2

THERMODYNAMIC FUNCTIONS OF A HARMONIC OSCILLATOR

8 This is evident from eq. (12.21) since /vib is not a function of K, P =--
0, F = A +

py=A.
9 H. S. Taylor and S. Glasstone, Treatise on Physical Chemistry, 3rd ed., vol. 1

, p. 655

(New York: Van Nostrand, 1942).
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frequency is obtainable from spectroscopic observations, these tables can be

used to calculate the vibrational contributions to the energy, entropy, free

energy, and heat capacity.

12. Equilibrium constant for ideal gas reactions. From the relation

AF RTln Kv , the equilibrium constant can be calculated in terms of

the partition functions. From eqs. (12.20) and (12.23), A = ~Ar7'lirZ =
kTln(f

y
/N\). From the Stirling formula, N! - (N/e)

N
, and since for an

ideal gas,F - A+PY= A f RT, we find that F = - RT In (f/N). Let us write

J yint
~

,3 -J Y

where /int denotes the internal partition functions, /rot /vib /elcc ,
and /' is

the partition function per unit volume; i.e., f/V. Then, the free energy
'

The standard free energy F is the F at unit pressure of one atmosphere.
The volume of a mole of ideal gas under standard conditions of 1 atm

pressure is V RT/l. The standard free energy is accordingly
10

F - RT \nfkT
For a typical reaction aA + bB ^-- cC \ dD,

J AJ

Therefore, K, -
v fi o i*f b

J AJ B

Fromeq. (4.12),
** rrr: /Cc(/v/ )

If the concentration terms in K
c
are expressed in units of molecules per cc

rather than the more usual moles per cc, we obtain the more concise

expression,
ft

c f d

/'A/'B

This equation can easily be given a simple physical interpretation. Con-

sider a reaction A -> B, then Kc

' ^
/B'//A'- The partition function is the sum

of the 'probabilities e~ efkT of all the different possible states of the molecules

(/= e" elkT
). The equilibrium constant is therefore the ratio of the total

probability of the occurrence of the final state to the total probability of the

occurrence of the initial state.

13. The heat capacity of gases. The statistical theory that has now been

outlined provides a very satisfactory interpretation of the temperature

dependence of the heat capacity of gases.
The translational energy is effectively nonquantized. It makes a constant

contribution Cv = $/?, for all types of molecules.

10 Note that k is in units of cc atm/C.
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Except in the molecules H 2 , HD, and D
2 ,

the rotational energy quanta
are small compared to kT at temperatures greater than about 80K. There

is therefore a constant rotational contribution of Cv = R for diatomic and

linear polyatomic molecules or Cr $R for nonlinear polyatomic molecules.

For example, with nitrogen at 0C, Af
lot

=-- 8 x 10~ 16
erg compared to

AT - 377 x 10 16
erg. At temperatures below 80K the rotational heat

2.00

LJ

O

o 1.50
>*
_i
<o
>?

o

o i.OO

i
o

o

2
OO

V
1.0 2.0 3.0

"/hi,

Fig. 12.1. Heat capacity contribution of a harmonic oscillator.

capacity can be calculated from the partition function in eq. (12.30) and

the general formula, eq. (12.16).

The magnitude of the quantum of vibrational energy hv is usually quite

large compared to kT at room temperatures. For example, the fundamental

vibration frequency in N 2 is 2360 cm" 1
, corresponding to fvib of 46.7 x 10~ 14

erg, whereas at 0C kT 3.77 x 10~14
. Such values are quite usual and the

vibrations therefore make relatively small contributions to low-temperature

energies, entropies, and specific heats. The data in Table 7.6 (page 192)

confirm this conclusion. In Fig. 12.1, the heat-capacity curve for a typical
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harmonic oscillator is shown as a function of 7/0,,, where Ov
---- hvfk is

called the characteristic temperature of the vibration. As the temperature is

raised, vibrational excitation becomes more and more appreciable. If we
know the fundamental vibration frequencies of a molecule, we can determine

from Fig. 12.1 or Table 12.2 the corresponding contribution to Cr at any

temperature. The sum of these contributions is the total vibrational heat

capacity.

14. The electronic partition function. The electronic term in the partition

function is calculated directly from eq. (12.12) and the observed spectro-

scopic data for the energy levels. Often the smallest quantum of electronic

energy is so large compared to kT that at moderate temperatures the elec-

tronic energy acquired by the gas is negligible. In other cases, the ground
state may be a multiplet, but have energy differences so slight that it may be

considered simply as a degenerate single level.

There are, however, certain intermediate cases in which the multiplet

splitting is of the order of kT at moderate temperatures. A notable example
is NO, with a doublet splitting of around 120 crn^ 1 or 2.38 x 10~14

erg. An
electronic contribution to the heat capacity is well marked in NO. Complica-
tions arise in these cases, however, owing to an interaction between the

rotational angular momentum of the nuclei (quantum number J) and the

electronic angular momentum (quantum number A). The detailed analysis is

therefore more involved than a simple separation of the internal energy into

vibrational, rotational, and electronic contributions would indicate. 11

15. Internal rotation. When certain polyatomic molecules are studied, it

is found that the strict separation of the internal degrees of freedom into

vibration and rotation is not valid. Let us compare, for example, ethyfene

and ethane, CH2 CH 2 and CH3 CH3 .

The orientation of the two methylene groups in C2H4 is fixed by the

double bond, so that there is a torsional or twisting vibration about the

bond but no complete rotation. In ethane, however, there is an internal

rotation of the methyl groups about the single bond. Thus one of the vibra-

tional degrees of freedom is lost, becoming an internal rotation. This

rotation would not be difficult to treat if it were completely free and un-

restricted, but such is not the case. There are potential-energy barriers,

amounting to about 3000 calories per mole, which must be overcome before

rotation occurs. The maxima in energy occur at positions where the hydrogen
atoms on the two methyl groups are directly opposite to one another, the

minima at positions where the hydrogens are "staggered."

The theoretical treatment of the problems of restricted internal rotation

is still incomplete, but good progress is being made. 12

16. The hydrogen molecules. Since the moment of inertia of the hydrogen

molecule, H2 , is only 0.47 x 10~ 40 gcm2
, the quantum of rotational energy

11 Fowler and Guggenheim, op. cif. t p. 102.
12

J. G. Aston, loc. cit., p. 590.
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is too large for a classical treatment. To evaluate the partition function, the

complete summation must her carried out. When this was first done, using

eq. (12.30), modified with a symmetry number a = 2, the calculated specific

heats were in poor agreement with the experimental values. It was later

realized that the discrepancy must be a result of the existence of the two

nuclear-spin isomers for H2 .

The proton (nucleus of the H atom) has a nuclear spin / -= % in units of

/J/27T. The spins of the two protons in the H2 molecule may either parallel or

oppose each other. These two spin orientations give rise to the two spin
isomers:

ortho H2 spins parallel resultant spin
-= 1

para H 2 spins antiparallel resultant spin

Spontaneous transitions between the ortho and para states are strictly

prohibited. The ortho states are associated with only odd rotational levels

(J I, 3, 5 . . .), and para states have only even rotational levels (J =
0, 2, 4 . . .). The nuclear-spin weights are gNS

- 3 for ortho, corresponding
to allowed directions 4-1,0, -1, andgNS 1 for para, whose resultant spin

13

is 0. At quite high temperatures (~ 0C), therefore, an equilibrium mixture

of hydrogen consists of three parts ortho and one part para. At quite low

temperatures (around 80K, liquid-air temperature) the equilibrium con-

dition is almost pure para hydrogen, with the molecules in the lowest rota-

tional state, J = 0.

The equilibrium is attained very slowly in the absence of a suitable

catalyst, such as oxygen adsorbed on charcoal, or other paramagnetic sub-

stance. It is thus possible to prepare almost pure/?-H2 by adsorbing hydrogen
on oxygenated charcoal at liquid-air temperatures, and then warming the

gas in the absence of catalyst.

The calculated heat capacities of pure />-H2 , pure o-H2 and of the 1:3

normal H2 , are plotted in Fig. 12.2. Mixtures of o- and/?-H2 are conveniently

analyzed by measuring their thermal conductivities, since these are pro-

portional to their heat capacities.

A similar situation arises with deuterium, D2 . The nuclear spin of the

D atom is 1. The possible resultant values for D2 are therefore 0, 1, and 2.

Of these, / = and 2 belong to the ortho modification and / ~ 1 is the para.

The weights (2/ } 1) are 1 + 5 = 6, and 3, respectively. The high-tempera-
ture equilibrium mixture therefore contains two parts ortho to one part para.

In the molecule HD, which is not homonuclear, there are no restrictions

on the allowed rotational energy levels. The partition function of eq. (12.30)

is directly applicable.

Other diatomic molecules composed of like nuclei with nonzero nuclear

spins may also be expected to exist in both para and ortho modifications.

13
Compare the spatial quantization of the orbital angular momentum of an electron,

page 268.
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Any thermodynamic evidence for such isomers would be confined to ex-

tremely low temperatures, because their rotational energy quanta are small.

The energy levels are so close together that in calculating heat capacities it

is unimportant whether all odds or all evens are taken. It is necessary only

< 3.00

Fig. 12.2.

100 200 300
DEGREES KELVIN

Heat capacities of pure para-hydrogen, pure ortho-hydrogen,
and 3-o to \~p normal hydrogen.

to divide the total number of levels by a =- 2. Spectroscopic observations,

however, will often reveal an alternating intensity in rotational lines caused

by the different nuclear-spin statistical weights.

17. Quantum statistics. In deriving the Boltzmann statistics, we assumed

that the individual particles were distinguishable and that any number of

particles could be assigned to one energy level. We know from quantum
mechanics that the first of these assumptions is invalid. The second assump-
tion is also incorrect if one is dealing with elementary particles or particles

composed of an odd number of elementary particles. In such cases, the

Pauli Exclusion Principle requires that no more than one particle can go
into each energy level. If the particles considered are composed of an even

number of elementary particles, any number can be accommodated in a

single energy level.

Two different quantum statistics therefore arise, which are characterized

as follows:

Name

(1) Fermi-Dirac

(2) Bose-Einstein

Obeyed by

Odd number of elementary

particles (e.g., electrons,

protons)

Even number of elementary

particles (e.g., deuterons,

photons)

Restrictions on nK

Only one particle per
state, nK < gK

Any number of particles

per state

It is interesting to note that photons follow the Bose-Einstein statistics,

indicating that they are complex particles and recalling the formation of

electron-positron pairs from X-ray photons.
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A schematic illustration of the two types of distribution would be

O00O O O O
F.D. B.E.

Distribution laws are calculated for these two cases by exactly the same

sort of procedure as was used for the Boltzmann statistics.
14 The results are

found to be very similar,

< 12 -42 >

F.D. case +
B.E. case

Now in almost every case the exponential term is very large compared to

unity, and the Boltzmann statistics are a perfectly good approximation for

almost all practical systems. This can be seen by using the value of e* =f/n
from eq. (12.10). The condition for the Boltzmann approximation is then

e/kT f
----^

1, or
n

Using the translational partition function /in eq. (12.27), we have

etl1fT(27rmkTj^V^ ->' (12 -43)

This condition is obviously realized for a gas at room temperature. It is

interesting to note, however, the circumstances under which it would fail.

If n/V, proportional to the density, became very high, the classical statistics

would eventually become inapplicable. This is the situation in the interior of

the stars, and forms the basis of R. H. Fowler's brilliant contribution to

astrophysics. A more mundane case also arises, namely in the electron gas
in metals. We shall consider this in the next chapter, with only a brief

mention here. A metallic crystal, to a first approximation, may be considered

as a regular array of positive ions, permeated by a gas ofMobile electrons.

In this case the density term in eq. (12.43) is exceptionally high and in

addition the mass term m is lower by about 2 x 103 than in any molecular

case. Thus the electron gas will not obey Boltzmann statistics; it must indeed

follow the Fermi-Dirac statistics since electrons obey the Pauli Principle.

PROBLEMS

1. In the far infrared spectrum of HC1, there is a series of lines with a

spacing of 20.7 cm"1
. In the near infrared spectrum, there is an intense band

at 3.46 microns. Use these data to calculate the entropy of HC1 as an ideal

gas at 1 atm and 298 K.

14 For these calculations, see, for example, Tolman, op. cit,, p. 388.
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2. Estimate the equilibrium constant of the reaction C12
--- 2 Cl at

1000K. The fundamental vibration frequency of C12 is 565 cm" 1 and the

equilibrium C1-C1 distance is 1.99 A. Compare with the experimental value

in Table 4.5.

3. The isotopic composition of zinc is:
64Zn 50.9 per cent;

68Zn 27.3 per

cent;
67Zn 3.9 per cent;

68Zn 17.4 per cent;
70Zn 0.5 per cent. Calculate the

entropy of mixing per mole of zinc at 0K.

4. Thallium forms a monatomic vapor. The normal electronic state of

the atom is
2P1/2 but there is a 2

P^/2 state lying only 0.96 ev. above the ground
state. The statistical weights of the state.s are 2 and 4, respectively. Plot a

curve showing the variation with temperature of the contribution to the

specific heat of the vapor caused by the electronic excitation.

5. In a star whose temperature is 106 K, calculate the density of material

at which the classical statistics would begin to fail.

6. Calculate the equilibrium constant of the reaction H 2 f D2 2 HD
at 300K given:

)e , cm" 1 .....
Reduced mass, /i, at. wt. units

Moment of inertia, /, g cm
2 x 1040

7. In Problem 4.10, heat-capacity data were listed for a calculation of the

Third-Law entropy of nitromethane. From the following molecular data,

calculate the statistical entropy S 298 . Bond distances (A): N O 1.21;

CN, 1.46; C H, 1.09. Bond angles: O N O 127; H C N 109J.
From these distances, calculate the principal moments of inertia, / = 67.2,

76.0, 137.9 x 10~40 gcm
2

. The fundamental vibration frequencies
15 in cm"1

are: 476, 599, 647, 921, 1097, 1153, 1384, 1413, 1449, 1488, 1582, 2905,

3048 (2). One of the torsional vibrations has become a free rotation around

the CN bond with / = 4.86 x 10 40
.

8. Calculate the equilibrium constant Kp at 25C for O2
1H + O2

16 -
2 O 16O1H

. The nuclear spins of O18 and O16 are both zero. The vibration fre-

quencies are given by v = (l/27r)(/c/
1/2

,
where K is the same for all three

molecules. For O2
10

, v 4.741 x 1013 sec" 1
. The equilibrium internuclear

distance, 1.2074 A, does not depend on the isotopic species.

9. The ionization potential of Na is 5.14 ev. Calculate the degree of dis-

sociation, Na -= Na+ + e, at 104 K and 1 atm.

15 A. J. Wells and E. B. Wilson, /. Chem. Phys., 9, 314 (1941).
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CHAPTER 13

Crystals

1. The growth and form of crystals. The symmetry of crystalline forms,

striking a responsive chord in our aesthetic nature, has fascinated many
men, from the lapidary polishing gems for a royal crown to the natural

philosopher studying the structure of matter. Someone once said that the

beauty of crystals lies in the planeness of their faces. It was also the measure-

ment and explanation of these plane faces that first demanded scientific

attention.

In 1669, Niels Stensen (Steno), Professor of Anatomy at Copenhagen
and Vicar Apostolic of the North, compared the interfacial angles in various

specimens of quartz rock crystals. An interfacial angle may be defined as the

angle between lines drawn perpendicular to two faces. Steno found that the

corresponding angles (in different crystals) were always equal. After the

invention of the contact goniometer in 1780, this conclusion was checked and

extended to other substances, and the constancy of interfacial angles has

been called the "first law of crystallography."
It was a most important principle, for out of a great number of crystalline

properties it isolated one that was constant and unchanging. Different crystals

of the same substance may differ greatly in appearance, since corresponding
faces may have developed to diverse extents as the crystals were growing.
The interfacial angles, nevertheless, remain the same.

We can consider that a crystal grows from solution or melt by the de-

position onto its faces of molecules or ions from the liquid. If molecules are

deposited preferentially on a certain face, this face will not extend rapidly in

area, compared with faces at angles to it on which deposition is less frequent.

The faces with the largest area are therefore those on which added molecules

are deposited most slowly.

Sometimes an altered rate of deposition can completely change the form,

or habit, of a crystal. A well known case is sodium chloride, which grows
from pure water solution as cubes, but from 15 per cent aqueous urea

solution as octahedra. It is believed that urea is preferentially adsorbed on

the octahedral faces, preventing deposition of sodium and chloride ions, and

therefore causing these faces to develop rapidly in area.

The real foundations of crystallography may be said to date from the

work of the Abbe Rene Just Haiiy, Professor of the Humanities at the

University of Paris. In 1784, he proposed that the regular external form of

crystals was a reflection of an inner regularity in the arrangement of their

constituent building units. These units were believed to be little cubes or

369
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polyhedra, which he called the molecules integrates of the substance This

picture also helped to explain the cleavage of crystals along uniform planes.
The Haiiy model was essentially confirmed, 128 years later, by the work of

Max von Laue with X-ray diffraction, the only difference being in a more
advanced knowledge of the elementary building blocks.

2. The crystal systems. The faces of

crystals, and also planes within crystals, can

be characterized by means of a set of three

noncoplanar axes. Consider in Fig. 13.1 three

axes having lengths a, b, and c, which are cut

by the plane ABC, making intercepts OA, OB,
and OC. If a, b, c, are chosen as unit lengths,

the lengths of the intercepts may be expressed
as OAja, OBjh, OC/c. The reciprocals of these

Fig. 13.1. Crystal axes.
lengths will then be a/OA, b/OB, c/OC. Now it

has been established that it is always possible
to find a set of axes on which the reciprocal intercepts of crystal faces are

small whole numbers. Thus, if //, k, /are small integers:

OA oc
This is equivalent to the law of rational intercepts, first enunciated by Haiiy.
The use of the reciprocal intercepts (hkl) as indices defining the crystal faces

was first proposed by W. H. Miller in 1839. If a face is parallel to an axis,

(001)

(III) (211)

Fig. 13.2. Miller indices.

the intercept is at oo, and the Miller index becomes l/oo or 0. The notation

is also applicable to planes drawn within the crystal. As an illustration

of the Miller indices, some of the planes in a cubic crystal are shown in

Fig. 13.2.



Sec. 3] CRYSTALS 371

According to the set of axes used to represent their faces, crystals may
be divided into seven systems. These are summarized in Table 13.1. They

range from the completely general set of three unequal axes (a, b, c) at three

unequal angles (a, /?, y) of the triclinic system, to the highly symmetrical set

of three equal axes at right angles of the cubic system.

TABLE 13.1

THE SEVEN CRYSTAL SYSTEMS

3. Lattices and crystal structures. Instead of considering, as Haiiy did,

that a crystal is made of elementary material units, it is helpful to introduce

a geometrical idealization, consisting only of a regular array of points in

space, called a lattice. An example in two dimensions is shown in Fig. 13.3.

o
1

Fig. 13.3. Two-dimensional lattice with unit cells.

The lattice points can be connected by a regular network of lines in

various ways. Thus the lattice is broken up into a number of unit cells. Some

examples are shown in the figure. Each cell requires two vectors, a and b,

for its description. A three-dimensional space lattice can be similarly divided

into unit cells that require three vectors for their description.

If each point in a space lattice is replaced by an identical atom or group
of atoms there is obtained a crystal structure. The lattice is an array of points;

in the crystal structure each point is replaced by a material unit.

In 1848, A. Bravais showed that all possible space lattices could be
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assigned to one of only 14 classes. 1 The 14 Bravais lattices are shown in

Fig. 13.4. They give the allowed different translational relations between

points in an infinitely extended regular three-dimensional array. The choice

of the 14 lattices is somewhat arbitrary, since in certain cases alternative

descriptions are possible.

TRICLINIC

A

2 SIMPLE 3 SIDE-CENTERED
MONOCLINIC MONOCLINIC

\
4. SIMPLE 5 END-CENTERED
ORTHORHOMBIC ORTHORHOMBIC

6. FACE-CENTERED 7 BODY-
ORTHORHOMBIC CENTERED

ORTHORHOMBIC

9 RHOMBOHEDRAL 10 SIMPLE II BODY-CENTERED
8. HEXAGONAL TETRAGONAL TETRAGONAL

Fig. 13.4. The fourteen Bravais lattices.

4. Symmetry properties. The word "symmetry" has been used in referring
to the arrangement of crystal faces. It is now desirable to consider the nature

of this symmetry in more detail. If an actual crystal of a substance is studied,

some of the faces may be so poorly developed that it is difficult or impossible
to see its full symmetry just by looking at it. It is necessary therefore to

1 A lattice that contains body-, face-, or end-centered points can always be reduced to

one that does not (primitive lattice). Thus the face-centered cubic can be reduced to a

primitive rhombohedral. The centered lattices are chosen when possible because of their

higher symmetry.
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consider an ideal crystal in which all the faces of the same kind are developed
to the same extent. It is not only in face development that the symmetry of

the crystal is evident but also in all of its physical properties, e.g., electric

and thermal conductivity, piezoelectric effect, and refractive index.

Symmetry is described in terms of certain symmetry operations, which

are those that transform the crystal into an image of itself. The symmetry

operations are imagined to be the result of certain symmetry elements: axes

of rotation, mirror planes, and centers of inversion. The possible symmetry
elements of finite figures, i.e., actual crystals, are shown in Fig. 13.5 with

schematic illustrations.

(a) T (b)

MM/ v-

i'

Fig. 13.5. Examples of symmetry elements: (a) mirror plane m; (b) rotation

axes; (c) symmetry center 1 ; (d) twofold rotary inversion axis 2.

The possible combinations of these symmetry elements that can occur in

crystals have been shown to number exactly 32. These define the 32 crystallo-

graphic point groups* which determine the 32 crystal classes.

The symbols devised by Hermann and Mauguin are used to represent the

symmetry elements. An axis of symmetry is denoted by a number equal to

its multiplicity. The combination of a rotation about an axis with reflection

through a center of symmetry is called an "axis of rotary inversion"; it is

denoted by placing a bar above the symbol for the axis, e.g., 2, 3. The center

of symmetry alone is then T. A mirror plane is given the symbol m.

All crystals necessarily fall into one of the seven systems* but there are

several classes in each system. Only one of these, called the holohedral class,

possesses the complete symmetry of the system. For example, consider two

crystals belonging to the cubic system, rock salt (NaCl) and iron pyrites

(FeS2). Crystalline rock salt, Fig. 13.6, possesses the full symmetry of the

cube: three 4-fold axes, four 3-fold axes, six 2-fold axes, three mirror planes

perpendicular to the 4-fold axes, six mirror planes perpendicular to the 2-fold

axes, and a center of inversion. The cubic crystals of pyrites might at first

seem to possess all these symmetry elements too. Closer examination reveals,

2 A set of symmetry operations forms a. group when the consecutive application of any
two operations in the set is equivalent to an operation belonging to the set (law of multi-

plication). It is understood that the identity operation, leaving the crystal unchanged, is

included in each set; that the operations are reversible; and that the associative law holds,

A(BC) = (AB)C.
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however, that the pyrites crystals have characteristic striations on their faces,

as shown in the picture, so that all the faces are not equivalent. These crystals

therefore do not possess the six 2-fold axes with the six planes normal to

them, and the 4-fold axes have been reduced to 2-fold axes.

In other cases, such departures from full symmetry are only revealed, as

far as external appearance goes, by the orientation of etch figures formed by

treating the surfaces with acids. Sometimes the phenomenon of pyro-

electricity provides a useful symmetry test. When & crystal that contains no

center of symmetry is heated, a difference in potential is developed across

its faces. This can be observed by the resultant electrostatic attraction

between individual crystals.

CD

(a) (b)

Fig. 13.6. (a) Rock salt, (b) Pyrites.

All these differences in symmetry are caused by the fact that the full

symmetry of the point lattice has been modified in the crystal struc-

ture, as a result of replacing the geometrical points by groups of atoms.

Since these groups need not have so high a symmetry as the original

lattice, classes of lower than holohedral symmetry can arise within each

system.
5. Space groups. The crystal classes are the various groups of symmetry

operations of finite figures, i.e., actual crystals. They are made up of opera-
tions by symmetry elements that leave at least one point in the crystal

invariant. This is why they are called point groups.
In a crystal structure, considered as an infinitely extended pattern in

space, new types of symmetry operation are admissible, which leave no

point invariant. These are called space operations. The new symmetry opera-
tions involve translations in addition to rotations and reflections. Clearly

only an infinitely extended pattern can have a space operation (translation)

as a symmetry operation.

The possible groups of symmetry operations of infinite figures are called

space groups. They may be considered to arise from combinations of the



Sec. 6] CRYSTALS 375

14 Bravais lattices with the 32 point groups.
3 A space group may be visualized

as a sort of crystallographic kaleidoscope. If one structural unit is introduced

into the unit cell, the operations of the space group immediately generate
the entire crystal structure, just as the mirrors of the kaleidoscope produce
a symmetrical pattern from a few bits of colored paper.

The space group expresses the sum total of the symmetry properties of

a crystal structure, and mere external form or bulk properties do not suffice

for its determination. The inner structure of the crystal must be studied and

this is made possible by the methods of X-ray diffraction.

6. X-ray crystallography. At the University of Munich in 1912, there was

gathered a group of physicists interested in both crystallography and the

Fig. 13.7. A Laue photograph taken with X-rays. (From Lapp and Andrews,

Nuclear Radiation Physics, 2nd Ed., Prentice-Hall, 1953.)

behavior of X rays. P. P. Ewaid and A. Sommerfeld were studying the

passage of light waves through crystals. At a colloquium discussing some

of this work, Max von Laue pointed out that if the wavelength of the radia-

tion became as small as the distance between atoms in the crystals, a diffrac-

tion pattern should result. There was some evidence that X rays should have

the right wavelength, and W. Friedrich agreed to make the experimental test.

On passing an X-ray beam through a crystal of copper sulfate, there was

obtained a diffraction pattern like that in Fig. 13.7, though not nearly so

3 A good example of the construction of space groups is given by Sir Lawrence Bragg,
The Crystalline State (London: G. Bell & Sons, 1933), p. 82. The spjice-group notation is

described in International Tables for the Determination of Crystal Structures, Vol. I. There

are exactly 230 possible crystallographic space groups.
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distinct in these first trials. The wave properties of X rays were thus definitely

established and the new science of X-ray crystallography began.

Some of the consequences of Laue's great discovery have already been

mentioned, and on page 257 the conditions for diffraction maxima from a

regular three-dimensional array of scattering centers were found to be

cos (a 00) hh

cos08-/? )-*A (13.1)

cos (y
- y )

- tt

If monochromatic X rays are used, there is only a slim chance that the

orientation of the crystal is fixed in such a way as to yield diffraction maxima.

The Laue method, however, uses a continuous spectrum of X radiation with

a wide range of wavelengths. This is the so-called white radiation, conveniently

obtained from a tungsten target at high voltages. In this case, at least some

of the radiation is at the proper wavelength to experience interference effects,

no matter what the orientation of crystal to beam.

7. The Bragg treatment. When the news of the Munich work reached

England, it was immediately taken up by W. H. Bragg and his son W. L.

Fig. 13.8. Bragg scattering condition.

Bragg who had been working on a corpuscular theory ofX rays. W. L. Bragg,

using Laue-type photographs, analyzed the structures of NaCl, KC1, and

ZnS (1912, 1913). In the meantime (1913), the elder Bragg devised a spectrom-
eter that measured the intensity of an X-ray beam by the amount of ioniza-

tion it produced, and he found that the characteristic X-ray line spectrum
could be isolated and used for crystallographic work. Thus the Bragg method

uses a monochromatic (single wavelength) beam of X rays.

The Braggs developed a treatment of X-ray scattering by a crystal that

was much easier to apply than Laue's theory, although the two are essentially

equivalent. It was shown that the scattering of X rays could be represented
as a "reflection" by successive planes of atoms in the crystal. Consider, in

Fig. 13.8, a set of parallel planes in the crystal structure and a beam of

X rays incident at an angle 0. Some of the rays will be "reflected" from the

upper layer of atoms, the angle of reflection being equal to the angle of inci-

dence. Some of the rays will be absorbed, and some will be "reflected" from
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the second layer, and so on with successive layers. All the waves "reflected"

by a single crystal plane will be in phase. Only under certain strict conditions

will the Waves "reflected" by different underlying planes be in phase with

one another. The condition is that the path difference between the waves

scattered from successive planes must be an integral number of wavelengths,
nk. If we consider the "reflected" waves at the point P, this path distance Tor

the first two planes is 6 = "AB + ~BC. Since triangles AOB and COB are

congruent, AB BC and d 2 AB. Therefore d 2d sin 0. The condition

for reinforcement or Bragg "reflection" is thus

/7A-2</sin0 (13.2)

According to this viewpoint, there are different orders of "reflection"

specified by the values n = 1
, 2, 3 . . . The second order diffraction maxima

from (100) planes may then be regarded as a "reflection" due to a set of

planes (200) with half the spacing of the (100) planes.

The Bragg equation indicates that for any given wavelength of X rays

there is a lower limit to the spacings that can give observable diffraction

spectra. Since the maximum value of sin is 1, this limit is given by

"A --~
2 sin max

"
2

8. The structures of NaCl and KC1. Among the first crystals to be studied

by the Bragg method were sodium and potassium chlorides. A single crystal

was mounted on the spectrometer, as shown in Fig. 13.9, so that the X-ray

IX-RAY BEAM

L-V/V//J

SLIT SYSTEM

IONIZATION
CHAMBER

**" ^^J^^
DIVIDED
SCALE

/TO ELECTROMETER

Fig. 13.9. Bragg X-ray spectrometer.

beam was incident on one of the important crystal faces, (100), (1 10), or (1 1 1).

The apparatus was so arranged that the "reflected" beam entered the ioniza-

tion chamber, which was filled with methyl bromide. Its intensity was

measured by the charge built up on an electrometer.

The experimental data are shown plotted in Fig. 13.10 as "intensity of

scattered beam" vs. "twice the angle of incidence of beam to crystal." As

the crystal is rotated, successive maxima "flash out" as the angles are passed
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conforming to the Bragg condition, eq. (13.2). In these first experiments the

monochromatic X radiation was obtained from a palladium target. Both the

wavelength of the X rays and the structure of the crystals were unknown to

begin with.

It was known, of course, from external form, that both NaCl and KC1
could be based on a cubic lattice, simple, body-centered, or face-centered.

By comparing the spacings calculated from X-ray data with those expected
for these lattices, a decision could be made as to the proper assignment.

0* 5 10 15 20 25 30 35 40 45

Fig. 13.10. Bragg spectrometer data, / vs. 20.

The general expression for the spacing of the planes (hkl) in a cubic

lattice is

-"
Vh*-+k*ni

When this is combined with the Bragg equation, we obtain

sin2 6 = (A
2
/4a

2
)(//

2 + k2 + I
2
)

Thus each observed value of sin can be indexed by assigning to it the

value of (hkl) for the set of planes responsible for the "reflection." For a

simple cubic lattice, the following spacings are allowed:

(hkl) . . . 100 110 111 200 210 211 220 221,300 etc.

h2 + k2 + 1
2

. .1 2 3 4 5 6 8 9 etc.

If the observed X-ray pattern from a simple cubic crystal was plotted as

intensity vs. sin2 we would obtain a series of six equidistant maxima, with

the seventh missing, since there is no set of integers hkl such that h2 + k2 + I
2

7. There would then follow seven more equidistant maxima, with the 15th

missing; seven more, the 23rd missing; four more, the 28th missing; and so on.
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In Fig. 13.11 (a) we see the (100), (110), and (111) planes for a simple
cubic lattice. A structure may be based on this lattice by replacing each

lattice point by an atom. If an X-ray beam strikes such a structure at the

Bragg angle, sin" 1
(A/20), the rays scattered from one (100) plane will be

exactly in phase with the rays from successive (100) planes. The strong
scattered beam may be called the "first-order reflection from the (100)

planes." A similar result is obtained for the (1 10) and (111) planes. We shall

-*- a ^

Fig. 13.11. Spacings in cubic lattices: (a) simple cubic; (b) body-centered cubic;

(c) face-centered cubic.

obtain a diffraction maximum from each set of planes (hkl), since for any

given (hkl) all the atoms will be included in the planes.

Fig. 13.11 (b) shows a structure based on a body-centered cubic lattice.

The (110) planes, as in the simple-cubic case, pass through all the lattice

points, and a strong first-order (1 10) reflection will occur. In the case of the

(100) planes, however, we find a different situation. Exactly midway between

any two (100) planes, there lies another layer of atoms. When X rays scattered

from the (100) planes are in phase and reinforce one another, the rays

scattered by the interleaved atomic planes will be retarded by half a wave-

length, and hence will be exactly out of phase with the others. The observed

intensity will therefore be the difference between the scattering from the two

sets of planes. If the atoms all have identical scattering powers, the resultant

intensity will be reduced to zero by the destructive interference, and no
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first-order (100) reflection will appear. If, however, the atoms are different,

the first-order (100) will still appear, but with a reduced intensity given

by the difference between the scatterings from the two interleaved sets of

planes.

The second-order diffraction from the (100) planes, occurring at the

Bragg angle with n ^ 2 in eq. (13.2), can equally well be expressed as the

scattering from a set of planes, called the (200) planes, with just half the

spacing of the (100) planes. In the body-centered cubic structure, all the atoms

lie in these (200) planes, so that all the scattering is in phase, and a strong

scattered beam is obtained. The same situation holds for the (111) planes:

the first-order (111) will be weak or extinguished, but the second-order (111),

i.e. the (222) planes, will give strong scattering. If we examine successive

planes (hkl) in this way, we find for the body-centered cubic structure the

results shown in Table 13.2, in which planes missing due to extinction are

indicated by dotted lines.

TABLE 13.2

CALCULATED AND OBSERVED DIFFRACTION MAXIMA

300

(hkl) . ... 100 110 111 200 210 211 220 211 310

/,2 + p 4. 72 ! 2 3 4 5 6 8 9 10

simple cubic .

| |
|

| | | | | |

body-centered cubic
: | | | III

face-centered cubic

Sodium Chloride

200 220 222 400 420 422 440 600 620

Potassium Chloride .1 I I I I I I 422 I

In the case of the face-centered cubic structure, Fig. 13.1 1 (c), reflections

from the (100) and (110) planes are weak or missing, and the (111) planes

give intense reflection. The results for subsequent planes are included in

Table 13.2.

In the first work on NaCl and KC1, the X-ray wavelength was not known,
so that the spacings corresponding to the diffraction maxima could not be

calculated. The values of sin2 0, however, can be used directly. The observed

maxima are compared in Table 13.2 with those calculated for the different

cubic lattices.

The curious result is now not^d that apparently NaCl is face centered
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Fig. 13.12. Sodium chloride

structure.

while KC1 is simple cubic. The reason why the KC1 structure behaves toward

X rays like a simple cubic array is that the scattering powers of K+ and Cl~

ions are indistinguishable since they both have an argon configuration with

18 electrons. In the NaCl structure the difference in scattering power of the

Na+ and Cl~ ions is responsible for the deviation from the simple cubic

pattern.

The observed maxima from the (111) face of NaCl include a weak peak
at an angle of about 10, in addition to the stronger peak at about 20,

corresponding to that observed with KC1. These results are all explained by
the NaCl structure shown in Fig. 13.12, which consists of a face-centered

cubic array of Na+ ions and an interpenetrating face-centered cubic array of

Cl~ ions. Each Na+ ion is surrounded by six

equidistant Cl~ ions and each Cl~ ion by
six equidistant Na+ ions. The (100) and (1 10)

planes contain an equal number of both

kinds of ions, but the (111) planes consist of

either all Na f or all Cl~ ions. Now if X rays

are scattered from the (111) planes in NaCl,
whenever scattered rays from successive Na+

planes are exactly in phase, the rays scattered

from the interleaved Cl~ planes are retarded

by half a wavelength and are therefore exactly
out of phase. The first-order (111) reflection is therefore weak in NaCl since

it represents the difference between these two scatterings. In the case of KC1,
where the scattering powers are the same, the first-order reflections are

altogether extinguished by interference. Thus the postulated structure is in

complete agreement with the experimental X-ray evidence.

Once the NaCl structure was well established, it was possible to calculate

the wavelength of the X rays used. From the density of crystalline NaCl,

p = 2.163 g per cm3
, the molar volume is M/p =--- 58.45/2.163 = 27.02 cc per

mole. Then the volume occupied by each NaCl unit is 27.02 : (6.02 x 1023)
= 44.88 x 10~24 cc. In the unit cell of NaCl, there are eight Na+ ions at the

corners of the cube, each shared between eight cubes, and six Na+ ions at

the face centers, each shared between two cells. Thus, per unit cell, there are

8/8 + 6/2 = 4 Na+ ions. There is an equal number of Cl~ ions, and there-

fore four NaCl units per unit cell. The volume of the unit cell is there-

fore 4 x 44.88 x 10"24 = 179.52 (A)
3

. The interplanar spacing for the

(200) planes is \a =- J179.52
173 =r 2.82 A. Substituting this value and the

observed diffraction angle into the Bragg equation, A = 2(2.82) sin 5 58';

A - 0.586 A.

Once the wavelength has been measured in this way, it can be used to

determine the interplanar spacings in other crystal structures. Conversely,

crystals with known spacings can be used to measure the wavelengths of

other X-ray lines. The most generally useful target material is copper, with



382 CRYSTALS [Chap. 13

A -- 1.537 A (A^), a convenient length relative to interatomic distances.

When short spacings are of interest, molybdenum (0.708) is useful, and

chromium (2.285) is often employed for study of longer spacings.

The Bragg spectrometer method is generally applicable but is quite time

consuming. Most crystal structure investigations have used photographic
methods to record the diffraction patterns. Improved spectrometers have

been developed recently in which a Geiger-counter tube replaces the electrom-

eter and ionization chamber.

9. The powder method. The simplest technique for obtaining X-ray diffrac-

tion data is the powder method, first used by P. Debye and P. Scherrer.

Instead of a single crystal with a definite orientation to the X-ray beam, a

CYLINDRICAL"
CAMERA

POWDER
SPECIMEN

X-RAY
BEAM

FILM

Fig. 13.13. The powder method. Powder picture of sodium chloride, Cu-Ka
radiation, (c). (Courtesy Dr. Arthur Lessor, Indiana University.)

mass of finely divided crystals with random orientations is used. The experi-

mental arrangement is illustrated in (a), Fig. 13.13. The powder is contained

in a thin-walled glass capillary, or deposited on a fiber. Polycrystalline metals

are studied in the form of fine wires. The sample is rotated in the beam to

average as well as possible the orientations of the crystallites.

Out of the many random orientations of the little crystals, there will be

some at the proper angle for X-ray reflection from each set of planes.

The direction of the reflected beam is limited only by the requirement that

the angle of reflection equal the angle of incidence. Thus if the incident angle
is 0, the reflected beam makes an angle 20 with the direction of the incident

beam, (b), Fig. 13.13. This angle 26 may itself be oriented in various directions

around the central beam direction, corresponding to the various orientations

of the individual crystallites. For each set of planes, therefore, the reflected

beams outline a cone of scattered radiation. This cone, intersecting a
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cylindrical film surrounding the specimen, gives rise to the observed dark

lines. On a flat plate film, the observed pattern consists of a series of con-

centric circles. A typical X-ray powder picture is shown in (c), Fig. 13.13.

It may be compared with the electron-diffraction picture obtained by
G. P. Thomson from a polycrystalline gold foil (page 272).

After obtaining a powder diagram, the next step is to index the lines,

assigning each to the responsible set of planes. The distance x of each line

from the central spot is measured carefully, usually by halving the distance

between the two reflections on either side of the center. If the film radius is

r, the circumference 2nr corresponds to a scattering angle of 360. Then,

x/2irr
= 2(9/360. Thus is calculated and, from eq. (13.2), the interplanar

spacing.

The spacing data are often used, without further calculation, to identify

solids or analyze solid mixtures. Extensive tables are available4 that facilitate

the rapid identification of unknowns.

To index the reflections, one must know the crystal system to which the

specimen belongs. This system can sometimes be determined by microscopic
examination. Powder diagrams of monoclinic, orthorhombic, and triclinic

crystals may be almost impossible to index. For the other systems straight-

forward methods are available. Once the unit-cell size is found, by calculation

from a few large spacings (100, 110, 111, etc.), all the interplanar spacings
can be calculated and compared with those observed, thus completing the

indexing. Then more precise unit-cell dimensions can be calculated from

high-index spacings. The general formulae giving the interplanar spacings
are straightforward derivations from analytical geometry.

5

10. Rotating-crystal method. The rotating-single-crystal method, with

photographic recording of the diffraction pattern, was developed by E.

Schiebold around 1919. It has been, in one form or another, the most widely
used technique for precise structure investigations.

The crystal, which is preferably small and well formed, perhaps a needle

a millimeter long and a half-millimeter wide, is mounted with a well defined

axis perpendicular to the beam which bathes the crystal in X radiation. The

film may be held in a cylindrical camera, and the crystal is rotated slowly

during the course of the exposure. In this way, successive planes pass through
the orientation necessary for Bragg reflection, each producing a dark spot

on the film. Sometimes only part of the data is recorded on a single film, by

oscillating through some smaller angle rather than rotating through 360.

An especially useful method employs a camera that moves the film back and

forth with a period synchronized with the rotation of the crystal. Thus the

position of a spot on the film immediately indicates the orientation of the

crystal at which the spot was formed (Weissenberg method).

We cannot give here a detailed interpretation of these several varieties

4
J. D. Hanawalt, Ind. Eng. Chem. Anal., 10, 457 (1938).

6 C. W. Bunn, Chemical Crystallography (New York: Oxford, 1946), p. 376.
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,

Fig. 13.14. Rotation picture of zinc oxine dihydrate Weisscnberg method.

(Courtesy Prof. L. L. Merritt, Indiana University.)

of rotation pictures.
6 A typical example is shown in Fig. 13.14. Methods

have been developed for indexing the various spots and also for measuring
their intensities. These data are the raw material for crystal-structure

determinations.

11. Crystal-structure determinations: the structure factor. The problem of

reconstructing a crystal structure from the intensities of the various X-ray
diffraction maxima is analogous in some ways to the problem of the forma-

tion of an image by a microscope. According to Abbe's theory of the micro-

scope, the objective gathers various orders of light rays diffracted by the

specimen and resynthesizes them into an image. This synthesis is possible

because two conditions are fulfilled in the optical case: the phase relation-

ships between the various orders of diffracted light waves are preserved at

all times, and optical glass is available to focus and form an image with

radiation having the wavelength of visible light. We have no such lenses for

forming X-ray images (compare, however, the electron microscope), and the

way in which the diffraction data are necessarily obtained (one by one)

means that all the phase relationships are lost. The essential problem in

determining a crystal structure is to regain this lost information in some way
or other, and to resynthesize the structure from the amplitudes and phases
of the diffracted waves.

We shall return to this problem in a little while, but first let us see how
the intensities of the various spots on an X-ray picture are governed by the

crystal structure. 7 The Bragg relation fixes the angle of scattering in terms of
' See Bragg, he. cit., p. 30. Also Bunn, he. c//., p. 137.
7 This treatment follows that given by M. J. Buerger in X-Ray Crystallography (New

York: Wiley, 1942), which.should be consulted for more details.
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the interplanar spacings, which are determined by the arrangement of points
in the crystal lattice. In an actual structure, each lattice point is replaced by
a group of atoms. It is primarily the arrangement and composition of this

group that controls the intensity of the scattered X rays, once the Bragg
condition has been satisfied.

As an example, consider in (a), Fig. 13.15, a lattice in which each point
has been replaced by two atoms (e.g., a diatomic molecule). Then if a set of

Fig. 13.15. X-ray scattering from a typical structure.

lattice planes is drawn through the black atoms, another parallel but slightly

displaced set can be drawn through the white atoms. When the Bragg con-

dition is met, as in (b), Fig. 13.15, the reflections from all the black atoms

are in phase, and the reflections from all the white atoms are in phase.

The radiation scattered from the blacks is slightly out of phase with that

from the whites, so that the resultant amplitude, and therefore intensity, is

diminished by interference.

The problem now is to obtain a general expression for the phase
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difference. An enlarged view of the structure (two-dimensional) is shown in

(c), Fig. 13.15, with the black atoms at the corners of a unit cell with sides

a and /?, and the whites at displaced positions. The coordinates of a black

atom may be taken as (0, 0) and those of a white as (x, y). A set of planes

(hk) is shown, for which it is assumed the Bragg condition is being fulfilled;

these are actually the (32) planes in the figure. Now the spacings a/h along
a and b/k along b correspond to positions from which scattering differs in

phase by exactly 360 or 2rr radians, i.e., scattering from these positions is

exactly in phase. The phase difference between these planes and those going

through the white atoms is proportional to the displacement of the white

atoms. The phase difference Px for displacement v in the a direction is given

by x/(a/h) --= PJ2ir, or Px 2irh(x/a). The total phase difference for dis-

placement in both a and b directions becomes

/>, -f Py
- 2*

By extension to three dimensions, the total phase change that an atom at

(xyz) in the unit cell contributes to the plane (hkl) is

We may recall (page 327) that the superposition of waves of different

amplitude and phase can be accomplished by vectorial addition. If /j and

/2 are the amplitudes of the waves scattered by atoms (1) and (2), and Pl

and P2 are the phases, the resultant amplitude is F f\?
lPl

4-/2^
/J

". For

any number of atoms,
^' (13-4)

When this is combined with eq. (13.3), there is obtained an expression for

the resultant amplitude of the waves scattered from the (hkl) planes by all

the atoms in a unit cell:

F(hkl) = ZJK <?****!*+w* * '*/')
(13.5)

The expression F(hkl) is called the structure factor of the crystal. Its

value is determined by the exponential terms, which depend on the positions

of the atoms, and by the atomic scattering factorsfK ,
which depend on the

number and distribution of the electrons in the atom, and on the scattering

angle 0.

The intensity of scattered radiation is proportional to the absolute value

of the amplitude squared, \F(hkl)\
2

. The crystal structure problem now
becomes that of obtaining agreement between the observed intensities and

those calculated from a postulated structure. Structure-factor expressions
have been tabulated for all the space groups.

8

8 International Tables for the Determination of Crystal Structures (1952). It is usually

possible to narrow the choice of space groups to two or three by means of study of missing
reflections (hkl) and comparison with the tables.
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As an example of the use of the structure factor let us calculate F(hkl)

for the 100 planes in a face-centered cubic structure, eg., metallic gold. In

this structure there are four atoms in the unit cell (Z 4), which may be

assigned coordinates (xja, v/b, z/c) as follows: (000), (J i 0), (i J), and

(0 i i). Therefore, from eq."(13.5)

-- fAu(2 h 2^)

since e"
1

cos TT + / sin TT --- 1

Thus the structure factor vanishes and there is therefore zero intensity of

scattering from the (100) set of planes. This is almost a trivial case, since

inspection of the face-centered cubic structure immediately reveals that there

is an equivalent set of planes interleaved midway between the 100 planes, so

that the resultant amplitude of the scattered X rays must be reduced to zero

by interference. In more complicated instances, however, it is essential to

use the structure factor to obtain a quantitative estimation of the scattering

intensity expected from any set of planes (hkl) in any postulated crystal

structure.

12. Fourier syntheses. An extremely useful way of looking at a crystal

structure was proposed by Sir William Bragg when he pointed out that it

may be regarded as a periodic three-dimensional distribution of electron

density, since it is the electrons that scatter the X rays. Any such density

function may be expressed as a Fourier series, a summation of sine and

cosine terms. 9
It is more concisely written in the complex exponential form.

Thus the electron density in a crystal may be represented as

p(xyz)
- \ \ A pQr

e **P*!* ^ '////ft i /r)
( { 3 6)

p _ oo q uj r or

It is not hard to show10 that the Fourier coefficients A wr are equal to

the structure factors divided by the volume of the unit cell. Thus

p(xyz)
1 SSX F(hkl)e"^^rla ^ vlb^ lf}

(13.7)

This equation expresses the fact that the only Fourier term that contributes

to the X-ray scattering by the set of planes (hkl) is the one with the coefficient

F(hkl), which appears intuitively to be the correct formulation.

Equation (13.7) summarizes the whole problem involved in structure

determinations, since in a very real sense the crystal structure is simply

p(xyz). Positions of individual atoms are peaks in the electron density

function
/>,

and interatomic regions are valleys in the plot of p. Thus if we

knew the F(hkiy$ we could immediately plot the crystal structure. All we

know, however, are the intensities, which are proportional to \F(hkl)\
2

. As

9
See, for example, Widder, Advanced Calculus, p. 324.

10
Bragg, op. cit., p. 221.
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stated earlier, we know the amplitudes but we have necessarily lost the

phases in taking the X-ray pattern.

A trial structure is now assumed and the intensities are calculated. If the

assumed arrangement is even approximately correct, the most intense

observed reflections should have large calculated intensities. The observed

F's for these reflections may be put into the Fourier series with the calculated

signs.
11 The graph of the Fourier summation will give new positions for the

VAAX \ \ \

Fig. 13.16. Fourier map of electron density in glycylglycine projected
on base of unit cell: (a) 40 terms; (b) 100 terms; (c) 200 terms.

atoms, from which new f's can be calculated, which may allow more of the

signs to be determined. Gradually the structure is refined as more and more
terms are included in the synthesis. In Fig. 13.16 are shown three Fourier

summations for the structure of glycylglycine. As additional terms are in-

cluded in the summation, the resolution of the structure improves, just as

the resolution of a microscope increases with objectives that catch more and
more orders of diffracted light.

Sometimes a heavy atom can be introduced into the structure, whose

position is known from symmetry arguments. The large contribution of the

heavy atom makes it possible to determine the phases of many of the F's.

11 The complete Fourier series is rarely used; instead, various two-dimensional pro-
jections are preferred.
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This was the method used with striking success by J. M. Robertson in his

work on the phthalocyanine structures,
12 and in the determination of the

structure of penicillin. This last was one of the great triumphs of X-ray

crystallography, since it was achieved before the organic chemists knew the

structural formula.

13. Neutron diffraction. Not only X-ray and electron beams, but also

beams of heavier particles may exhibit diffraction patterns when scattered

from the regular array of atoms in a crystal. Neutron beams have proved to

be especially useful for such studies. The wavelength is related to the mass

and velocity by the Broglie equation, X -- hjmv. Thus a neutron with a

speed of 3.9 x 105 cm sec"1
(kinetic energy 0.08 ev) would have a wave-

length of 1 .0 A. The diffraction of electron rays or X rays is caused by their

interaction with the orbital electrons of the atoms in the material through
which they pass; the atomic nuclei contribute practically nothing to the

scattering. The diffraction of neutrons, on the other hand, is primarily
caused by two other effects: (a) nuclear scattering due to interaction of the

neutrons with the atomic nuclei, (b) magnetic scattering due to interaction of

the magnetic moments of the neutrons with permanent magnetic moments

of atoms or ions.

In the absence of an external magnetic field, the magnetic moments of

atoms in a paramagnetic crystal are arranged at random, so that the magnetic

scattering of neutrons by such a crystal is also random. It contributes only
a diffuse background to the sharp maxima occurring when the Bragg con-

dition is satisfied for the nuclear

scattering. In ferromagnetic materials,

however, the magnetic moments are

regularly aligned so that the resultant

spins of adjacent atoms are parallel,

even in the absence of an external

field. In antiferromagnetic materials,

the magnetic moments are also regu-

larly aligned, but in such a way that

adjacent spins are always opposed.
The neutron diffraction patterns dis-

tinguish experimentally between these

different magnetic structures, and indi-

cate the direction of alignment of spins

within the crystal.

For example, manganous oxide,

MnO, has the rock-salt structure (Fig. 13.12), and is antiferromagnetic. The

detailed magnetic structure as revealed by neutron diffraction is shown in

Fig. 13.17. The manganous ion, Mn+2
, has the electronic structure 3s23p

B3d*.

12
J. Chem. Soc. (London), 1940, 36. For an account of the work on penicillin, see

Research, 2, 202 (1949).

CHEMICAL
UNIT
CELL

Fig. 13.17. Magnetic structure of MnO
as found by neutron diffraction. Note

that the "magnetic unit cell" has twice the

length of the "chemical unit cell." [From
C. G. Shull, E. O. Wollan, and W. A.

Strauser, Phys. Rev., 81, 483 (1951).]
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The five 3c/ electrons are all unpaired, and the resultant magnetic moment

is 2V%(jf I 1)
= 5.91 Bohr magnetons. If we consider Mn+2 ions in

successive (111) planes in the crystal, the resultant spins are oriented so

that they are alternately positively and negatively directed along the [100]

direction.

Another useful application of neutron diffraction has been the location

of hydrogen atoms in crystal structures. It is usually impossible to locate

hydrogen atoms by means of X-ray or electron diffraction, because the small

scattering power of the hydrogen is completely overshadowed by that of

heavier atoms. The hydrogen nucleus, however, is a strong scatterer of

neutrons. Thus it has been possible to work out the structures of such com-

pounds as UH3 and KHF2 neutron-diffraction analysis.
13

14. Closest packing of spheres. Quite a while before the first X-ray struc-

ture analyses, some shrewd theories about the arrangement of atoms and

(a) (b)

/ /

(c;

(c) (d)

Fig. 13.18. (a) Hexagonal closest packing; (b) cubic closest packing (edge cut

away to show closest packing normal to cube diagonals); (c) plan of hexagonal
closest packing; (d) plan of cubic closest packing.

molecules in crystals were developed from purely geometrical considerations.

From 1883 to 1897, W. Barlow proposed a number of structures based on
the packing of spheres.

There are two different ways in which spheres of the same size can be

packed together so as to leave a minimum of unoccupied volume, in each

case 26 per cent voids. They are the hexagonal-closest-packed (hep) and the

13
S. W. Peterson and H. A. Levy, /. Chem. Phys., 20, 704 (1952).
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cubic-closest-packed (ccp) arrangements depicted in Fig. 13.18. In ccp the

layers repeat as ABC ABC ABC . . ., and in hep the order is AB AB AB
... It will be noted that the ccp structure may be referred to a face-centered-

cubic unit cell, the (ill) planes being the layers of closest packing.
The ccp structure is found in the solid state of the inert gases, in crystal-

line methane, etc. symmetrical atoms or molecules held together by van

der Waals forces. The high-temperature forms of solid H2 ,
N 2 , and O2 occur

in hep structures.

The great majority of the typical metals crystallize in the ccp, the hep,
or a body-centered-cubic structure. Some examples are collected in Table

13.3. Other structures include the following:
14 the diamond-type cubic of

TABLE 13.3

STRUCTURES OF THE METALS

grey tin and germanium; the face-centered tetragonal, a distorted fee, of

y-manganese and indium; the rhombohedral layered structures of bismuth,

arsenic, and antimony; and the body-centered tetragonal of white tin. It

will be noted that many of the metals are polymorphic (allotropic), with two

or more structures depending on conditions of temperature and pressure.

The nature of the binding in metal crystals will be discussed later. For

the present, we may think of them as a network of positive metal ions

packed primarily according to geometrical requirements, and permeated by
mobile electrons. This so-called electron gas is responsible for the high

conductivity and for the cohesion of the metal.

The ccp metals, such as Cu, Ag, Au, Ni, are all very ductile and malle-

able. The other metals, such as V, Cr, Mo, W, are harder and more brittle.

This distinction in physical properties reflects a difference between the struc-

ture types. When a metal is hammered, rolled, or drawn, it deforms by the

gliding of planes of atoms past one another. These slip planes are those that

contain the most densely packed layers of atoms. In the ccp structure, the

slip planes are therefore usually the (111), which occur in sheets normal to

14 For descriptions see R. W. G. Wyckoff, Crystal Structures (New York: Interscience,

1948).
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all four of the cube diagonals. In the hep and other structures there is only
one set of slip planes, e.g., those perpendicular to the hexagonal axis. Thus

the ccp metals are characteristically more ductile than the others, since they
have many more glide ways.

15. Binding in crystals. The geometrical factors, seen in their simplest

form in the closest packed structures of identical spheres, are always very

important in determining the crystal structure of a substance. Once they
are satisfied, other types of interaction must also be considered. Thus,

for example, when directed binding appears, closest packing cannot be

achieved.

Two different theoretical approaches to the nature of the chemical bond

in molecules have been described in Chapter 11. In the method of atomic

orbitals, the point of departure is the individual atom. Atoms are brought

together, each with the electrons that "belong to it," and one considers the

effect of an electron in one atomic orbital upon that in another. In the second

approach, the electrons in a molecule are no longer assigned possessively to

the individual atoms. A set of nuclei is arranged at the proper final distances

and the electrons are gradually fed into the available molecular orbitals.

For studying the nature of binding in crystals, these two different treat-

ments are again available. In one case, the crystal structure is pictured as an

array of regularly spaced atoms, each possessing electrons used to form

bonds with neighboring atoms. These bonds may be ionic, covalent, or

intermediate in type. Extending throughout three dimensions, they hold the

crystal together. The alternative approach is once again to consider the nuclei

at fixed positions in space and then gradually to pour the electron cement

into the periodic array of nuclear bricks.

Both these methods yield useful and distinctive results, displaying com-

plementary aspects of the nature of the crystalline state. We shall call the

first treatment, growing out of the atomic-orbital theory, the bond model of

the solid state. The second treatment, an extension of the method of mole-

cular orbitals, we shall call, for reasons to appear later, the band model of

the solid state.

16. The bond model. If we consider that a solid is held together by
chemical bonds, it is useful to classify the bond types. Even though the

available classifications are as usual somewhat frayed at the edges, the

following categories may be distinguished:

(1) The van der Waals bonds. These bonds are the result of forces between

inert atoms or essentially saturated molecules. These forces are the same as

those responsible for the a term in the van der Waals equation. Crystals held

together in this way are sometimes called molecular crystals. Examples
are nitrogen, carbon tetrachloride, benzene. The molecules tend to pack

together as closely as their geometry allows. The binding between the mole-

cules in van der Waals structures represents a combination of factors such

as dipole-dipole and dipole-polarization interactions, and the quantum
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mechanical dispersion forces, first elucidated by F. London, which are often

the principal component.
15

(2) The ionic bonds. These bonds are familiar from the case of the NaCl
molecule in the vapor state (page 297). In a crystal, the coulombic interaction

between oppositely charged ions leads to a regular three-dimensional struc-

ture. In rock salt, each positively charged Na f ion is surrounded by six

negatively charged Cl ions, and each Cl is surrounded by six Na j

. There

are no sodium-chloride molecules unless one wishes to regard the. entire

crystal as a giant molecule.

The ionic bond is spherically symmetrical and undirected; an ion will be

surrounded by as many oppositely charged ions as can be accommodated

ID

(o) (b)

Fig. 13.19. (a) Diamond structure; (b) graphite structure.

geometrically, provided that the requirement of over-all electrical neutrality

is satisfied.

(3) The covalent bonds. These bonds, we recall, are the result of spin

valence (page 303), the sharing between atoms of two electrons with anti-

parallel spins. When extended through three dimensions, they may lead to

a variety of crystal structures, depending on the valence of the constituent

atoms, or the number of electrons available for bond formation.

A good example is the diamond structure in (a), Fig. 13.19. The structure

can be based on two interpenetrating face-centered cubic lattices. Each point

in one lattice is surrounded tetrahedrally by four equidistant points in the

other lattice. This arrangement constitutes a three-dimensional polymer of

carbon atoms joined together by tetrahedrally oriented sp
3 bonds. Thus the

configuration of the carbon bonds in diamond is similar to that in the

aliphatic compounds such as ethane. The C C bond distance is 1.54 A in

both diamond and ethane. Germanium, silicon, and grey tin also crystallize

in the diamond structure.

The same structure is assumed by compounds such as ZnS (zinc blende),

Agl, A1P, and SiC. In all these structures, each atom is surrounded by four

unlike atoms oriented at the corners of a regular tetrahedron. In every case

the binding is primarily covalent. It is interesting to note that it is not neces-

sary that each atom provide the same number of valence electrons; the

15 See Chapter 14, Sect. 10.
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Fig. 13.20. Structure of

selenium

structure can occur whenever the total number of outer-shell electrons is just

four times the total number of atoms.

There is also a form of carbon, actually the more stable allotrope, in

which the carbon bonds resemble those in the aromatic series of compounds.
This is graphite, whose structure is shown in

(b), Fig. 13.19. Strong bonds operate within

each layer of carbon atoms, whereas much
weaker binding joins the layers; hence the

slippery and flaky nature of graphite. The

C C distance within the layers of graphite
is 1.34 A, identical with that in anthracene.

Just as in the discussion of the nature

of binding in aromatic hydrocarbons (page

311), we can distinguish two types of electrons within the graphite struc-

ture. The a electrons are paired to form localized-pair (sp
2
) bonds, and

the 77 electrons are free to move throughout the planes of the C6 rings.

Atoms with a spin valence of only 2 cannot form regular three-dimen-

sional structures. Thus we have the interesting structures of selenium (Fig.

13.20), and tellurium, which consist

of endless chains of atoms extending

through the crystal, the individual

chains being held together by much

weaker forces. Another way of solving

the problem is illustrated by the struc-

ture of rhombic sulfur, Fig. 13.21.

Here there are well defined, puckered,

eight-membered rings of sulfur atoms.

The bivalence of sulfur is maintained

and the S8 "molecules" are held

together by van der Waals attractions.

Elements like arsenic and antimony
that in their compounds display a

covalence of 3 tend to crystallize in

structures that contain well defined

layers of atoms.

(4) 77?^ intermediate-type bonds.

Just as in individual molecules, these

bonds arise from resonance between

covalent and ionic contributions.

Alternatively, one may consider the

polarization of one ion by an oppositely charged ion. An ion is said to be

polarized when its electron "cloud" is distorted by the presence of the

oppositely charged ion. The larger an ion the more readily is it polarized,
and the smaller an ion the rhore intense is its electric field and the greater

Fig. 13.21. Structure of rhombic

sulfur.
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Hg. 13.22, Structure of ice.

its polarizing power. Thus in general the larger anions are polarized by the

smaller cations. Even apart from the size effect, cations are less polarizable

than anions because their net positive charge tends to hold their electrons

in place. The structure of the ion is also important: rare-gas cations such

as K+ have less polarizing power than transition cations such as Ag+,
since their positive nuclei are more effectively shielded.

The effect of polarization may be seen in the structures of the silver

halides. AgF, AgCl, and AgBr have the-rock-salt structure, but as the anion

becomes larger it becomes more strongly polarized by the small Ag+ ion.

Finally, in Agl the binding has very little ionic character and the crystal has

the zinc-blende structure. It has been

confirmed spectroscopically that crystal-

line silver iodide is composed of atoms

and not ions.

(5) The hydrogen bond. The hydrogen

bond, discussed on page 313, plays an

important role in many crystal struc-

tures, e.g., inorganic and organic acids,

salt hydrates, ice. The structure of ice is

shown in Fig. 13.22. The coordination

is similar to that in wurtzite, the hexago-
nal form of zinc sulfide. Each oxygen is

surrounded tetrahedrally by four nearest neighbors at a distance of 2.76 A.

The hydrogen bonds hold the oxygens together, leading to a very open
structure. By way of contrast, hydrogen sulfide, H 2S, has a ccp structure,

each molecule having twelve nearest neighbors.

(6) 77?? metallic bond. The bond model has also been extended to metals.

According to this picture, the metallic bond is closely related to the ordinary
covalent electron-pair bond. Each atom in a metal forms covalent bonds by

sharing electrons with its nearest neighbors. It is found that there are more

orbitals available for bond formation than there are electrons to fill them.

As a result the covalent bonds resonate among the available interatomic

positions. In the case of a crystal this resonance extends throughout the

entire structure, thereby producing great stability. The empty orbitals permit

a ready flow of electrons under the influence of an applied electric field,

leading to metallic conductivity.

Structures such as those of selenium and tellurium, and of arsenic and

antimony, represent transitional forms in which the electrons are much

more localized because the available orbitals are more completely filled.

In a covalent crystal like diamond the four
.s/;

3 tetrahedral orbitals are

completely filled.

17. The band model. It was in an attempt to devise an adequate theory

for metals that the band model had its origin. The high thermal and electrical

conductivities of metals focused attention on the electrons as the important
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entities in their structures. If we use as a criterion the behavior of the elec-

trons, three classes of solids may be distinguished:

(1) Conductors or metals, which offer a low resistance to the flow of

electrons, an electric current, when a potential difference is applied. The

resistivity of metals increases with the temperature.

(2) Insulators, which have a high electric resistivity.

(3) Semiconductors, whose resistivity is intermediate between that of

typical metals and that of typical insulators, and decreases, usually ex-

ponentially, with the temperature.
The starting point of the band theory is a collection of nuclei arrayed in

space at their final crystalline internuclear separations. The total number

3s

2p

2

I

-a -

(a)

(b)

Fig. 13.23. Energy levels in sodium: (a) isolated atoms; (b) section of crystal.

of available electrons is poured into the resultant field of force, a regularly

periodic field. What happens?
Consider in Fig. 13.23 the simplified model of a one-dimensional struc-

ture. For concreteness, let us think of the nuclei as being those of sodium,

therefore bearing a charge of + 1 1 . The position of each nucleus will repre-

sent a deep potential-energy well for the electrons, owing tp the large electro-

static attraction. If these wells were infinitely deep, the electrons would all

fall into fixed positions on the sodium nuclei, giving rise to l^Zs^/^S-s
1

configurations, typical of isolated sodium atoms. This is the situation shown

in (a), Fig. 13.23. But the wells are not infinitely deep, or in other words the

potential-energy barriers separating the electrons on different nuclei are not

infinitely high. The actual situation is more like the one shown in (b), Fig.

13.23. Now the possibility of a quantum mechanical leakage of electrons

through the barriers must be considered. Otherwise expressed, there will be

a resonance of electrons between the large number of identical positions.

There is always a possibility of an electron on one nucleus slipping through
to occupy a position on a neighboring nucleus. We are thus no longer con-

cerned with the energy levels of single sodium atoms but with levels of the
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crystal as a whole. Then the Pauli Principle comes into play, and tells us

that no more than two electrons can occupy exactly the same energy level.

Once the possibility of electrons moving through the structure is admitted,
we can no longer consider the energy levels to be sharply defined. The sharp
Is energy level in an individual sodium atom is broadened in crystalline

sodium into a band of closely packed energy levels. A similar situation arists

for the other energy levels, each becoming a band of levels as shown in (b),

Fig. 13.23.

Each atomic orbital contributes one level to a band. In the lower bands

(Is, 2s, 2p) there are therefore just enough levels to accommodate the number

of available electrons, so that the bands are completely filled. If an external

electric field is applied, the electrons in the filled bands cannot move under

its influence, for to be accelerated by the field they would have to move into

somewhat higher energy levels. This is impossible for electrons in the interior

of a filled band, since all the levels above them are already occupied, and the

Pauli Principle forbids their accepting additional tenants. Nor can the elec-

trons at the very top of a filled band acquire extra energy, since there are no

higher levels for them to move into. Very occasionally, it is true, an electron

may acquire a relatively terrific jolt of energy and be knocked completely
out of its band into a higher unoccupied band.

So much for the electrons in the lower bands. The situation is very
different in the uppermost band, the 3s, which is only half filled. An electron

in the interior of the 3s band still cannot be accelerated because the levels

directly above are already filled. Electrons toward the top of the band, how-

ever, can readily move up into unfilled levels within the band. This is what

happens when an electric field is applied and a current flows. It will be

noticed from the diagram that the topmost band has actually broadened

sufficiently to overlap the tops of the potential-energy barriers, so that these

electrons can move quite freely through the crystal structure.

According to this idealized model in which the nuclei are always arranged
at the points of a perfectly periodic lattice, there would indeed be no resist-

ance at all offered to the flow of an electric current. The resistance arises from

deviations from perfect periodicity. An important loss of periodicity is caused

by the thermal vibrations of the lattice nuclei. These vibrations destroy the

perfect resonance between the electronic energy levels and cause a resistance

to the free flow of electrons. As would be expected, the resistance therefore

increases with the temperature. Another illustration of the same principle is

found in the increased resistance that results when an alloying constituent is

added to a pure metal, and the regular periodicity of the structure is dimin-

ished by the foreign atoms.

At this point the reader may well be thinking that this is a pretty picture

for a univalent metal such as sodium, but what of magnesium with its two

3s electrons and therefore completely filled 3s bands ? Why isn't it an insulator

instead of a metal? The answer is that in this, and similar cases, detailed
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calculations show that the 3p band is low enough to overlap the top of the

35 band, providing a large number of available empty levels.

Thus conductors are characterized either by partially filled bands or by

overlapping of the topmost bands. Insulators have completely filled lower

bands with a wide energy gap between the topmost filled band and

the lowest empty band. These models are represented schematically in

Fig. 13.24.

The energy bands in solids can be studied experimentally by the methods

of X-ray emission spectroscopy.
16 For example, if an electron is driven out of

the \s level in sodium metal (Fig. 13.23b) the Ka X-ray emission occurs when

an electron from the 3^ band falls into the hole in the Is level. Since the 3s

FILLED IMPURITY
LEVELS

EMPTY IMPURITY
LEVELS

(a)

Fig. 13.24. Band models of solid types: (a) insulator; (b) metal;

(c) semiconductor.

electron can come from anywhere within the band of energy levels, the X rays

emitted will have a spread of energies (and hence frequencies) exactly corre-

sponding with the spread of allowed energies in the 3s band. The following

widths (in ev) were found for the conduction bands in a few of the solids

investigated :

Li Na Be Mg Al

4.1 3.4 14.8 7.6 13.2

18. Semiconductors. Band models for semiconductors are also included

in Fig. 13.24. These models possess, in addition to the normal bands, narrow

impurity bands, either unfilled levels closely above a filled band or filled levels

closely below an empty band. The extra levels are the result of either foreign

atoms dissolved in the structure or a departure from the ideal stoichiometric

composition. Thus zinc oxide normally contains an excess of zinc, whereas

cuprous oxide normally contains an excess of oxygen. Both these compounds
behave as typical semiconductors. Their conductivities increase approxi-

mately exponentially with the temperature, because the number of conduc-

tion electrons depends on excitation of electrons into or out of the impurity

levels, and excitation is governed by an e
~*E/HT Boltzmann factor.

16 A review by N. F. Mott gives further references. Prog. Metal Phys. 3, 76-1 14 (1952),
"
Recent Advances in the Electron Theory of Metals."
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If the energy gap between the filled valence band and the empty con-

duction band is narrow enough, a crystal may be a semiconductor even

in the absence of effects due to impurities. Germanium with an energy gap
of 0.72 ev and grey tin with O.lOev are examples of such intrinsic semi-

conductors.

19. Brillouin zones. The band theory of the crystalline state leads to a

system of allowed energy levels separated by regions of forbidden energy.

In other words, electron waves having a forbidden energy cannot pass through
the crystal. Those familiar with radio circuits would say that the periodic

crystal structure acts as a band-pass filter for electron waves.

In this simple picture we have not considered the variety of periodic

patterns that may be encountered by an electron wave, depending on the

direction of its path through the crystal. When this is done, it is found that

special geometrical requirements are imposed on the band structure, so that

it is not necessarily the same for all directions in space. Now we can see

qualitatively an important principle. If an electron wave with an energy in

a forbidden region were to strike a crystal, it could not be transmitted, but

would instead be strongly scattered or "reflected" in the Bragg sense. The

Bragg relation therefore defines the geometric structure of the allowed

energy bands. This principle was first enunciated by Leon Brillouin, and the

energy bands constructed in this way are called the Brillouin zones of

the crystal.

The quantitative application of the zone theory is still in its early stages.

Qualitatively it is clear that the properties of crystals are determined by the

nature of the zones and the extent to which they are filled with electrons.

This interpretation is especially useful in elucidating the structures of metal

alloys.

20. Alloy systems electron compounds. If two pure metals crystallize in

the same structure, have the same valence and atoms of about the same size,

they may form a continuous series of solid solutions without undergoing

any changes in structure. Examples are the systems Cu-Au and Ag-Au.
When these conditions are not fulfilled, a more complicated phase diagram

will result. An example is that for the brass system, copper and zinc. Pure

copper crystallizes in a face-centered-cubic structure and dissolves up to about

38 per cent zinc in this a phase. Then the body-centered-cubic ft phase super-

venes. At about 58 per cent zinc, a complex cubic structure begins to form,

called "y brass," which is hard and brittle. At about 67 per cent Zn, the hexa-

gonal closest packed e phase arises, and finally there is obtained the
r\ phase

having the structure of pure zinc, a distorted hep arrangement.
It is most interesting that a sequence of structure changes very similar to

these is observed in a wide variety of alloy systems. Although the com-

positions of the phases may differ greatly, the /?, y, and e structures are quite

typical. W. Hume-Rothery was the first to show that this regular behavior

was related to a constant ratio of valence electrons to atoms for each phase.
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Examples of these ratios are shown in Table 13.4. The transition metals Fe,

Co, Ni follow the rule if the number of their valence electrons is taken as

zero.17 In all these cases, the zone structure determines the crystal structure,

and the composition corresponding to each structure is fixed by the number

of electrons required to fill the zone. Such alloys are therefore sometimes

called electron compounds.

TABLE 13.4

ELECTRON COMPOUNDS ILLUSTRATING HUME-ROTHERY RULE

Alloy*

ft Phases (Ratio 3/2

3:2
3:2
3:2
3:2
6:4
9:6
3:3
3:2

y Phases (Ratio 21/13)

Cu6Zn8

Fe5Zn21

Cu9Ga4

Cu9Al4
Cu31Sn8

e Phases (Ratio 7/4)

The body-centered /? brass structure illustrates another interesting

property of some alloy systems, the order-disorder transition. At low

temperatures, the structure is ordered; the copper atoms occupy only the

17
Pauling has pointed out that it seems to be unreasonable to say that iron, which is

famous for its great strength, contributes nothing to the bonding in iron alloys. From

magnetic moments and other data he concludes that iron actually contributes between
5 and 6 bonding electrons per atom [/. Am. Chem. Soc., 69, 542 (1947)].
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body-centered positions. At higher temperatures, the various positions are

occupied at random by copper and zinc atoms.

21. Ionic crystals. The binding in most inorganic crystals is predomi-

nantly ionic in character. Therefore, since coulombic forces are undirected,

the sizes of the ions play a most important role in determining the final

structure. Several attempts have been made to calculate a consistent set of

ionic radii, from which the internuclear distances in ionic crystals could be

estimated. The first table, given by V. M. Goldschmidt in 1926, was modified

by Pauling. These radii are listed in Table 13.5.

TABLE 13.5

IONIC CRYSTAL RADII (A)*

o

0.60

0.31

0.20

0.15

1.40

1.36

Me

* From L. Pauling, The Nature of the Chemical Bond, 2nd ed. (Ithaca: Cornell Univ.

Press, 1940), p. 346.

First, let us consider ionic crystals having the general formula CA. They

may be classified according to the coordination number of the ions; i.e., the

number of ions of opposite charge surrounding a given ion. The CsCl struc-

ture, body centered as shown in Fig. 13.25, has eightfold coordination. The

NaCi structure (Fig. 13.12) has sixfold co-

ordination. Although zinc blende (Fig. 13.19a)

is itself covalent, there are a few ionic crys-

tals, e.g., BeO, with this structure which has

fourfold coordination. The coordination

number of a structure is determined primarily

by the number of the larger ions, usually the

anions, that can be packed around the smaller

ion, usually the cation. It should therefore

depend upon the radius ratio, /*Cation/ranion

rc/rA . The critical radius ratio is that obtained

when the anions packed around a cation are in contact with both the cation

and with one another.

Consider, for example, the structure of Fig. 13.25. If the anions are at

the cube corners and have each a radius a, when they are exactly touching,

the unit cube has a side 2a. The length of the cube diagonal is then \/3 2a,

and the diameter of the empty hole in the center of the cube is therefore

Fig. 13.25. The cesium

chloride structure.
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V/3 2a 2a --= 2a(\/3 1). The radius of the cation exactly filling this

hole is thus a(\/3 1), and the critical radius ratio becomes rc/rA =
a(\/3 ])/a ----- 0.732. By this simple theory, whenever the ratio falls below

0.732, the structure can no longer have eightfold coordination, and indeed

should go over to the sixfold coordination of NaCl.

In the sixfold coordination, a given ion at the center of a regular octa-

hedron is surrounded by six neighbors at the corners. The critical radius

ratio for this structure may readily be shown to be \/2
-

1 0.414. The

next lower coordination would be threefold, at the corners of an equilateral

triangle, with a critical ratio of 0.225.

The structures and ionic-radius ratios of a number of CA compounds
are summarized in Table 13.6. The radius-ratio rule, while not infallible,

provides the principal key to the occurrence of the different structure types.

TABLE 13.6

STRUCTURES AND RADIUS RATIOS OF CA IONIC CRYSTALS

Cesium
Chloride

Structure -

Sodium Chloride Structure

Zinc Blende

or Wurtzite

Structure

Theoretical Range

CsCl
CsBr
Csl

The structures of CA2 ionic crystals are found to be governed by the

same coordination principles. Four common structures are shown in Fig.

13.26. In fluorite each Ca++ is surrounded by eight F~ ions at the corners of

a cube, and each F~ is surrounded by four Ca+4~

at the corners of a tetra-

hedron. This is an example of 8 : 4 coordination. The structure of rutile

illustrates a 6 : 3 coordination, and that of cristobalite a 4 : 2 type. Once

again the coordination is determined primarily by the radius ratio.

The cadmium-iodide structure illustrates the result of a departure from

typically ionic binding. The iodide ion is easily polarized, and one can

distinguish definite CdI2 groups forming a layerlike arrangement.
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(d)

Fig. 13.26. CA 2 structures: (a) fluonte; (b) rutile; (c) ft cnstobalite;

(d) cadmium iodide.

22. Coordination polyhedra and Pauling's Rule. Many inorganic crystals

contain oxygen ions; their size is often so much larger than that of the cations

that the structure is largely determined by the way in which they pack to-

gether. The oxygens are arranged in coordination polyhedra around the

cations, some common examples being the following:

Around B: 3 O\s at corners of equilateral triangle

Si, Al, Be, B, Zn : 4 O's at corners of tetrahedron

Al, Ti, Li, Cr: 6 O's at corners of octahedron

For complex structures, Pauling has given a general rule that determines

how these polyhedra can pack together. Divide the valence of the positive

ion by the number of surrounding negative ions; this gives the fraction of

the valence of a negative ion satisfied by this positive ion. For each negative

ion, the sum of the contributions from neighboring positive ions should

equal its valence. This rule simply expresses the requirement that electro-

static lines of force, starting from a positive ion, must end on a negative ion

in the immediate vicinity, and not be forced to wander throughout the

structure seeking a distant terminus.

As an example of the application of the rule, consider the silicate group,

(SiO4). The valence of the positive ion, Si+4 , is +4. Therefore each O ion

has one valence satisfied by the Si+4 ion, i.e., one-half of its total valence of

two. It is therefore possible to join each corner of a silicate tetrahedron to

another silicate tetrahedron. It is also possible for the silicates to share edges
and faces, although these arrangements are less favorable energetically, since

they bring the central Si+4 ions too close together.

In the (A1O6) octahedron, only a valence of \ for each O is satisfied
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by the central Al+3 ion. It is therefore possible to join two aluminum octa-

hedra to each corner of a silicate tetrahedron.

The various ways of linking the silicate tetrahedra give rise to a great

diversity of mineral structures. The following classification was given by
W. L. Bragg:

(a) Separate SiO4 groups

(b) Separate Si O complexes

(c) Extended Si O chains

(d) Sheet structures

(e) Three-dimensional structures

An example from each class is pictured in Fig. 13.27. In many minerals,

other anionic groups and cations also occur, but the general principles that

(S.04)
4 "

(S.03)<

(TETRAHEDRA SHARING CORNERS)

(Si 2o7r
(0)

(Si2 5)

z

(Si40,,)
6"

(DOUBLE CHAIN)

(C)

Fig. 13.27. Silicate structures: (a) isolated groups; (b) hexagonal-type sheets;

(c) extended chains; (d) three-dimensional framework. (After W. L. Bragg, The

Atomic Structure of Minerals, Cornell University Press, 1937.)

govern the binding remain the same. The structural characteristics are

naturally reflected in the physical properties of the substances. Thus the
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chainlike architecture is found in the asbestos minerals, the sheet arrange-
ment in micas and talcs, and the feldspars and zeolites are typical three-

dimensional polymers.
23. Crystal energy the Born-Haber cycle. The binding energy in a purely

ionic crystal can be calculated via ordinary electrostatic theory. The potential

energy of interaction of two oppositely charged ions may be written

-z&e2 be2U=-
Y~ +

7n
(13.8)

where r is the internuclear separation and ze the ionic charge.
In calculating the electrostatic energy of a crystal, we must take into

account not only the attraction between an ion and the oppositely charged
ions coordinated around it, but also the repulsions between ions of like sign
at somewhat larger separations, then attractions between the unlike ions

once removed, and so on. Therefore, for each ion the electrostatic interaction

will be a sum of terms, alternately attractive and repulsive, and diminishing
in magnitude owing to the inverse-square law. For any given structure this

summation amounts to little more than relating all the different internuclear

distances to the smallest distance r. Thus, corresponding with eq. (13.8) for

an ionic molecule, there is obtained for the potential energy of an ionic

crystal per mole

u, -<"?" + (,>

The constant A, which depends on the type of crystal structure, is called the

Madelung constant. 1* If e is in esu and if is in kcal per mole, one has the

following typical A values: NaCl structure, A ----- 1.74756; CsCl, 1.76267;

rutile, 4.816.

At the equilibrium internuclear distance r
, the energy is a minimum, so

that (dU/dr)ft
0. Hence for the case zl

----- z2 ,

ANe2z2 nBe2

ANz*t

I AM
(13.10)

n

The value of the exponent n in the repulsive term can be estimated from

the compressibility of the crystal, since work is done against the repulsive

forces in compressing the crystal. Typical values of n range from 6 to 12,

indicative of the rapid rise in repulsion as the internuclear separation is

narrowed.

18
J. Sherman, Chem. Rev., 77, 93 (1932).
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The so-called crystal energy is obtained from eqs. (13.9) and (13.10) as

This is the heat of reaction of gaseous ions to yield the solid crystal. For

example, for rock salt:

Na-(g)-| Cl-(g)- NaCl(c) f c

Calculated values of Ec can be compared with other thermochemical

quantities by means of the Born-Haber cycle. For the typical case of NaCl,
this has the form:

NaCl (c)
------

E
-
c- -> Na *(g) + Cl" (g)

.

Na (c) + C1 2 (g)
- -- - -> Na (g) 4 Cl (g)

The energetic quantities entering into the cycle are defined as follows, all

per mole:

EC the crystal energy

Q the standard heat of formation of crystalline NaCl

S = heat of sublimation of metallic Na

/ the ionization potential of Na

A - the electron affinity of Cl

D = the heat of dissociation of C1 2 (g) into atoms

For the cyclic process, by the First Law of Thermodynamics:

c
- S f / f iD -A - Q (13.12)

All the quantities on the right side of this equation can be evaluated, at

least for alkali-halide crystals, and the value obtained for the crystal energy
can be compared with that calculated from eq. (13.11). The ionization

potentials / are obtained from atomic spectra, and the dissociation energies

D can be accurately determined from molecular spectra. Most difficult to

measure are the electron affinities A. 19

A summary of the figures obtained for various crystals is given in Table

13.7. When the calculated crystal energy deviates widely from that obtained

through the Born-Haber cycle, one may suspect nonionic contributions to

the crystal binding.

24. Statistical thermodynamics of crystals: the Einstein model. If one

could obtain an accurate partition function for a crystal, it would then be

possible to calculate immediately all its thermodynamic properties by making
use of the general formulas of Chapter 12.

For one mole of a crystalline substance, containing N atoms, there are

19
See, for example, P. P. Sutton and J. E. Mayer, J. Chem. Phys., 2, 146 (1934); 3, 20

(1935).
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TABLE 13.7

THE BORN-HABER CYCLE

(Energy Terms in Kilocalories per Mole)

*
Calculated, Eq. (13.11).

3W degrees of freedom. Except when there is rotation of the atoms within

the solid, we can consider that there are 3jV vibrational degrees of freedom,

since 3W 6 is to all intents and purposes still 3N. The precise determina-

tion of 3N normal modes of vibration for such a system would be an im-

possible task, and it is fortunate that some quite simple approximations give

sufficiently good answers.

First of all, let us suppose that the 3N vibrations arise from independent

oscillators, and then that these are harmonic oscillators, which is a good

enough approximation at low temperatures, when the amplitudes are small.

The model proposed by Einstein in 1906 assigned the same frequency v to

all the oscillators.

The crystalline partition function according to the Einstein model is,

from eqs. ( 12.35) and (12.23),

(13.14)

(13.15)

(13.16)

(13.17)

z = *

It follows immediately that,

E - E - 3Nhv(e
hv/kT ~

I)"
1

S=3m[f*l
kT
--~\n(l e

Cy ^=

3yVA:rin(l

/2V hv

Particularly interesting is the predicted temperature variation of Cv . We
recall that Dulong and Petit, in 1819, noted that the molar heat capacities

of the solid elements, especially the metals, were usually around 3R = 6

calories per degree. Later measurements showed that this figure was merely
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a high-temperature limiting value, approached by different elements at

different temperatures.
If we expand the expression in eq. (13.17) and simplify somewhat,

20 we
obtain

______ (13 ig\^ ' }

When r is large, this expression reduces to Cv 37*. For smaller T's, a

curve like the dotted line in Fig. 13.28 is obtained, the heat capacity being
a universal function of (v/T). The frequency v can be determined from one

experimental point at low temperatures and then the entire heat-capacity

curve can be drawn for the substance. The agreement with the experimental
data is good except at the lowest temperatures. It is clear that the higher
the fundamental vibration frequency v, the larger is the quantum of vibra-

tional energy, and the higher the temperature at which Cv attains the

classical value of 3R. For example, the frequency for diamond is 2.78 x
1013 sec-1

, but for lead it is only 0.19 x 1013 sec"1
, so that Cv for diamond

is only about 1.3 at room temperature, but Cv for lead is 6.0. The elements

that follow Dulong and Petit's rule are those with relatively low vibration

frequencies.

25. The Debye model. If, instead of a single fundamental frequency, a

spectrum of vibration frequencies is taken for the crystal, the statistical

problem becomes somewhat more complicated. One possibility is to assume

that the frequencies are distributed according to the same law as that given
on page 261 for the distribution of frequencies in black-body radiation.

This problem was solved by P. Debye.
Instead of using eq. (13.14), the energy must be obtained by averaging

over all the possible vibration frequencies v
t
of the solid, from to VM the

maximum frequency. This gives

M hv~ ~~~'

3N o ***- 1

=
i?o 7^-\ (13- 19)

Since the frequencies form a virtual continuum the summation is replaced

by an integration, by using the distribution function for the frequencies
found in eq. (10.14) (multiplied by $ since we have one longitudinal and two

transverse vibrations, instead of the two transverse of radiation). Thus

dn ^f(v)dv = 1277- ^ r2 dv (13.20)
c^

where c is now the velocity of elastic waves in the crystal. Then eq. (13.19)

becomes

E ~ E "* "-^ dv (13 -21)

Recalling that cosech x = 2y(e"
- -), and e* = 1 + x + (x/2!) + (*/3!) + . . . .
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Before substituting eq. (13.20) in (13.21) we eliminate c by using eq.

(10.14), since when n = 3N9 v = vM9 for each direction of vibration,

4n
3 a _ 47T

3
9N

2

Then eq. (13.21) becomes

Jo

By differentiation with respect to Ty

Cv =
TV vV'

Jo (e*""

lkT dv
~r kT*v~*

Let us set x = Hv/kT, whereupon eq. (13.23) becomes

(13.22)

(13.23)

krv r

vM7 Jo v - o*
(13 '24)

The Debye theory predicts that the heat capacity of a solid as a function

of temperature should depend only on the characteristic frequency VM . If

Fig. 13.28. The molar heat capacity of solids. (After F. Seitz, The Modern

Theory of Solids, McGraw-Hill, 1940.)

the heat capacities of different solids are plotted against kTjhvM , they should

fall on a single curve. Such a plot is shown in Fig. 13.28, and the confirma-

tion of the theory appears to be very good. Debye has defined a characteristic

temperature, &D hvM/k, and some of these characteristic temperatures are

listed in Table 13.8 for various solids. The theory of Debye is really adequate

for isotropic solids only, and further theoretical work will be necessary
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before we have a comprehensive theory applicable to crystals with more

complicated structures.

TABLE 13.8

DEBYE CHARACTERISTIC TEMPERATURES

The application of eq. (13.24) to the limiting cases of high and very low

temperatures is of considerable interest. When the temperature becomes

large, ehvlkT becomes small, and the equation may readily be shown to reduce

to simply Cv ~- 3/?, the Dulong and Petit expression. When the temperature
becomes low, the integral may be expanded in a power series to show that

Cv
- aT* (13.25)

This r3 law holds below about 30 K and is of great use in extrapolating

heat-capacity data to absolute zero in connection with studies based on the

Third Law of Thermodynamics (cf. page 90).

PROBLEMS

1. Show that a face-centered-cubic lattice can also be represented as a

rhombohedral lattice. Calculate the rhombohedral angle a.

2. To the points in a simple orthorhombic lattice add points at \ \ 0,

\ \\ I.e., at the centers of a pair of opposite faces in each unit cell. Prove

that the resulting arrangement of points in space is not a lattice.

3. Prove that the spacing between successive planes (hkl) in a cubic

lattice is a/Vh* f k2
-f~ 7

2 where a is the side of the unit cell.

4. The structure of fluorite, CaF2 , is cubic with Z --- 4, aQ 5.45 A. The

Ca++ ions are at the corners and face centers of the cube. The F~ ions are at

(Hi, Hi, HI, Hi, *ft, if*. Hi. Hi)- Calculate the nearest

distance of approach of Ca Ca, F F, Ca F. Sketch the arrangement of

ions in the planes 100, 110, 111.

5. MgO has the NaCl structure and a density of 3.65 g per cc. Calculate

the values of (sin 0)/A at which scattering occurs from the planes 100, 110,

111,210.
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6. Nickel crystallizes in the fee structure with aQ 3.52 A. Calculate the

distance apart of nickel atoms lying in the 100, 1 10, and 1 1 1 planes.

7. A Debye-Scherrer powder picture of a cubic crystal with radiation of

X -~ 1.539 A displayed lines at the following scattering angles:

Note: w weak; s strong; m medium; v very.

Index these lines. Calculate a
(}
for the crystal. Identify the crystal. Explain

the intensity relation between lines 5 and 4 in terms of the structure factor.

8. Calculate the atomic volume for spheres of radius 1 A in ccp and hep
structures. Give the unit cell dimensions, aQ for cubic, aQ and r for hexagonal.

9. Show that the void volume for spheres in both ccp and hep is 25.9 per
cent. What would be the per cent void in a bcc structure with corner atoms

in contact with the central atom?

10. White tin is tetragonal with a
(}

bQ 5.819 A, and c
()

3.175 A.

Tin atoms are at 000, i J , i j, i |. Calculate the density of the crystal.

Grey tin has the diamond structure with a
{}

-- 6.46 A. Describe how the tin

atoms must move in the transformation from grey to white tin.

11. In a powder picture of lead with Cu Ka radiation (X 1.539 A) the

line from the 531 planes appeared at sin 0.9210. Calculate a and the

density of lead.

12. The Debye characteristic temperature of copper is (H) =-- 315
U
K. Cal-

culate the entropy of copper at 0C and 1 atm assuming that a 4.95 x
10~5

deg"
1

, Po 7.5 x 10 7 atm l
, independent of the temperature.

13. Calculate the proton affinity of NH3 from the following data (i.e., the

A for reaction NH3 + H f NH4
f
). NH 4F crystallizes in the ZnO type

structure whose Madelung constant is 1.64. The Born repulsion exponent
for NH4F is 8, the interionic distance is 2.63 A. The electron affinity of

fluorine is 95.0 kcal. The ionization potential of hydrogen is 31 1.9 kcal. The

heats of formation from the atoms are: NH 3 279.6; N2
--= 225; H2

-

104.1 ;
F2
- 63.5 kcal. The heat of reaction \ N2 (g) | 2 H2 (g) -f J F2(g)

-
NH4+F~(c)is 11 1.9 kcal.
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CHAPTER 14

Liquids

1. The liquid state. The crystalline and the gaseous states of matter have

already been surveyed in some detail. The liquid state remains to be con-

sidered. Not that every substance falls neatly into one of these three classifi-

cations there is a variety of intermediate forms well calculated to perplex
the morphologist : rubbers and resins, glasses and liquid crystals, fibers and

protoplasm.

Gases, at least in the ideal approximation approached at high tempera-
tures and low densities, are characterized by complete randomness on the

molecular scale. The ideal crystal, on the other hand, is one of nature's most

orderly arrangements. Because the extremes of perfect chaos and perfect

harmony are both relatively simple to treat mathematically, the theory of

gases and crystals is at a respectably advanced stage. Liquids, however,

representing a peculiar compromise between order and disorder, have so far

defied a comprehensive theoretical treatment.

Thus in an ideal gas, the molecules move independently of one another

and interactions between them are neglected. The energy of the perfect gas
is simply the sum of the energies of the individual molecules, their internal

energies plus their translational kinetic energies; there is no intermolecular

potential energy. It is therefore possible to write down a partition function

such as that in eq. (12.23), from which all the equilibrium properties of the

gas are readily derived.

In a crystalline solid, translational kinetic energy is usually negligible.

The molecules, atoms, or ions vibrate about equilibrium positions to which

they are held by strong intermolecular, interatomic, or interionic forces. In

this case too, an adequate partition function, such as that in eq. (13.13), can

be obtained.

In a liquid, on the other hand, the situation is much harder to define.

The cohesive forces are sufficiently strong to lead to a condensed state, but

not strong enough to prevent a considerable translational energy of the in-

dividual molecules. The thermal motions introduce a disorder into the liquid

without completely destroying the regularity of its structure. It has therefore

not yet been possible to devise an acceptable partition function for liquids.

It should be mentioned that in certain circles it is now considered in-

delicate to speak of individual molecules in condensed systems, such as

liquids or solids. As James Kendall once put it, we may choose to imagine
that "the whole ocean consists of one loose molecule and the removal of a

fish from it is a dissociation process."

413
p
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In studying liquids, it is often helpful to recall the relation between

entropy and degree of disorder. Consider a crystal at its melting point. The

crystal is energetically a more favorable structure than the liquid to which

it melts. It is necessary to add energy, the latent heat of fusion, to effect the

melting. The equilibrium situation, however, is determined by the free-energy

difference, AF = A// JAS. It is the greater randomness of the liquid,

and hence its greater entropy, that finally makes the T&S term large enough
to overcome the A// term, so that the crystal melts when the following
condition is reached :

The sharpness of the melting point is noteworthy. There does not in

general appear to be a continuous gradation of properties between liquid

CRYSTAL LIQUID GAS

Fig. 14.1. Two-dimensional models.

and crystal. The sharp transition is due to the extremely rigorous geometrical

requirements that must be fulfilled by a crystal structure. It is not possible

to introduce small regions of disorder into the crystal without at the same

time seriously disturbing the structure over such a long range that the

crystalline arrangment is destroyed. Two-dimensional models of the gaseous,

liquid, and crystalline states are illustrated in Fig. 14.1. The picture of the

liquid was constructed by J. D. Bernal by introducing around "atom" A

only five other atoms instead of its normal close-packed coordination of six.

Every effort was then made to draw the rest of the circles in the most ordered

arrangement possible, with the results shown. The one point of abnormal

coordination among some hundred atoms sufficed to produce the long-range
disorder believed to be typical of the liquid state. We see that if there is to

be any abnormal coordination at all, there has to be quite a lot of it. Herein

probably lies an explanation of the sharpness of melting. When the thermal

motions in one region of a crystal suffice to destroy the regular structure, the

irregularity rapidly spreads throughout the entire specimen; thus disorder in

a crystal may be contagious.

These remarks should not be taken to imply that all crystals are ideally

perfect, and admit of no disorder at all. It is only that the amount of disorder

allowed is usually very limited. When the limit is exceeded, complete melting
of the crystal occurs. There are two types of defect that occur in crystal

structures. There may be vacant lattice positions or "holes," and there may
be interstitial positions occupied by atoms or ions.
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It is sometimes convenient to classify liquids, like crystals, from a rather

chemical standpoint, according to the kind of cohesive forces that hold them

together. Thus there are the ionic liquids such as molten salts, the liquid

metals consisting of metal ions and fairly mobile electrons, liquids such as

water held together mainly by hydrogen bonds, and finally molecular liquids

in which the cohesion is due to the van der Waals forces between essentially

saturated molecules. Many liquids fall into this last group, and even when

other forces are present, the van der Waals contribution may be large. The

nature of these forces will be considered later in this chapter.

2. Approaches to a theory for liquids. From these introductory remarks

it may be evident that there are three possible ways of essaying a theory of

the liquid state, two cautious ways and one direct way.
The cautious approaches are by way of the theory of gases and the

theory of solids. The liquid may be studied as an extremely imperfect gas.

This is a reasonable viewpoint, since above the critical point there is no

distinction at all between liquid and gas, and the so-called "fluid state" of

matter exists. On the other hand, the liquid may be considered as similar to

a crystal, except that the well-ordered arrangement of units extends over

a short range only, five or six molecular diameters, instead of over the whole

specimen. This is sometimes called "short-range order and long-range dis-

order." This is a reasonable viewpoint, since close to the melting point the

density of crystal and liquid are very similar; the solid usually expands about

10 per cent in volume, or only about 3 per cent in intermodular spacing,

when it melts. It should be realized too that whatever order exists in a liquid

structure is continuously changing because of thermal motions of the in-

dividual molecules; it is the time average of a large number of different

arrangements that is reflected in the liquid properties.

The imperfect-gas theory of liquids would be suitable close to the critical

point; the disordered-crystal theory would be best near the melting point.

At points between, they might both fail badly. A more direct approach to

liquids would abandon these flanking attacks and try to develop the theory

directly from the fundamentals of intermolecular forces and statistical

mechanics. This is a very difficult undertaking, but a beginning has been

made by Max Born, J. G. Kirkwood, and others.

We shall consider first some of the resemblances between liquid and

crystal structures, as revealed by the methods of X-ray diffraction.

3. X-ray diffraction of liquids. The study of the X-ray diffraction of

liquids followed the development of the method of Debye and Scherrer for

powdered crystals. As the particle size of the powder decreases, the width

of the lines in the X-ray pattern gradually increases. From particles around

100 A in diameter, the lines have become diffuse halos, and with still further

decrease in particle size the diffraction maxima become blurred out altogether.

If a liquid were completely amorphous, i.e., without any regularity of

structure, it should also give a continuous scattering of X rays without



416 LIQUIDS [Chap. 14

maxima or minima. This was actually not found to be the case. A typical

pattern, that obtained from liquid mercury, is shown in (a), Fig. 14.2, as a

microphotometer tracing of the photograph. This reveals the maxima and

minima better than the unaided eye. One or two or sometimes more intensity

maxima appear, whose positions often correspond closely to some of the

larger interplanar spacings that occur in the crystalline structures. In the

case of the metals, these are the close-packed structures. It is interesting that

a crystal like bismuth, which has a peculiar and rather loose solid structure,

3i
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Fig. 14.2.
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(b) f- ANGSTROM UNITS

(a) Photometric tracing of liquid-mercury picture; (b) radial

distribution function for liquid mercury.

is transformed on melting into a close-packed structure. We recall that

bismuth is one of the few substances that contract in volume when melted.

The fact that only a few maxima are observed in the diffraction patterns
from liquids is in accord with the picture of short-range order and increasing
disorder at longer range. In order to obtain the maxima corresponding to

smaller interplanar spacings or higher orders of diffraction, the long-range
order of the crystal must be present.

The diffraction maxima observed with crystals or liquids should be dis-

tinguished from those obtained by the X-ray or electron diffraction of gases.
The latter arise from the fixed positions of the atoms within the molecules.

The individual molecules are far apart and distributed at random. In deriving
on page 327 the diffraction formula for gases, we considered only a single
molecule and averaged over all possible orientations in space. With both

solids and liquids the diffraction maxima arise from the ordered arrangement
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of the units (molecules or atoms) in the condensed three-dimensional struc-

ture. Thus gaseous argon, a monatomic gas, would yield no maxima, but

liquid argon displays a pattern similar to that of liquid mercury.
It is possible to analyze the X-ray diffraction data from liquids by using

the Bragg relation to calculate spacings. A more instructive approach, how-

ever, is to consider a liquid specimen as a single giant molecule, and then to

use the formulas, such as eq. (11.19), derived for diffraction by single

molecules. A simple theory is obtained only in the case of monatomic liquids,

such as the metals and group O elements.

The arrangement of atoms in such a liquid is described by introducing
the radial distribution function g(r). Taking the center of one atom as origin,

this g(r) gives the probability of finding the center of another atom at the

end of a vector of length r drawn from the origin. The chance of finding

another atom between a distance r and r \ dr, irrespective of angular

orientation, is therefore 47rr2g(r)dr (cf. page 187). It is now possible to

obtain, for the intensity of scattered X radiation, an expression similar to

that in eq. (11.19), except that instead of a summation over individual

scattering centers, there is an integration over a continuous distribution of

scattering matter, specified by g(r). Thus

1(0) f 4rrrWr) ^ dr (14.1)
Jo fir

sin I
-

I

\^/
As before, /^

=
* A

By an application of Fourier's integral theorem, this integral can be

inverted,
1
yielding

By use of this relationship it is possible to calculate a radial-distribution

curve, such as that plotted in (b), Fig. 14.2, from an experimental scattering

curve, such as that in (a), Fig. 14.2. The regular coordination in the close-

packed liquid-mercury structure is clearly evident, but the fact that maxima
in the curve are rapidly damped out at larger interatomic distances indicates

that the departure from the ordered arrangement becomes greater and

greater as one travels outward from any centrally chosen atom.

4. Results of liquid-structure investigations. X-ray diffraction data from

liquids are not sufficiently detailed to permit complete structure analyses like

those of crystals. This situation is probably inevitable because the diffraction

experiments reveal only an average or statistical structure, owing to the

continual destruction and reformation of ordered arrangements by the

thermal motions of the atoms or molecules in the liquid.

One view, however, proposed by G. W. Stewart (around 1930), is that

1
See, for example, H. Bateman, Partial Differential Equations ofMathematical Physics

(New York: Dover Publications, 1944), p. 207.
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there are actually large regions in a liquid that are extremely well ordered.

These are called cybotactic groups, and are supposed to contain up to

several hundred molecules. These islands of order are dispersed in a sea of

almost completely disordered molecules, whose behavior is essentially that

of a very dense gas. There is a dynamic equilibrium between the cybotactic

groups and the unattached molecules. This picturesque model is probably
unsuitable for the majority of liquids and it is usually preferable to think of

the disorder as being fairly well averaged throughout the whole structure.

The results with liquid metals have already been mentioned. They appear
to have approximately close-packed structures quite similar to those of the

solids, with the interatomic spacings expanded by about 5 per cent. The

number of nearest neighbors in a close-packed structure is twelve. In liquid

sodium, each atom is found to have on the average ten nearest neighbors.

One of the most interesting liquid structures is that of water. J. Morgan
and B. E. Warren2 have extended and clarified an earlier discussion by
Bernal and Fowler. They studied the X-ray diffraction of water over a range
of temperatures, and obtained the radial distribution curves.

The maximum of the large first peak occurs at a distance varying from

about 2.88 A at 1.5C to slightly over 3.00 A at 83C. The closest spacing
in ice is at 2.76 A. It might at first be thought that this result is in disagree-

ment with the fact that there is a contraction in volume of about 9 per cent

when ice melts. Further analysis shows, however, that the coordination in

liquid water is not exactly the same as the tetrahedral coordination of four

nearest neighbors in ice. The number of nearest neighbors can be estimated

from the area under the peaks in the radial-distribution curve, with the

following results:

Temperature, C:
Number nearest neighbors:

1.5

4.4

13

4.4

30

4.6

62

4.9

83

4.9

Thus the tetrahedral arrangement in ice is partially broken down in water,

to an extent that increases with temperature. This breakdown permits closer

packing, although water is of course far from being a closest-packed struc-

ture. The combination of this effect with the usual increase of intermolecular

separation with temperature explains the occurrence of the maximum in the

density of water at 4C.

Among other structures that have been investigated, those of the long-
chain hydrocarbons may be mentioned. These molecules tend to pack with

parallel orientations of the chains, sometimes suggesting an approach to

Stewart's cybotactic models.

5. Liquid crystals. In some substances the tendency toward an ordered

arrangement is so great that the crystalline form does not melt directly to a
2

J. Chem. Phys., 6, 666 (1938). This paper is recommended as a clear and excellent

example of the X-ray method as applied to liquids.
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liquid phase at all, but first passes through an intermediate stage (the meso-

morphic or paracrystalline state), which at a higher temperature undergoes
a transition to the liquid state. These intermediate states have been called

liquid crystals, since they display some of the properties of each of the

adjacent states. Thus some paracrystalline substances flow quite freely but

(a)

I I Hill 1 1111 II II III!

(b)

(c) (d)

Fig. 14.3. Degrees of order: (a) crystalline orientation and periodicity;

(b) smectic orientation and arrangement in equispaced planes, but no periodicity

within planes; (c) nematic orientation without periodicity; (d) isotropic fluid

neither orientation nor periodicity.

are not isotropic, exhibiting interference figures when examined with polar-

ized light ; other varieties flow in a gliding stepwise fashion and form "graded

droplets" having terracelike surfaces.

A compound frequently studied in its paracrystalline state is />-azoxy-

anisole,

O

OCHaCH

The solid form melts at 84 to the liquid crystal, which is stable to 150 at

which point it undergoes a transition to an isotropic liquid. The compound
ethyl /7-anisalaminocinnamate,

:H=N/ \ CH=CP/ \_CH=N/ \_CH=CH COOC2H5
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passes through three distinct paracrystalline phases between 83 and 139.

Cholesteryl bromide behaves rather differently.
3 The solid melts at 94 to

an isotropic liquid, but this liquid can be supercooled to 67 where it passes

over into a metastable liquid-crystalline form.

Liquid crystals tend to occur in compounds whose molecules are

markedly unsymmetrical in shape. For example, in the crystalline state

long-chain molecules may be lined up as shown in (a), Fig. 14.3. On raising

the temperature, the kinetic energy may become sufficient to disrupt the

binding between the ends of the molecules but insufficient to overcome the

strong lateral attractions between the long chains. Two types of anisotropic

melt might then be obtained, shown in (b) and (c), Fig. 14.3. In the smectic

(ojurjypQL, "soap") state the molecules are oriented in well-defined planes.

When a stress is applied, one plane glides over another. In the nematic

(*>/7//a, "thread") state the planar structure is lost, but the orientation is pre-

served. With some substances, notably the soaps, several different phases,

differentiated by optical and flow properties, can be distinguished between

typical crystal and typical liquid.

It has been suggested that many of the secrets of living substances may
be elucidated when we know more about the liquid-crystalline state. Joseph
Needham4 has written :

Liquid crystals, it is to be noted, are not important for biology and embryology
because they manifest certain properties which can be regarded as analogous to

those which living systems manifest (models), but because living systems actually
are liquid crystals, or, it would be more correct to say, the paracrystalline state

undoubtedly exists in living cells. The doubly refracting portions of the striated

muscle fibre are, of course, the classical instance of this arrangement, but there are

many other equally striking instances, such as cephalopod spermatozoa, or the

axons of nerve cells, or cilia, or birefringent phases in molluscan eggs, or in nucleus

and cytoplasm of echinoderm eggs. . . .

The paracrystalline state seems the most suited to biological functions, as it

combines the fluidity and diffusibility of liquids while preserving the possibilities of

internal structure characteristic of crystalline solids.

6. Rubbers. Natural rubber is a polymerized isoprene,' with long hydro-
carbon chains of the following structure:

( CH2 CH CH2 CH2 )n

I

CH3

The various synthetic rubbers are al$o long, linear polymers, with similar

structures. The elasticity of rubber is a consequence of the different degrees
of ordering of these chains in the stretched and unstretched states. An
idealized model of the rubber chains when stretched and when contracted

3
J. Fischer, Zeit. physik. Chern., 160A, 110 (1932).

4
Joseph Needham, Biochemistryand Morphogenesis (London: Cambridge, 1942), p. 661.
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is shown in Fig. 14.4. Stretching forces the randomly oriented chains into a

much more ordered alignment. The unstretched, disordered configuration is

a state of greater entropy, and if the tension is released, the stretched rubber

spontaneously reverts to the unstretched condition.

Robert Boyle and his contemporaries talked about the "elasticity of a

gas," and although we hear this term infrequently today, it is interesting to

noie that the thermodynamic interpretations of the elasticity of a gas and of

the elasticity of a rubber band are in fact the same. If the pressure is released

on a piston that holds gas in a cylinder, the piston springs back as the gas

expands. The expanded gas is in a state of higher entropy than the com-

(o) (b)

Fig. 14.4. Idealized models of chains in rubber:

(a) stretched; (b) contracted.

pressed gas: it is in a more disordered state since each molecule has a larger

volume in which to move. Hence the compressed gas spontaneously expands
for the same reason that the stretched rubber band spontaneously contracts.

From eq. (6) on page 65, the pressure is

(14.3)

For a gas, the (dE/3V)T term is small, so that effectively P = T(dS/dV)T ,

and the pressure varies directly with r, and is determined by the change in

entropy with the volume. The analog of eq. (14.3) for a rubber band of

length L in which the tension is K is

(14.4)

It was found experimentally that K varies directly with T, so that, just as in

the case of an ideal gas, the term involving the energy must be negligible.

It was this observation that first led to the interpretation of rubber elasticity

as an entropy effect.
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7. Glasses. The glassy or vitreous state of matter is another example of

a compromise between crystalline and liquid properties. The structure of a

glass is essentially similar to that of an associated liquid such as water, so

that there is a good deal of truth in the old description of glasses as super-

cooled liquids. The two-dimensional models in Fig. 14.5, given by W. H.

Zachariasen, illustrate the differences between a glass and a crystal.

The bonds are the same in both cases, e.g., in silica the strong electro-

static Si O bonds. Thus both quartz crystals and vitreous silica are hard

and mechanically strong. The bonds in the glass differ considerably in length

and therefore in strength. Thus a glass on heating softens gradually rather

(o) (b)

Fig. 14.5. Two-dimensional models for (a) crystal and (b) glass.

than melts sharply, since there is no one temperature at which all the bonds

become loosened simultaneously.
The extremely low coefficient of thermal expansion of some glasses,

notably vitreous silica, is explicable in terms of a structure such as that in

Fig. 14.5. The structure is a very loose one, and just as in the previously

discussed case of liquid water, increasing the temperature may allow a closer

coordination. To a certain extent, therefore, the structure may "expand into

itself." This effect counteracts the normal expansion in interatomic distance

with temperature.
8. Melting. In Table 14.1 are collected some data on the melting point,

latent heat of fusion, latent heat of vaporization, and entropies of fusion

and vaporization of a number of substances.

It will be noted that the heats of fusion are much less than the heats of

vaporization. It requires much less energy to convert a crystal to liquid than

to vaporize a liquid.

The entropies of fusion are also considerably lower than the entropies of

vaporization. The latter are quite constant, around 21.6 eu (Trouton's rule).

The constancy of the former is not so marked. For some classes of sub-

stances, however, notably the close-packed metals, the entropies of fusion

are seen to be remarkably constant.

9. Cohesion of liquids the internal pressure. We have so far been dis-

cussing the properties of liquids principally from the disordered-crystai

point of view. Whatever the model chosen for the liquid state, the cohesive
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TABLE 14.1

DATA ON MELTING AND VAPORIZATION

Metals

Na
Al
K
Fe

Ag
Pt

Hg

Ionic Crystals

6.72

6.15

4.33

4.42

4.65

13.07

109

93

Molecular Crystals

H2

H2

A
NH3

C2H5OH

0.028

1.43

0.280

1.84

1.10

2.35

0.22

11.3

1.88

7.14

10.4

8.3

forces are of primary importance. Ignoring, for the time being, the origin of

these forces, we can obtain an estimate of their magnitude from thermo-

dynamic considerations. This estimate is provided by the so-called internal

pressure.

We recall from eq. (3.43) that

v- = T -
dT

p (14.5)

In the case of an ideal gas, the internal pressure term />,
= (5Ej^V)T is

zero since intermolecular forces are absent. In the case of an imperfect gas,

the (dE/dV)T term becomes appreciable, and in the case of a liquid it may
become much greater than the external pressure.

The internal pressure is the resultant of the forces of attraction and the

forces of repulsion between the molecules in a liquid. It therefore depends
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markedly on the volume K, and thus on the external pressure P. This effect

is shown in the following data for diethyl ether at 25C.

P(atm): 200

P<(atm): 2790
800

2840
2000

2530

5300

2020

7260

40

9200

-1590
11,100
-4380

For moderate increases in P, the P
t
decreases only slightly, but as P exceeds

5000 atm, the P
t begins to decrease rapidly, and goes to large negative values

as the liquid is further compressed. This behavior is a reflection, on a larger

scale, of the law of force between individual molecules that was illustrated

in Fig. 7.8. on page 181.

Internal pressures at 1 atm and 25C are summarized in Table 14.2,

taken from a compilation by J. H. Hildebrand. With normal aliphatic hydro-
carbons there appears to be a gradual increase in P

t
with the length of the

chain. Dipolar liquids tend to have somewhat larger values than nonpolar

liquids. The effect of dipole interaction is nevertheless not predominant. As

might be expected, water with its strong hydrogen bonds has an exceptionally

high internal pressure.

TABLE 14.2

INTERNAL PRESSURES OF LIQUIDS

(25C and 1 atm)

Compound Pi atm

2,370

2,510

2,970

3,240

3,310

3,640

3,660

3,670

13,200

20,000

Hildebrand was the first to point out the significance of the internal

pressures of liquids in determining solubility relationships. If two liquids

have about the same P
t , their solution has little tendency toward positive

deviations from Raoult's Law. The solution of two liquids differing con-

siderably in P
t

will usually exhibit considerable positive deviation from

ideality, i.e., a tendency toward lowered mutual solubility. Negative devia-

tions from ideality are still ascribed to incipient compound or complex
formation,

10. Intel-molecular forces. It should be clearly understood from earlier

discussions (cf. Chapter 11) that all the forces between atoms and molecules

are electrostatic in origin. They are ultimately based on Coulomb's Law of

the attraction between unlike, and the repulsion between like charges. One
often speaks of long-range forces and short-range forces. Thus a force that
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depends on 1/r
2 will be effective over a longer range than one dependent on

1/r
7

. All these forces may be represented as the gradient of a potential func-

tion,/
= 3//3r, and it is often convenient to describe the potential energies

rather than the forces themselves (See Fig. 7.8, page 181.) The following
varieties of intermolecular and interionic potential energies may then be

distinguished:

(1) The coulombic energy of interaction between ions with net charges,

leading to a long-range attraction, with U ~ r^ 1
.

(2) The energy of interaction between permanent dipoles, with U ~ r~6
.

(3) The energy of interaction between an ion and a dipole induced by it

in another molecule, with U ~ r~4 .

(4) The energy of interaction between a permanent dipole and a dipole

induced by it in another molecule, with U ~ r~6
.

(5) The forces between neutral atoms or molecules, such as the inert

gases, with U ~ r~B
.

(6) The overlap energy arising from the interaction of the positive nuclei

and electron cloud of one molecule with those of another. The overlap leads

to repulsion at very close intermolecular separations, with an r~9 to r~12

potential.

The van der Waais attractions between molecules must arise from inter-

actions belonging to classes (2), (4), and (5).

The first attempt to explain them theoretically was that of W. H. Keesom

(1912), based on the interaction between permanent dipoles. Two dipoles in

rapid thermal motion may sometimes be oriented so as to attract each other,

sometimes so as to repel each other. On the average they are somewhat closer

together in attractive configurations, and there is a net attractive energy.

This energy was calculated5 to be

,--

where ^ is the dipole moment. The observed r~6
dependence of the interaction

energy, or r~7
dependence of the forces, is in agreement with deductions from

experiment. This theory is of course not an adequate general explanation of

van der Waals' forces, since there are considerable attractive forces between

molecules, such as the inert gases, with no vestige of a permanent dipole

moment.

Debye, in 1920, extended the dipole theory to take into account the

induction effect. A permanent dipole induces a dipole in another molecule

and a mutual attraction results. This interaction depends on the polariza-

bility a of the molecules, and leads to a formula,

UU = - (14.7)

5
J. E. Lennard-Jones, Proc. Phys. Soc. (London), 43, 461 (1931).
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This effect is quite small and does not help us to explain the case of the inert

gases.

In 1930, F. London solved this problem by a brilliant application of

quantum mechanics. Let us consider a neutral molecule, such as argon. The

positive nucleus is surrounded by a cloud 6 of negative charge. Although the

time average of this charge distribution is spherically symmetrical, at any
instant the distribution will be somewhat distorted. (This may be visualized

very clearly in the case of the neutral hydrogen atom, in which the electron

is sometimes on one side of the proton, sometimes on the other.) Thus a

"snapshot" taken of an argon atom would reveal a little dipole with a certain

orientation. An instant later the orientation would be different, and so on,

so that over any macroscopic period of time the instantaneous dipole

moments would average to zero.

Now it should not be thought that these little snapshot dipoles interact

with those of other molecules to produce an attractive potential. This cannot

happen since there will be repulsion just as often as attraction; there is no

time for the instantaneous dipoles to line up with one another. There is,

however, a snapshot-dipole polarization interaction. Each instantaneous

argon dipole induces an appropriately oriented dipole moment in neighboring

atoms, and these moments interact with the original to produce an in-

stantaneous attraction. The polarizing field, traveling with the speed of light,

does not take long to traverse the short distances between molecules. Cal-

culations show that this dispersion interaction leads to a potential,

Um -- -IK^ (14.8)

where VQ is the characteristic frequency of oscillation of the charge dis-

tribution. 7

The magnitudes of the contributions from the orientation, induction, and

dispersion effects are shown in Table 14.3 for a number of simple molecules.

It is noteworthy that all the contributions to the potential energy of inter-

molecular attraction display an r~6
dependence. The complete expression for

the intermolecular energy must include also a repulsive term, the overlap

energy, which becomes appreciable at very close distances. Thus we may
write

U=- ~Ar - + Br~n (14.9)

The value of the exponent n is from 9 to 12.

11. Equation of state and intermolecular forces. The calculation of the

equation of state of a substance from a knowledge of the intermolecular

6 At least a "probability cloud" see p. 276.
7 The r~* dependence of the

potential
can be readily derived in this case from electro-

static theory. The field due to a dipole varies as 1/r
3

,
and the potential energy of an induced

dipole in a field F is fcaF
2

. See Harnwell, Electricity and Magnetism, p. 59.

For a simple quantum-mechanical derivation of eq. (14.8), see R. H. Fowler, Statistical

Mechanics (London: Cambridge, 1936), p. 296.
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TABLE 14.3

RELATIVE MAGNITUDES OF INTERMOLECULAR INTERACTIONS*

427

*
J. A. V. Butler, Ann. Rep. Chem. Soc. (London), 34, 75 (1937).

| Units of erg cm x 10 60
.

forces is in general a problem of great complexity. The method of attack

may be outlined in principle, but so far the mathematical difficulties have

proved so formidable that in practice a solution has been obtained only for

a few drastically simplified cases.

We recall that the calculation of the equation of state reduces to cal-

culating the partition function Z for the system. From Z the Helmholtz free

energy A is immediately derivable, and hence the pressure, P --- ~(dA/dV)T .

To determine the partition function, Z = S e
~E i

/kT^ ^Q energy levels

of the system must be known. In the cases of ideal gases and crystals it is

possible to use energy levels for individual constituents of the system, such

as molecules or oscillators, ignoring interactions between them. In the case

of liquids, this is not possible since it is precisely the interaction between

different molecules that is responsible for the characteristic properties of a

liquid. It would therefore be necessary to know the energy levels of the

system as a whole, for example, one mole of liquid. So far this problem has

not been solved.

An indication of the difficulties of a more general theory may be obtained

by a consideration of the theory of imperfect gases. In this case we consider

that the total energy of the system H can be divided into two terms, the

kinetic energy EK , and the intermolecular potential energy U: H = EK + U.

For a mole of gas, U is a function of the positions of all the molecules.

For the N molecules in a mole there are 37V positional coordinates, q, ft,

ft . . . ft^ Therefore, U = U(ql9 ft, ft ft,v)-

The partition function may now be written

Z = S e
-(E*+ U)lkT = 2 e-s*lkT S e~ ulkT

(14.10)

It is not necessary to consider quantized energy levels, and Z may be
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written in terms of an integration, rather than a summation over discrete

levels.

Z=Xe-**l*T
S. . .Se-

u >" '****
dql9 dqt. . . dq^ (14.11)

The theoretical treatment of the imperfect gas reduces to the evaluation

of the so-called configuration integral,

f)(T)
= /.../ <?-"<'

' '"
dqlt dqz . . . dqw (14.12)

Since this is a repeated integral over 3N coordinates, </
it will be easily

appreciated that its general evaluation is a matter of unconscionable diffi-

culty, so that the general theory has ended in a mathematical cul-de-sac.

Physically, however, it is evident that the potential energy of interaction,

even in a moderately dense gas, does not extend much beyond the nearest

neighbors of any given molecule. This simplification still leaves a problem of

great difficulty, which is at present the subject of active research.

The only simple approach is to consider interactions between pairs of

molecules only. This would be a suitable approximation for a slightly im-

perfect gas. One lets <f>(rl9)
be the potential energy of interaction between two

molecules / and j separated by a distance /, and assumes that the total

potential energy is the sum of such terms.

over pairs

When this potential is substituted in eq. (14.12), the configuration integral

can be evaluated. The details of this very interesting, but rather long,

calculation will not be given here. 8

Efforts have been made to solve the configuration integral for more

exact assumptions than the interaction between pairs. These important
advances toward a comprehensive theory for dense fluids are to be found

in the works of J. E. Lennard-Jones, J. E. Mayer, J. G. Kirkwood, and

Max Born.

12. The free volume and holes in liquids. There have been many attempts
to devise a workable theory for liquids that would avoid entanglement with

the terrible intricacies of the configuration integral. One of the most success-

ful efforts has been that of Henry Eyring, based on the concept of a free
volume. The liquid is supposed to be in many respects similar to a gas. In a

gas, the molecules are free to move throughout virtually the whole container,

the excluded volume (four times van der Waals' b) being almost negligible

at low densities. In a liquid, however, most of the volume is excluded volume,
and only a relatively small proportion is a void space or free volume in which

the centers of the molecules can manoeuvre.

Eyring then assumes that the partition function for a liquid differs from

that for a gas in two respects: (I) the free volume V
1

is substituted for the

8 See J. C. Slater, Introduction to Chemical Physics (New York: McGraw-Hill, 1 939),

p. I9l.
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total volume F; (2) the zero point of energy is changed by the subtraction

of the latent heat of vaporization from the energy levels of the gas. Thus,
instead of eq. (12.28), one obtains

( '
__ /

11(1

~
Nl[ If \

The idea of a free volume in liquids is supported experimentally by

Bridgman's studies of liquid compressibilities. These are high at low pressures,

07 08
TAc

REDUCED TEMPERATURE

0.9 1.0

Fig. 14.6. Law of rectilinear diameters.

but after a compression in volume of about 3 per cent, the compressibility

coefficient decreases markedly. The initial high compressibility corresponds
to "taking up the slack" in the liquid structure or using up the free volume.

A useful model is sometimes provided by considering that the free

volume is distributed throughout the liquid in the form of definite holes

in a more closely packed structure. We should not think of these holes as

being of molecular size, since there is probably a distribution of smaller

holes of various sizes. The vapor is mostly void space with a few molecules

moving at random. The liquid is a sort of inverse of this picture, being

mostly material substance with a few holes moving at random.

As the temperature of a liquid is raised, the concentration of molecules

in its vapor increases and the concentration of holes in the liquid alsp in-

creases. Thus as the vapor density increases the liquid density decreases,

until they become equal at the critical point. We might therefore expect the
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average density of liquid and vapor to be constant. Actually, there is a slight

linear decrease with temperature. This behavior was discovered by L.

Cailletet and E. Mathias (1886), and has been called the law of rectilinear

diameters. It may be expressed as pav = p aT, where pav is the arith-

metical mean of the densities of the liquid and the vapor in equilibrium with

it, and p and a are characteristic constants for each substance. The relation-

ship is illustrated in Fig. 14.6 where the data for helium, argon, and ether

are plotted in terms of reduced variables to bring them onto the same scale.

13. The flow of liquids. Perhaps most typical of all the properties of

fluids is the fact that they begin to flow appreciably as soon as a shearing
stress is applied. A solid, on the other hand, apparently supports a very con-

siderable shear stress, opposing to it an elastic restoring force proportional
to the strain, and given by Hooke's Law,/ KX.

Even a solid flows somewhat, but usually the stress must be maintained

for a long time before the flow is noticeable. This slow flow of solids is called

creep, and it can become a serious concern to designers of metal structural

parts. Under high stresses, creep passes over into the plastic deformation of

solids, for example, in the rolling, drawing, or forging of metals. These

operations proceed by a mechanism involving the gliding of slip planes

(page 391). Although creep is usually small, it must be admitted that the

flow properties of liquids and solids differ in degree and not in kind.

The fact that liquids flow immediately under even a very small shear

force does not necessarily mean that there are no elastic restoring forces

within the liquid structure. These forces may exist without having a chance

to be effective, owing to the rapidity of the flow process. The skipping of a

thin stone on the surface of a pond demonstrates the elasticity of a liquid

very well. An interesting substance, allied to the silicone rubbers, has been

widely exhibited under the name of "bouncing putty." This curious material

is truly a hybrid of solid and liquid in regard to its flow properties. Rolled

into a sphere and thrown at a wall, it bounces back as well as any rubber

ball. Set the ball on a table and it gradually collapses into a puddle of viscous

putty. Thus under long-continued stress it flows slowly like a liquid, but

under a sudden sharp blow it reacts like a rubber.

Some of the hydrodynamic theory of fluid flow was discussed in Chapter
7 (page 173) in connection with the viscosity of gases. It was shown how the

viscosity coefficient could be measured from the rate of flow through cylin-
drical tubes. This is one of the most convenient methods for use with liquids
as well as gases, the viscosity being calculated from the Poiseuille equation,

Note that the equation for an incompressible fluid is suitable for liquids,

whereas that for a compressible fluid is used for gases.

In the Ostwald type of viscometer, one measures the time required for
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a bulb of liquid to discharge through a capillary under the force of its own

weight. It is usual to make relative rather than absolute measurements with

these instruments, so that the dimensions of the capillary tube and volume

of the bulb need not be known. The time 7 required for a liquid of known

viscosity ?? , usually water, to flow out of the bulb is noted. The time t9 for

the unknown liquid is similarly measured. The viscosity of the unknown is

where p and px are the densities of water and unknown.

Another useful viscometer is the Happier type, based on Stokes' formula

[eq.(S.ll)]:

\^ JL. = (m

By measuring the rate of fall in the liquid (terminal velocity v) of metal

spheres of known radius r and mass w, the viscosity may be calculated,

since the force /is equal to (m mQ)g, where m is the mass of liquid dis-

placed by the ball.

14. Theory of viscosity. The hydrodynamic theories for the flow of liquids

and gases are very similar. The kinetic-molecular mechanisms differ widely,

as might be immediately suspected from the difference in the dependence of

gas and liquid viscosities on temperature and pressure. In a gas, the viscosity

increases with the temperature and is practically independent of the pressure.

In a liquid, the viscosity increases with the pressure and decreases exponen-

tially with increasing temperature.

The exponential dependence of liquid viscosity on temperature was first

pointed out by J. deGuzman Carrancio in 1913. Thus the viscosity coefficient

may be written

77=-- Ae*K^IRT
(14.14)

The quantity A vl8 is a measure of the energy barrier that must be overcome

before the elementary flow process can occur. It is expressed per mole of

liquid. The term e
~^E^RT can then be explained as a Boltzmann factor

giving the fraction of the molecules having the requisite energy to surmount

the barrier.

In Table 14.4 are collected the values A vig for a number of liquids,

together with values of AZ^p for purposes of comparison.
9 The energy

required to create a hole of molecular size in a liquid is A
vap

. The fact

that the ratio of AEvl8 to A isvap about \ to \ for many liquids suggests

that the viscous-flow process requires a free space about one-third to one-

fourth the volume of a molecule. A noteworthy exception to the constancy

of the A vig : A
vftp

ratio is provided by the liquid metals, for which the

9 R. H. Ewell and Henry Eyring, J. Chem. Phys., 5, 726 (1937).
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TABLE 14.4

VALUES OF AVis

values range from & to 7V- This low ratio has been interpreted as indicating
that the units that flow in liquid metals are ions, whereas the units that

vaporize are the much larger atoms.

The pressure dependence of the viscosity follows an equation similar in

form to eq. (14.14),

The AF* is the volume of the hole that must be created for the flow process
to occur. As we have seen, AF* for most liquids is about one-quarter of

the molar volume, but for liquid metahs AF* is exceptionally small. Thus
the viscosity of liquid metals increases only slowly with the pressure. Some

properties of the earth provide an interesting confirmation of these ideas.

To a depth of about 3500 km the earth consists of silicates. Except for a

relatively thin solid crust, these must be molten, since the temperature is

about 3000C. The pressure is so high, however, that the molten silicates

have the flow properties of a solid; this result is shown by the fact that

seismic waves can pass through the material with little damping. The core

of the earth, with a radius of about 3000 km, is believed to consist of molten
metal. Although the pressures are even higher than in the silicate layer, the

metallic core behaves as a typical liquid, and does not transmit seismic

waves. In other words, the AF* term for a molten metal is so small that

the viscosity is not greatly increased even by very high pressures.

PROBLEMS

1. For CC14 the thermal pressure coefficient @P/dT)y at 20.4C and
1 atm is 11.63 atm per deg. .Calculate the internal pressure in atmospheres.
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2. The following values were found for the viscosity of liquid CC14 :

Plot these data and calculate AEvis .

3. The liquid and vapor densities of ethanol in equilibrium at various

temperatures are:

The critical temperature is 243C. What is the critical volume?

4. Suppose that the holes in liquid benzene are of the same order of size

as the molecules. Estimate the number of holes per cc at 20C where the

vapor pressure is 77 mm. Hence estimate the free volume in liquid benzene

in cc per mole. Van der Waals' b for benzene is 1 1 5 cc per mole. If b is four

times the volume of the molecules and molecules are closely packed in liquid

benzene, estimate the free volume on this basis. The density of benzene at

20C is 0.879 g per cc.

5. The equation of state of a rubber band is K = CT(L/LQ L 2
/L

2
),

where K is the tension and L is the length at zero tension. In a case with

L = 20cm and C = 1.33 x 103 dynes deg-
1

, a band is stretched at 25C
to 40cm. What is the decrease in entropy of the rubber band?

6. A certain glass at 800C has a viscosity of 106 poise and a density of

3.5 g crrr3 . How long would a 5 mm diameter platinum ball require to fall

1 .0 cm through the hot glass ?
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CHAPTER 15

Electrochemistry

1. Electrochemistry: coulometers. The subject of electrochemistry, the

interrelations of electrical and chemical phenomena, is an exceedingly broad

one since, as we have seen, all chemical interactions are fundamentally
electrical in nature. In a more restricted sense, however, electrochemistry
has come to mean the study of solutions of electrolytes and the phenomena
occurring at electrodes immersed in such solutions. The electrochemistry of

solutions may claim a special interest from physical chemists since it was in

this field that physical chemistry first emerged as a distinct and characteristic

science. Its first journal, Die Zeitschriftfur physikalische Chemie, was founded

in 1887 by Wilhelm Ostwald, and the early volumes are devoted mainly to

the researches in electrochemistry of Ostwald, van't Hoff, Kohlrausch,

Arrhenius, and others of their "school."

The early history of electrical science has already been discussed as an

introduction to Chapter 8. Its culmination was Faraday's discovery of the

quantitative laws of electrolysis.

These laws became the basis for the construction of coulometers for

measuring quantity of electricity. A standard instrument is the silver coulo-

meter, based on the mass of silver deposited at a platinum cathode by the

passage of the electric current through an aqueous silver nitrate solution.

One coulomb of electricity is equivalent to 0.001 11 800 g of silver. The

iodine coulometer depends on the volumetric estimation of the iodine

liberated by electrolysis of a potassium iodide solution. The experimental

precautions needed for precise coulometry have been extensively studied. 1

2. Conductivity measurements. From the very beginning one of the

fundamental theoretical problems in electrochemistry was how the solutions

of electrolytes conducted an electric current.

Metallic conductors were known to obey Ohm's Law,

,- ,

where / is the current (amperes), ff is the electromotive force, emf (volts),

and the proportionality constant R is called the resistance (ohms). The

resistance depends on the dimensions of the conductor:

R = pl (15.2)
A

1
See, for example, H. S. Taylor, Treatise on Physical Chemistry, 2nd ed., pp. 591-598.

435
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Here / is the length and A the cross-sectional area, and the specific resistance

p (ohm cm) is called the resistivity. The reciprocal of the resistance is called

the conductance (chirr
1
) and the reciprocal of the resistivity, the specific

conductance or conductivity K (ohm"
1 cm"1

).

The earliest studies of the conductivity of solutions were made with

rather large direct currents. The resulting electrochemical action was so great

that erratic results were obtained, and it appeared that Ohm's Law was not

obeyed; i.e., the conductivity seemed to depend on the emf. This result was

largely due to polarization at the electrodes of the conductivity cell, i.e., a

departure from equilibrium conditions in the surrounding electrolyte.

AC
-1000 CYCLES

(a)

LABORATORY
CELL

^| DIPPING

PJCELL

(b)

Fig. 15.1. Conductivity measurement.

These difficulties were overcome by the use of an alternating-current

bridge, such as that shown in (a), Fig. 15.1. With a-c frequencies in the audio

range (1000-4000 cycles per sec) the direction of the current changes so

rapidly that polarization effects are eliminated. One difficulty with the a-c

bridge is that the cell acts as a capacitance in parallel with a resistance, so

that even when the resistance arms are balanced there is a residual unbalance

due to the capacitances. This effect can be partially overcome by inserting

a variable capacitance in the other arm of the bridge, but for very precise

work further refinements are necessary.
2
Microphones formerly were used

to indicate the balance point of the bridge, but the preferred indicator is

now the cathode-ray oscilloscope. The voltage from the bridge mid-point is

filtered, amplified, and fed to the vertical plates of the oscilloscope. A small

portion of the bridge input signal is fed to the horizontal plates of the scope

through a suitable phase-shifting network. When the two signals are properly

phased, the balance of capacitance is indicated by the closing of the loop
on the oscilloscope screen, and the balance of resistance is indicated by
the tilt of the loop from horizontal.

Typical conductivity cells are also shown in Fig. 15.1. Instead of measur-

ing their dimensions, we now usually calibrate these cells before use with a

solution of known conductivity, such as normal potassium chloride. The
cell must be well thermostated since the conductivity increases with the

temperature.

1 T. Shedlovsky, /. Am. Chenr. Soc., 54, 141 1 (1932); W. F. Luder, ibid.. 62, 89 (1940).
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As soon as reliable conductivity data were available it became apparent
that solutions of electrolytes followed Ohm's Law. The resistance was in-

dependent of the emf, and the smallest applied voltage sufficed to produce
a current of electricity. Any conductivity theory would have to explain this

fact: the electrolyte is always ready to conduct electricity and this capability

is not something produced or influenced by the applied emf.

On this score, the ingenious theory proposed in 1805 by Baron C. J.

von Grotthuss must be adjudged inadequate. According to his theory, the

molecules of electrolyte were supposed to be very polar, with positive and

negative ends. An applied field lined them up in a chain. Then the field

caused the molecules at the end of the chain to dissociate, the free ions thus

formed being discharged at the electrodes. Thereupon, there was an exchange
of partners along the chain. Before further conduction could occur, each

molecule had to rotate under the influence of the field to reform the original

oriented chain.

Despite its shortcomings, the Grotthuss theory was valuable in empha-

sizing the necessity of having free ions in the solution to explain the observed

conductivity. We shall see later that there are some cases in which a mechan-

ism similar to that of Grotthuss may actually be followed.

In 1857, Clausius proposed that especially energetic collisions between

undissociated molecules in electrolytes maintained at equilibrium a small

number of charged particles. These particles were believed to be responsible

for the observed conductivity.

3. Equivalent conductivities. From 1869 to 1880, Friedrich Kohlrausch

and his coworkers published a long series of careful conductivity investiga-

tions. The measurements were made over a range of temperatures, pressures,

and concentrations.

Typical of the painstaking work of Kohlrausch was his extensive purifica-

tion of the water used as a solvent. After 42 successive distillations in vacuo,

he obtained a conductivity water having a K of 0.043 x 10~6 ohm"1 cm"1 at

18C. Ordinary distilled water in equilibrium with the carbon dioxide of the

air has a conductivity of about 0.7 x 10~6
.

To reduce his results to a common concentration basis, Kohlrausch

defined a function called the equivalent conductivity,

A =4 (15.3)
c*

The concentration c* is in units of equivalents per cc; the reciprocal (f>
-- \/c*

is called the dilution, in cc per equivalent. The equivalent conductivity would

be the conductance of a cube of solution having one square centimeter cross

section and containing one equivalent of dissolved electrolyte.

Some values for A are plotted in Fig. 15.2. On the basis of their con-

ductivity behavior two classes of electrolytes can be distinguished. Strong

electrolytes, such as most salts and acids like hydrochloric, nitric, and
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sulfuric, have high equivalent conductivities which increase only moderately
with increasing dilution. Weak electrolytes, such as acetic and other organic
acids and aqueous ammonia, have much lower equivalent conductivities at

high concentrations, but the values increase greatly with increasing dilution.

The value of A extrapolated to zero concentration is called the equivalent

conductivity at infinite dilution, A . The extrapolation is made readily for

strong electrolytes but is impossible to make accurately for weak electrolytes

175

4 6 .8 1.0

Vc"- C IN EQUIVALENTS/LITER

Fig. 15.2. Equivalent conductivities vs. square roots of concentration.

because of their tremendous increase in A at high dilutions, where the

experimental measurements become very uncertain. It was found that the

data were fairly well represented by the empirical equation

A = AO - kec
1'2

(15.4)

where kc is an experimental constant.

Kohlrausch observed certain interesting relations between the values of

AD for different electrolytes : the difference in A for pairs of salts having a

common ion was always nearly constant. For example (at 18C):

NaCl 108.99 NaNO3 105.33 NaBr 111.10

KC1 130.10 KNO3 126.50 KBr 132.30

21.11 21.17 21.20
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Thus no matter what the anion might be, there was a constant difference

between the conductivities of potassium and sodium salts. This behavior

could be readily explained if A is the sum of two independent terms, one

characteristic of the anion and one of the cation. Thus

A - V + V (15.5)

where A + and A
~

are the equivalent ionic conductivities at infinite dilution.

This is Kohlrausch's law of the independent migration of ions.

This rule made it possible to calculate the A for weak electrolytes like

organic acids from values for their salts, which are strong electrolytes. For

example (at 18C):

A (HAc) - A (NaAc) + A (HC1) - A (NaCl)

- 87.4 + 379.4 109.0 =-- 357.8

4. The Arrhenius ionization theory. From 1882 to 1886, Julius Thomsen

published data on the heats of neutralization of acids and bases. He found

that the heat of neutralization of a strong acid by a strong base in dilute

solution was always very nearly constant, being about 13,800 calories per

equivalent at 25C. The neutralization heats of weak acids and bases were

lower, and indeed the "strength" of an acid appeared to be proportional to

its heat of neutralization by a strong base such as NaOH.
These results and the available conductivity data' led Svante Arrhenius

in 1887 to propose a new theory for the behavior of electrolytic solutions.

He suggested that an equilibrium exists in the solution between undissociated

solute molecules and ions which arise from these by electrolytic dissociation.

Strong acids and bases being almost completely dissociated, their interaction

was in every case simply H+ ~f OH H2O, thus explaining the constant

heat of neutralization.

While Arrhenius was working on this theory, the osmotic-pressure studies

of van't Hoff appeared, which provided a striking confirmation of the new

ideas. It will be recalled (page 132) that van't Hoff found that the osmotic

pressures of dilute solutions of nonelectrolytes often followed the equation
II = cRT. The osmotic pressures of electrolytes were always higher than

predicted from this equation, often by a factor of two, three, or more, so

that a modified equation was written as

II - icRT (15.6)

Now it was noted that the van't Hoff u
/ factor" for strong electrolytes was

very closely equal to the number of ions that would be formed if a solute

molecule dissociated according to the Arrhenius theory. Thus for NaCl,

KC1, and other uniunivalent electrolytes, i = 2; for BaCl2 ,
K2SO4 , and other

unibivalent species, i = 3 ; for LaCl3, / = 4.

On April 13, 1887, Arrhenius wrote to van't Hoff as follows:

It is true that Clausius had assumed that only a minute quantity of dissolved

electrolyte is dissociated, and that all other physicists and chemists had followed
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him; but the only reason for this assumption, as far as I can understand, is a strong

feeling of aversion to a dissociation at so low a temperature, without any actual

facts against it being brought forward. ... At extreme dilution all salt molecules

are completely dissociated. The degree of dissociation can be simply found on this

assumption by taking the ratio of the equivalent conductivity of the solution in

question to the equivalent conductivity at the most extreme dilution.

Thus Arrhenius would write the degree of dissociation a as

a = A (15.7)
Ao

The van't Hoff / factor can also be related to a. If one molecule of solute

capable of dissociating into n ions per molecule is dissolved, the total number

of particles present will be i = 1 a + nan. Therefore

a = i^-i (15.8)
n 1

Values of a for weak electrolytes calculated from eqs. (15.7) and (15.8) were

found to be in good agreement.

Applying the mass-action principle to ionization, Ostwald obtained a

dilution law, governing the variation of equivalent conductivity A with con-

centration. For a binary electrolyte AB with degree of dissociation a, whose

concentration is c moles per liter:

AB ^ A+ + B~
c(l a) etc <xc

(1 -a)
From eq. (15.7), therefore,

-

AO(AO
- A)

This equation was closely obeyed by weak electrolytes in dilute solutions.

An example is shown in Table 15.1. In this case, the "law" is obeyed at

concentrations below about 0. 1 molar, but discrepancies begin to appear at

higher concentrations.

The accumulated evidence gradually won general acceptance for the

Arrhenius theory, although to the chemists at the time it still seemed most

unnatural that a stable molecule when placed in water should spontaneously
dissociate into ions. This criticism was in fact justified and it soon became

evident that the solvent must play more than a purely passive role in the

formation of an ionic solution.

We now know that the crystalline salts are themselves formed of ions in

regular array, so that there is no question of "ionic dissociation" when they
are dissolved. The process of solution simply allows the ions to be separated
from one another. The separation is particularly easy in aqueous solutions
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TABLE 15.1

TEST OF OSTWALD'S DILUTION LAW

Acetic Acid at 25C, A = 387.9*

w

* D. A. Maclnnes and T. Shedlovsky, J. Am. Chem. Soc., 54, 1429 (1932).

owing to the high dielectric constant of water, e =r 82.0. If we compare, for

water and a vacuum, the work necessary to separate two ions, say Na+ and

Cl~, from a distance of 2 A to infinity, we find:3

Vacuum Water

f
00

,, f^2 , [
fdr = \

r dr w -
J2A h r2 J2

_ (4.80 X IP"10)
2

_ __ (4.80 X 1Q-10)
2

_
2 x 10-

~~

""82 x "2 X 10-8
~~

1.15 x 10-n erg 1.40 x 10~13 erg

Counteracting the energy necessary to separate the ions is the energy of

hydration of the ions, which arises from the strong ion-dipole attractions.

Thus in many cases the solution of ionic salts is an exothermic reaction.

The equilibrium position is of course determined by the free-energy change.
The increased randomness of the ions in solution, compared with the ionic

crystal, leads to an increase in entropy, but this is sometimes outweighed

by an entropy decrease due to the ordering effect of the ions on the water

molecules.

In the case of acids such as HC1, the solution process probably occurs as

follows: HC1 + H2O - OH3
+ + Cl~. In both HC1 and H2O the bonds are

predominantly covalent in character. The ionization that occurs in solution

is promoted by the high energy of hydration of the proton to form the

hydronium ion, OH3
+

.

Whatever the detailed mechanisms may be, it has been clear since the

work of Arrhenius that in electrolytic solutions the solute is ionized, and the

8 This assumes that e in the neighborhood of an ion is the same as c for bulk water,
which is an approximation.
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transport of the ions in an electric field is responsible for the conductivity of

the solutions.

5. Transport numbers and mobilities. The fraction of the current carried

by a giverriomc speci&~l7Tsolution is called the transport number or trans-

ference number of that ion.

From Kohlrausch's law, eq. (15.5), the transference numbers /
+ and /

~

of cation and anion at infinite dilution may be written

V - V = (15.10)A o yxo

The mobility I of an ion is defined as its velocity in an electric field of

unit strength. The usual units are cm sec *

per volt cm"1
(cm

2 sec" 1 volt"1
).

Consider a one-square-centimeter cross section taken normal to the

direction of the current in an electrolyte. The total current / passing through
this area is the sum of that carried by the positive and that carried by the

negative ions. Thus / ^
n\v\z+e + n_v z^e, where n+ and /?_ are the con-

centrations in ions per cc, z+ and z_ are the number of charges on positive

and negative ions, v
{
and v_ are the velocities of the ions, and e is the elec-

tronic charge. The requirement for over-all electrical neutrality is n+z+ =
/i._z_, so that

/ n+z+e(v, \ v_) (15.11)

For a unit cube of electrolyte, from eqs. (15.2) and (15.3): / = &\p ---- K$
(2fAc*. Since n\z^e is the charge in one cc and J*", the faraday, is the charge
in one equivalent,

From eqs. (15.1 1) and (15.12),

"^ "= "+z+*(+

Now v+/ and vj are the mobilities, l+ and /_. Therefore

JiJP = /+ + /_, and

It follows also from eq. (15.10) that

/ = i__,

6. Measurement of transport numbers Hittorf method. The method of

Hittorf is based on concentration changes in the neighborhood of the elec-

trodes caused by the passage of current through the electrolyte. The principle
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of the method may be illustrated by reference to Fig. 15.3. Imagine a cell

divided into three compartments as shown. The situation of the ions before

the passage of any current is represented schematically as (a), each -| or

sign indicating one equivalent of the corresponding ion.

Now let us assume that the mobility of the positive ion is three times

that of the negative ion, / f 3/_. Let 4 faradays of electricity be passed

through the cell. At the anode, therefore, four equivalents of negative ions

are discharged, and at the cathode, four equivalents of positive ions. Four

faradays must pass across any boundary

plane drawn through the electrolyte par-

allel to the electrodes. Since the posi-

tive ions travel three times faster than

the negative ions, 3 faradays are carried

across the plane from left to right by the +3=lrj

positive ions while one faraday is being
carried from right to left by the negative

ions. This transfer is depicted in panel (b)

of the picture. The final situation is

shown in (c). The change in number of

equivalents around the anode, A*a
= 6

p
.

g 15 3 T rt numbers- 3 = 3; around the cathode, A*c
=.-

(Hittorf method).
6 5 -- 1. The ratio of these concentra-

tion changes is necessarily identical with the ratio of the ionic mobilities:

A*a/A c
= IJL - 3.

Suppose the amount of electricity passed through the cell has been

measured by a coulometer in series, and found to be q faradays. Provided

the electrodes are inert, q equivalents of cations have therefore been dis-

charged at the cathode, and q equivalents of anions at the anode. The net

loss of solute from the cathode compartment is

A/?c
- q

-
t+ q - q(\

-
/+)
=

qt_

Thus /_ = * /+
= (15.15)

where A/IO is the net loss of solute from the anode compartment. Since

/+ + *- = 1, both transport numbers can be determined from measurements

on either compartment, but it is useful to have both analyses as a check.

In the experiment just described, it is assumed that the electrodes are

inert. In other cases ions may pass into the solution from the electrodes.

Consider, for example, a silver anode in a silver nitrate solution. When

electricity passes through the cell, there will be a net increase in the amount
of electrolyte in the anode compartment, equal to the number of equivalents
of silver entering the solution at the anode minus the number of equivalents
of silver crossing the boundary of the anode compartment.
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Fig. 15.4. Hittorf transport

apparatus.

An experimental apparatus for carrying out these determinations is shown
in Fig. 15.4. The apparatus is filled with a standardized electrolyte solution

and a current, kept low to minimize thermal effects, is passed through the

solution for some time. The total amount of

electricity is measured with a coulometer.

The solutions are drawn separately from

the three sections of the cell and analyzed.

Analysis gives the mass of solute and the

mass of solvent in the solutions from the

electrode compartments. Since the mass of

solute originally associated with this mass

of solvent is known, A a and A
c can be

found by difference. Ideally there should be

no change in concentration in the middle

compartment, but small changes arising from diffusion may detract from

the accuracy of the determination.

7. Transport numbers moving boundary method. This method is based

on the early work of Sir Oliver Lodge (1886) who used an indicator to follow

the migration of ions in a conducting gel. For example, a solution of barium

chloride may be placed around platinum electrodes serving as anode and

cathode. The two sides of the cell are then connected by means of a tube

filled with gelatin acidified with acetic acid to make it conducting and con-

taining a small amount of dissolved silver sulfate as indicator. As the current

is passed, the Ba++ and Cl~ ions migrate into

the gel from opposite ends, forming pre-

cipitates of BaSO4 and AgCl, respectively.

From the rate of progression of the white

precipitate boundaries, the relative velocities

of the ions may be estimated.

The more recent applications of this

method discard the gel and indicator and use

an apparatus such as that in Fig. 15.5, to

follow the moving boundary between two

liquid solutions. For example, the electrolyte

to be studied, CA, is introduced into the

apparatus in a layer above a solution of a

salt with a common anion, C'A, and a cation

whose mobility is considerably less than that

dfr

CA

C'A

Fig. 153. Moving-boundary cell.

of the ion C+. When a current is passed through the cell, A~ ions move
downwards toward the anode, while C+ and C"+ ions move upwards toward

the cathode. A sharp boundary is preserved between the two solutions since

the more slowly moving C"+ ions never overtake the C+ ions; nor do the

following ions, C"+, fall far behind, because if they began to lag, the solution

behind the boundary would become more dilute, and its higher resistance
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and therefore steeper potential drop would increase the ionic velocity. Even

with colorless solutions, the sharp boundary is visible owing to the different

refractive indices of the two solutions.

Suppose the boundary moves a distance x for the passage of q coulombs.

The number of equivalents transported is then qj^, of which t+ql^ are

carried by the positive ion. Recalling that c* is the concentration in equi-

valents per cc, the volume of solution swept out by the boundary during the

passage of q coulombs is t+qf&c*. If a is the cross-sectional area of the tube,

xa = t+q/^c*, or

(.5.16)

8. Results of transference experiments. Some of the measured transport

numbers are summarized in Table 15.2. With these values it is possible to

TABLE 15.2

TRANSPORT NUMBERS OF CATIONS IN WATER SOLUTIONS AT 25C*

* L. G. Longsworth, J. Am. Chem. Soc. t 57, 1185 (1935); 60, 3070 (1938).

calculate from eq. (15.10) the equivalent ionic conductivities A, some of

which are given in Table 15.3. By the use of Kohlrausch's rule, they may

TABLE 15.3

EQUIVALENT IONIC CONDUCTIVITIES AT INFINITE DILUTION, ^, AT 25C*

D. Maclnnes, Principles ofElectrochemistry (New York: Reinhold, 1939).

Q



446 ELECTROCHEMISTRY [Chap. 15

be combined to yield values for the equivalent conductivities A of a wide

variety of electrolytes.

It has been mentioned that ions in solution are undoubtedly hydrated,

so that the observed transport numbers are actually not those of the "bare

ions" but of solvated ions. It was pointed out by Nernst that if a nonionized

substance, such as urea or a sugar, is added to the solution in a Hittorf

transference apparatus, its concentration in the end compartments should

change as a result of the transport of water by the hydrated ions. This

expectation was experimentally realized. From the equivalent ionic conduc-

tivities it is possible to calculate the mobilities of the ions by use of eq.

(15.13). Some results are given in Table 15.4. The effect of hydration is

shown in the set of values for Li+, Na+, K+. Although Li+ is undoubtedly
the smallest ion, it has the lowest mobility; i.e., the resistance to its motion

through the solution is highest. This resistance must be partly due to a

tightly held sheath of water molecules, bound by the intense electric field of

the small ion.

TABLE 15.4

MOBILITIES OF IONS IN WATER SOLUTIONS AT 25C

(cm
2 sec" 1 volt" 1

)

Cations

H+
K+
Ba4

Na+

The passage of an ion through a liquid under the influence of an applied

electric field E might be treated approximately as a hydrodynamic problem
similar to the fall of a spherical body through a viscous medium under the

influence of a gravitational field (cf. the oil drop experiment, page 210, and

the H5ppler viscometer, page 431). Then for steady flow the viscous resist-

ance, given by the Stokes formula, would be balanced by the electric force:

farjrv zeE. Or, since v El, fy ze/67rr. From this follows the relation,

i?A -- constant, known as "Walden's rule." It has a rather wide range of

experimental validity when tested by measuring the A of electrolytes in

solutions of different viscosities. Its derivation from Stokes's Law is prob-

ably a specious one, for it seems unreasonable to apply the hydrodynamic

equation, meant for a continuous fluid, to the motion of ions whose radii are

about the same as those of the solvent molecules. Walden's rule may there-

fore simply imply that ionic conductance and viscous flow proceed by similar

mechanisms. In water, for example, both have a temperature coefficient

corresponding to an e
~^KIRT term with A around 3500 calories per mole.
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9. Mobilities of hydrogen and hydroxyl ions. An examination of Table 15.4

reveals that, with two exceptions, the ionic mobilities in aqueous solutions

do not differ as to order of magnitude, being all around 6 x 10~4 cm2 sec"1

volt" 1
. The exceptions are the hydrogen and hydroxyl ions with the abnor-

mally high mobilities of 36.2 x 10~4 and 20.5 x 10~4
.

The high mobility of the hydrogen ion is observed only in hydroxylic

solvents such as water and the alcohols, in which it is strongly solvated, for

example, in water to the hydronium ion, OH3+. It is believed to be an example
of a Grotthuss type of conductivity, superimposed on the normal transport

process. Thus the OH3
+ ion is able to transfer a proton to a neighboring

water molecule,

H H H H
I I I I

H O H H- O H - H O -f H O H
-f 4-

This process may be followed by the rotation of the donor molecule so that

it is again in a position to accept a proton:

H H
I

^
I

H O OH
The high mobility of the hydroxyi ion in water is also believed to be

caused by a proton transfer, between hydroxyl ions and water molecules,

H H H HIII I

O + H O -> OH I O

10. Diffusion and ionic mobility. The speed v of an ion of charge q in an

electric field E is related to its mobility / by v = qEL The driving force in

such ionic migration is the negative gradient of the electric potential U:

E ~-3U/dx. Even in the absence of an external electric field, however,

ions can migrate if there is a difference in chemical potential /i between

different parts of the system. The migration of a substance under the action

of a difference in chemical potential is called diffusion. Just as the electric

force (per unit charge) on each particle equals the negative gradient of electric

potential, so the diffusive force equals the negative gradient of chemical poten-

tial. In one dimension, therefore, the force on a particle of the /th kind is

, = _1Jl N'

Since /
refers to one mole of particles, it has been divided by Avogadro's

Number N. The velocity under the action of unit force is the generalized

mobility v,, so that v ~ ( vJN)(d[i t/dx). The net flow of material through

unit cross section in unit time is therefore
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where n
i

is the number of particles in unit volume. For a sufficiently dilute

solution, fr
= RTln c

i + //?, and dpjdx = (RT/c^dcJdx). Hence,

In 1855 Pick stated in his empirical "First Law of Diffusion" that the flow

six is proportional to the gradient of concentration:

Jtt =-/><^ (15.17)

The proportionality factor /), is called the diffusion coefficient. Thus D
i
=

kTVf. Since the electric mobility /, v
tq, we have

kT
A = A (15.18)

This equation was derived by Nernst4 in 1888. It indicates that diffusion

experiments can yield much the same kind of information about ionic

mobilities as that obtained from conductivity data. Equation (15.18) ob-

viously applies to the diffusion of a single ionic species only. An experimental

example would be the diffusion of a small amount of HC1 dissolved in a

solution of KC1. The Cl~ concentrations would be constant throughout the

system, and the experiment would measure diffusion of the H+ ions alone.

In other cases, such as diffusion of salts from concentrated to dilute solution,

it is necessary to use a suitable average value of the diffusion coefficients of

the ions to represent the over-all D. For instance, Nernst showed that for

electrolytes of type CA, the proper average is

11. A solution of the diffusion equation. Equation (15.17) gives only the

steady-state condition for diffusion, but the way in which the concentration

may change with time in any region of the solution can be found as follows.

Consider a region of unit cross-section and of length dx, extending from

x to x + dx. The increase in concentration within this region in unit time

is the excess of material diffusing into the region over that diffusing out,

divided by the volume dx:

dc

dc /a2c\
Therefore ^

- D
^ j

(15.20)

4
Z.physik. Chem. t 2, 613 (1888).
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This equation is Pick's "Second Law of Diffusion." It has the same form as

the equation for heat conduction, dT/dx = K(d
2Tpx2

) y where A' is the thermal

conductivity divided by the heat capacity per unit volume. Thus all the solu-

tions of heat conduction problems, which have been obtained for a great

variety of boundary conditions, can be directly applied to problems of diffu-

sion.

We shall consider one solution only, which illustrates very well the

phenomena of interest. Suppose an extremely thin, effectively planar layer of

the diffusing substance is introduced at the surface of the diffusion medium,

Fig. 15.6. Distribution of concentration of diffusing substance at various times.

Plot of eq. (15.21) for both -f and- jt-direction. For diffusion from an interface

between two regions, the c in eq. (15.21) must be divided by 2.

x = 0. Thus at t = 0; x = 0, c = c ; but at / 0, for all x > 0, c 0. It

can readily be shown5 that the solution of eq. (15.20) for these initial condi-

tions is

- = (irDty-
1 '* e-*l4Di

(15.21)
*o

The sort of concentration vs. distance curves that result for various times are

shown in Fig. 15.6. The originally sharply defined source of diffusing material

broadens with time; the resulting curves are in fact Gaussian error curves.

The diffusion data can be evaluated from eq. (15.21) by plotting, for a given

time, In c vs. x2
; the slope of the straight line equals (4Dt)~

l
.

The probability p(x)dx that a given particle has diffused from x = to a

region between x and x + dx is simply proportional to the concentration in

this region. The average distance traversed by the diffusing particles is given

by the mean square displacement
6

:

\irDt)-e
** f*Dl dx

Hence, A^ = 2Dt (15.22)

This useful expression can be applied directly to measure the diffusion

coefficient of visible particles, e.g., colloidal particles in Brownian motion.

5 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (New York: Oxford,

1947), p. 33.
8 One averages the square of the distance since in some cases diffusion in both the

positive and the negative x directions can occur.
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The displacements of a large number of individual particles after a time / are

squared and averaged to give A*2
. Equation (15.22) is also often used to give

a rapid estimate of the mean distance of diffusion in various solid and liquid

systems.
12. Failures of the Arrhenius theory. After the controversies over the

theory of ionic dissociation had somewhat abated, it began to be realized

that the Arrhenius theory was unsatisfactory on a number of points, none

of which was among those urged against it by its fierce original opponents.
The behavior of strong electrolytes presented many anomalies. The

Ostwald dilution law was not closely followed by moderately strong electro-

lytes like dichloroacetic acid, although it agreed well with the data for weak

acids like acetic. Also values for the degree of dissociation a of strong

electrolytes obtained from conductance ratios were not in agreement with

those from van't Ho'rT / factors, and the "dissociation constants" calculated

by the mass-action law were far from constant.

Another discrepancy was in the neutralization heats of strong acids and

bases. Although one of the first supports for the ionization theory was the

constancy of these A// values for different acid-base pairs, more critical

examination indicated that the A// values were actually too concordant to

satisfy the theory. According to Arrhenius, there should have been small

differences in the extents of ionization of acids such as HC1, H2SO4 ,
HNO3 ,

etc., at any given concentration, and these differences should have been

reflected in corresponding differences in the A// values, but such distinctions

were not in fact observed.

Another flaw was the variation of transport numbers with concentration

c. At low concentrations, these numbers were found to follow an equation
of the form t --= t

(}
A \/c, where / is the value at infinite dilution and A is

a constant. The Arrhenius theory would predict that the numbers of both

positive and negative current carriers should increase equally with increasing

dilution. It provided no explanation of why their relative mobilities should

vary.
A very striking argument against the partial dissociation of strong elec-

trolytes was provided by the ionic structure of crystalline salts.

Finally, studies of the absorption spectra of solutions of strong electro-

lytes failed to reveal any evidence for undissociated molecules.

As early as 1902, a possible explanation of many of the above deficiencies

of the dissociation theory was suggested by van Laar, who called attention

to the strong electrostatic forces that must be present in an ionic solution

and their influence on the behavior of the dissolved ions. In 1912, a detailed

but highly mathematical discussion of this problem was given by S. R. Milner.

In 1923 the problem was taken up by P. Debye and E. Hiickel, whose

theory provided the basis for the modern treatment of strong electrolytes.

It starts with the assumption that in strong electrolytes the solute is com-

pletely dissociated into ions. The observed deviations from ideal behavior,
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e.g., apparent degrees of dissociation of less than 100 per cent, are to be

ascribed entirely to the electrical interactions of the ions in solution. These

deviations are therefore greater with more highly charged ions and in more

concentrated solutions.

The electrical interaction theory can be applied to equilibrium problems,
and also to the important transport problems in the theory of electrical con-

ductivity. Before describing these applications we shall discuss the nomen-

clature and conventions employed for the thermodynamic properties of

electrolytic solutions.

13. Activities and standard states. The thermodynamic description of non-

ideal solutions was discussed in Section 6-21. The activity a
t
and activity

coefficient yA of a component A in solution were defined by means of the

equation:

/'A /*A I
RT \n TA XA !<A f- RT]n <*A

It should be emphasized that the activity is a dimensionless quantity, being
the ratio of the fugacity of the substance in a given system to its fugacity in

some standard state (aA = fA lfA )- The choice of the standard state is not

dictated by any physical principles; it is subject only to the convenience of

the person who is using the thermodynamic theory. Thus, in Section 6-21,

we defined the standard state as the state of the pure solvent A at the tem-

perature and pressure at which we investigate the variation in concentration

of the solution. As the composition of the solution approaches closer and

closer to pure A, deviations from ideality (Raoult's Law) become less and

less. Our choice of standard state is convenient for this situation, since it

requires that in the limit as XA -> \,fA -->fA , and hence aA /i//^ --> 1.

The chemical potential //^' is therefore the free energy of pure A at the

specified temperature and pressure, i.e., FA . We also note that as XA > 1,

yA -> 1. The deviation from unity of the activity coefficient defined in this

way is a measure of the deviation of component A from the ideal behavior

expressed in Raoult's Law.

An inconvenient feature of this definition is also evident, however, in

that it makes IIA , the chemical potential in the standard state, and hence

fA , functions of pressure as well as of temperature. A somewhat different

definition is therefore usually employed, which takes as the standard state

the pure substance at unit pressure. Thus the chemical potential in the stan-

dard state
fiA is the same as FA ,

the standard free energy as ordinarily
defined. Also, fA is a function only of temperature, which is more con-

venient. Every silver lining has its cloud, however, and we must note that

with this new definition, it is only in the special case of unit pressure that

aA v XA as XA ~ > 1-

For work with dilute solutions it is often convenient to define a standard

state different from that just described. As a solution is progressively diluted,

the component designated as solvent A tends to obey Raoult's Law, but
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only for an ideal solution does the solute B also follow Raoult's Law. At

sufficiently low concentrations, however, the solute always tends to follow

Henry's Law. An alternative convention for activity coefficients is based on

this fact. The activity coefficient yn is defined so that, at unit pressure, it

approaches unity as the mole fraction of solute XR approaches zero. Thus

as Xn -> 0, yfi
-> 1, and aB -> XB . The departure of yn from unity (at unit

pressure) is a measure of the departure of the solute behavior from that in

an extremely dilute solution.

Instead of eq. (6.32) we have

P* = Pif + *T In 7B*H = /'*' + RT In aa (15.23)

Now fix* is no longer the chemical potential of pure solute B; it is the

chemical potential of B in a standard state consistent with our new definition

f
s
--kT *

Mole fraction XB '

Fig. 15.7. Definition of standard state for a solute B, based on Henry's Law
in dilute solution.

of activity coefficients. The activity is, of course, given by aB = fB/fB '
9

wherefu
*

is the fugacity in the new standard state.

The determination of this standard state will be made clear by a reference

to Fig. 15.7, which shows a plot of the fugacity of the solute B,fB , against

its mole fraction XB . In dilute solution (as the fugacity follows

Henry's Law,/# kjjXj^ where kH is the Henry's Law constant. (We may
recall that/)? differs from the partial vapor pressure PB only by the correction

for nonideality of the vapor.) As the solution becomes more concentrated,

the experimental fn deviates from the straight line graph of Henry's Law.

Therefore the actual value of Ju at XB = 1 (denoted by fB*) may differ

widely from the extrapolated value fB\ obtained by assuming that Henry's
Law holds all the way to XB = 1 . The extrapolation, shown as a dashed

line in the figure, leads to the value fB* kn . We should note that this
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standard state is not an actual physical state of the solution. It is the hypo-
thetical state that the solute would have if its mole fraction were unity,
while at the same time it existed in an environment typical of a solution so

very dilute that each solute molecule was free from any interaction with neigh-

boring solute molecules. That this definition of standard state does indeed

lead to Henry's Law at low concentrations can easily be seen as follows:

"* ='7T fit -'kit* and <*!*= yn*B
JB

therefore, fB kHynXB , and as yn - > 1, fB -> kHXn . These activity co-

efficients based on Henry's Law and mole fractions are sometimes called

rational activity coefficients.

In dealing with dilute solutions of electrolytes it is more usual to express
concentrations in terms of molalities m or molarities r, instead of mole

fractions X. If MA and M7i are the molecular weights of solvent and solute,

and p is the density of the solution, these quantities are related by

- - - (15241
1000 f mMA lOOOp cMH + cMA

v ' '

In dilute solutions, mMA ,
cMn , cMA become negligible compared to 1000,

andp approaches pA9 the density of pure solvent. Then, eq. (15.24) reduces to

x - -^ - MA
'*
~

1000"
~

lOOOpA

For use with m and r as concentration units, two new activity coefficients

and activities have been defined as follows:

[i
= p f RTln y

mm -
fi

m
+ RTln arn

(15.25)

p = /i
8C + RTln fc =r=. p" + RT\n ac

(I5.25a)

In dilute aqueous solutions, the molar and molal concentrations are nearly

equal, so that y
m & y

c
. In solutions more dilute than about 0.01 A/, even

y
x

(the rational activity coefficient) does not differ appreciably from the

other two. At unit pressure, all the activity coefficients approach unity as

the solution approaches infinite dilution, and their departures from unity are

a convenient measure of the departures from Henry's Law. 7 The standard

states corresponding to //*
m and p,*

c
in eqs. (15.25) and (15.25a) are determined

in each case by a graph similar to Fig. 15.7. The fugacities at low concen-

trations are plotted against m (or c) and extrapolated to m - 1 (or c ~ 1)

with the aid of the appropriate form of Henry's Law, fB = kH'm (or

fB ~ kH "c). One further important practical point remains to be noted. In

a dilute solution of an electrolyte, the solute will be dissociated to yield two

or more ions from each solute molecule. The correct form of Henry's Law
7 Because m and c are not proportional to X at higher concentrations, y

m and y
6 are

not unity for an ideal solution unless it is dilute. The molal concentration m is frequently
used because m does not vary with temperature, whereas c is temperature dependent because

it varies with the density of the solution.
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must take into account this dissociation. For a uniunivalent electrolyte like

HC1, for example, Henry's Law in molal concentration units will be/HC1 =
kfj'm

2
. Therefore, in order to find kn

'

=f'
m

, /*Hci must ^e plotted against

/n2
, instead of m.

14. Ion activities. In dealing with electrolytic solutions it would appar-

ently be most convenient to use the activities of the different ionic species

present in the solution. There are serious difficulties in the way of such a

procedure. The requirement of over-all electrical neutrality in the solution

prevents any increase in the charge due to positive ions without an equal
increase in the charge due to negative ions. For example, we can change the

concentration of a solution of sodium chloride by adding an equal number

of sodium ions and of chloride ions. If we were to add sodium ions alone or

chloride ions alone, the solution would acquire a net electric charge. The

properties of ions in such a charged solution would differ considerably from

their properties in the normal uncharged solution. There is in fact no con-

ceivable way of measuring the individual ion activities, for there is no way
of separating effects due to positive ions from those due to the accompanying

negative ions in an uncharged solution.

It is nevertheless convenient to have an expression for the activity of an

electrolyte in terms of the ions into which it dissociates. Consider the strong

electrolyte CA 9 dissociated in solution according to CA = C f + A~. Its

activity a may be arbitrarily written as a ~ a+ a^ a 2
. Now a defined in

this way is called the mean activity of the ions, and a+ and a_ are the con-

ventional individual ion activities.

For the general case, C,v A v
-

v^ C } + v _A~. The ion activities are then

written

a==a+
v+aj- = a v

(15.26)

with v+ + v_ = v

Mean ionic activity coefficients and mean ionic concentrations can be

similarly defined. Note that the mean values are geometric means of the

individual ion values. 8

In terms of the molal concentrations m, a+ =~ y^m . Now m v

m^m_v
. Since the ionic concentrations are related to m by m+ -- v+m and

m .
-- v_m, we can write

For the special case of a uniunivalent electrolyte, m =-- m.
8 Sometimes estimates of single ion activities are made by various approximate methods.

For example, the potassium ion and the chloride ion in KC1 both have the argon configura-
tion and are therefore nearly the same size. In a KC1 solution it should be a good approxi-
mation to set tfK ,

= ac i
so that K

2 -= acl
2 a 2

. Having obtained values for two ion

activities in this way, we could construct a consistent set of values for others.

In a following section we shall see that it is possible to calculate single ion activities from
electrostatic and statistical theory (method of Debye and Hiickel). So far such theories are

valid only in extremely dilute solutions. Comparison with experiment is always made in

terms of the mean activities.
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The activities can be determined by several different methods. Among
the most important are measurements of the colligative properties of solu-

tions, like freezing point depression and osmotic pressure, measurements

of the solubilities of sparingly soluble salts, and methods based on the emf
of electrochemical cells. We shall describe the first two methods now, post-

poning consideration of the emf method until cell reactions have been

considered in more detail.

15. Activity coefficients from freezing points. For a two-component solu-

tion with solute (1) and solvent (0), the Gibbs-Duhem equation may be

written

A/, <///! + A/O rf//
-

Combination with eq. (15.25) yields

/?!
d In a

1 i- n
(}
d In tf -=

Equation (6.18) applies to an ideal solution. For a dilute, nonideal solution,

we have instead

d \nciQ A

~~df~
"
RT2

The freezing point depression AT - T T9 and since T2 ^ ro
2

,

Therefore * ,,, = -
(l)

<, ,n , =
(^) (-A )

If Af is the molecular weight of solvent, we have in 1000 g of solvent:

1000 A?O 1000
-

Here K is the molal freezing point depression constant (page 130), and the

number of moles of (1) in 1000 g solvent is
/?j

mv

Fromeq. (15.26)

^ = aj^ 7
v mv

(v^v^)

so that Jin a, dlny+m = d\ny, |
d\nm ^ ----

(15.27)11 * - vmK

Let/ = I (&T/vmK), whereupon

dmy 2vmK \vKnr

, /t
dm

or --1= -dj+V ~J) --
J J m
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By comparing this with eq. (15.27):

dlny H- dlnm -- ~dj + (1 ])~m
or dlny --= -dj -jdlnm (15.28)

As m approaches 0, the solution approaches ideality, and y ~+ 1 while

j ->0. (Since for an ideal solution t^TjvmK = 1.) Therefore, on integration

of eq. (15.28), we obtain

The integration in this expression can be carried out graphically from a series

of measurements of the freezing point depression in solutions of low known
concentrations. We plot j/m vs. m, extrapolate to zero concentration, and

measure the area under the curve.

A treatment exactly similar to the above is applicable to osmotic-pressure
data. The activity coefficient determined from eq. (15.29) is that in terms of

molal concentrations, y^
m

.

16. Activity coefficients from solubilities. This method, applicable to

sparingly soluble salts, may be illustrated by the typical example of silver

chloride, AgCl. For the solution of AgCl in water we may write: AgCl ^
Ag f

-I- Cl~. The equilibrium constant becomes K' ~ a+ajas but since as is

invariable owing to the presence of the solid phase, we usually write the so-

called solubility product constant as

K**
-

*Ag*ci
"" *+*- = Y+y-C+C- (15.30)

where c is the molar concentration. The solubility SQ of AgCl is simply
sQ
= c+ c__. The solubility product constant may therefore be written

KSp
" 7

2V whence
K 1/2

Y = ^- (15.31)
so

Note that this is the activity coefficient in terms of molar concentrations, y
c

.

If we can find the constant K8P , we can at once obtain activity coefficients

from the measured solubilities s .

At infinite dilution, or zero concentration, the activity coefficient y

approaches 1, and thus as the concentration approaches 0, s approaches
K

SJ1

l/2
. The procedure adopted is therefore to measure the solubility, of AgCl

for example, in a series of solutions containing decreasing concentrations of

an added electrolyte, such as KNO3 . The solubilities may then be plotted

against the salt concentration, and an extrapolation to zero concentration

gives K9P .

Extrapolations like this are most accurate if the functions plotted can be

chosen so as to give a linear graph. In this case a linear graph can be obtained



Sec. 17] ELECTROCHEMISTRY 457

if we plot the log of the solubility against the square root of a quantity s,

called the ionic strength of the solution. This is defined by
-

s - l^mrf (15.32)

The summation is carried out over all the ionic species in the solution, with

molalities m
i
and charges z,.

TABLE 15.5

MOLAL ACTIVITY COEFFICIENTS OF ELECTROLYTES

17. Results of activity-coefficient measurements. Activity coefficients ob-

tained by various methods9 are summarized in Table 15.5 and plotted in

1.4

8 12 16 2.0 24 2.8

CONCENTRATION-MOLES/ LITER

Fig. 15.8. Activity coefficients of electrolytes.

Fig. 15.8. It will be noted that quite typically the coefficients decline markedly
with increasing concentration in dilute solution, but then pass through

9 A very complete tabulation is given by W. M. Latimer, Oxidation Potentials (New
York: Prentice-Hall, 2nd ed., 1952).
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minima and rise again in more concentrated solutions. The interpretation of

this behavior constitutes one of the principal problems in the theory of strong

electrolytes, to which we shall now turn our attention.

18. The Debye-Hiickel theory. The theory of Debye and Hiickel is based

on the assumption that strong electrolytes are completely dissociated into

ions. Observed deviations from ideal behavior are then ascribed to electrical

interactions between the ions. To obtain theoretically the equilibrium prop-
erties of the solutions, it is necessary to calculate the efotra'free energy

arising from these electrostatic interactions.

If the ions were distributed completely at random, the chances of finding

a positive or a negative ion in the neighborhood of a given ion would be

identical. In such a random distribution there would be no electrostatic

energy, ^ince on the average attractive configurations would be exactly

balanced by repulsive configurations. It isf evident that this cannot be the

physical situation, since in
thd^ immedjiate neighborhood of a positive ion,

a negative ion is more likely to be fouhd than another positive ion. Indeed,

were it not for the fact that the ions are continually being batted about by
molecular collisions, an ionic solutioh might acquire a well ordered structure

similar to that of an ionic crystal. The thermal motions effectively prevent

any complete ordering, but the finAl situation is a dynamic compromise
between the electrostatic interactions tending to produce ordered con-

figurations and the kinetic collisions tending to destroy them.

The electrolyte is assumed^ to be completely dissociated and all deviations

from ideal behavior are ascribed to the electrical interactions. Our problem
is tq calculate the average electric potential U of a given ion in the solution

due to all the other ions. Knowing U we can calculate the work that must be

expended to charge the i(/ns reversibly to this potential, and this work will

be the free energy due to electrostatic interactions. The extra electric free

energy is simply related to the ionic activity coefficient, since both are a

measure of the deviation from ideality.

19. Poisson's equation. The starting point in the calculation of the poten-
tial U is an expression for the average distribution of the ions, which we
shall obtain in the next section. Let us call the average density of electric

charge in any region of the solution p, e.g., in units of esu per cc. Those

conversant with electrical theory will recall that the potential U is related to

p by Poisson's differential equation:

V 2
*/ - - ~ (15.33)

where t- is the dielectric constant. We can, however, obtain quite simply the

form of this equation that we need, by an application of Gauss's theorem of

electrostatics. 10

10 For a further discussion see, for example, Harnwell, Electricity and Magnetism, p. 16.

If the charge is in MKS units (coulombs), a factor f appears in Coulomb's Law and all

expressions derived from it, e.g. yf =
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In (a), Fig. 15.9, is shown an electric point charge </,
surrounded by a

surface S. The electric field intensity at any point is by definition the force

exerted on a unit charge placed at that point, so that in this case it is by
Coulomb's Law:

E*=
l

i*
'

It is a component of a vector in the direction of the line joining the two

charges.

Consider a small element dS of the surface S. The component of the

field strength normal to dS is

En
- Er cos (, r)

-^
cos (n, r)

where cos (it, r) is the cosine of the angle between the normal n to dS and

the radius r giving the direction of the spherically symmetric field.

(a) (b)

Fig. 15.9. The Poisson equation.

The component of the area dS in the direction r is

dS' -

.Now the area dS' is related to r and the solid angle do by dS' r2dco.

Therefore
r*d<o

cfS ------ -

cos (n,r)

It follows that En dS qdco/e. Integrating this over the entire solid angle

subtended by a sphere of radius r, which is 4?r, we obtain

f w rfS-?f
4W

Ao ^
(15.34)

Js n
e Jo f

This is Gauss's theorem: the integral of the normal component of the electric

field intensity over a closed surface equals 4-rT/e times the charge enclosed

within the surface.

Let us now apply this theorem to the special situation of two concentric

spheres, Fig. 15.9(b). The problem is to find the field due to the charges
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contained in an annular shell of thickness dr between the two spheres. For

the two spherical surfaces S
l
and 52 :

f En dSl + f En dS2
= x (total charge within shell) (15.35)

'Si JS*

The total charge within the shell, for the case of interest, may be expressed
as a charge density p times the volume of the shell 4iTr2 dr; i.e., 4?rr2p dr.

Then eq. (15.35) becomes

Er+dr 47r(r } dr)
2 - 4rrr2p dr

dE
Now, Er^ dr

= Er + ~

Ignoring terms containing the product of two differentials, we find

d(r*Er) r*dEr + 2rEr dr = r
2
p dr

8

.-(r> r)-_ (15.36)

The field strength may be represented as the negative gradient of the

potential, Er
~ -

dU/dr, so that eq. (15.36) becomes

This expression is the special form of Poisson's equation (15.33) for a

spherically symmetrical problem; i.e., when p is a function only of r.

This is the situation of interest since on the average a given ion will be

surrounded by a spherically symmetrical distribution of oppositely charged

ions, forming the so-called ionic atmosphere. We wish to calculate the average
electrostatic potential due to a central ion and its surrounding atmosphere.
The solutions of eq. (15.37) give the potential in any region as a function of

the charge density p. The next step is therefore to calculate p for the array
of ions.

20. The Poisson-Boltzmann equation. The Boltzmann theorem (page 183)

informs us that if n
t
is the average number of ions of kind / in unit volume

in the solution, the number A?/ in any particular region of the solution whose

potential energy is Ev above the average is

n! = /f,e-*'
/*r

If an ion of charge q l
is brought to a region of potential Uy its potential

energy is q t
U. For such ions the Boltzmann equation is therefore

/ = n
t
e-*u'*T

(15.38)
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The charge density in a region whose potential is U is simply the summation

of this expression over the different kinds of ion that may be present in the

solution, each multiplied by its appropriate charge qr

~ V vt 'si V M ft a~Q\U\kT /\C 1Q\
p
~

2j n
l (j t

~ Zj n
tcf t

*
(ij.jy)

The Debye-Hiickel treatment now considers a solution so dilute th^ ions

will rarely be very close together. This condition implies that the interionic

potential energy is small, and indeed much less than the average thermal

energy, so that q t
U <^ kT. Then the exponential factor in eq. (15.39) may be

expanded as follows :

kT 2\\kT)

Terms higher than the second being negligible, eq. (15.39) becomes

y __ E. v 2

The first term vanishes by virtue of the requirement of over-all electrical

neutrality, and with q t
= z

te,

e2U
P ^ -

L/i,z f

8
(15.40)

It should be noted that S n
t
z

t

2
is closely related to the ionic strength,

which was defined as s = I 2 m
t
z

t

2
.

By substituting eq. (15.40) into eq. (15.37), there is obtained the Poisson-

Boltzmann equation.
dU\

~
r
-^U (15.41)

47T>2

where b2 = -^n
t
z

t

z
(15.42)

The quantity l/b has the dimensions of a length, and is called the Debye

length. It may be thought of as an approximate measure of the thickness

of the ionic atmosphere^ i.e., the distance over which the electrostatic field

of an ion extends with appreciable strength. For example, in a one-molar

aqueous solution of uniunivalent electrolyte at 25C, l/b 3.1 A.

The Poisson-Boltzmann equation (15.41) can be readily solved by making
the substitution u = rU, whence d*u/dr* = b2u, so that

u = Ae~br + Bebr
(15.43)

or i/ s= :4e-*r +-e r
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A and B are the constants of integration, to be determined from the boundary
conditions. In the first place, U must vanish as r goes to infinity, so that

Ac-* Be*
0- -

-}

00 00

This can be true only if B 0, since the limit of e r
/r as r goes to infinity is

not zero. We then have left

U
A
e<"

r

The constant A can be determined by the fact that when b 0, the con-

centration is zero, and therefore the potential is simply that of a single ion

in the absence of any other charges, namely U ~
ze/er. Thus ze/er

- A/r

and A ze/t. Therefore the final solution becomes

U
Ze
~Q'br

(15.44)
er

Once again, for the case of the very dilute solution (since b is a function

of the concentration) the exponential may be expanded, giving

-rp pa
U---, e-*

r

<*--(! -br)
tr tr

U *?--*-* (15.45)
er f

Here it is evident that the first term ze/rr is simply the potential at a

distance r due to an ion of charge ze in a medium of dielectric constant e.

The term zeh/f is then the potential due to the other ions, those forming
the ionic atmosphere of the given ion. It is this extra potential that is related

to the extra free energy of the ionic solution.

21. The Debye-Hiickel limiting law. For a single given ion the extra free

energy is equal to the work that must be expended to charge the ion re-

versibly to the required potential U zeb/r.

=
I

ze dU' =
\ ( "^ )

Jo Jo \ b /
dU'

__

--rV> (15.46)

Now, on the assumption that deviations of the dilute ionic solution from

ideality are caused entirely by the electrical interactions, it can be shown
that this extra electric free energy per ion is simply ATln y, where y is the

conventional ion activity coefficient. Let us write for the chemical potential

of an ionic species /',

/*,= RTlna
t + /i?

jn i
=

fii (ideal) + //, (electrical)
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/, (ideal)
^ RTlnc, -\- tf

/^(dectric) RTln y t
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This is the extra electric free energy per mole. The extra free energy per ion

is therefore equal to 7 In y,, but this is equal to the expression in eq. (15.46).

Therefore

(15.47)

We may substitute for b from eq. (15.42):

Since n
t (ions per cc) and c\ (moles per liter) are related by //,

=
f,AY 1000:

In the dilute solutions being considered, c, m
tp 9 where p is the solvent

density, so that the ionic strength, cq. (15.32), may be introduced:

(15.48)

Since the individual ion activity coefficients cannot be measured, the

mean activity coefficient is calculated in order to obtain an expression that

can be compared with experimental data. From eq. (15.26),

(v+ I O In y t
.

-
i'

t

In y+ I
v In y_

Therefore from eq. (15.47),

Since i>+z f
.

-
v_z_,

v z_

(15.49)

The valence factor can be evaluated as follows for the different electrolyte

types :



464 ELECTROCHEMISTRY [Chap. 15

Let us now transform eq. (15.49) into base-10 logarithms and introduce

the values of the universal constants. If e is taken as 4.80 x 10~10
esu, R

must be 8.31 X 107
erg per C. mole. The result is the Debye-Huckel limiting

law for the activity coefficient,

(s
\ 1/2-~
I
= -Az+z_sw (15.50)

For water at 25C, e 78.54, p = 0.997, and the equation becomes

log y = - 0.509 z+z_Vs (15.51)

In the derivation of the limiting law it was consistently assumed that the

analysis applied only to dilute solutions. It is not to be expected therefore

80r

40 60 80

vr x io 3

100 120

Fig. 15.10. Activity coefficients of sparingly soluble salts in salt solutions

[After Bronsted and LaMer, /. Am. Chem. Soc., 46, 555 (1924).]

that the equation should hold for concentrated solutions, nor does it. As

solutions become more and more dilute, however, the equation should

represent the experimental data more and more closely. This expectation
has been fulfilled by numerous measurements, so that the Debye-HUckel

theory for very dilute solutions may be considered to be well substantiated.

For example, in Fig. 15.10 some experimental activity coefficients are

plotted against the square roots of the ionic strengths. These data were

obtained by applying the solubility method to sparingly soluble complex
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salts in the presence of added salts such as NaCl, BaCl2 , KNO3 . The straight

lines indicate the theoretical curves predicted by the limiting law, and it is

evident that these limiting slopes are followed at low ionic strengths.

Another successful experimental test has been the measurement of

activity coefficients for the same electrolyte in solvents with various dielectric

constants. 11

22. Advances beyond the Debye-Hiickel theory. It would of course be

desirable to have a theory that could be applied to solutions more concen-

trated than those for which the D-H treatment is valid, solutions usually
so dilute that they have been uncharitably called slightly contaminated

distilled water. Like the general theory of liquids, this is one of the major
unsolved problems in physical chemistry, for when the simplifying assump-
tion of extreme dilution is abandoned, the mathematical treatment becomes

discouragingly messy.
In 1928, Gronwall, LaMer, and Sandved carried the Debye-Hiickel

theory one step further. Instead of assuming in eq. (15.39) that Uq is much
less than kT, they retained the exponential factor and solved the resulting

Poisson-Boltzmann equation in terms of a series expansion. Their results,

though cumbersome, appeared to be valid at higher concentrations than

those of the original D-H theory.

A clearer physical picture of what may be happening in more concen-

trated solutions has been provided by the ionic association theory, developed

independently by N. Bjerrum, and by R. M. Fuoss and C. Kraus. As solutions

become more concentrated it is likely that definite though transient ion pairs

are formed, held together by electrostatic attraction. This tendency to pair

formation will be greater the lower the dielectric constant of the solvent and

the smaller the ionic radii, both of these factors tending to increase the

electrostatic attractions.

We may be inclined to suspect that with this theory an historical circle

has been completed, returning us to the original Arrhenius concept. There

is, however, a real distinction, albeit a somewhat subtle one. Arrhenius

presumed that in strong electrolytes there were neutral molecules, which

ionized to an extent increasing with the dilution. According to the new

theory, the solution contains nothing but ions, which are electrostatically

associated to an extent that increases with the concentration.

The degree of association may become very appreciable even in a solvent

of high dielectric constant e, such as water. Bjerrum has calculated that in

one-normal aqueous solution uniunivalent ions having a diameter of 2.82 A
are 13.8 per cent associated; of 1.76 A, 28.6 per cent associated. For solvents

of lower e the association would be still greater. Such association into ion

pairs would lower the values of the ionic activity coefficients.

There are two other factors, not considered in the D-H treatment, that

tend to become important in concentrated solutions. One is the effect of

11 H. S. Harned et al., J. Am. Chem. Soc. t 61, 49 (1939).
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repulsive forces between ions at close distances of approach, called the ionic

size effect. It is analogous to the b factor in van der Waals' equation, and

tends to cut down the electrostatic interactions by preventing very close

approaches between charges. In the derivation of the limiting law, eq. (15.50),

it was assumed that the ions were point charges. Debye and Huckel made

an improved theory which took into account the finite sizes of the ions. The

resulting expression for the mean activity coefficient is

logy,

~ Az^ Vs
(15 .52)

1

where A and B have the same significance as in eqs. (15.48) and (15.50), and

(I is the average effective diameter of the ions. The product clB is usually close

to unity.

Probably of greater importance is the effect of the ions on the solvent

molecules. It is known from transference experiments that ions in solution

are solvated, especially in polar solvents like water. This is confirmed by
the well known salting-out effect, by which added electrolytes decrease the

solubility of nonelectrolytes. Some of the solvent molecules appear to be

held so tightly by the ions that they are not able to participate in the solution

of neutral solutes. For example, the solubility (25C) of diethyl ether in pure
water is 0.91 mole per liter, but in 15 per cent sodium chloride solution it is

reduced to 0.13 mole per liter.

The solvent molecules surrounding an ion are highly oriented and

polarized. It is likely, therefore, that the dielectric constant of the solvent

is considerably enhanced. As a result interionic attractions decrease; con-

sequently the ionic activity coefficients increase. In Fig. 15.8 it was noted

that the observed y's finally rise at higher concentrations. Both the ionic

size effect and the polarization effect contribute to this rise.

23. Theory of conductivity. The interionic attraction theory was also

applied by Debye and Huckel to the electric conductivity of solutions. An

improved theory was given by Lars Onsager (1926-1928). The calculation of

the conductivity is a difficult problem, and we shall content ourselves with

a qualitative discussion. 12

Under the influence of an electric field an ion moves through a solution

not in a straight line, but in a series of zigzag steps similar to those of

Brownian motion. The persistent effect of the potential difference ensures

an average drift of the ions in the field direction.

Opposing the electric force on the ion is first of all the frictional drag of

the solvent. Although the solvent is not a continuous medium, Stokes's Law
is frequently used to estimate this effect (cf. page 446 and Walden's rule).

Since the molecules of solvent and the ions are about the same size, it is

12 See H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions

(New York: Reinhold, 1943).
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more likely that the ion moves by jumping from one "hole" to another in

the liquid.

In addition to the viscous effect, two important electrical effects must be

considered. As shown in (a), Fig. 15.11, an ion in any static position is

surrounded by an ionic atmosphere of opposite charge. If the ion jumps to

a new position, it will tend to drag with it this oppositely charged aura. The

ionic atmosphere, however, has a certain inertia, and cannot instantaneously

readjust itself to the new position of its central ion. Thus around a moving
ion the atmosphere becomes asymmetric, as in (b), Fig. 15.11. Behind the

(o) (b)

Fig. 15.11. (a) Ionic atmosphere surrounding ion at rest; (b) asymmetric
cloud around moving ion.

ion there is a net accumulation of opposite charge, which exerts an electro-

static drag, decreasing the ionic velocity in the field direction. This retarda-

tion is called the asymmetry effect. It will obviously be greater at higher ionic

concentrations.

A second electrical action that lowers the mobility of the ions is called

the electrophoretic effect. The ions comprising the atmosphere around a

given central ion are themselves moving, on the average in the opposite

direction, under the influence of the applied field. Since they are solvated,

they tend to carry along with them their associated solvent molecules, so

that there is a net flow of solvent in a direction opposite to the motion of

any given (solvated) central ion, which is thus forced to swim "upstream"

against this current.

The steady state of motion of an ion can be found by equating the

electric driving force to the sum of the frictional, asymmetric, and electro-

phoretic retardations. Onsager calculated each of the terms in this relation-

ship, and thereby obtained a theoretical equation for the equivalent con-

ductivity of a uniunivalent electrolyte in the limiting case of dilute solutions:

f 82.4 8.20 x 105
. ] /- /1CC^A = A o

~ Lni/2
1

-
,
:7

r
)3/2

A
oJ
Vc (15.53)

Here c is the concentration of ionized electrolyte in moles per liter, which

if dissociation is not complete must be calculated from the degree of dis-

sociation oc. Similar equations were derived for electrolytes of other valence

types.
13

13 See S. Glasstone, Introduction to Electrochemistry (New York: Van Nostrand, 1942),

p. 89.
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The Onsager equations provide good agreement with the experimental

conductivity data at low concentrations. Their range of validity is greater

for uniunivalent electrolytes than for those whose ions bear higher charges,

but as limiting laws they hold at extreme dilutions for all valence types.

Further confirmation of the essential correctness of the Debye-HUckel-

Onsager picture is obtained from two interesting effects occurring in con-

ductivity measurements.

The Debye-Falkenhagen effect is observed when conductivities are studied

at high a-c frequencies, of the order of 3 x 106 cycles per sec. As the fre-

quency of the electric field is increased, a point is eventually reached at

XX) .01 .02 03

V?

Fig. 15.12. Conductance of tetraisoamyl-ammonium nitrate in dioxane-water.

[Fuoss and Kraus, /. Am. Chem. Sor. 55, 2387 (1933).]

which the ionic atmosphere no longer can follow the rapidly changing field

at all. Then the ions move practically independently of one another as the

influence of their atmospheres becomes unimportant. Thus at high enough

frequencies an increase in the conductivity of a solution is expected, and

has been actually observed.

A second support for the ionic atmosphere model is found in the Wien

effect. At sufficiently high field strengths, of the order of 105 volts per cm,
the conductivity is also observed to increase. The explanation is that the

velocities of the ions become so high, with these large fields, that the ionic

atmospheres are left behind entirely, and the ions move independently.
In more concentrated solutions marked deviations from the Onsager

equation are found, so that one may even obtain equivalent conductivity
vs. concentration curves like that in Fig. 15.12. An interesting interpretation

of the minima in such curves has been based on the ion-association theory.
14

The ion pairs (H
--

) are electrically neutral and do not contribute to the

equivalent conductivity, which therefore falls as more pairs are formed. As

14 R. Fuoss and C. Kraus, /. Am. Chem. Soc., 55, 21 (1933).
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the solution becomes still more concentrated, triple ions, either (H
----

(-)

or (
--

1

--
), begin to be formed from some of the pairs, and since these

triplets bear a net charge, they contribute to the conductivity, which therefore

increases from its minimum value.

24. Acids and bases.15 The concepts "acid" and "base" have had a long

and interesting share in the history of chemistry. The distinctive behavior of

these substances has always presented a challenge to theoretical inter-

pretation.

Arrhenius's solution of the problem was to define an acid as a compound
that dissociated in solution to yield a hydrogen ion, and a base as a com-

pound yielding a hydroxyl ion. Then the process of neutralization was

simply H+ + OH~ = H2O. These definitions relied exclusively on the phe-

nomena observed in aqueous solutions, and it was evident that they would

have to be broadened in some way.
In 1922-1923, J. N. Br0nsted and M. Lowry advanced a new set of

criteria. They proposed to define an acid as any compound that can lose a

proton, and a base as any compound that can accept a proton. Thus

A =- H+ + B
acid proton base

The compound B was called the conjugate base of the acid A. Some examples
would be

HAc = H+ + Ac

= H+ f NH3

Bases and acids might be either neutral molecules or ions.

It was soon realized that the free proton probably never occurs in solu-

tion, the solvent itself acting as a proton acceptor in other words, as a base.

Theiefore, the typical reactions should be written in the symmetrical form:

Acid (I) + Base (II)
= Acid (II) + Base (I)

HAc + H2O - H3O + Ac-

NH4
+ + H2O = H30* + NH3

H2 + CN- - HCN + OH-

Note that, depending on its partner, a compound, such as water in these

examples, can act either as an acid or as a base. The complete similarity

between the ammonium ion, NH4+, and the hydronium ion, H3O+, is

apparent.
An interesting application of the Br0nsted concept is found in the study

of a series of strong acids: HC1O4 , H2SO4 , HNO3 , HBr, HC1, etc. In aqueous
solution these acids are all about equally strong. That is to say, the equi-

librium, HX -|- H2O = H3O+ + X~, lies in every case extremely far to the

16 For a comprehensive treatment of this important subject, see W. F. Luder and

S. Zuffanti, The Electronic Theory of Acids and Bases (New York: Wiley, 1946).
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right, mainly owing to the large hydration energy of the proton. When the

acids are dissolved in glacial acetic acid, very distinct differences in their

strengths become apparent. Then the equilibria are: HX + CH 3COOH =
CH3COOH 2

+ f X . The acetic-acid molecule is not very anxious to accept
a proton, and only when the other acid is a particularly insistent donor does

the equilibrium lie sufficiently toward the right to produce a considerable

number of ions. In a 0.005 molar solution in glacial acetic acid the equivalent

conductivity of HC1O4 is more than fifty times that of HNO3 . It is therefore

evident that HC1O4 is a much stronger acid than HNO3 , once the leveling

effect of a solvent such as water is eliminated. 16

The Br0nsted picture still does not represent the full generality of acid-

base phenomena. Further investigations in nonaqueous solutions, notably

by C. A. Kraus and E. C. Franklin, revealed that familiar acid-base prop-
erties could be displayed by solutions that contained no protons at all.

For example, the following typical neutralization reaction can be followed

in chlorobenzene solution with crystal violet as an indicator:

BC13 I (C2H5 )3N (C2H5 )3N:BC13

acid base

The indicator is yellow in the presence of excess acid, and violet in basic

solutions.

In 1923 G. N. Lewis advanced a new concept of acids and bases derived

from the electronic theory of valence. This generalized theory is indeed so

broad that it removes the problem from the confines of the chemistry of

ions into the domain of the formation of covalent bonds. Lewis defined an

acid as a substance that can accept a pair of electrons from a donor sub-

stance, the base. The process called "neutralization" is therefore the forma-

tion of a covalent bond in which both electrons of the shared pair are pro-

vided by the base. It may be recalled that this is the type of bond that used

to be called the "dative bond" or the "coordinate link." For example:

H+ + :6:H~ = H:6:H

Cl H Cl H
C1:B + :N:H = C1:B:N:H

Cl H Cl H
acid + base = covalent compound

The close relationship between acid-base and oxidation-reduction re-

actions is now apparent. Both acids and oxidizing agents tend to accept
electrons. They are said to be electrophilic or electron-loving reagents. An
acid accepts a share in a pair of electrons held by a base, forming a co-

ordinate covalent bond. An oxidizing agent accepts electrons provided by
a reducing agent, but keeps them all to, itself instead of sharing them with

16
I. M. Kolthoff and A. Willman, /. Am. Chem. Soc., 56, 1007 (1934).
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the donor. Bases and reducing agents are called electrodotic or electron-

giving reagents.

The same reactant can display either acid-base or oxidation-reduction

properties depending upon its reaction partner. Thus the sulfide ion behaves

as a base toward water:

H

:S:
|
2H-.6.H - H.S.H

!
2:6:~

On the other hand, it behaves as a rcductant toward an oxidizing agent like

ferric ion :

:S:- -f 2Fe'^ :S: \~ 2 Fe< '

25. Dissociation constants of acids and bases. A typical acid HA reacts

as follows when dissolved in water: HA {-- H 2O H
:i
O f

}
A . The equi-

librium constant may be written:

If the solution is dilute, the activity of the water a
lla0 may be taken to be

the same as its concentration r, which will effectively be a constant equal
to the number of moles of water in one liter. This constant may be divided

out of the equilibrium constant K& to give the simpler expression:

For a base B, the reaction is B
f
H2O -- BH+

}
OH . The equilibrium

constant becomes

These constants, ATa and K\), are sometimes called the dissociation con-

stants for the acid and base, and they provide a measure of their "strengths."

The constants can be obtained from conductance measurements or by
measurements of hydrogen-ion concentrations combined with appropriate

activity coefficients. The hydrogen-ion concentration can be measured

colorimetrically with indicators, but more precise values are obtained by

potentiometric methods that will be described later.

Let us write, using the notation H f instead of H 3O+

^H^A 7n 7A-Aa
'

In dilute solution the molecule HA, being uncharged and therefore not

subject to electrical interactions, may be assigned an activity coefficient of

unity. Then

>WA-
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From the Ostwald dilution law,
17

eq. (15.9), this would become

a2c
a ~

(1
-

a)
YR+YA~

with a = - A/A . Thus the constant ATa can be evaluated by combining con-

ductivity measurements in dilute solution with suitable activity-coefficient

values, obtained experimentally or from the Debye-Huckel theory.

Some measured constants for acids and bases are summarized in Table

15.6, in the form ofpK& or pK\) values; by analogy with the definition of /?H,

pK -- -log K.

TABLE 15.6*

DISSOCIATION OF ACIDS AND BASES IN WATER SOLUTION AT 25C

* H. S. Harned and B. B. Owen, Chem. Rev., 25, 31 (1939); J. F. J. Dippy, ibid., 151.

For an acid and its conjugate base we have the relationship

K. (15.54)

where K
8

is the dissociation constant of the solvent. For example, consider

acetic acid HAc, and its conjugate base Ac~:

HAc + H2O - H3O+ + Ac-

Ac- + H2O = OH- + HAc
Then,

Kw is the dissociation constant "of the solvent water.

17 More exact methods are based on the Onsager conductivity theory. See Glasstone,

op. cit., pp. 163-169.
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The value of Kw can be calculated from the measurements of Kohlrausch

and Heydweiller
18 on the conductivity of extremely pure water. These data

are given in Table 15.7 at various temperatures. The degree of dissociation

TABLE 15.7

CONDUCTIVITY ANiJPlCiM PRODUCT OF WATER

a is calculated from the relation a A/A ,
A being the sum of the equi-

valent ionic conductivities of H+ and OH~ at infinite dilution. From Table

15.3 this sum at 25 is 349.8 -}- 198 - 547.8. From eq. (15.3), A - */r*,

where c* is the number of moles of water in one cc, 0.0553. Thus A =
0.062 x 10~6

/0.0553 = 1.05 x 10~6
. Since the ionic concentrations are very

low, the activity coefficients may be taken as unity, so that Kw CH+COH _ =
a2cw

2
, where cw is the number of moles of liquid water in one liter. The cal-

culated ion products are included in Table 15.7. At 25, Kw & 10~14 , so that

the hydrogen ion concentration CH + ^ 10~ 7 moles per liter, or the pH & 7.

When an acid and base are mixed, neutralization occurs, but except in

the case of strong acids and bases, i.e., those for which dissociation is essen-

tially complete, the compound formed may react with the solvent. This

process is called solvolysis, or in the special case of water, hydrolysis. For a

compound BA in water:

BA + H2O = HA + BOH

The hydrolysis constant is

or Kh
= (15.55)

It can easily be shown that the hydrolysis constants are related to the

dissociation constants as follows:

Salt of weak acid and strong base : Kh
= KJK*

Salt of weak base and strong acid : Kh
= KJKb

Salt of weak acid and weak base: Kh
= KJKAK\>

(15.56)

26. Electrode processes: reversible cells. So far we have been considering

only those aspects of electrochemistry that deal with the state of affairs

within solutions of electrolytes. The second important branch of the subject

is concerned with what happens when electrodes are immersed in these

solutions and connected via an external metallic conductor.

An electrode dipping into a solution is said to constitute a half cell \ the

18
Z.physik. Chem., 14, 317 (1894).
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combination of two half cells is a typical electrochemical cell. An example is

the Clark cell of Fig. 4.2.

We shall be interested primarily in the class of cells called reversible cells.

These may be recognized by the following criterion : The cell is connected

-with a potentiometer arrangement for emf measurement by the compensation
method (page 73). The emf of the cell is measured: (a) with a minute current

flowing through the cell in one direction; (b) then with an imperceptible flow

of current; (c) and finally with a minute flow in the opposite direction. If a

cell is reversible its emf may change only slightly during this sequence, and

there should be no discontinuity in the emf value at the point of balance (b).

Reversibility implies that any chemical reaction occurring in the cell can

proceed in either direction, depending on the flow of current, and at the null

point the driving force of the reaction is just balanced by the compensating
emf of the potentiometer. If a cell is reversible, it follows that the half cells

comprising it are both reversible.

27. Types of half cells. A great many chemical reactions can be carried

out in cells so as to yield electric energy, and there is a corresponding variety

in the types of available half cells.

One of the simplest consists of a metal electrode in contact with a solution

containing ions of the metal, e.g., silver in silver-nitrate solution. Such a half

cell is represented as Ag|Ag
f
(c

>

), where c is the silver-ion concentration, and

the vertical bar denotes the phase boundary. The reaction occurring at this

electrode is the solution or deposition of the metal, according to Ag ^

Ag+ I-- e.

It is sometimes convenient to form a metal electrode by using an amalgam
instead of the pure metal. A liquid amalgam has the advantage of eliminating

nonreproducible effects due to strains in the solid metals or traces of im-

purities at the electrode surface. In some instances a dilute amalgam electrode

can be successfully employed while the pure metal would react violently with

the solution, for example in the sodium amalgam half cell, NaHg(r1)|Na+( 2).

If the amalgam is saturated with the solute metal, the electrode is equivalent
to a pure metal electrode, since the chemical potential of a component in its

saturated solution equals the chemical potential of pure solute. If the amalgam
is not saturated, methods are available for calculating the emf of a pure metal

electrode from a series of measurements at different amalgam concentrations.

Gas electrodes can be constructed by placing a strip of nonreactive metal,

usually platinum or gold, in contact with both the solution and a gas stream.

The hydrogen electrode consists of a platinum strip exposed to a current of

hydrogen, and partially immersed in an acid solution. The hydrogen is

probably dissociated into atoms at the catalytic surface of the platinum, the

electrode reactions being
\ H 2

=-- H
H =-- H^ f e

over-all: \ H2 =~H+> e
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The chlorine electrode operates similarly, negative chloride ions being
formed in the solution : e \ I C12

^ Cl .

An oxidation-reduction electrode is formed by an inert metal dipping into

a solution containing ions in two different oxidation states, e.g., ferric and

ferrous ions in the half cell Pt|Fe'
f

, Fe 4 *+. When electrons are supplied to

the electrode, the reaction is Fe ff !

~ + e - Fe H . Since it is the function of

electrodes either to accept electrons from, or to donate electrons to ions in

the solution, they are all in a sense oxidation-reduction electrodes. The

difference between the silver electrode and the ferric-ferrous electrode is that

in the former the concentration of the lower oxidation state, metallic silver,

cannot be varied.

All the electrodes so far considered are examples of what are sometimes

called "electrodes of the first kind." Electrodes of the "second kind" consist

of a metal in contact with one of its slightly soluble salts; in the half cell, this

salt is in turn in contact with a solution containing a common anion. An

example is the silver-silver chloride half cell: Ag|AgCl|Cl (t\). The electrode

reaction can be considered to proceed in two steps:

AgCl(s) Ag^ f Cl

_ Ag 1 + e Ag(s)
or over-all: AgCl (s) 1 e - Ag (s) f Cl

:

It is interesting to note that such an electrode is thermodynamically

equivalent to a chlorine electrode (C1 2 |CI ) in which the gas is at a pressure

corresponding to the dissociation pressure of AgCl according to AgCl

Ag 1 2 C12 - This is an especially useful fact in view of the experimental
difficulties involved in the use of reactive gas electrodes.

28. Electrochemical cells. When two suitable half cells are connected one

obtains an electrochemical cell. The connection is made by bringing the

solutions of the half cells into contact, so that ions can pass between them.

If the two solutions are the same, no problems arise, but if they are different

they must be kept from mixing appreciably by interdiffusion. At the inter-

face between the two solutions there is a liquid junction. We shall postpone
consideration of cells of this kind, and consider first of all some cells without

liquid junctions.

It is necessary to adopt some standard notation for writing down a cell,

the chemical reaction occurring in it, and the sign of its emf. Two sign con-

ventions are in common use in the scientific literature, one used by American

chemists and the other used by the rest of the world, including American

electroplaters. With some misgivings, we shall follow the former.

We therefore decide that a positive emf represents a tendency for positive

ions to pass spontaneously from left to right through the cell as written, or of

negative ions to pass from right to left. If the electrodes are connected

through a metallic conductor, electrons flow through the external circuit

from left to right.
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From eq. (4.2) the relation between the reversible emf and the maximum

work, AF, for the cell reaction is AF = z&&
'

. Thus a positive emf cor-

responds with a negative AF and therefore a positive driving force for the

reaction.

Consider, for example, the Weston cell, which is universally used as a

standard cell It has a voltage of & = 1.01810 volts at 25C and a very small

temperature coefficient. The cell may be written

Cd (12.5% amalgam)|CdS04
* H2O (s)|CdSO4 (sat)|Hg2SO4 (s)|Hg

Now for positive emf the positive ions proceed from left to right through
the cell; the electrons proceed from left to right through the external circuit.

Thus the reaction at the left-hand electrode must be an oxidation, the

loss of electrons according to Cd = Cd++ + 2e. These electrons flow through
the metallic conductor to the right-hand electrode, where they are given up
to the mercurous ion, reducing it to mercury: Hg2

f+ + 2e 2 Hg. The net

cell reaction is the sum of the two electrode processes, or Cd + Hg2
++ =

Cd++ + 2 Hg. In terms of the salts present, this reaction might be written

Cd + Hg2SO4
= CdSO4 + 2 Hg. The cell reaction is a displacement.

An example in which the reaction is a combination is found in the cell,

Pt|H2 (1 atm)|HCl (0.1 m)|C!2 (1 atm)|Pt

The emf of the cell is 1.485 volts, so that the direction of the current flow is

the same as before. The electrode processes are

i H2
- H+ + e

t C12 + e = Cl-

Over-all reaction: \ H2 +'\ C12
= HCl (0.1 m)

29. The standard emf of cells. Let us consider the generalized cell reaction:

aA + bB = cCdD. By comparison with eq. (4.8) the free-energy change
in terms of the activities a of the reacting species is

Since AF ztffF, division by -rz^" gives

A

When the activities of all the products and reactants are unity, the value

of the emf is <? - -AF/z^. This ? is called the standard emf of the cell.

It is related to the equilibrium constant of the cell reaction, since

AF RT
A- (15 '58)

The determination of the standard emf's of cells is therefore one of the most

important procedure^ in electrochemistry. We shall illustrate a useful method

by means of a typical example.
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Consider the cell shown in Fig. 15.13, consisting of a hydrogen electrode

and a silver-silver chloride electrode immersed in a solution of hydrochloric
acid:

Pt(H2)|HCl(m)|AgCl|Ag

The electrode reactions are

H2
- FT

AgCl -f e - Ag + Cl-

The over-all reaction is accordingly

AgCl + 1 H2
- H+ + Cl- + Ag

COPPER WIRE LEADS
TO POTENTIOMETER

H-HCl
SOLUTION

-Ag FOIL
COVERED
WITH AgCl

Fig. 15.13. Hydrogen electrode and silver-silver chloride electrode in

arrangement for standard emf determination.

From eq. (15.57) the emf of the cell is

Setting the activities of the solid phases equal to unity, and choosing the

hydrogen pressure so that #HI
= 1 (for ideal gas P 1 atm), we obtain the

equation

o = & - In #H+^CI~

Introducing the mean activity of the ions defined by eq. (15.26), we have

g = <? In a = -- In y m (15.59)

On rearrangement,
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According to the Debye-Huckel theory, in dilute solutions In y
~ AVm,

where A is a constant. Hence the equation becomes

- 2RT. _ 12RTA}

If the quantity on the left is plotted against Vm, and extrapolated back to

m = 0, the intercept at m =
gives the value of & .

19 For this cell one

obtains <T = 0.2225 volt at 25C.
Once the standard emf has been determined in this way, eq. (15.59) can

be used to calculate mean activity coefficients for HC1 from the measured

emf's $ in solutions of different molalities m.

30. Standard electrode potentials. Rather than tabulate data for all the

numerous cells that have been measured, it would be much more convenient

to make a list of "single-electrode potentials" of the various half cells. Cell

emf's could then be obtained simply by taking differences between these

electrode potentials. The status of single-electrode potentials is similar to

that of single-ion activities. In 1899 Gibbs20
pointed out that it is not possible

to devise any experimental procedure that will measure a difference in

electric potential between two points in media of different chemical com-

position for instance, a metal electrode and the surrounding electrolyte.

What we always in fact measure is a difference in potential between two

points at the same chemical composition, such as two brass terminals of a

potentiometer.
Consider an ion of copper, (a) in metallic copper, (b) in a solution of

copper sulfate. Its state is determined by its chemical environment, usually

expressed by its chemical potential //, and by its electrical environment,

expressed by its electric potential U. But there is no way of experimentally

separating these two factors, as indeed is apparent from the facts that there

is no way of separating electricity from matter, and that the phenomena we

call "chemical" are all "electrical" in origin. Thus we can measure only the

electrochemical potential of an ion, //
-

^ -f U. It may sometimes be con-

venient to make an arbitrary separation of this quantity into two parts;

such conventional separations seem to be helpful in some theoretical

discussions.

Although absolute single-electrode potentials are not measurable, the

problem of reducing the cell emf's to a common basis may be solved by

expressing all the values relative to the same reference electrode. The choice

of a conventional reference state does not affect the values of differences

between the electrode potentials, i.e., the cell emf's. The reference electrode

is taken to be the standard hydrogen electrode, which is assigned by conven-

19 A. S. Brown and D. A. Maclnnes, /. Am. Chem. Soc., 57, 1356 (1935). In practice an
extended form of the Debye-Hiickel theory is often used to give a somewhat better extra-

polation function.
20 Collected Works, vol. 1, p. 429. See also E. A. Guggenheim, /. Phys. Chem., 33, 842

(1929).
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tion the value <? --= 0. It is the hydrogen electrode in which (a) the pressure

of hydrogen is 1 atm (strictly, unit fugacity, but the gas may be taken to be

ideal), (b) the solution is a hydrogen acid in which the mean ionic activity is

a = 1. Thus: Pt|H2 (1 atm)|(H* (a -
1).

The emf of the cell formed by combining any electrode with the standard

hydrogen electrode gives the electrode potential on the hydrogen scale, <^H .

If the emf is the standard emf <f, it gives the standard electrode potential on

the hvdrogen scale <*u-

To maintain the usual sign convention, always write down the complete
cell with the electrode to be measured at the left and the hydrogen electrode

at the right. For example, in the previous section, the cell Pt(H2)| HC1| AgCl|Ag
was found to have a standard potential ff - 0.2225 v. The cell Ag|AgCl|-

HCl|(H2)Pt would have ff - - 0.2225 v. The standard potential of the

Ag| AgCl electrode would thus be <? H - -0.2225 - 0.0 - 0.2225 v.

Instead of measuring an electrode directly against the standard hydrogen

electrode, it can be measured against any other electrode whose rf, r has

been determined. The normal calomel electrode is frequently used in this way
as a subsidiary reference standard: Hg|Hg2Cl 2|KCl (1 normal), <f H
-0.2802 v (25C). We must subtract 0.2802 v from emfs measured against

the normal calomel electrode to bring them onto the standard hydrogen
scale.

21

A summary of standard electrode potentials is given in Table 15.8. These

may be called oxidation potentials, because the magnitude of the positive

potential represents the tendency of oxidation, i.e., loss of electrons, to occur

at the electrode. A positive value for rf H indicates that the reduced form of

the half cell is a better reducing agent than hydrogen. For example:

Cd - = Cd+< -4 2e, <T It
- 0.402

Therefore the reaction Cd + 2 H 4 -> Cd 4 f
} H2 will proceed with a poten-

tial of ff ~= <?H --= 0.402 v. The positive potential corresponds to a

negative AF and therefore a spontaneous reaction. The cell would be

written:

Cd|Cd*+, H+(0. -
1)|H2 (1 atm)

Two half-cell reactions and potentials may be subtracted to obtain the

<? for a complete chemical reaction. For example:

Cd = Cd+ 4
} 2e <* 0.403

2 Ag - 2 Ag+ + 2e ff =- 0.799

CdT ~2 Agr ='Cd^-l7 2~Ag

"

"rf' -
1 .202

Sometimes it is necessary to add or subtract two half reactions to obtain

the $ of a third half reaction. Then one must be careful to add or subtract

21 The symbol <^ H is often written simply <f. Unless otherwise stated it will be under-

stood that the potential is given on the hydrogen scale.
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TABLE 15.8

STANDARD OXIDATION POTENTIALS*

* W. M. Latimer, Oxidation Potentials (New York: Prentice-Hall, 2nd ed., 1952).
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the actual free energies in volt equivalents so that the different numbers of

electrons are properly accounted for. For example :

Volt

S Equivalents

4 H2O + Mn++ --= MnO4

- + 8 H+ + 5<r 1 .52 -7.60

2 H2Ojf Mjv
- MnO2 + 4 H+ + 2e~ -1.28 2.56~~

2 H 2C+ nO2
^"MnOr + 4~Hr+~3e~ 1.68 -5.04

31. Standard free energies and entropies of aqueous ions. Closely* related

to the standard electrode potential on the hydrogen scale is the standardfree

energy ofan ion. Once again, all values are referred to a conventional reference

standard, the hydrogen ion at a =
1, which is taken to have a standard free

energy of zero. Consider again the reaction

Cd + 2 H+ ~> Cd++ + H2
rf H - 0.403 (25C)

If all the reactants are in their standard states:
22

-z& - AF --= /V+ + /">.- /"W
- 2F lv

Now F
Ut and /* Cd are zero because the free energies of the elements are

taken as zero in their standard states at 25C, and F lv is zero by our con-

vention. It follows that

/V* -= Af - -z*T - 2_x_-403 _x *.
-, _ ,8.59 kcal per mole

4.184

In addition to the standard ionic free energies, it is useful to obtain also

the standard ionic entropies, S. These are the partial molar entropies of the

ions in solution relative to the conventionally chosen standard that sets the

entropy of the hydrogen ion at unit activity equal to zero, S u <

--
0. These

ionic entropies provide a measure of the ordering effect produced by an ion

on the surrounding water molecules. Small ions like Li f and F have lower

entropies than larger ions like Na4 and Cl~. This difference is in accord with

the data from transference experiments discussed on page 446. Ions bearing

a multiple charge are found to have especially low entropies in aqueous

solution, as a result of their strong electrostatic attraction for the water

dipoles and correspondingly large ordering effect on the solvent.

One method for calculating the ionic entropies may be illustrated in

terms of our example, the Cd f + ion. Consider again the reaction: Cd +
2 H+ - Cd4 + + H2 . The standard entropy change is AS S (vl ,, } 5 Hi

2 S H <
- S CA . Now S cd and S Ut have been evaluated from Third-Law

measurements and statistical calculations, being 31.23 and 12.3 cal per deg
at 25C. By our convention, Hf is zero. Therefore 5 Cl,i, A5 18.93.

The value of AS can be obtained from AS -= (A// &FC
)/T. If cadmium

is dissolved in a large excess of very dilute acid, the heat of solution per mole

of cadmium is the standard enthalpy change A//, since in the extremely
22 The free energies are written F because for species in solution they are the partial

molar free energies or chemical poten tials.
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dilute solution all the activity coefficients approach unity. This experiment

yields the value A// = 16,700 cal. The AF from the cell emf was found to

be -18,580 cal. Therefore AS - (-16,700 f 18,580)/298.2 - 6.22 cal per

deg. It follows that S Cd ,. - 12.7 cal per deg.

The methods described for determining the thermodynamic properties of

ions in solution represent only a few examples of many possible ways of

combining thermodynamic data. Latimer's book, The Oxidation States of
the Elements and Their Potentials in Aqueous Solutions, should be consulted

for a thorough survey of this important field and extensive tables of the

thermodynamic quantities.

32. Measurement of solubility products. Standard electrode potentials can

be combined to yield the ff and thus the AF and equilibrium constant for

the solution of salts. It is thus possible to calculate solubilities for salts even

in cases where an extremely low solubility would make direct measurements

very difficult. As an example, consider silver iodide, which dissolves according
to: Agl Ag+ + I~. The solubility product constant is /Qp OAR'^I-

A cell whose net reaction corresponds to the solution of solid silver iodide

can be formed by combining a silver electrode with a silver-silver iodide

electrode, Ag|Ag+,l |AgI (s)|Ag. The electrode reactions are

Ag - Ag>- + e <T - -0.7995

e 4- Agl (s)_=_Ag + \2_ ^ - -0.1510

Over-all: Agl(s) = Ag j + r <f -, -0.9505

Then, from AF - -z& = ~RT\n AT
8p ,

(0.951 x 96,520)
lOtZ-in *ur\ "

~ * iO.V/D

Assuming unit activity coefficients in the very dilute solution of Agl, this

AT
8p corresponds to a solubility of 2.47 x 10~6

g per liter.

33. Electrolyte-concentration cells. The cells so far described have all

been chemical cells, producing electrical energy from chemical changes.

There is also an important class of cells in which no net chemical change
occurs. These are called concentration cells, because they owe their emf to

concentration changes either in the electrolyte or in the electrodes (e.g., in

amalgams).
For the cell, Pt|H 2jHCl (r)|AgCl|Ag, the cell reaction is \ H2 + AgCl

- Ag { HC1 (c). Measurements with two different hydrochloric acid con-

centrations c yielded the following results:

c # F( joules)

0.0010 0.6095 58,820
0.0483 0.3870 37,340

If two such cells are set up so as to oppose each other, the combination

constitutes a cell that can be written as follows:

Ag|AgCl|HCl(r2)|H2|HCl(
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The over-all change in this cell is simply the difference between the changes
in the two separate cells: for the passage of each faraday the transfer of

one mole of HCi from concentration c2 to cl9 HCI (c2) > HCI (ct). Note,

however, that there can be no direct transport of electrolyte from one side

to the other. The HCI is removed from the left side by the reaction, HCI f- Ag= AgCl -f H2 . It is added to the right side by the reverse of this reaction.

Fiom the data above, if c\
= 0.00 1 and c2

- 0.0483, the free energy of

dilution is AF- 21,480, and - 21,480/96,520 0.2225.

34. Electrode-concentration cells. An example of an electrode-concentra-

tion cell would be one consisting of two hydrogen electrodes operating at

different pressures and dipping into a hydrochloric-acid solution:

Pt|H2 (PO|HCl(a)|H2 (P2)|Pt

At the left electrode: \ H2 (P^ = H+ (am ) (- e

At the right: H^ (0H .) h e - i H2 (P2)

The over-all change is accordingly H2 (Pj) \ H2 (P2), the transfer of one

equivalent of hydrogen from pressure Pl
to P2 . The emf of the cell is

g :^ P

P\

An interesting type of electrode concentration cell is one in which two

amalgam electrodes of different concentrations dip into a solution containing
the solute metal ions. For example:

Cd.Hg(fl1)|CdS04|Cd-Hg(fl2)

The emf of this cell arises from the net work obtained in transferring
cadmium from an amalgam where its activity is av to one with activity 2 .

The emf is therefore :

If the amalgams are considered to be ideal solutions, one may replace the

activities by mole fractions. In Table 15.9 are some experimental data for

TABLE 15.9

CADMIUM AMALGAM ELECTRODE-CONCENTRATION CELLS*

* G. Hulett, J. Am. Chem. Soc., 30, 1805 (1908).
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these cells, together with the calculated emf's based on ideal solutions. The

approach to the theoretical values with increasing dilution may be noted.

Electrode-concentration cells are especially useful in studying the thermo-

dynamics of alloys.
25

35. Cells with liquid junctions. If the two electrodes of a cell are immersed

in two different solutions, these solutions must be brought into contact

in order to complete the electrical circuit. The contact can be made
either directly or through a salt bridge, a connecting tube filled with salt

solution.

The liquid-to-liquid junctions are designed so as to minimize mixing of

the solutions by interdiffusion. Sometimes a flowing junction is used for

greater reproducibility.

As was pointed out in Section 30, it is not possible to measure a difference

in electrical potential between two chemically different media. Therefore

liquid-junction potentials cannot be directly measured.

Attempts have been made to calculate liquid-junction potentials by

solving diffusion equations for the ions in solution. Consider, for example,
a junction between a solution of HC1 and a solution of KCl. If the con-

centrations are about the same, one would expect the HC1 solution to lose

H+ ions by diffusion more rapidly than the KCl solution loses K+ ions,

because the H^ ion has a much higher mobility. Thus the HC1 side of

the contact would become negatively charged relative to the KCl side.

Semi-quantitative estimates based on this picture have led to junction

potentials of from 5 to 30 millivolts, not large compared with the usual

cell emf's.

Attempts have been made to eliminate the liquid-junction potential by

using a salt bridge. Concentrated solutions of KCl or NH4NO3 are often

used in the bridge. The ions in these solutions have nearly the same transport

numbers, and one may hope that the two cell-solution-bridge-solution

potentials will be nearly equal numerically but opposite in sign.

The most encouraging thing about cells with liquid junctions is that

standard emf's obtained from them, when careful procedures are followed,

often agree very closely with the results from cells without liquid junctions.

We thus can feel considerable confidence in the necessary approximations.
Cells without liquid junctions are used wherever possible, but in some

applications, such as the measurements of /?H, or of oxidation-reduc-

tion potentials of organic compounds, it is necessary to employ liquid

junctions.

36. Oxidation-reduction reactions. Cells with liquid junctions are fre-

quently used to study the equilibrium in oxidation-reduction reactions.

Special interest has been focused on the oxidations of organic substances

occurring in living cells, in view of the importance of such processes in

cellular metabolism and respiration. Although the particular example is not

'-''
J. Chipman, Discussions of the Faraday Soc.> 4, 23 (1948).
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a biological reaction, the principles involved can be illustrated by the

oxidation of hydroquinone to quinone. The reaction is
2(i

OH O

+ 2 H+ + 2e

OH
QH2

O
Q

If an inert metal electrode (Au or Pt) is placed in a solution containing
a mixture of hydroquinone and quinone, the reaction can be made to pro-
ceed in either direction by supplying or removing electrons at the electrode.

LEADS TO
POTENTIOMETER

CURRENT OF
PURE NITROGEN

-KCl
SOLUTION

SOLUTION OF
HYDROQUINONE,
QUINONE AND
BUFFER

Fig. 15.14. Experimental arrangement for measuring emf of an oxidation-

reduction reaction, or for a potentiometric titration.

A complete cell can be formed by coupling this hydroquinone electrode with

a calomel electrode or other reference half cell. A typical experimental

arrangement is shown in Fig. 15.14. The cell may be written

Au|QH2, Q (buffer: H+)|KC1, Hg2CI2|Hg2Cl2 (s)|Hg

The cell reaction is

At the left:

At the right:

Over-all:

QH2
= Q + 2 H+ + 2e

_ l2f^ 2_Hg + 2
Cl^_

QH2 + Hg2Cl2
= Q + 2Hg"+ 2" + 2 C>

26
Hydroquinone is a weak acid but in moderately acid solutions its dissociation is

negligible. Under certain conditions the reaction proceeds in two steps, removal of one

electron forming a highly colored semiquinone. See L. Michaelis, C.hem. Revs., 22, 437 (1938).



486 ELECTROCHEMISTRY [Chap. 15

The emf can be written

(15.60)

TITRATED
SYSTEM

TITRANT
SYSTEM

Since Q and QH2 are uncharged species, it is a good approximation to

replace their activity ratio by a concentration ratio. Then from measured

values of 6 at known acid strength, it is possible to calculate <^ and hence

the equilibrium constant of the oxidation-reduction reaction. Note that the

of the cell and therefore the driving force of the reaction depend on the

acid concentration.

By adding an oxidizing agent from the burette, it is possible to titrate the

reduced form. As the concentration of QH2 approaches zero, it is evident

from eq. (15.60) that approaches minus

infinity. Consequently, when the amount of

QH 2 remaining unoxidized becomes very

small, the change in the measured cell emf

becomes very steep. Of course does not

actually go to oo, because as the end point

of the titration is approached the concentra-

tion of unreacted oxidizing agent (titrant)

becomes appreciable, so that a new oxida-

tion-reduction equilibrium is set up with an

emf characteristic of the titrant system. The

course of a typical potentiometric titration is

shown in Fig. 15.15. If the standard poten-

tials of the titrated system and the titrant system are sufficiently far apart,

a good end point can be readily determined.

37. Measurement of pH. We often need to know the concentration of

hydrogen ions in aqueous solution. In 1909 S. P. S0rensen invented the

symbol pH as a convenient expression for this quantity, defined by pH
Iog10 CH +, where cll+ is the molar concentration.

In 1909 strong electrolytes like HC1 were believed to be only partially

dissociated even in dilute solutions. The degree of dissociation was believed

to be given by a = A/A . Values of cll+ were accordingly calculated from

the equivalent conductivities, and S0rensen set up his pH scale on this basis.

It now appears that strong electrolytes are completely dissociated in dilute

solutions, so that the S0rensen pH scale is unsatisfactory.

For most practical purposes the pH is a number determined by potentio-

metric measurement of a cell emf. Since cell emf's depend on activities and

not on concentrations it is probably wise to abandon the definition of pH
by a concentration scale, except as a first approximation. It might seem

Fig. 15.15. Course of emf in a

potentiometric titration.
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logical to define /;H as loglo air ,
but this definition has the considerable

drawback that H , is not itself an experimentally measurable quantity.
The best procedure seems to be to define a /;H scale by reference to the

measured emf of a cell consisting of a hydrogen electrode combined with

some reference electrode. Such a cell might be

(Pt)H 2 , 1 atm|H+r iKCl (saturated);
1

Hg2Cl2 , KCl|Hg2Cl2|Hg

This cell contains two liquid junctions at the KCl salt bridge, so that we

cannot separate the hydrogen electrode potential from the measured emf.

If such a separation were possible we could write the emf as

RT
X -6\K(

- ~\na

We now arbitrarily define the /?H by writing

RT
<? = rcf -{ 2.303 ~p\\ (15.61)

We choose a value for <f
rcf that will give a /?H value in accord with other

thermodynamic data, such as the dissociation constants of weak acids. For

the 0.1 normal KCl-caiomel electrode this value at 25C is ^ rol
- 0.3358 v.

Therefore eq. (15.61), defining the /;H, can be written (at 25C)

<? - 0.3358 ^^0.3358
P

2.303 RT};? 1X0592

The hydrogen electrode is not well suited for routine /;H measurements

because it requires a source of gaseous hydrogen and it is sensitive to various

"poisons" that inhibit the catalytic activity of the platinized platinum
surface. The most convenient method of measuring p\\ is undoubtedly by
means of the glass electrode. The operation of this interesting device depends

upon the difference in potential across a glass membrane separating solutions

of different /?H.
27

38. Concentration cells with transference. In electrolyte-concentration

cells without liquid junctions, the type previously described, there is no direct

flow of electrolyte from one solution to the other. An example of a con-

centration cell that does have direct contact between the solutions is

H2 (1 atm)|HCl (aj j HCl (*2)|H2 (1 atm)

t_C\~

The r's are the ionic transport numbers. For the passage of each faraday.of

charge, the following changes occur in the cell:

A. At the electrodes. (1) One equivalent of H+ is formed at the left, by
the reaction i H2

> H+
(aj). (2) One equivalent of H+ is removed at the

27 M. Dole, The Glass Electrode (New York: Wiley, 1941).
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right, by the reaction H+(a2)
-> i H2 . The net result of the electrode processes

is H+(a2 ) -> H+(fll ).

B. At the liquidjunction. (1) / equivalents of Cl~ ions pass from right to

left, from the solution of activity a2 to that of activity av (2) t+ 1 t_

equivalents of H 1 ions pass from left to right, from activity al to a2 .

The net result of these changes at the electrodes and at the junction is

UHC1) at 2
-> /_(HC1) at at

Since the electrodes are reversible with respect to the cation H+
, the transport

number / of the anion occurs in the expression for the net change.

Such a cell is called a concentration cell with transference. Note that it

requires electrodes reversible with respect to only one of the ions. Concen-

tration cells without transference require one electrode reversible with respect

to the anion and one with respect to the cation.

The free-energy change of the cell reaction is AF = t_2RT In (a^a^. The

emf of the cell is accordingly

The same process, dilution of HCl from a2 to al9 can be carried out in the

cell without transference whose emf is

<r=
2
4Tln*

It follows that >- = -F (15.62)

From the ratio of the emf of concentration cells with and without trans-

ference, transport numbers can be obtained that are in good agreement with

those measured in other ways. The result in eq. (15.62) is, however, an

approximation based on the assumption that the transport numbers do not

depend on the concentration.

39. Electrolysis and polarization: decomposition voltages. So far we have

been considering electrode processes that are essentially reversible. These

processes provide values for the equilibrium emf's of cells, which are related

to the thermodynamic functions. The condition of reversibility is practically

attained by balancing the cell emf against an external emf until only an

imperceptible current flows through the cell, so that the cell reactions proceed

extremely slowly. For many of the applications of electrochemistry, it is

obviously necessary to consider more rapid reaction rates. Then there is

necessarily a departure from the equilibrium situation. Either the cell re-

actions proceed spontaneously to generate electric energy, or an external

source of electric energy is used to effect chemical reactions (electrolyses).

Let us consider, for example, the electrolysis of a dilute solution of

hydrochloric acid. Platinum electrodes are introduced into the solution and
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connected, through a device for varying the voltage, to an external source of

emf, such as a storage battery. The arrangement in (a), Fig. 15.16, may
conveniently be used. If the applied voltage is gradually increased and the

current flowing through the cell is measured as a function of the potential

difference across the electrodes, the typical result shown in (b), Fig. 15.16,

is obtained. The current is extremely small until a certain definite voltage is

reached; thereafter the current-voltage curve rises steeply. The voltage at

which the current begins to flow freely corresponds to that at which bubbles

BATTERY

VOLTAGE
DIVIDER

AMMETER

CELL

TO
POTENTIOMETER

DECOMPOSITION
VOLTAGE

Fig. 15.16. (a) Measurement of decomposition voltage; (b) current-voltage curve.

of gas are first discharged from the electrodes. It is called the decomposition

voltage of the solution.

The reason for the occurrence of a definite decomposition voltage in this

instance is quite evident. As soon as the potential difference is set up between

the electrodes, hydrogen ions migrate to the cathode and chloride ions to

the anode. The ions are discharged, forming layers of adsorbed gas on the

inert metal surfaces. Instead of having two platinum electrodes we now have

a hydrogen electrode and a chlorine electrode. The result is a typical chemical

cell:

Pt|H 2|H+-Cl-(0)|CI2|Pt

The cell produces a back emf, which counterbalances the external emf. Its

reversible emf at 25 is given by

= * + 0.059 log10 (flH **ci-)

From Table 15.8 the standard electrode potential^
-- 1.3583. If the solution

is taken to be one normal, the activity coefficient of HC1 is 0.82, so that the

reversible emf would be - 1.3583 - 0.0051 = 1.3532.

The observed decomposition voltage is close to this value, being 1.31 v

at 25C in the 1 N solution. It is evident that, in this case decomposition

begins when the applied voltage reaches the reversible emf of the cell set up

by the electrolysis of the solution. In other cases, however, the decomposition

voltage actually required may be considerably above the calculated reversible

decomposition voltage.
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The small current that flows before the decomposition voltage is reached

is caused by the slow diffusion of ions away from the gas electrodes. A certain

expenditure of external electric energy is necessary to counterbalance this

back diffusion and keep the electrodes polarized.

40. Polarization and overvoltage. When an electrochemical cell is working
under irreversible conditions, its emf necessarily departs from the equilibrium

value. If the cell is acting as a battery or source of electricity, its voltage falls

below the equilibrium value. If the cell is the site of electrolysis, the voltage

supplied must exceed the equilibrium value.

Part of this voltage difference is necessary to overcome the resistance of

the cell and is equal to the IR product. The corresponding electric energy
I 2R is dissipated as heat. It is analogous to the frictional losses in irreversible

mechanical processes.

In addition to this, there are two other sources of voltage difference that

are usually distinguished. One has its origin within the electrolyte of the cell,

and the other is referred to rate processes occurring at the electrodes. The

first is called concentration polarization and the second is called overvoltage,

As its name suggests, concentration polarization arises from concentra-

tion gradients within the electrolyte of the working cell. For example, con-

sider a cell consisting of a copper anode and a platinum cathode in a solution

of copper sulfate. When a current flows, copper is dissolved at the anode

and deposited upon the cathode. If the current is appreciable the solution

around the cathode becomes relatively depleted of copper ions. Thus a con-

centration gradient is set up within the cell. This gradient is equivalent to a

concentration cell of the type discussed on page 482. The concentration cell

may be considered to produce a back emf opposing the applied voltage.

Concentration polarization of this sort can often be practically eliminated

by vigorous stirring of the electrolyte, which destroys the concentration

gradients caused by the electrolysis. Increase in temperature also tends to

decrease the polarization, by accelerating the diffusion of electrolyte ions

within the cell.

The phenomenon of overvoltage arises from a slow attainment of equi-

librium at the electrodes, i.e., either a slowness in the transfer of electrons to,

or the acceptance of electrons from, ions in the solution. The effect may be

observed for most electrode processes, but for deposition or solution at

metal electrodes it is usually small. Much more noteworthy are the over-

voltages required for the liberation of gaseous hydrogen or oxygen, which

may amount to a volt or more on certain metals.

The overvoltage can be measured with an experimental arrangement like

that shown in (a), Fig. 15.17. An auxiliary reference electrode, e.g., normal

calomel, is placed close to the electrode being investigated (to minimize IR

drop) and the potential of the electrode at which the gas is being discharged
is measured as a function of the current density. The solution is well stirred

to eliminate concentration polarization. Some of the results with various
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metals are shown in (b), Fig. 15.17. Only in the case of platinized platinum
is the hydrogen overvoltage small at all current densities. The oxygen over-

voltage behaves very similarly, except that here the value is appreciable even

on platinized platinum.

A-AMMETER
V-VOLTMETER

-3 -2 -I

LOG ( CURRENT DENSITY ) ( amps/cm 2
)

(b)

Fig. 15.17. (a) Apparatus for measuring overvoltage of an electrode as

a function of current density; (b) hydrogen overvoltage at 25C.

The importance of the overvoltage in practical applications of electro-

chemistry is very great. Because of the high hydrogen overvoltage, it is

possible to plate metals from solutions in which their reversible discharge

potentials are well below that of the hydrogen ion. For example, consider a
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cell consisting of platinum electrodes in a solution of zinc ions and hydrogen
ions at unit activity. The reversible potentials of the half cells are

of the zinc: i Zn \ Zn++ + e - 0.762

of the hydrogen : $H2
=- H+ + e <T -

If hydrogen were discharged at its reversible potential, it should be liberated

at the cathode at a much lower voltage than that required to plate out zinc.

The overvoltage of hydrogen on zinc, however, amounts to about 1.0 v, so

that in an actual electrolysis, zinc will first be deposited on the cathode. The

hydrogen ion will not be discharged until the zinc concentration has fallen

to such a point that the emf of the zinc half cell lies above the hydrogen

overvoltage.

Many theories have been proposed to account for the overvoltage.
28

They agree in postulating a slow step in the electrode reaction, which requires

the surmounting of a considerable potential energy barrier. For a charged

particle (ion) the applied emf serves to lower the energy barrier.

PROBLEMS

1. After passage of an electric current for 45 minutes, 7.19 mg of silver

are found to be deposited in a silver coulometer. Calculate the average
current.

2. A conductivity cell filled with a 0.1 molar solution of potassium
chloride at 25C has a measured resistance of 24.96 ohms. Calculate the cell

constant if the conductivity K for 0.1 molar KC1 is 0.01 1639 ohm" l cm" 1 and

conductivity water with K =~ 7.5 x 10 8 ohm" 1 cirr 1
is used to make up the

solutions. Filled with a 0.0 1 molar solution of acetic acid the cell resistance

is 1,982 ohms. Calculate the equivalent conductivity of acetic acid at this

concentration.

3. The following are the conductivities of chloroacetic acid in aqueous
solution at 25C:

1/r (liter/mole) . .16 32 64 128 256 512 1,024

equiv. cond., A . . 53.1 72.4 96.8 127.7 164 205.8 249.2

If A 362, are these values in accord with the Ostwald Dilution Law?

4. If the purest water has a conductivity of 6.2 x 10~8 ohm"1 cm"1 at

25C, calculate the K of a saturated solution of CO2 in water at 25C if the

CO2 pressure is maintained at 20 mm and the equilibrium constant for the

reaction, H2O(l) + CO2 (aq)
=- HCO3

" + H+, is 4.16 x 10~ 7
. The solu-

bility of CO2 in water follows Henry's Law with a constant k' --- 0.0290 mole

lir1 atm-1
[cf. Maclnnes and Belek, J. Am. Chem. Soc., 55, 2630 (1933)].

5. The conductivity of a saturated solution of silver chloride in pure

28
J. Bockris, Chem. Rev., 43, 525 (1948).
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water at 20C is 1.26 x 10~6 ohm"1 cm"1

higher than that for the water used.

Calculate the solubility of AgCl in water.

6. Draw a calculated curve showing how the conductivity of the solution

varies as 10 ml of 0.1 N NaOH is titrated with 1 1 ml of 0.1 N HC1.

7. An 0.01 N silver nitrate solution is used with silver electrodes in a

determination of the transference number of the Ag+ ion by the Hittorf

method; 32.10 mg of silver are deposited in a silver coulometer in series with

the Hittorf cell. At the end of the run the 20.09 g of solution in the anode

compartment are found to contain 39.66 mg of Ag; the 27.12 g of solution

in the cathode compartment contain 11.14mg of Ag. Calculate the Ag+
transference number.

8. E. W. Washburn [J. Am. Chem. Soc., 31, 322 (1909)] measured the

transference of the ions in a KCI solution to which was added an inert

compound, raffinose, in order to detect the transport of water by the hydrated
ions. The original concentration of the KCI was 1.24molal, of raffinose

0.1 molal (formula: C 18
H 32O16). Ag-AgCl electrodes were used. In a run with

5.3685 g silver deposited in the coulometer the following data were obtained:

Anode compartment, 103.21 g solution containing 6.510 per cent KCI,

4.516 per cent raffinose. Cathode compartment, 85.280 g, 10.030 per cent

KCI, 4.290 per cent raffinose. If tnw is number of moles of water transported

from anode to cathode for passage of one faraday of electricity, n
s
and nw

are number of moles of salt and of water in original solution, show that

/ _ JH (ng/nw)&nw . Here tu is the apparent (Hittorf) transference number

and / is the true transference number corrected for the transport of water.

Calculate /H and / in this experiment. If all the water of hydration is assumed

to be held by the K+ ion and none by the Cl~ ion, calculate the mean number

of molecules of water held by each K+ ion.

9. In a transport experiment in 0.02 molar NaCl solution at 25C by the

moving boundary method, Longsworth [J. Am. Chem. Soc., 54, 2741 (1932)]

found the boundary between NaCl and CdCl2 solutions to move 6.0 cm in

2,070 seconds with a current of 0.00160 amp. (Tube cross section 0.12 cm2
.)

Calculate /
4

.

10. From data in Table 15.4, calculate the transport number of the K4

ion in K 2SO4 .

11. From the following freezing-point depressions for aqueous solutions

of sodium chloride, calculate the activity coefficient ym of NaCl in 0.05 molal

solution [G. N. Lewis and M. Randall J. Am. Chem. Soc., 43, 1112

(1921)].

molality, m . . . 0.01 0.02 0.05 0.10 0.20 0.50

f. pt. dep. C . . 0.0361 0.0714 0.1758 0.3470 0.6850 1.677

12. From the molal activity coefficients in Table 15.5, calculate the mean

ionic activity in 0.1 molal solution of AgNO3, CuSO4 ,
CaCl2 .
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13. The solubility of AgIO3 in KNO3 solutions has been measured by
Kolthoff and Lingane [J. Phys. Chem., 42, 133 (1938)] at 25C:

KNO3 , m/1 ... 0.001301 0.003252 0.006503 0.01410

AglO3 , m/1 x 104
. . 1.761 1.813 1.863 1.908 1.991

Compare these results with the Debye-Huckel limiting law for solubilities

and calculate the activity coefficients of AgIO3 in the solutions.

14. Calculate the ionic strengths of one-molal solutions of KNO3 ,

K 2S04 ,
K 4Fe(CN)6 .

15. Calculate the "thickness of the ionic atmosphere" according to the

Debye-Hiickel theory in 0.1 and 0.01 molar solutions of a uniunivalent

electrolyte in (a) water at 25C with dielectric constant 8 ^ 78; (b) 70 per

cent ethanol in water at 25C with F 38.5.

16. The solubility of barium sulfate in water at 25C is 0.957 x 10~5 m
per liter. Using the Debye-HUckel theory, calculate AF for the change:
BaSO4 (s)

=-- Ba++ f SO4

-
(aq).

17. The solubility-product constant of AgCl at 25C is tf
8p

--- (Ag)(Cl-)
----- 1.20 x 10~ l

. Calculate from the Debye-Huckel theory (limiting law) the

solubility of AgCl in water and in a 0.01 M solution of (a) NaCl, (b) NaNO3 .

18. For an incompletely dissociated electrolyte the Onsager equation is:

A a[A (A { A )\/ac]. If we let A' [A (A + ^A )Vac] be

the equivalent conductivity at the actual ionic concentration (ac) in the

solution, it is evident that a A/A'. For dichloroacetic acid in 0.03 molar

solution at 25, A =-- 273 ohrrr 1 cm- 1
. A is 388.5, Calculate the degree of

dissociation a from the Onsager expression. (Hint: use a procedure of

successive approximations to find A', starting with a A/A .)

19. Use the value of a calculated in problem 18 to obtain the thermo-

dynamic equilibrium constant for the dissociation of dichloroacetic acid.

The solution is so dilute that the activity of the undissociated acid can be set

equal to its concentration and the mean ionic activity can be calculated from

the Debye-Huckel limiting law.

20. A 0.1 molar H3PO4 solution is titrated with NaOH using methyl

orange as an indicator to an endpoint at /?H 4.3. The dissociation constants

of H 3PO4 are 7.5 x 10~ 3
, 6 x 10~ 8

,
and 3.6 x 10~13

. Calculate the fractions

of acid converted to H2PO4

~
and HPO4 ~\

21. Calculate the /;H of a 0.1 M solution of ammonium lactate at 25C.
Lactic acid, /?Ka 3.86; ammonia, /?K& 4.76.

22. In water solution, amino acids exist mainly as zwitterions, e.g.,

glycine as <NH3CH2COO . For ^NH3CH2COOH - +NH3CH2COO +
H+, PK* 2.35 ; for +NH3CH2COO- - NH 2CH2COQ- + H+, PK*

~
9.78.

Calculate the /?H of a 0.1 M glycine solution.

23. The /;H at which an amphoteric electrolyte yields an equal concen-

tration of positive and negative ions is called the isoelectric point. Show that
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if the activity coefficients of all the ions are taken as unity, this /?H
-=

|(/>Ka + />Kb). Hence estimate the isoelectric point of glycine from the data

in the previous problem.

24. Devise cells in which the cell reactions are the following:

(a) 2 AgBr |
H 2

- 2 Ag -} 2 HBr

(b) H 2 + I 2
- 2 HI

(c) S2 8 \
2 I~ I 2 + 2 S04

(d) 2 Fe+3 + CH3CHO |
H2O - 2 Fe42 f CH 3COOH I 2 H^

(e) Ni f 2 H 2O - Ni(OH)2 + H2

Write down the cells with proper regard for the sign convention. Calculate

the <f for these cells from the standard electrode potentials. Assume any

liquid-junction potentials are eliminated. The solubility of AgBr is 2.10 x

10~G mole per liter.

25. Mercuric nitrate and ferrous nitrate, each in 0.01 molar solution, are

mixed in equal volumes at 25C. From the standard potentials in Table 15.8,

find the equilibrium concentration of ferric ion in the solution. Activity

coefficients may be estimated from the Debye-Huckel Limiting Law.

26. Calculate the values of the oxidation potential ff of the electrode

Pt/Fe+
4

, Fe'++ as a function of the per cent oxidized form. Use concentra-

tions in place of activities. Plot the results.

27. A solution 0.1 molar in lactic acid is mixed with an equal volume of

a 0.1 molar methylene blue solution. Calculate the equilibrium concentration

of lactic acid given the following oxidation potentials at 25 C:

methylene white --
methylene blue 4- 2 H +

I 2e
' V 0.53 v

lactic acid -=
pyruvic acid I 2 H f

f- 2e~ f> =-- 0.20 v

28. The emf 's of the cell H2/HCl (/w)/AgCl/Ag at 25C are as follows

[cf. Harned and Ehlers, J. Am. Chem. Soc., 54, 1350 (1932)]:

<f

0.38568

0.35393

0.35316

0.31774

Calculate <f for the cell by the following method of graphical extrapolation.

We can write - ^ A log aHCl where A = 2.303 RT/&. This becomes

S -| 2A log AW ^ S>' - 2A log y+ . From Debye-Huckel theory, logy f

~BVm. Thus: S + 2A log w -= + 2ABVm. Plot the left side of this

expression vs. Vm and extrapolate to m 0, the intercept giving 6
n

\ (See

Harned's paper for a more precise method of extrapolation.)

29. From the value of obtained above and the measured emf 's, cal-

culate the mean activity coefficients y of HCI at the various concentrations.
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30. The cell, Sn(liq)/SnCl2 in molten KC1 + LiCl/Sn-Sb liquid solution,

was measured at 905K at various mole fractions of tin in the solution with

antimony:

XBn . .0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

*<v). . 0.11984 0.08379 0.05905 0.04545 003705 0.02845 0.01725 0.00992 0.00523

If pure liquid tin is chosen as the standard state, AF = FA F% =--

= RTln aA , where aA is the activity of tin in the electrode solution. Plot ySn
and ysb as functions of TSn .

31. The emf of the cell H2(/>)/0.1 m HCl/HgCl/Hg was studied as a

function of the hydrogen pressure at 25:

P(atm) . . 1.0 37.9 51.6 110.2 286.6 731.8 1035.2

. . 399.0 445.6 449.6 459.6 473.4 489.3 497.5

Calculate the activity coefficients of hydrogen gas (y -=f/P) and plot them

as a function of the pressure over the given range.

32. For the cell H2/HCl/AgCl/Ag, <T --= 0.222 v. If the measured emf is

0.385 v what is the pli of the HCl solution?

33. Copper is being plated onto a platinum electrode from a 0.5 molar

copper sulfate solution, 0.01 molar in H2SO4 . If the hydrogen overvoltage
on copper is 0.23 v, what will be the residual Cu++ concentration in the

solution when H2 evolution begins at cathode?

34. It is desired to separate Cd f+ and Zn H by electrolytic deposition of

the Cd n . The ff for the cadmium electrode is 0.402 v, for the zinc 0.762 v.

The overvoltages are Cd ^ 0.48 v; Zn = 0.70 v. Discuss the feasibility of

the separation in a solution originally 0.1 molar in Zn f+ and Cd4"1
".
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CHAPTER 16

Surface Chemistry

1. Surfaces and colloids. When in Chapter 5 we defined the concept of

phase and discussed the thermodynarnic treatment of phase equilibria, we

were careful to impose a restriction on the validity of the results obtained,

owing to our neglect of any effects that might arise from variation of the

interfacial areas separating different phases. Furthermore, a phase was

defined as a part of a system that was "homogeneous throughout." Such a

definition implies that the matter deep in the interior of a phase is subject

to exactly the same conditions as the matter at the exterior which forms the

surface. This is clearly impossible in any case, since the molecules (or ions)

in the interior are surrounded on all sides by the uniform field of force of

neighbor molecules (or ions) of the same

substance. The molecules at the surface are

bounded on one side by neighbors of the

same kind but on the other side by an entirely

different sort of environment.

Consider, for example, the surface of a

liquid in contact with its vapor, shown in Fig.

16.1. A molecule in the interior of the liquid is

Fig. 16.1. Liquid-vapor
*n a un^ rm field f force. A molecule at the

interface. surface is subject to a net attraction toward

the bulk of the liquid, which is not compen-
sated by an equal attraction from the more highly dispersed vapor molecules.

Thus all liquid surfaces, in the absence of other forces, tend to contract to the

minimum area. For example, freely suspended volumes of liquid assume a

spherical shape, since the sphere has the minimum surface-to-volume ratio.

In order to extend the area of an interface like that in Fig. 16.1, i.e., to

bring molecules from the interior into the surface, work must be done

against the cohesive forces in the liquid. It follows that the surface portions

of the liquid have a higher free energy than the bulk liquid. This extra

surface free energy is more usually described by saying that there is a surface

tension, acting parallel to the surface, which opposes any attempt to extend

the interface. A tension is a negative 'pressure; pressure is a force per unit

area, so that surface pressure is a force per unit length. If the surface tension

is y, the work done by the surface in extending its area by an amount da is

dw =-- -
-y da dF, whence

dF=ydo (16.1)

where dF is the change in free energy.

498
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The units of surface tension are evidently dynes per cm in the COS
system. The problems arising in the measurement and interpretation of the

surface tension will be taken up later in this chapter. The subject was intro-

duced here at the beginning to illustrate the new type of variable that enters

into the description of physicochemical systems as soon as surfaces are

explicitly considered. Since the surface of a liquid does not have the same

free energy as the bulk liquid, it cannot be said to be in the same thermo-

dynamic state or to be part of the same phase.
When will it be necessary to consider these surface effects? First of all

it will obviously be necessary when we wish deliberately to focus our atten-

tion on interfacial phenomena rather than bulk properties. Secondly, there

will be instances when the interfacial phenomena must be taken into con-

sideration in order to study the system at all. This second case will arise

when any considerable fraction of the material in the system exists at or near

interfaces.

The degree of subdivision or particle size of a substance is usually the

decisive factor determining iis surface-to-volume ratio. Extremely porous
materials are apparently exceptional cases, but these materials may often be

treated as loose aggregates of very small particles. For example, suppose we
have a gram of crystalline silica. If for simplicity the crystals, with density p,

are considered to be small cubes, all of side /, their total surface area will be

6/2 _ 6

pP~~pl

With p = 2.30, the following results are obtained for the surface area in cm2

per gram at various particle sizes:

/ (cm) A (cm
2
/g)

JO- 1 26.1

10~3
2,610

10 5
261,000

10~8
2,610,000

10-7
26,100,000

It is evident that the area increases enormously as the particle size de-

creases. The lower end of the scale, with / below about 10 7 cm or 10 A,

corresponds to the dimensions expected for ordinary molecules. From
around 10~ 7 to 10 4 cm there extends the domain of colloids. For particles

of colloidal dimensions surface phenomena play a preeminent role, and

indeed much of colloidal chemistry is essentially surface chemistry. This

entire field is one of extraordinary interest because of its intimate connection

with biochemical and physiological processes. The building blocks of living

matter, protein molecules, are so large that their dimensions fall within the

colloidal realm. From the viewpoint of physical chemistry the living cell is a

complex colloidal system.
The great variety of possible colloidal systems may be recalled by
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reference to Table 16. 1 where they are classified according to the kinds of dis-

persed phase and dispersion medium. We shall be able to discuss only a few

of these systems; a fairly comprehensive treatment would require another

book at least as large as this one.

TABLE 16.1

CLASSIFICATION OF COLLOIDS

Dispersion
Medium

Gas
Gas

Liquid

Liquid

Liquid
Solid

Solid

Dispersed
Phase

Liquid
Solid

Gas

Liquid
Solid

Gas
Solid

Examples

Aerosols: fogs, mists

Aerosols : smokes
Gas emulsions: foams
Emulsions

Suspensions : sols and gels
Solid foams

(e.g., pumice)
Solid sols (e.g., colloidal gold in glass)

2. Pressure difference across curved surfaces. Interfaces between two

liquids and between a liquid and a vapor are most conveniently studied,

because the molecules in fluids are not

rigidly fixed in position. They therefore

tend to adjust themselves to changes at

the interface in such a way as to record

automatically the surface tension. This

possibility does not arise with liquid-solid

or solid-gas interfaces, and measurement

of the interfacial tensions in these cases

is made by indirect methods.

As a direct consequence of the exist-

ence of a surface tension, it can be shown

that across any curved liquid surface there

must exist a difference in pressure, the

pressure being greater on the concave side

than on the convex side.

If a curved surface is displaced parallel

to itself to a new position, its area must

change if its curvature is to remain the

same. Work must be done against the surface tension to effect this change
in area.

In Fig. 16.2 is shown a spherical bubble of gas of radius R at the end of

a fine capillary tube fitted with a piston. Let the equilibrium pressure inside

the bubble be AP. It will be assumed that this pressure is entirely due to the

surface tension, i.e., the effect of the weight of the liquid will be neglected.

Suppose the piston is advanced so as to expand the bubble radius by dR,

thereby increasing its surface area 4irR2 by STT/? dR
9 and its volume faR

9
by

Fig. 16.2. The pressure difference

across a curved interface.
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The work done against the surface tension y dA is equal to the

work done in the expansion at constant pressure (P dV) 9 so that

dR)

and (16.2)

This result applies to liquid-liquid as well as to gas-liquid interfaces. For a

more general curved surface with radii of curvature R
l and R2 it becomes1

A/> = y\-^ (16.3)

3. Capillary rise. The rise or fall of liquids in capillary tubes and its

application to the measurement of surface tension may now be treated as a

direct consequence of the fundamental eq. (16.2). Whether a liquid rises in

*'-*

cos9

Fig. 16.3. Capillary rise.

a glass capillary, like water, or is depressed, like mercury, depends on the

relative magnitude of the forces of cohesion between the liquid molecules

themselves, and the forces of adhesion between the liquid and the walls of

the tube. These forces determine the contact angle 0, which the liquid makes

with the tube walls (Fig. 16.3). If this angle is less than 90, the liquid is

said to wet the surface and a concave meniscus is formed. A contact angle

of 90 corresponds to a plane meniscus; a contact angle greater than 90, to

a convex meniscus.

The occurrence of a concave meniscus leads to a capillary rise. The

pressure under the meniscus is less than that at the plane surface of liquid

outside the tube. Liquid rises in the tube until the weight of the liquid column

balances the pressure difference. The liquid column acts as a manometer to

register the pressure difference across the concave meniscus.

Consider, Fig. 16.3, a cylindrical tube whose radius r is sufficiently small

that the surface of the meniscus can be taken as a section of a sphere with

radius R. Then, since cos = r/R, from eq. (16.2) AP = (ly cos 0)/r. If

the capillary rise is h, and if p and
/3

are the densities of the liquid and

the surrounding fluid, the weight of the cylindrical liquid column is

1 N. K. Adam, Physics and Chemistry of Surfaces (New York: Oxford, 1944, p. 8).
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rrr
2
gh(p

-
PQ), or the force per unit area balancing the pressure difference

is gh(p PQ). Therefore

2ycos<9 1 1-
A,), 7 -

**(P
-

Po) r

In many cases the contact angle is practically zero, and if the surround-

ing fluid is a vapor, its density p is negligible compared to p. These approxi-

mations lead to the frequently used formula:

y ^Ipghr (16.4)

4. Maximum bubble pressure. Blowing bubbles provides a second con-

venient way of measuring surface tensions. Consider a bubble being formed

at the end of a small tube immersed in liquid. As one begins to apply pressure,

the radius of the bubble is comparatively large. As the bubble grows, the

radius at first decreases until it reaches a minimum when the bubble is a

hemisphere with a radius equal to that of the small tube. Any further increase

in pressure will lead to the loss of the bubble, which will expand and free

itself from the tube.

It is clear from eq. (16.2) that the maximum pressure that the bubble can

sustain will be that at the position of minimum radius. The applied pressure

is balanced by the pressure difference across the curved surface plus a hydro-
static pressure depending on the depth h of the tube outlet under the liquid.

Therefore the surface tension is determined from

Anax ^ 7 4 gh(p ~Po) (16.5)

5. The Du Noiiy tensiometer. Frequently used for measurements of surface

or interfacial tension is the tensiometer designed by Lecomte Du Noiiy. A
platinum ring of radius r is attached to a torsion balance, and the force

required to remove the ring from the surface or interface is measured directly.

The surface tension acts over the circumference of the ring and there are

two sides to the new surface that is formed, so that the applied force/
--=

4?rry.

A number of correction factors are necessary for precise work. 2

6. Surface-tension data. Some values for the surface tensions of pure

liquids are collected in Table 16.2. Liquids with exceptionally high surface

tensions, such as water, are those in which the cohesive forces between the

molecules are large, the surface tension being a measure of the work that

must be done to bring a molecule from the interior to the surface. We might

expect liquids with high surface tension to have high internal pressures, and

this relationship is in general confirmed by a comparison of Table 16.2 with

Table 14.2.

The surface tensions of solutions may be given a simple qualitative inter-

pretation. Consider, for example, aqueous solutions. Substances that

2 P. Lecomte Du Nouy, /. Gen. Physiol., 7, 521 (1918); 7, 403 (1925).
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TABLE 16.2

SURFACE TENSION DATA

A. Surface Tensions of Pure Substances at 20C Dynes per Cm

Isopentane
Nickel carbonyl
Diethyl ether .

/i-Hexane

Ethyl mercaptan
Ethyl bromide

13.72

14.6

17.10

18.43

21.82

24.16

Ethyl iodide .

Benzene
Carbon tetrachloride

Methylene iodide .

Carbon bisulfide

Water .

29.9

28.86

26.66

50.76

32.33

72.75

B. Surface Tensions of Liquid Metals and Molten Salts

markedly lower the surface tension of water are those that, like the fatty

acids, contain both a polar hydrophilic group and a nonpolar hydrophobic

group. The hydrophilic group, e.g., COOH in the fatty acids, makes the

molecule reasonably soluble if the nonpolar residue is not too predominant.
One may expect the hydrocarbon residues in the fatty acids to be extremely
uncomfortable3

in the interior of an aqueous solution, and little work is

required to persuade them to come from the interior to the surface. This

qualitative picture leads to the conclusion that solutes lowering the surface

tension of a liquid tend to accumulate preferentially at the surface. They are

said to be positively adsorbed at the interface.

On the other hand, solutes such as ionic salts usually increase the surface

tension of aqueous solutions above the value for pure water, although these

increases are much smaller than the decreases produced by fatty acids and

similar compounds. The reason for the observed increases is that the dis-

solved ions, by virtue of ion-dipole attractions, tend to pull the water mole-

cules into the interior of the solution. Additional work must be done against
the electrostatic forces in order to create new surface. It follows that in such

solutions the surface layers are poorer in solute than is the bulk solution. The

solute is said to be negatively adsorbed at the interface.

After the thermodynamic treatment of surfaces has been discussed, it

will be possible to give these qualitative conclusions a more quantitative

formulation.

3 A way of saying the free energy of the state is high.
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The temperature dependence of the surface tension may often be ade-

quately represented by an empirical equation proposed by Ramsay and

Shields:

y^-j =*'(re -r-6) (16.6)

Here A/ is the molecular weight, p the density, k' a constant, and Tc the

critical temperature of the liquid. Liquids that obey Trouton's rule have

values of k' that cluster closely around 2.1.

An alternative representation of the variation of the surface tension is the

McLeod equation:

y ^ C(p A,)
4

(16.7)

where pQ is the vapor density and C is a constant for each liquid. This

equation is the basis of Sugden's parachor, a quantity defined by

My174

^ - A/C1/4 - (16.8)
P
-

PQ

The parachor is essentially a molecular volume, modified to eliminate some

of the influence of the cohesive forces, which vary from liquid to liquid.

The parachor of a molecule can be estimated by adding terms for each of

its atoms plus terms for the types of bond (double, single, etc.) that are

present.
4

7. The Kelvin equation. One of the most interesting consequences of

surface tension is the fact that the vapor pressure of a liquid is greater when
it is in the form of small droplets than when it has a plane surface. This was

first deduced by Lord Kelvin. If a liquid distills from a plane surface to a

droplet, the droplet must increase in size and therefore in surface area. The

increase requires the expenditure of extra work against the surface tension.

Consider a spherical droplet whose radius grows from r to r + dr. The

increase in surface is from 4-rrr
2 to 4n(r -\- dr)

2
, which amounts to STTT dr.

The corresponding increase in surface free energy is fayr dr. If dn moles of

liquid were distilled from the plane surface whose vapor pressure is P to

the droplet whose vapor pressure is P, the free energy change would be given

by eq. (3.32) as dn RT\nP/PQ . Equating the free energy changes, we have

P
dnRTln- = Snyr dr

M)

But dn = 4rrr2 dr fM

whence \n ~- = ~~
(16.9)

4 For details see: S. Sugden, The Parachor and Valency (London: Geo. Rutledge & Sons,

Ltd., 1929).
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The application of the equation to water droplets is shown in the follow-

ing calculated pressure ratios :

(Water at 20C, /> = 17.5 mm)

r(cm) . . . 10-* 10-6 10-6 1Q-7

P/Po .1.001 1.011 1.114 2.95

An equation similar to that of Kelvin can be derived for the solubility

of small particles. The procedure should be evident from the connection

between vapor pressure and solubility developed in the thermodynamic
treatment of solutions in Chapter 6.

The conclusions of the Kelvin equation have been experimentally verified

in a number of instances. Thus there can be no doubt that very small droplets
of liquid have a considerably higher vapor pressure than bulk liquid, and

that .very small particles of solid have a considerably greater solubility than

the bulk solid. These results lead to the rather curious problem of how new

phases can ever arise from old ones.

If, for example, a container filled with water vapor at slightly below the

saturation pressure is chilled suddenly, perhaps by adiabaiic expansion as

in the Wilson cloud chamber, the vapor may become supersaturated with

respect to liquid water. It is then in a thermodynamically metastable state,

and one may expect condensation to take place immediately. A reasonable

molecular picture of condensation would seem to be that two or three

molecules of water vapor come together to form a tiny droplet, and that

this nucleus of condensation then grows by accretion as additional vapor
molecules happen to hit it. Now, however, the Kelvin equation indubitably

indicates that a tiny droplet like this nucleus, being only a few Angstroms
in diameter, would have a vapor pressure many times that of bulk liquid.

As far as tiny nuclei are concerned, the vapor would not be supersaturated

at all. Such nuclei should immediately "re-evaporate." This argument, as

far as its premises represent reality, would seem to prove that the emergence
of a new phase at the expected equilibrium pressure, or even moderately
above it, is always a thermodynamic impossibility.

There are two ways of resolving this paradox. In the first place, we know
that the Second Law of Thermodynamics is statistical by nature. In any

system at equilibrium there are always fluctuations around the equilibrium

condition, and if the system contains few molecules, these fluctuations may
be relatively large (cf. page 197). For example, the density of a gas is not

perfectly uniform throughout its container; in sufficiently small regions the

percentage deviation from the average number of molecules may often be

considerable. Similarly, there is always a chance that an appropriate fluctua-

tion will lead to the formation of a nucleus of a new phase, even though the

tiny nucleus could be called thermodynamically unstable.' The chance of

such a fluctuation we know indeed to be e~~^lk where AS is the deviation of

the entropy from the equilibrium value.
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It is unlikely, however, that new phases often arise by this fluctuation

mechanism and the resultant spontaneous nucleation. Calculations show that

the chance e~~*sik is usually much too small. It is more likely that tiny solid

particles, e.g., dust particles, act as nuclei for further condensation or for

crystallization in supersaturated vapors or solutions. Actually, super-
saturated vapors seem to be much less finicky than supersaturated solutions

about the sort of nuclei that are required. This is because a liquid will con-

dense on almost any surface, but crystallization requires the presence of

crystal faces of the proper kind. We are perhaps all familiar with the legend-

ary organic chemist who prepared a compound for the first time, and was
unable to bring it to crystallization. A call to a friend brought some seed

crystals, and no sooner was the envelope opened than the solution at the

other end of the laboratory began to crystallize. Thereafter no difficulty was
ever experienced in crystallizing that particular compound: the seeds were in

the air.

The phenomena in the change liquid ^- vapor are similar. We have all

been troubled with the bumping of liquids and have learned to use boiling

chips. It has been shown by E. N. Harvey that water carefully freed from
all dissolved gases can be heated to 200C before ebullition takes place, with
almost explosive violence. 5

8. Thermodynamics of surfaces. In Fig. 16.4 are represented two phases,
a and

ft, separated by an interfacial region. The exact position of this region

depends on how we choose to draw the

A A
1

boundary planes AA' and BB'. It seems

S <r S* reasonable to place these planes so that

B B' the following condition is satisfied: there
P is no appreciable inhomogeneity in the

Fig. 16.4. Definition of surface properties of the bulk phase a up to the

phase. surface AA', nor in those of phase /? up
to the surface BB'. Within the interfacial

region the properties of the system vary continuously from purely a- at

AA' to purely /?- at BB'. Because of the short range of intermodular

forces, the interfacial region will usually be not more than a few molecular

diameters in thickness. 6

Any surface SS' drawn within the interfacial region parallel to the sur-

faces A A' and BB' is called a surface phase, and is designated by a symbol a.

A surface phase defined in this way has an area but no thickness. It is a

strictly two-dimensional phase. Its area will be denoted by Aa
.

The composition of the surface phase will be described in terms of

quantities n. We define n as the number of moles of component / in the
6 E. N. Harvey et a/., J. Am. Chem. Soc., 67, 156 (1945).
6

It should be noted, however, that the attractive forces exerted by an extended surface
have a much longer range than those from an isolated molecule. The latter depend on r~\
and the former fall off as /-*. For an extensive survey of the depth of the surface zone see
J. C. Henniker, Rev. Mod. Phys. 21, 322 (1949).



Sec. 9] SURFACE CHEMISTRY 507

surface film region, between AA' and BB', minus the number of moles of /

that would be within this region if the phases a and ft both extended all the

way to the surface SS' with unchanged bulk properties. It is evident accord-

ing to this definition that n? may be either positive or negative. Now the

surface concentration c, in moles per square centimeter, is defined by

<V = ^ (16.10)

Other thermodynamic functions, such as surface energy
a

, surface

entropy 5, surface free energy F 9 can be defined by exactly the same method

used for the n. They are the differences between the energy, entropy, or free

energy of the actual interfaciai region and the values calculated on the

assumption that the phases remain uniform up to the dividing surface.

It .is always possible to place the dividing surface SS' so that for one

particular component (O) the surface concentration, cQ
a

is zero; i.e., the

number of moles of component (O) in the interfaciai film between A A' and

BB' is exactly what it would be if the bulk phases a and ft both remained

homogeneous right up to the dividing surface SS'. When the position of the

interface is chosen in this way, the surface concentrations c of the other

components are said to be the concentrations adsorbed at the interface. This

adsorption can be either positive or negative. In the examples previously

considered, solutes dissolved in water, it was found that fatty acids were

positively adsorbed at the solution-vapor interface, whereas ionic salts

tended to be negatively adsorbed. Now that this concept of adsorption has

been given a precise definition, it is possible to derive a thermodynamic
relation between the extent of adsorption and the change in the surface

tension of the solution. This relation is the famous Gibbs adsorption isotherm.

Its derivation proceeds very similarly to that of the Gibbs-Duhem equation
discussed on page 117.

9. The Gibbs adsorption isotherm. We shall consider a system that, for

simplicity, consists of two components distributed in two bulk phases with

a surface phase a. Then, in addition to the ordinary state variables describing

the bulk phases, new state variables must be introduced to define the state

of the surface phase. Our consideration will be restricted to a system at

constant temperature and pressure and constant composition of the bulk

phases. For the bulk phases alone the differential of the free energy function

would be, from eq. (4.27), dF =------- S* dT - S** dT + Fa dP f Vft dP +
a t dnf + /^i dn-f + jn2 dn + A/2 dn2

ft
. This entire expression vanishes at

constant temperature, pressure, and composition.
When the surface phase is considered we must add the following terms:

dFa = ~Sa dT+y dA a
f- ^ dnf f /i2 dn

At constant temperature this differential of the surface free energy becomes

dFa - y dA + p l dn{ + fi2 dn2
a

(16.1 1)
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Integrating this expression while holding the intensity factors constant

(or using Euler's theorem), we obtain

F = yA + wf + //2<
The complete differential is therefore

dFa - y dA |- Aa
dy ~\- ^ dnf + nf d^ + //2 dn2 + < dfa

Comparison with eq. (16.1 1) yields

A* dy = n d^ n2
a du2

Division by A
a
gives

dy = -cf dfr
-
cf <//<a (16.12)

Let us now choose the dividing surface so that the excess of one com-

ponent (1), which may be called the solvent, vanishes. Then

dy ------ -Ta <//i 2 (16.13)

where F2 is the concentration of component (2) adsorbed at the interface.

Equation (16.13) may be written [from eq. (6.32)]

dy = -RTP2 dlna2 (16.14)

For an ideal solution, a2
~= X2 , the mole fraction, so that

rfy
=- -RTT2 d\n X2

For a dilute solution, X2 becomes proportional to c2 , the molar concentra-

tion, and

1 dv
(16.16)

These equations are various forms of the Gibbs adsorption isotherm.

The isotherm has been experimentally verified by the ingenious experiments
of J. W. McBain at Stanford University. He employed an adaptation of a

swiftly moving microtome to slice off the top layer (around 0.05 mm) from

a solution and scoop it into a sample tube. The composition of this layer

could then be taken to determine F2, and this experimental F2 could be

compared with that calculated, via the Gibbs isotherm, from the variation

of the surface tension with the concentration of the bulk solution.

The isotherm may also be verified indirectly in a quite remarkable way
which will be revealed in a following section, after another technique for

studying surface films has been described.

10. Insoluble surface films the surface balance. As a result of the pioneer
work of Fraulein Pockels (1891) and Lord Rayleigh (1899) it was discovered

that in some cases sparingly soluble substances would spread over the

surface of liquids to form a film exactly one molecule thick. These uni-

molecular films may be regarded as essentially two-dimensional states of
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matter. Experimentally it was first observed that the lowering of the surface

tension of water by certain oil films was very slight until a critical amount

of oil had spread upon the water surface, whereupon the surface tension fell

sharply to a value characteristic of the oil. Rayleigh suggested that the

molecules of oil floated freely at the water surface, and as long as any water

remained uncovered the surface tension was merely that of pure water.

When enough oil was added to form a layer exactly one molecule thick the

surface tension decreased abruptly. Pockels observed that such surface films

could be made visible by lightly dusting the water surface with talcum

powder. The spreading oil film would push the powder particles away, the

area of the unpowdered portion providing a measure of the surface covered

by the film. She also introduced the

valuable technique of cleaning the water

surface by sweeping it with a barrier

which pushed any surface contamination

to the end of the tray.

In 1917, Irving Langmuir devised a

method for measuring directly the surface

pressure exerted by a film. The essential

features of the instrument used, the film Fig. 16.5. The surface balance,

balance, are shown in Fig. 16.5. The

so-called fixed barrier B, which may be a strip of mica, floats on the surface

of the water and is suspended from a torsion wire W. At the ends of the

floating barrier are attached strips of platinum foil or greased threads, which

lie upon the water surface and connect the ends of the barrier to the sides

of the trough. These threads prevent leakage of surface film past the float.

A movable barrier A rests upon the sides of the trough and is in contact

with the water surface. A number of the movable barriers are provided for

sweeping the surface clean by the Pockels method.

In a typical experiment, a tiny amount of the insoluble spreading sub-

stance is introduced onto the clean water surface. For example, a dilute

solution of stearic acid in benzene might be used; the benzene evaporates

rapidly, leaving a film of stearic acid. Now the moving barrier is advanced

toward the floating barrier. As the surface film is compressed it exerts a

surface pressure on the float, pushing it backward. The torsion wire, attached

to a calibrated circular scale, is twisted until the float is returned to its

original position. The required force divided by the length of the float is the

force per unit length or surface pressure.

This surface pressure is simply another way of expressing the lowering
of the surface tension caused by the surface film. On one side of the float

is a clean water surface with tension y , and on the other side a water surface

covered to a certain extent with stearic acid molecules, with lowered surface

tension y. The surface pressure / is simply the negative of the change in

surface tension, y y . Thus,/ Ay = yQ y.
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Langmuir was the first to study the surface-pressure vs. surface-area

(f-A) relationships for films of the normal long-chain fatty acids, CH3
-

(CH2 ),t
COOH. A typical/-/f isotherm for stearic acid is shown in Fig. 16.6.

The surface pressure in dynes per cm is plotted against the available area

per molecule of stearic acid, in square Angstroms. This isotherm is a two-

dimensional analogue of a three-dimensional P vs. V isotherm. At large

areas the pressure is small and it increases very slowly with decreasing area

until a value of about 20.5 A2
per molecule is reached. Then the pressure

begins to increase rapidly on further compression of the film.

14 16 18 20 22 24 26 28 3O 32 34 36 38

A -SQ. A/MOLECULE

Fig. 16.6. f-A isotherm at 20C. Stearic acid on distilled water.

It is reasonable to believe that the long chains of stearic acid are highly

oriented at the water surface, with their water-loving carboxyl groups buried

in the water and their water-hating hydrocarbon chains waving around

above the surface. The critical area then corresponds to a tightly packed
unimolecular film or monolayer, with the stearic acid molecules completely

covering the surface. Any further decrease in area can be achieved only by

compressing the closely packed film, and as is observed, this requires a

considerable surface pressure (just as in the three-dimensional case com-

pression of a solid or liquid is much more difficult than compression of a

gas).

The critical area of 20.5 A2
may therefore be taken as approximately

equal to the cross-sectional area of the hydrocarbon chain. The molecular

volume of solid stearic acid is MjNp = 556 A3
. The length of the molecule

is therefore 556/20.5 = 27. 1 A, or about 1.50 A per CH2 group. This estimate

agrees well with the value obtained from X-ray diffraction. The simplicity

of the Langmuir method of estimating molecular dimensions is remarkable,

and it has had important applications in the study of complex organic

compounds such as proteins and sterols.
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11. Equations of state of monolayers. The detailed study of various sub-

stances in unimolecular films has revealed a great variety in the observed

f-A isotherms. Sometimes the films appear to behave like two-dimensional

gases, sometimes like two-dimensional liquids or solids. In addition, there

are other types of monolayer that seem to have no exact analogues in the

three-dimensional world. They can be recognized, however, at definite

surface phases by the discontinuities in the f-A diagram which signal their

occurrence.

In Fig. 16.7 are a series off-A isotherms obtained for a number of the

fatty acids CnH2nflCOOH at 25C. These curves resemble the P-V isotherms

Fig. 16.7. f-A isotherms at low pressures.

for a gas in the neighborhood of the critical temperature. There is a section

at low pressures corresponding to the high compressibility of a gas. Then

there is an intermediate region where a very small increase in pressure pro-

duces a large decrease in volume (the isotherm here does not seem to be

absolutely flat and the analogy with the two-phase region in the P-V isotherm

is imperfect). Finally there is a rapid rise in the/-/4 curve corresponding to

the compression of a condensed phase. With decreasing molecular weight
the quasi-two-phase region becomes less evident, and finally the isotherm

appears to be gaseous throughout as in the dotted curve.

If a surface film behaves as an ideal two-dimensional gas, corresponding
to the three-dimensional PV RT

9
we should have 7

fA = kT (16.17)

The area A is usually expressed in A2
per molecule, and/ in dynes per cm.

The units of A: are then (ergs x 10~16
) per C. For example at 300K,/4 =

1.37 x 10-16 x 10+16 x 300 - 411.

Condensed films often follow an equation of State of the form

f=b-aA (16.18)

7 This can be proved by working through the derivation on p. 164 for a two-dimensional

case. We find fA = NmC* = EK and Ef = RT.



512 SURFACE CHEMISTRY [Chap. 16

where a and b are constants. This equation indicates that the area decreases

linearly with increasing surface pressure, i.e., the compressibility of the film

is a constant.

Films of the various "liquid" types obey other more complicated equa-
tions of state. It is apparent that the ordinary three-dimensional states of

aggregation have many counterparts in the two-dimensional world of

monolayers.
12. Surface films of soluble substances. As the chain length in the fatty-

acid series decreases, the acids become more soluble in water. Finally the

solubility becomes so considerable that there is a gradual transition from

the formation of practically insoluble surface films to the formation of

dilute solutions of the acids in water. The surface tension of pure water is

markedly lower by solution of these acids, and accordingly the solute acid

is strongly adsorbed at the surface of the solution. This is the situation

treated by the Gibbs adsorption isotherm.

As one travels down the homologous series of fatty acids, there is clearly

no change in the essential physical situation. There is in each case a lowering
of the surface tension, y y, which may be equated to an equivalent

surface pressure/. If the surface film is soluble, however, it is not possible

to apply the film-balance technique, because the fatty-acid molecules can

then bypass the barrier by ducking under it through the solvent.

Experimental measurements by Traube showed that in sufficiently dilute

solutions the lowering of the surface tension becomes a linear function of

the solute concentration. Thus we may write, with B a constant,

From the Gibbs adsorption isotherm,

r = A dy
2

~~

RT' dc,

It follows that T
2

=--^ = J-
Kl Kl

Since the area per molecule A is simply 1/AT2 , this expression becomes

fA - kT. This is exactly the same equation as that obtained with the surface

balance for an insoluble unimolecular film of the gaseous type. Surface films

formed by spreading insoluble substances and those formed by the positive

adsorption of solutes at the surface of a solution are basically alike.

13. Adsorption of gases on solids. We turn our attention next to what at

first seems like a distinctly different variety of surface phenomenon. This is

the adsorption onto the surface of a solid either of vapor or of components
from a liquid solution. The experimental methods used for studying these

adsorptions are so different from those employed in surface-tension measure-

ments that the fundamental similarity of the phenomena was obscured for

a long time. The adsorption of vapors on solids will be considered first.
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Two experimental arrangements for measuring vapor adsorption are

illustrated in Fig. 16.8. One is an adsorption balance designed by McBain
and Bakr. The adsorbent (substance on which the adsorption takes place) is

contained in a light platinum bucket suspended by a spiral of quartz fiber.

The adsorbate (substance that is adsorbed) is at the bottom of the glass tube

enclosing the spiral and bucket. The spiral has been calibrated by hanging

weights on it, so that any measured elongation, observed with a traveling

(a) (b)

Fig. 16.8. Experimental gas adsorption methods: (a) Gravimetric

McBain balance, (b) Volumetric.

microscope, corresponds to a known weight. The adsorbate is kept frozen

while the tube is evacuated and sealed off. Then it is warmed by a carefully

regulated oven surrounding the lower portion of the tube. The temperature
of this oven controls the vapor pressure of the adsorbate. The temperature of

the adsorbent is controlled by another oven encasing the upper part of the

tube. The amount of gas adsorbed is then measured directly by the gain in

weight of the adsorbent. The measurements are extended over a range of

adsorbent pressures to obtain the adsorption isotherm.

A second experimental arrangement is used in the volumetric method.

The adsorbate vapor is contained in a calibrated gas buret (B), and its

pressure is measured with the manometer (A/).. The adsorbent is contained

in a thermostated sample tube (T), separated from the adsorbate by a stop-

cock or cutoff. All the volumes in the apparatus- are calibrated. When vapor
is admitted to the adsorbent sample, the amount adsorbed can be calculated

from the pressure reading after equilibrium is attained. A series of measure-

ments at different pressures determines the adsorption isotherm.
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Two typical isotherms are shown in Fig. 16.9. Instead of the pressure,

the relative pressure P/PQ is used as a coordinate, where P is the vapor

pressure of the liquid adsorbate at the temperature of the isotherm. These

isotherms illustrate the two distinct kinds of adsorption behavior that are

usually distinguished. The case of nitrogen on silica gel at 196C is an

example of physical adsorption. The case of oxygen on charcoal at 100C is

a typical chemisorption. There are, as usual, instances in which it is hard to

280-

.2 .4 .6 .8 1.0

RELATIVE PRESSURE - P/Po

Fig. 16.9. Adsorption isotherms.

assign the adsorption definitely to one of these types, but in most cases the

decision is not difficult.

Physical adsorption is due to the operation of forces between the solid

surface and the adsorbate molecules that are similar to the van der Waals

forces between molecules. These forces are undirected and relatively non-

specific. They ultimately lead to the condensation of a vapor into a liquid,

when P becomes equal to P . The energies of adsorption involved are of the

order of a few hundred to a few thousand calories per mole. There will

usually be little physical adsorption until the relative pressure P/P reaches

an appreciable value (around 0.05). The adsorption increases rapidly at high

P/PQ, finally leading to condensation on the surfaces. Even before condensa-

tion occurs, for example at relative pressures around 0.8, there may be

several superimposed layers of adsorbate on the surface. Physical adsorption
is generally quite readily reversible, i.e., on decreasing the pressure the

adsorbed gas is desorbed along the same isotherm curve. An exception to
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this rule is observed when the adsorbent contains many fine pores or

capillaries.
8

In contrast with physical adsorption, chemisorption is the result of much

stronger binding forces, comparable with those leading to the formation of

chemical compounds. The adsorption may be regarded as the formation of

a sort of surface compound. The energies of adsorption range from about

104 to 105 calories per mole. Chemisorption is seldom reversible. Generally
the solid must be heated to a higher temperature and pumped at a high

vacuum to remove chemisorbed gas. Sometimes the gas that is desorbed is

not the same as that adsorbed; for example, after oxygen is adsorbed on

charcoal at 10CTC, heating and pumping will cause the desorption of carbon

monoxide. On the other hand, hydrogen chemisorbed on nickel, presumably
with the formation of surface Ni H bonds, can be recovered as H 2 . Chemi-

sorption is completed when a surface is covered by an adsorbed monolayer,
but there is good evidence that physical adsorption may lead to adsorbed

layers several molecules thick. Sometimes a physically adsorbed layer may
form on top of an underlying chemisorbed layer.

There are cases known in which the same system exemplifies physi-

sorption at one temperature and chemisorption at some higher temperature.
Thus nitrogen is physisorbed on iron at 190C and chemisorbed with

the formation of surface iron nitride at 500C. Chemisorption is of par-

ticular importance in contact catalysis, and this field will be discussed

in the next chapter as an important aspect of chemical kinetics. Most

of the following discussion will be applicable to both physical and chemical

adsorption.

14. The Langmuir adsorption isotherm. The first fundamental theory of

the adsorption of gases on solids was proposed by Langmuir in 1916. He
assumed that the adsorbed molecules could cover a surface until a complete
unimolecular layer was formed, after which there was no further adsorption.
The Langmuir isotherm may be most easily derived from a kinetic discussion

of the condensation and evaporation of gas molecules at the surface. Let

be the fraction of the surface area that is covered by adsorbed molecules at

any time. Then the rate of evaporation of molecules from the surface is pro-

portional to 0, or equal to kfl, where k
v

is a constant at constant tempera-
ture. This assumption implies that there are no lateral interactions between

adsorbed molecules, so that a molecule can evaporate from a well covered

surface just as readily as from an almost bare one. The rate of condensation

of molecules on the surface is proportional to the area that is not already

covered, 1 0; and to the rate at which molecules strike the surface, which

for a given temperature varies directly as the gas pressure. The condensation
8 Just as the vapor pressure of liquids with convex surface (e.g., droplets) is greater than

that for plane surfaces, so the vapor pressure of liquids with concave surfaces is less. The

change is given by the Kelvin equation. Therefore condensation in capillaries is facilitated,

whereas evaporation from capillaries is retarded. When capillary condensation occurs, the

adsorption isotherm exhibits hysteresis on desorption.
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-= --

k, + k2P
(16.19)

rate is therefore set equal to k2P(l 6). At equilibrium, the rate of con-

densation equals the rate of evaporation, so that k v
Q == k2P(\ 0), or

JL
T>

where a

The Langmuir isotherm is shown in the graph in Fig. 16.10. Among the

experimental isotherms that appear to be of this type are oxygen on tungsten
and nitrogen on mica.

Two limiting cases of the Langmuir isotherm are often of special interest.

When the surface is practically bare, e.g., at low pressures, the term k2P is

I0
small compared to kl9 and eq. (16.19)

reduces to

.8

.6

.2

Fig. 16.10.

is the flat region

practically unity,

~P (16.20)

This linear dependence of surface covered

on the pressure is evident in the low-

pressure region of the isotherm curve.

At high pressures, or with particularly

strong adsorption at lower pressures,

the surface is virtually saturated and

increasing the pressure has little effect

on the amount of gas adsorbed. This

of the isotherm. From eq. (16.19) when becomes

-P
Langmuir isotherm.

.

The uncovered surface is inversely proportional to the pressure.

In many instances the experimental isotherms cannot be fitted to a

Langmuir-type expression. There is no leveling off in the amount of adsorp-
tion at high pressures; instead the typical S-shaped isotherm of Fig. 16.9 is

obtained. Such curves are especially characteristic of physical adsorption.
The Langmuir isotherm fits most cases of chemisorption.

15. Thermodynamics of the adsorption isotherm. A thermodynamic theory
of the adsorption isotherm has been developed by G. Jura and W. D.

Harkins. 9
It is based on the recognition of the important fact that adsorbed

films on solid surfaces
(e.g., solid-vapor interfaces) are not essentially

different from the films at liquid-vapor interfaces treated by the Gibbs

equation (16.14).

When we are dealing with the adsorption of a gas at a solid surface,

instead of the activity a of a component in the solution, we can substitute

the fugacity of the gas, or as a good approximation simply the pressure. If

9
J. Am. Chem. Soc., 68, 1941 (1946).
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v is the volume of gas adsorbed per gram of solid, and s is the area of the

solid in cm2
per g (specific area), then v/s is the volume of gas per cm

2 of

solid. If V is the molar volume of the gas, v/sV\s the number of moles of gas
adsorbed per cm

2 of solid surface. But this is exactly T2 , so eq. (16.14) may
be written, since the differential of surface pressure df

=
dy,

RTv
df ^ ^-dlnP (16.22)

Now if the two-dimensional equation of state (f-A isotherm) of the

adsorbed monolayer is known, it is possible to integrate eq. (16.22) to cal-

culate the ordinary v-P adsorption isotherm for the vapor. Conversely one

can use the observed isotherms to determine the two-dimensional equations
of state. This treatment brings the adsorption of vapors on solids and the

surface tension lowering by films on liquids together into a single com-

prehensive theory. We shall take as an example the case in which the ad-

sorbed film is of the condensed type, following eq. (16.18).

Since A (sVjNv), where N is the Avogadro Number, we have from

eq. (16.18)

df= -adA
/vr~

Substituting this in eq. (16.22), we find

C-4- = d\i\P (16.23)
lr

where the constant C = (aW/2NRT). Integration of eq. (16.23) yields

B -4- InP (16.24)
r-

Here B is an integration constant.

If the adsorption data are plotted as 1/r
2 vs In P, it is found that in many

cases linear graphs are obtained. These straight lines indicate that over a

considerable pressure range the adsorbed films are of the condensed type.
10 In

other cases, different two-dimensional equations of state lead to correspond-

ingly different v-P isotherms. Sometimes phase changes are observed in the

adsorption isotherms, the occurrence of which leads to definite breaks and

discontinuities in the/-/4 curves.

16. Adsorption from solution. The adsorption of components from solu-

tion onto the surfaces of solid adsorbents, although it has not yet received

any satisfactory theoretical treatment, is a phenomenon of great practical

importance. Every organic chemist is acquainted with the use of activated

charcoal as a decolorizing agent; this material has an extremely high surface

area, ranging up to 200 meter2
per gram. Adsorbents such as diatomaceous

10 The constant C, the negative of the slope of the linear plot, has been shown by
Harkins to be simply related to the surface area of the adsorbent s. Thus s == kiVC where

&! is a constant for each adsorbate at constant temperature.
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earth and kieselguhr are used in refining vegetable oils. Chromatographic

adsorption analysis has become one of the most important methods of

separating natural products such as amino acids, peptides, and plant pig-

ments. 11
Many of the biochemical reactions catalyzed by enzymes probably

occur by virtue of an adsorption from solution onto the enzyme surface.

Adsorption from solution dpes not in general appear to lead to layers

more than one molecule thick. For many cases the experimental data can

be fairly well represented by an empirical isotherm proposed by Freundlich

in 1909:

- - V1/n
(16.25)m

i

*

Here x and m are the masses of substance adsorbed anjd (>f adsorbent respec-

lively; c is the concentration of the solution v/hen equilibrium is-Teached;

and n is an empirical constant usually greater than unity. This equation

implies that if log x/m is plotted against log c, a straight line will be obtained

with slope I///:

v 1

log-- log A! 4--logc (16.26)m n

The Freundlich isotherm is somewhat related to the Langmuir isotherm,

eq. (16.19). When the surface is almost covered, the Langmuir isotherm

reduces to x/m A^c =
A^; when the\urface is/almost bare, to x/m = kvc

l
.

In an intermediate region, it is reasonable to pxpect that the isotherm could

be approximated by raising the concentratio^ to some fractional power, i.e.,

byeq. (16.25).

17. Ion exchange.
12

Adsorption of electrolytes from solution often occurs

as a specific reaction between ions in th^ solution and localized sites on the

adsorbent. The reaction involved is/ essentially a reversible double de-

composition, in which one of the reactants is free to move throughout the

solution and the oth6r is held fixed to the solid surface. For example,

Na+ + +H 5 = H+ + Na+ S

where 5 denotes the solid surface.

An early example of such a reaction was noted by Aristotle (c. 335 B.C.)

when he asked: "Why is it that waters near the sea are usually fresh and not

salty? Is it because water that has been allowed to filter through sand

becomes more drinkable?" Certain sands and zeolites have long been used

as water conditioners, exchanging, for example, calcium ions in the water

for sodium ions on their surfaces.

The present wide extension of ion-exchange processes is due to the

development of synthetic resins with a variety of useful special properties.
A typical example may be described. Styrene, C6H5-CH=CH 2 , is polymerized

11 See Strain, Chromatographic Adsorption Analysis (New York: Interscience, 1942).
12 G. E. Boyd, Ann. Rev. Phys. Chem., 2, 309 (1951).
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with about 10 per cent divinylbenzene to yield a polymer of cross-linked

linear chains. This polymer is sulfonated with sulfuric acid or chlorosulfonic

acid to introduce into the structure about one SO3H group per benzene

residue. The resulting resin behaves as a solid strong acid. This material is

a good cation exchanger. An anion exchanger can be made by introducing
CH2NR :i

OH groups into the original polymer. In general, the cations

with the highest charge and smallest ionic size are most tightly held by the

resin. It is most likely that other common adsorbents, such as charcoal or

kieselguhr, also owe their effectiveness to an ion-exchange mechanism.

Ion-exchange resins have been applied in chromatographic analysis. A
column of adsorbent is percolated with the solution to be separated, and

then a suitable solvent is passed through the column. The adsorbed solutes

may then occur in distinct bands along the absorption column. One of the

most striking successes of this method has been the separation of rare earth

cations of both the lanthanide and actinide series.
13

18. Electrical phenomena at interfaces. Across any interface separating

two phases there is in general a difference in electric potential, since the

electrical environment of a test charge changes as it is carried from one-

phase to the other. We have already had occasion to mention this fact in

the previous chapter, in the discussion of electrode and liquid-junction

potentials.
14

The potential difference across an interface, since electricity is atomic in

nature, may conveniently be pictured as an electrical double layer. One phase

acquires a net negative charge (excess of electrons), and the other acquires

a net positive charge (deficiency of electrons). The first quantitative discussion

of this double layer was given in 1879 by Helmholtz, who considered the

case of a solid immersed in a solution. He suggested the picture shown in

(a), Fig. 16.11, a layer of ions at the solid surface and a rigidly held layer

of oppositely charged ions in the solution. The electric potential correspond-

ing to such a charge distribution is also shown. Such double layers are sup-

posed to exist not only at plane surfaces, but also surrounding solid particles

suspended in a liquid medium.

The Helmholtz double layer is equivalent to a simple parallel-plate

capacitor. If / is the distance separating the oppositely charged plates and

e the dielectric constant of the medium, the capacitance of such a capacitor

per square centimeter of interface is e/4rr/. If q is the surface charge density

(e.g., coulombs per cm
2
) the potential difference At/ across a double layer is

(16.27)
e

13 F. H. Spedding, Disc. Faraday Soc., 7, 214 (1949); B. H. Ketelle and G. E. Boyd,
J. Am. Chem. Soc., 72, 1862 (1951).

14
Although the interfacial potential differences are not experimentally measurable, they

have been widely used in theoretical discussions, some examples of which are given in the

remainder of this chapter.
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The Helmholtz model of the double layer is clearly inadequate, since

the thermal motions of the liquid molecules could scarcely permit such a

rigid array of charges at the interface. 15 Much more reasonable, therefore,

is the diffuse double layer proposed by Stern in 1924. This is shown in (b),

Fig. 16.11. The charge on the solid is rigidly fixed. Adsorbed on top of this

there may be a practically immobile layer of oppositely charged molecules

of the liquid. Further in the solution there is a diffuse layer of charge, which
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+
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Fig. 16.11. Models for electrical double layers and potential fall in layers.

may have a sign either the same as or opposite from that of the adsorbed

layer. Only this diffuse region is free to move, for example under the influence

of an applied potential difference. The potential drop in the diffuse layer
is called the zeta potential.

19. Electrokinetic phenomena. Four interesting effects, all ascribable to

the existence of a diffuse mobile double layer at phase interfaces, are grouped
under the name of electrokinetic phenomena.

First, there is electroosmosis, the motion of liquid through a membrane
under the influence of an applied electric field. For simplicity a single

capillary tube may be considered; typical membranes may be thought of as

bundles of such capillaries connected in diverse ways. At the walls of the

tube there is a double layer, with zeta potential . If the strength of the

applied electric field is J?, the force acting on a charge q is Eq.
16 See page 461 and the discussion of the Debye-Hiickel ionic atmosphere.
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The treatment of viscosity on page 173 may be consulted for the com-

parable case in which the force is a mechanical one, i.e., a pressure difference

between the ends of the tube. Just as in that case, the force tending to move
the liquid is opposed by a frictional resistance equal to yv/l where rj is the

viscosity and v/l the velocity gradient. For steady flow, from eq. (16.27),

r\v\l
= Eq = Ee/47rl, and

(16.28)

This gives the linear velocity of flow in terms of the potential and

readily obtainable experimental quantities. The volume rate of flow is

obtained by multiplying by the cross-sectional area of the capillary tube. It

should be noted that for the potential the simple formula for the potential

drop in a Helmholtz double layer was used. This is actually a permissible

approximation, because if we used a diffuse double layer and integrated

over each differential section of its thickness, we should find the potential

proportional to / and the velocity gradient proportional to I//, so that the

thickness of the double layer would drop out of the calculation in any
event. 16

The converse of electroosmosis is the streaming potential. This is the

potential difference that arises across a capillary tube or membrane when a

stream of liquid is forced through it. The diffuse double layer is swept along

by the fluid flow, so that opposite charges are built up at opposite ends of

the tube.

Electroosmosis and streaming potential are observed when we are dealing
with a fixed solid surface, like the wall of a tube. If the solid surface is that

of a colloidal particle, which is itself free to move through the solution, the

electrokinetic effects, though arising from the same cause, the existence of a

double layer at the interface, appear in a somewhat different guise.

Electrophoresis is the name given to the migration of charged particles in

an electric field. It is in fact not really different from the migration of ions,

and the particles may be regarded as colloidal electrolytes. Electrophoresis

has been of the greatest importance in the study of solutions of proteins.

The experimental techniques have been intensively developed by Arne

Tiselius and his coworkers at Uppsala, using an apparatus similar to the

transport-number cell shown on page 444. Many proteins, as obtained from

natural sources such as blood plasma or serum, are really mixtures of several

distinct chemical individuals. The behavior of such preparations during

electrophoresis provides one of the best ways of separating homogeneous

components that can be characterized as pure proteins. The separation de-

pends on the charge carried by the protein molecules, and not on their size.

The protein solution is introduced into one arm of the cell and in the

18 For cylindrical tubes it is not quite correct to use the formula for a parallel-plate

capacitor, and the constant 4n is therefore not quite correct.
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other arm is placed an appropriate buffer solution. As a current is passed,

the more highly charged proteins migrate faster than the less charged pro-

teins, so that finally the solution is separated into a sequence of well defined

bands. Since the solutions are transparent, the bands are recorded by an

interferometric technique, which gives an extremely sensitive indication of

changes in the refractive index..17

The fundamental equation governing electrophoresis may be taken to

be the same as eq. (16.28), r = V/47r//. Now v is the speed of migration of

the colloidal particles, at whose surface there is a double-layer potential .

In the case of protein molecules, it is likely that the double layer arises from

the ionization of side-chain amino-acid groups ( COOH, NH 2 , etc.). Thus

the picture is exactly like that used in the Debye-Hiickel theory of an ion

with its surrounding "atmosphere." The thickness of the double layer cor-

responds to the thickness of the ionic atmosphere. In other cases, the double

layer may be due to adsorption of ions from the solution onto the surface

of the colloidal particle. The origin of the charge, however, has little influence

on the final effect.

The quartet of electrokinetic phenomena is completed by the Dorn effect.

This bears the same relation to electrophoresis as streaming potential bears

to electroosmosis. It is the potential difference that is set up in a solution

when particles are allowed to fall through it.

All of these electrokinetic effects have been interpreted in terms of the

zeta potential in an electrical double layer. Unfortunately we have no means

of measuring the zeta potential apart from the equations describing the

electrokinetic phenomena. Thus the theory seems to lead us around a circle.

The circle is not an entirely vicious one, however, because the zeta potentials

calculated from measurements of different effects are often quite con-

cordant, and this fact tends to substantiate the underlying model. The

calculated potentials range from one or two to 40 to 50 millivolts.

20. The stability of sols. Suspensions in a liquid medium of particles in

the colloidal size range are called sols. Two kinds of sols are usually dis-

tinguished. Lyophobic, or solvent-hating, sols are those in which there is

little solvation of the colloidal particles. Typical examples are the sols pro-
duced by arcing electrodes of platinum, gold, and other metals under water,

the ferric oxide sol produced by adding a base to a solution of ferric ions,

colloidal sulfur produced by reduction of thiosulfate. Lyophilic, or solvent-

loving, sols are characterized by strong solvation of the colloidal particles.

Examples are protein sols such as gelatin, starch sols and, in some instances,

colloidal silica. One of the most striking distinctions between the two types
of sol is observed in their viscosities; the viscosity of lyophobic sols is not

very different from that of the suspension medium, whereas lyophilic sols

have greatly enhanced viscosities, leading in many cases to the formation of

gels at higher concentrations.

17
See, for example, L. G. Longsworth and D. A. Maclnnes, Chem. Rev., 24, 271 (1939).
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The solvation of colloidal particles helps to account for the stability of

the sols. It is clear that the tendency to attain a minimum surface free energy
should lead two colliding particles to coalesce into a larger particle with

lower surface area. This lower surface area, however, would allow less

solvation, and it seems that in the case of the hydrophilic sols this solvation

energy more than compensates for the greater surface energy of small

particles.

In the case of the lyophobic sols, the solvation energy plays a relatively

unimportant role. The reason why these sols do not coagulate is that the

particles bear electric charges of the same sign. In Fig. 16.12 is a representa-

'H+

7TH+

Fig. 16.12. Particles in arsenious-sulfide sol.

tion of an arsenious-sulfide sol. The negative charges lead to mutual repul-

sions, which prevent the particles from approaching each other closely

enough to coalesce.

The study of the coagulation of sols by added electrolytes reveals another

difference between the lyophilic and the lyophobic species. Lyophilic sols

are not sensitive to small concentrations of electrolytes, but large concentra-

tions may "salt them out" of solution. The effect seems to be due to a

competition for solvent between the electrolyte ions and the colloidal

particles. Owing to their superiority in numbers and in intensity of ion-

dipole interaction, the ions finally take possession of so much solvent

(usually water) that the colloids are forced to retire precipitately from the

solution.

By way of contrast, lyophobic sols are commonly coagulated by very

small concentrations of added electrolyte. The mechanism is undoubtedly
the adsorption of oppositely charged ions at the surface of the colloidal

particle. This adsorption neutralizes the electrical double layer and lowers
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the zeta potential. When has been lowered below a certain critical value,

of the order of 10-30 millivolts, coagulation occurs.

In Table 16.3 are summarized the coagulation values for two typical

hydrosols, one negatively charged (As2S3) and one positively charged

(Fe2
O3). The ion in the electrolyte whose sign is opposite to that of the sol

has by far the most important effect on the coagulation. The higher the

charge of these ions, the greater is the coagulating power of the electrolyte.

Thus AI+++ is more effective than K ! in coagulating the negative As2S3 sol.

The ion with the same sign as the sol appears to exercise some protective

effect. Thus in precipitating the As2S3 sol, KC1 is more effective than K 2SO4 ,

presumably because the SO4

"
ion is more protective than the Cl~ ion for a

negative sol.

TABLE 16.3

COAGULATION VALUES FOR SOLS*

* M. B. Weiser and E. B. Middleton, /. Phys. Chem., 24, 30 (1920); H. Freundlich,
Z. phys. Chem., 73, 385 (1910).

PROBLEMS

1. How many sodium-ion sites are there per cm2 of crystal surface in

cubic crystallites of sodium chloride? If the crystallites are 1 /t long, how

many sites are there per gram?
2. Estimate the height to which a column of water will rise in a glass

tube of (a) 1 // diameter, (b) 10
// diameter. Assume zero contact angle.

3. What pressure in atmospheres would be necessary to blow capillary
water out of a sintered glass filter with a uniform pore width of 0.10 //?

4. 20 ml of a saturated solution of PbSO4 (0.0040 g per liter) containing
radiolead (Th-B) as a tracer to the extent of 1600 counts per minute is shaken

with 1.000 g of precipitated PbSO4 . The final count in the solution is 450 cpm.
If the PbSO4 "molecule" has an area of 18.4 A2

, calculate the surface area

of the PbSO4 in cm2
per g.

5. From the Kelvin equation for the vapor pressure of small particles,

derive an equation for the solubility of small particles. If the bulk solubility
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of dinitrobenzene in water is 10~3 mole per liter, estimate the solubility of

crystallites 0.01 // in diameter.

6. Harkins and Wampler [J. Am. Chem. Soc., 53, 850 (1931)] obtained

the following data for solutions of /7-butanol in water at 20C:

Molality, m 0.00329 0.00658 001320 0.0264 0.0536 0.1050 0.2110 0.4330

Activity, a . . 0.00328 0.00654 0.01304 00258 0.0518 0.0989 0.1928 0.3796

Surf. ten. y . 72.80 72.26 70.82 6800 63.14 56.31 4808 38.87

By means of the Gibbs adsorption isotherm, plot anf-A isotherm from these

data. Note that in calculating the surface concentration the number of

molecules already present in the surface must be considered in addition to

those adsorbed at the interface.

7. An insoluble compound X spreads on water to give a gaseous-type

film, at low concentrations. When 10 7

g of X is added to a 200-cm2
surface,

the surface tension at 25C is lowered by 0.20 dyne cm 1
. Calculate the

molecular weight of X.

8. Cassel and Neugebauer [J. Phys. Chem., 40, 523 (1936)] measured the

lowering of the surface tension of mercury by adsorbed xenon at 0C.

P, mmXe . . . 69 93 146 227 278

y
- ylf dyne cm" 1

. . 0.80 1.10 1.75 2.75 3.35

Calculate the number of Xe atoms adsorbed per cm2 at P = 278 mm
and estimate the fraction of the mercury surface that is then covered

by xenon.

9. Calculate the surface pressure /at which the average intermolecular

distance in a two-dimensional ideal gas at 0C is equal to that in a three-

dimensional ideal gas at 1 atm and 0C.

10. How would you plot the Langmuir isotherm in order to obtain a

straight line? Apply the linear plot to the data for oxygen on silica at 0C.

[Markham and Benton, J. Am. Chem. Soc., 53, 497 (1931)]:

p, mm . . . . 83.0 142.4 224.3 329.6 405.1 544.1 667.5 760.0

Vol ads, cc at STP/g . 0.169 0.284 0.445 0.646 0.790 1.043 1.270 1.430

11. Derive the v~P adsorption isotherm for the cases in which the surface

film/-/* equations of state are (a)/4
= kT, (b) (/ f aA~2

)A ~- kT (inclusion

of a van der Waals type molecular interaction term, a being a constant).

12. The "isosteric" heat of adsorption can be obtained by applying the

Clapeyron equation to the variation with temperature of the pressure at

which a constant amount of vapor is adsorbed (i.e., the vapor pressure of

the surface film at constant amount adsorbed). Calculate A//adB and hence

AFada and A5adg from the following results for N2 on charcoal :

194K,/>, atm . 1.5 4.6 12.5 66.4

273K,^,atm . 5.6 35.4 150 694

CcadsatSTP . 0.145 0.894 3.468 12.042
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13. The adsorption on charcoal of acetone in aqueous solution was

found to be

Acetone cone, mole per liter 0.00234 0.01465 0.04103 0.08862 0.17759 0.26897

Millimoles ads per gram
charcoal . . . 0.208 0.618 1.075 1.50 2.08 2.88

Fit these results to a Freundlich isotherm and find the best value for the

exponent I//?.

14. The motion of a quartz particle 1 /i
in diameter in water suspension

was followed under a potential gradient of 10 volts per cm, the observed

velocity being 3.0 x 10 3 cm per sec. Calculate the zeta potential at the

quartz-water interface. Estimate the number of charges carried by the

particle.

15. The zeta potential of water against glass is about 0.050 v. Calculate

the rate of flow of water by electroosmosis at 25C through a glass capillary

1 cm long and 1 mm diameter if the potential difference between the ends is

40 v.
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CHAPTER 17

Chemical Kinetics

**f. The rate of chemical change. The basic questions in physical chemistry
are two: where are chemical reactions going, and how fast are they getting

there? The first is the problem of equilibrium, or chemical statics; the

second is the problem of the rate of attainment of equilibrium, or chemical

kinetics.

Chemical kinetics is usually subdivided into the study of homogeneous
reactions, those occurring entirely within one phase, and of heterogeneous

reactions, those occurring at an interface between phases. Some reactions

consisting of a number of steps may begin at a surface, continue in a homo-

geneous phase, and sometimes terminate on a surface.

Qualitative observations of the velocity of chemical reactions were

recorded by early writers on metallurgy, brewing, and alchemy, but the first

significant quantitative investigation was that of L. Wilhelmy, in 1850. He
studied the inversion of cane sugar (sucrose) in aqueous solutions of acids,

following the change with a polarimeter:

H.O
;
C 12H 2,On -*C6H 1S0. I-C,H 120.
Sucrose GI14cose Fructose

Wilhelmy found that the rate of decrease in the concentration of sugar c

with time / was proportional to the concentration of sugar remaining un-

converted. This reaction velocity was written as dc/dt
-

-
k^c. The constant

A:t is called the rate constant or the specific rate of the reaction. 1
Its value was

found to be proportional to the acid concentration. Since the acid does not

appear in the stoichiometric equation for the reaction, it is acting as a

catalyst, increasing the reaction rate without being consumed itself.

Wilhelmy integrated the differential equation for the rate, obtaining
In c = k-it + constant. At t 0, the concentration has its initial value c ,

so that the constant is In c . Therefore, In c kt + In c , or c c
ti
e~ kit

. This

integrated equation was checked by Wilhelmy, and the exponential decrease

of concentration with time was closely followed by his data. On the basis of

this work, Wilhelmy deserves to be called the founder of chemical kinetics.

The important paper of Guldberg and Waage, which appeared in 1863,

has already been described (page 70). It emphasized the dynamic nature of

chemical equilibrium, by setting the equilibrium constant equal to the ratio

of rate constants, K kf/kb .

1 The words "rate," "speed," "velocity" are all synonymous in chemical kinetics,

though not so in physical mechanics.

528
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In 1865-1867, A. V. Harcourt and W. Esson2 studied the reaction between

potassium permanganate and oxalic acid. They showed how to calculate

rate constants for a reaction in which the velocity is proportional to the

product of the concentrations of two reactants. They also discussed the

theory of consecutive reactions.

The science of chemical kinetics was now well under way, and to date

hundreds of reaction rates have been measured. Yet there is still a great

need for accurate experimental data.

2. Experimental methods in kinetics. An experimental determination of

reaction velocity requires a good thermostat to maintain the system at

constant temperature and a good clock to measure the passage of time.

These two requisites are not hard to obtain. It is the pursuit of the third

variable, the concentration of reactants or products, that is the source of

most difficulties.

A reaction cannot be turned on and off like a stopcock, although a

reaction occurring at an elevated temperature can often be virtually stopped

by cooling the system. If one takes a sample of the reaction mixture at 2:00

P.M., one would like to know the composition at 2:00 P.M., but few analytical

methods are that rapid. It may be 2 : 05 before the result is obtained, and thus,

especially in rapid reactions, it is difficult to determine the concentration c

at a definite time t by any sampling technique.

The best method of analysis is therefore one that is practically con-

tinuous, and does not require the removal of successive samples from the

reaction mixture. Physical properties can be used in this way in appropriate

cases. Wilhelmy's use of optical rotation is a case in point. Other physical

methods have included :

(1) Absorption spectra and colorimetric analysis;

(2) The measurement of dielectric constant3
;

(3) The measurement of refractive index4
;

(4) Dilatomeric methods, based on the change in volume due to reaction.

One of the most frequently used techniques, applicable to many gas

reactions, is to follow the change in pressure. This change can be read almost

instantaneously, or it can be recorded automatically. The method would be

an ideal one if gas reactions often ran smoothly according to a single stoichio-

metric equation. Unfortunately, however, many gas reactions are beset by

complications and side reactions so that a simple pressure change without

concurrent analysis of the reaction products has often led to deceptive

results. For example, the decomposition of ethane according to C2H6
->

C2H4 + H2 is accompanied by a change in pressure, but actually some

methane, CH4 , is included among the products.

2 A. V. Harcourt and W. Esson, Proc. Roy. Soc., 14, 470 (1865). Phil. Trans., 156, 193

(1866); 757, 117(1867).
3 T. G. Majury and H. W. Melville, Proc. Roy. Soc., A 205, 496 (1951).
4 N. Grassie and H. W. Melville, ibid., A 207, 285 (1951).
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There is unlimited scope for experimental ingenuity in the measurement

of extremely rapid reactions. A noteworthy example is the work of Johnston

and Yost3 on 2 NO2 -f O3
-= N2O5 under conditions in which reaction is

complete within 0.1 sec. A stream of O2 -f NO2 was mixed with a stream of

3 -f O2 in a chamber with tangential jets. After mixing, which was complete
within 0.01 sec, a magnetically operated steel gate trapped a portion of the

gas mixture. The disappearance of the NO2t
which is brown, was followed

by the change of intensity of a beam of transmitted light. The beam was

chopped with a rotating sector wheel 300 times per second, and the pulses

were allowed to fall on a photomultiplier tube, the output of which was

connected to an oscillograph. The pulsations on the oscillograph screen were

photographed, the height of each peak giving the NO2 concentration at

intervals of T^ sec.

^jb. Order of a reaction. The experimental data of chemical kinetics are

records of concentrations of reactants and products at various times, the

temperature usually being held constant throughout any one run. On the

other hand, the theoretical expressions for reaction rates as functions of the

concentrations of reactants, and sometimes of products, are differential

equations of the general form, dcjdt
~

f(c^ c2 . . . cn ). Here c^ is the par-

ticular product or reactant whose concentration is being followed. Before

comparing theory with experiment, it is necessary either to integrate the

theoretical rate law, or to differentiate the experimental concentration vs.

time curve. The first procedure is usually followed.

The rate laws are of practical importance since they provide concise

expressions for the course of the reaction and can be applied in calculating

reaction times, yields, and optimum economic conditions. Also, the laws

often afford an insight into the mechanism by which the reaction proceeds.
On the molecular scale the course of a reaction may be complex, and some-

times the form of the empirical rate law will suggest the particular path via

which the reaction takes place.

In many instances the rate, which will be written as the decrease in con-

centration of reactant A 9 dcA /dt, is found to depend on the product of

concentration terms. For example,

~~"
A _ lf'r a r t> r n* CA C

J?
' ' CN

The order of the reaction is defined as the sum of the exponents of the

concentration terms in this rate law.

For example, the decomposition of nitrogen pentoxide, 2 N2O6
->

4 NO2 -f O2 , is found to follow the law, dc$tOJdt
= k^^. This is there-

fore a first-order reaction.

The decomposition of nitrogen dioxide, 2 NO2
-> 2 NO + O2 , follows

the law, d(NO2)/dt
=

2(NO2)
2

. This is a second-order reaction. The

8 H. S. Johnston and D. M. Yost, /. Chem. Phys., 77, 386 (1949).
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reaction rate in benzene solution of triethylamine and ethyl bromide,

(C2H5)3N + C2H5Br -> (C2H5)4NBr, follows the equation, -rf(C2H 5 Br)/<//
-

A-2(C2H5Br)((C2H5)3N). This is also a second-order reaction. It is said to

be first-order with respect to C2H5Br, first-order with respect to (C2
H 5 )3N,

and second-order over-all.

The decomposition of acetaldehyde, CH 3CHO -> CH 4 | CO, in the gas

phase at 450C fits the rate expression, -rf(CH3CHO)/* A'(CH3CHO)3/2
.

This is a reaction of the three-halves order.

It is to be noted that the order of a reaction need not be a whole number,

but may be zero or fractional. It is determined solely by the best fit of a

rate equation with the empirical data. Secondly, it is important to realize

that there is no necessary connection between the form of the stoichiometric

equation for the reaction and the kinetic order. Thus the decompositions of

N2O$ and of NO3 have equations of identical form, yet one is a first-order

and the Bother a second-order reaction.

^f/'Mtolecularity of a reaction. Many chemical reactions are not kinetically

simple; they proceed through a number of steps or stages between initial

reactants and final products. Each of the

individual steps is called an elementary
reaction. Complex reactions are made up
of a sequence of elementary reactions,

each of which proceeds in a single step.

In the earlier literature, the terms

"unimolecular," "bimolecular," and
"trimolecular" were used to denote reac-

tions of the first, second, and third orders.

We now reserve the concept of the mole-

cularity of a reaction to indicate the

molecular mechanism by which it pro-
ceeds. Thus careful studies indicate that

the decomposition of hydrogen iodide,

2 HI -> H2 + I 2 , takes place when two

HI molecules come together with sufficient kinetic energy to rearrange the

chemical bonds from two H I bonds to an H H bond and an I I bond.

The elementary process involves two molecules, and this is therefore called

a bimolecufar reaction.

It will be shown later that before a chemical reaction can take place the

molecule or molecules involved must be raised to a state of higher potential

energy. They are then said to be activated or to form an activated complex.
This process is shown in schematic form in Fig. 17.1. Reactants and products
are both at stable potential energy minima; the activated complex is the

state at the top of the potential energy barrier.

In terms of the activated complex, it is possible to give a more exact

definition of the molecularity of a reaction. It is equal to the number of

REACTANTS

PRODUCTS

Fig. 17.1. Energy barrier sur-

mounted by system in chemical re-

action.
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molecules of reactants that are used to form the activated complex. In the

case of the hydrogen-iodide decomposition, the complex is formed from two

HI molecules, and the reaction is bimolecular. Clearly the molecularity of a

reaction must be a whole number, and in fact it is found to be one, two, or

rarely, three.

The experimental rate measurements show that the rate of decomposition
of hydrogen iodide is - dcm /dt A'2rm 2

. This is therefore a second-order

reaction. All bimolecular reactions are second-order, but the converse is not

true; there are second-order reactions that are not bimolecular.

A good example of a unimolecular reaction is a radioactive decay, e.g.,

Ra -> Rn -f a. Only one atom is involved in each disintegration, and the

reaction is unimolecular. It also follows a first-order law, dn^Jdt --=-

A^/ffta, where /?Ra is the number of radium atoms present at any time.

The concept of molecularity should be applied only to individual elemen-

tary reactions. If a reaction proceeds through several stages, there is little

point in talking about its molecularity, since one step may involve two

molecules, another three, and so on.

At the risk of repetition: reaction order applies to the experimental rate

equation I molecularity applies to the theoretical mechanism.

^y The reaction-rate constant. The experimental data in a kinetic experi-

ment are values of concentrations at various times. Unless otherwise specified,

the concentration unit is moles per liter, and the time is measured in seconds.

It is purely a matter of convenience whether the reaction is followed by the

decrease in one of the reactants or by the increase in one of the products.

These quantities are related by the stoichiometric equation for the reaction.

Consider the decomposition of nitrogen pentoxide, 2 N2O6
> 4 NO2 +

O2 . Velocity can be expressed in three ways: the rate of disappearance of

N2O5 , dcNn0Jdt; the rate of formation of NO2 , +dc^QJdt\ the rate of forma-

tion of O2 , +dc Jdt. Actually, the NO2 dimerizes to N2O4 , but the equili-

brium for this association is established very rapidly and can easily be taken

into acccount, since the equilibrium constant is well known. It is found that

the N2O5 decomposition follows a first-order law over a range of pressures

(10~
3 to lOatm) and temperatures (0 to 200C). This law can be written in

three ways:

a _ ,

K
i

From the stoichiometry it is evident that k: i/r/
= 2k^'. The lesson

to be learned is that it is always desirable to state clearly what rate law is

being used to express the experimental results. Then the rate constant will

have an unambiguous meaning. The choice is arbitrary but it should be

explicit.

The units of the rate constant depend on the order of the reaction. For

first order, dc/dt = k^, the units of k
l are moles liter*1 sec"1 x liter
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mole- 1 = sec"1
. For second order, cfc/dt

= A:2c
2

, the units of Ar2 are moles
liter*1 sec"1 x (liter mole"1

)
2 = liter mole 1 sec"1

. In general, for a reaction

of the Arth order, the dimensions of the constant kn are (time)""
1
(concen-

tration)
1^.

OK First-order rate equations. The differential rate equatioa is almost

always integrated before it is applied to the experimental data, although

t-secxlO

Fig. 17.2. A first-order reaction. The thermal decomposition of

nitrogen pentoxide, plotted according to eq. (17.2).

occasionally slopes of concentration vs. time curves are taken to determine

dcjdt directly.

Consider a first-order reaction, A -> B + C. Let the initial concentration

of A be a moles per liter. If after a time /, x moles per liter of A have de-

composed, the remaining concentration of A is a x9 and x moles per liter

of B or C have been formed. The rate of formation of B or C is thus dxjdt,

and for a first-order reaction this is proportional to the instantaneous

concentration of A, so that

-.-
Separating the variables and integrating, we obtain

In (a x) ^ k
v
t + const

(17.1)
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The usual initial condition is that x = at t = 0, whence the constant

In a, and the integrated equation becomes

a
In (17.2)

or, x = a({ -e"*)
If In (a/a

-
x) is plotted against /, a straight line passing through the

origin is obtained, the slope of which is the first-order rate constant A
>

1
.

If eq. (17.1) is integrated between limits x
l to x2 and t

l
to /2 , the result is

In - ~ -
A-^/2

- f
t)

a ^2

This interval formula can be used to calculate the rate constant from any

pair of concentration measurements.

Applications of these equations to the first-order decomposition of gase-

ous N2O5 are shown in Table 17.1 and Fig. 17.2. 6

TABLE 17.1

DECOMPOSITION OF NITROGEN PENTOXIDE

(Temperature, 45C)

Another test of a first-order reaction is found in its half life r, the time

required to reduce the concentration of A to half its initial value. This

concept was discussed on page 215 in connection with radioactive decay. In

eq. (17.2) when x - a/2, / = r, and T = (In 2)/kv Thus the half life is

independent of the initial concentration of reactant. In a first-order reaction,

it would take just as long to reduce the reactant concentration from 0.1 mole

per lijer (m/1) to 0.05 m/1 as it would to reduce it from 10 to 5.

^X Second-order rate equations. Consider a reaction written as A + B ->

C -f D- Let the initial concentrations,at / = be a m/1 of A and b m/1 of B.

After a time /, ;c m/1 of A, and of By will have reacted, forming x m/1 of C
and of D. If a second-order rate law is followed,

~ = k2(a
-

x)(b
-

x) (17.3)
at

F. Daniels, Chemical Kinetics (Ithaca: Cornell Univ. Press, 1938), p. 9.
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Separating the variables, we have

d^
(a-sX*^) '

The expression on the left is integrated by breaking it into partial fractions.

The integration yields

nn_(^x) 7Jn(6-^] r; ngt
a b

When / --- 0, x 0, and constant = In (a/b)/(a b\ Therefore the inte-

grated second-order rate law is

A reaction found to be second-order is that between ethylene bromide

and potassium iodide in 99 per cent methanol, C2H 4Br2 + 3 KI C2H4 +
2 KBr + KI3 . Sealed bulbs containing the reaction mixture were kept in a

thermostat. At intervals of two or three minutes a bulb was withdrawn, and

its contents were analyzed for iodine by means of the thiosulfate titra-

tion. The second-order rate law is d(\ 2)/dt
--= dx/dt = /r2(C2H4Br2)(KI)

= k z(a x)(b 3x), and the integrated equation is

1 . b(a-x)
I
|-j

Is- -t

3a b a(b
-

3jt)
2

Figure 17.3 is a plot of the left side of this equation against time. The excellent

linearity confirms the second-order law. The slope of the line is the rate

constant, k2
-- 0.299 liter mole"1 min.- 1

A special case of the general second-order equation (17.3) arises when

the initial concentrations of both reactants are the same, a -- b. This con-

dition can be purposely arranged in any case, but it will be necessarily true

whenever only one reactant is involved in a second-order reaction. An

example is the decomposition of gaseous hydrogen iodide, 2 HI ~> H2 4- I2

which follows the rate law, -d(Hl)/dt - /c2(HI)
2

.

In these cases the integrated equation (17.4) cannot be applied, since

when a = b it reduces to k2 t =-
0/0, which is indeterminate. It is best to

return to the differential equation, which becomes dx/dt ~ k2(a x)
2

. Inte-

gration yields f/ v5 J
l/(0 x) = k2t + const

When r = 0, x = 0, so that const = I /a. The integrated rate law is therefore

,

* =k2t (17.5)
a(a

- x)

The half life of a second-order decomposition is found from eq. (17.5)

by setting x = a/2 when / = r, so that r -^ \/k2a. The half life varies in-

versely as the initial concentration. For instance, the partial pressure of
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decomposing HI would take twice as long to fall from 100 to 50 mm as it

would to fall from 200 to 100 mm.

t=59.7

04 8 12 16 20 24 28

TIME-MINUTES

Fig. 17.3. The second-order reaction,

C2H4Br2 + 3K1 -> C2H4 } 2KBr I KI3

[From R. T. Dillon, J. Am. Chem. Soc., 54, 952 (1932).]

tf Third-order rate equation. Third-order reactions arc quite rare, and all

that have been studied fall into the class:

2A + B -> products

a 2x b x x

The differential rate equation is. accordingly dx\dt = k%(a 2x)\b x).

This equation can be integrated by breaking it into partial fractions. The

result, after we apply the initial condition, x = at t 0, is

___
1 \(2b

-
d)2x b(a

-
2x)l _

(2b - a)
2

[ ~a(a~ 2x)
+

a(b^x)\
~

3'

Examples of gas reactions of the third order, following this rate law, are:

2 NO + O2
-> 2 NO2

2 NO + Br2
-^ 2 NOBr

2 NO + C12
~> 2 NOC1

In every case, -</(NO)/<// = Ar3(NO)
2
(X2).



Sec. 9] CHEMICAL KINETICS 537

9. Opposing reactions. If a reaction is to proceed for some time at a

measurable rate, the initial conditions must evidently be fairly remote from

the final equilibrium. In many instances the position of equilibrium is so far

on the product side, at the temperature and pressure chosen for the experi-

ment, that for all practical purposes one can say that the reaction goes "to

completion." This is the case in the N2O5 decomposition and the oxidation

of iodide ion that have been described. There are other cases in which a con-

siderable concentration of reactants remains when equilibrium is reached.

A well known example is the hydrolysis of ethyl acetate in aqueous solution,

CH3COOC2H5 + H 2O ^ CH3COOH 4- C2H5OH. In such instances, as the

product concentrations are gradually increased, the velocity of the reverse

reaction becomes appreciable. The measured rate of change is thereby de-

creased, and in order to deduce a rate equation to fit the empirical data, the

opposing reaction must be taken into consideration.

The form of the over-all rate equation will be considered for three varie-

ties of such opposed reactions: opposing first orders, opposing second orders,

and first vs. second order.

Consider the first species in a reaction A ^ B. Let the first-order rate

constant in the forward direction be A' l5 in the reverse, k_.v Initially at /

the concentration of A is a and of B is b. If after a time r, x moles per liter

of A have been transformed into B, the concentration of A is a x, and

that of B is b + x. The differential rate equation is therefore

^ -
k,(a

~
x)

-
k_,(b f x)

or
-^
- (k v f k_J(m - x)

where m --=- (k^ ~ k. ib)l(k l
f- A'_ l ). Integration yields

In =
(k, f _!>/ (17.6)m x

By Guldberg and Waage's principle, the equilibrium constant K =- k
l/k_l .

Thus equilibrium measurements can be combined with rate data to separate

the forward and reverse constants in eq. (17.6).

Such reversible first-order reactions arc to be found in some of the intra-

molecular rearrangements and isomerizations studied by G. B. Kistiakowsky
and his co-workers. 7 The cis-trans isomerization of styryl cyanide vapor was

followed by the change in the refractive index of the solution obtained on

condensation.
C6H6-CH C6H5-CH

II
^ II

NC CH CH CN

Equilibrium at 300C is at about 80 per cent trans-isomer.

7
Kistiakowsky et */., J. Am. Chem. Soc., 54, 2208 (1932); 5(5, 638 (1934); 57, 269 (1935);

5, 2428(1936).
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The case of opposing bimolecular reactions was first treated by Max
Bodenstein in his classic study of the combination of hydrogen and iodine. 8

Between 250 and 500C the reaction H2 + I2
> 2 HI can be conveniently

studied, but at higher temperatures the equilibrium lies too far on the re-

actant side. Even in the cited temperature range the reverse reaction must be

considered in order to obtain satisfactory rate constants. The concentrations

at time / will be denoted as follows:

H2 I2 2 HI

- *-

The net rate of formation of HI is

<'">

When the equilibrium constant K = k2fk 2 is introduced into eq. (17.7) and

the equation integrated, the result is

/a + b m

with m

7TK)

556

575

629

666
700
781

TABLE 17.2

RATE CONSTANTS FOR THE REACTION H2 -f I2 ^ 2 HI

1.19 x
3.53 x
6.76 x
3.79 x
1.72 X

10-*

10 4

10 3

io-2

10-1

3.58

2.11 x
7.30 x
1.81 x
1.32 x
6.95 X
1.06 x

10~8

io-6

10-4

io~2

io-2

10-1

K -

5.64

4.85

3.73

2.87

2.43

1.51

Good constants obtained from this rather formidable expression are

shown in Table 17.2 for a number of temperatures, together with values of

K and A'__2 from separate experiments.
The third type of opposing reaction, first vs. second order, may be

8
Bodenstein, Z.physik. Chem., 13, 56 (1894); 22, 1 (1897); 29, 295 (1898).
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written schematically for the case in which, at t = 0, (B) (C) = 0,

and (A) a.

A

a x

B+ C

xx
The differential equation is dxjdt -- k^a x) k2x

2
. The integration

yields
9

IV
2l

2mt

with

* =

m ---

In

1/2

These equations would apply to the rate of dissociation of nitrogen

tetroxide, N2O4 ^ 2 NO2 ,
but no adequate data are available for this re-

action owing to its extreme rapidity. It might have been expected that the

reversible dissociation of elementary gases, e.g., C12 ^ 2 Cl, would also

follow this law. It is found, however, that two atoms usually recombine only
in the presence of a third particle or on the wall of the reaction vessel,

Cl
i
Cl -h Af -> C1 2 f M. The third particle M is required to take up the

excess energy generated in the collision, thereby preventing the atoms from

flying apart again.

10. Consecutive reactions. It often happens that the product of one

reaction becomes itself the reactant of a following reaction. There may be a

series of consecutive steps. Only in the simplest cases has it been possible to

obtain solutions to the differential equations of theie reaction systems. They
are especially important in polymerization and depolymerization processes,

and the investigator of chemical kinetics is often blocked here by inade-

quacies in the available mathematics.

A simple consecutive-reaction scheme that can be treated exactly is one

involving only irreversible first-order steps. The general case of n steps has

been solved,
10 but only the example of two steps will be discussed. This can

be written

x y z

The simultaneous differential equations are

dx _ ,,
Jy _ /, , ,

dz

9 E. A. Moelwyn-Hughes, Physical Chemistry (London: Cambridge, 1947), p. 636.
10 H. Dostal, Monatshefte (Vienna), 70, 324 (1937). For second-order steps, see P. J.

Flory, J. Am. Chem. Soc., 62, 1057, 1561, 2255 (1940).
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The first equation can be integrated directly, giving In x = k^t +
const. When / = 0, let x = a, the initial concentration of A. Then const.

= In a, and x = ae~ kli
. The concentration of A declines exponentially

with the time, as in any first-order reaction.

Substitution of the value found for x into the second equation gives

dy

dt
= k^y + k^ae

-At*

This is a linear differential equation of the first order, whose solution 11
is

When / = 0, y = 0, so- that const = k^al(k^ A^).

We now have expressions for x and y. In the reaction scheme followed

there is no change in the total number of molecules, since every time an A

disappears a B appears, and every time a B disappears a C appears. Thus

x + y + z a, and z is calculated to be

z +
ki

(17.8)

In Fig. 17.4, the concentrations x, j, z are plotted as functions of the

time, assuming k 2kl

/

. The intermediate concentration y rises to a maxi-

100 120

Fig. 17.4. Concentration changes in consecutive first-order reactions.

mum and then falls asymptotically to zero, while the final product rises

gradually to a value of a.

11
Granville, Calculus, p. 380.
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Such a reaction sequence was found in the thermal decomposition

(pyrolysis) of acetone.12

(CH3)2CO -> CH2=CO + CH4

CH2=CO -> i C2H4 + CO

The concentration of the intermediate, ketene, rises to a maximum and then

declines during the course of the reaction. Actually, however, the decom-

position is more complex than the simple equations would imply.

In dealing with consecutive reactions, the important bottleneck principle

can sometimes be applied. If one of the steps proceeds much more slowly

than any of the others, the over-all reaction velocity will be determined by
the speed of this slow step. For instance, in the example above, if k <^ /,

eq. (17.8) reduces to

z = a(l -<rw)

which is identical with eq. (17.2) and includes only the constant of the slow

step.

11. Parallel reactions. Sometimes a given substance can react or de-

compose in more than one way. Then the alternative parallel reactions must

be included in analyzing the kinetic data. Consider a schematic reaction,

-It:
In the case of such parallel processes, the most rapid rate determines the

predominant path of the over-all reaction. If k
l ;> /:/, the decomposition of

A will yield mostly B. For example, alcohols can be either dehydrated to

olefins, or dehydrogenated to aldehydes:

CH3CHO + H2

By suitable choice of catalyst and temperature one rate can be made much
faster than the other. The product obtained depends upon the relative rates

and not upon the equilibrium constants for the two reactions.

vJ^Determination of the reaction order. In simple reactions of the first

or second order, it is not hard to establish the order and evaluate the rate

constants. The experimental data are simply inserted into the different inte-

grated rate equations until a constant k is found. The graphical methods

leading to linear plots are useful. In more complicated reactions, it is often

desirable to adopt other methods for at least a preliminary survey of the

kinetics.

The initial reaction rate often provides helpful information, for in a

sufficiently slow reaction the rate dxjdt can be found with some precision

C. A. Winklcr and C. N. Hinshelwood, Proc. Roy. Soc., A 149, 340 (1935).

T.
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before there has been any extensive chemical change. It is then possible to

assume that all the reactant concentrations are still effectively constant at

their initial values. If A f B + C -> products, and the initial concentrations

are,0, b, <?, the rate can be written quite generally as

j-
- k (a -. Jt)

n '

(b
-

*)" (c
-

x)
nt

If x is very small, the initial rate will be

^kan * b
n * cn>

dt

While we keep b and c constant, the initial concentration of a can be varied,

and the resultant change of the initial rate measured. In this way the value

of n l
is estimated. Similarly, by keeping a and c constant while we vary b,

a value of /72 is found
;
and with a and b constant, variation of c yields n3 .

The initial-rate method is especially useful in those reactions that cannot

be trusted to progress to any appreciable extent without becoming involved

in labyrinthine complications. If the order of reaction found by using initial

rates differs from that found by using the integrated rate equation, it is

probable that the products are interacting with the initial reactants.

A frequently useful way of finding the reaction order is the isolation

method, devised by W. Ostwald. If all the reactants save one, say A, are

present initially in high concentrations, their concentrations during the re-

action will be relatively much less changed than that of A. In fact, they may
be taken to be effectively constant, and the rate equation will have the

approximate form :

^ - k (a
-

*)
Wl bn * c

n >
. . .

= k' (a
-

x)
n *

dt

By comparing the data with integrated forms of this equation for various

choices of n^ it is possible to determine the order of the reaction with respect

to component A. The orders with respect to B, C, etc., are found in like

manner.

The isolation method is often practiced of necessity in reactions in

solution if the solvent is one reactant. For example, in the hydrolysis of

ethyl acetate, CH3COOC2H5 + H2O ^ CH3COOH + C2H5OH, the ester

concentration is much lower than that of the solvent, water. The reaction

follows a rate law that is first order with respect to the ester, the water

concentration being effectively constant:

f](f^\i C^OOC* H ^
3

df

f
- -

2(CH3COOC2H5)(H20) == ^(CH3COOC2H6)

Another way of holding the concentration of a reactant constant is to use

a saturated solution with an excess of pure solute phase always present.
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An interesting general method of finding the over-all reaction order is

based on the half-life times. If all the reactants are taken to have stoichio-

metric initial concentrations a, the rate law takes the form dx\dt kn(a x)
n

.

Integrating and setting x = at t = 0, we find

*/--M !---LI
""'-n-ilfa-xr-* a-']

When the time / equals the half life T, x = a/2, so that

log r = (1
-

n) log a + log (17.9)

3.0

2.9

2.8

2 '7

2.6

2.5

2.4

2.3

2.2

2.1
1.5 2.0 2.5

LOG Po

3.0

If log r is plotted against log a, a straight line should be obtained whose

slope is (1 n). In gas reactions

the initial pressure can be used

instead of the initial concentration.

The half lives determined by
A. Farkas13 for the homogeneous

para-ortho hydrogen conversion at

923K are shown in the log-log plot

in Fig. 17.5. The slope of the line

is -0.52; thus (1
-

n)
-= -0.52,

and n = 1.52. The reaction is one

of the three-halves order. The

reason for this order is that the

change H2 (/?)
-> H2 (o) proceeds

through atomic hydrogen formed

by the dissociation H2
> 2 H. Then

H f H2 (p) -> H2 (o) + H. The

rate is proportional to (H)(/?-H2). From the dissociation equilibrium

(H) = #1/2(H2)
1/2

, so that the rate is kK^p-HJ***.
13. Reactions in flow systems. The rate equations that have been discussed

all apply to static systems, in which the reaction mixture is enclosed in a

vessel at constant volume and temperature. We must now consider flow

systems, in which reactants enter continuously at the inlet of a reaction

vessel, while the product mixture is withdrawn at the outlet. We shall

describe two examples of flow systems: (a) a reactor in which there is no

stirring; (b) a reactor in which complete mixing is effected at all times by

vigorous stirring.

Figure 17.6 shows a tubular reactor through which the reaction mixture

passes at a volume rate of flow u (e.g., in liters per sec). Let us consider an

18 A. Farkas, Z. physik. Chem., B 10, 419 (1930).

Fig. 17.5. Plot of log half-life vs. log initial

pressure for/?-<? H2 conversion.
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element of volume dV sliced out of this tube, and focus attention on one

particular component k, which enters this volume element at a concentration

ck and leaves at ck dc
k

. If there is no longitudinal mixing, the net change
with time of the number of moles of k within dV (dnk\di) will be the sum of

two terms, one due to chemical reaction within dV, and the other equal to

the excess of k entering dV over that leaving. Thus,

(17.10)
dt

The chemical reaction rate per unit volume is denoted by rk . The explicit

form of rk is determined by the rate law for the reaction : for a reaction first

order with respect to k, rk
-= k^c^, for second order, rk

= k2ck
2
, etc.

dV

cK-dcK

Fig. 17.6. Element of volume in a flow reactor.

After reaction in the flow system has continued for some time, a steady
state is attained, in which the number of moles of each component in any
volume element no longer changes with time, the net flow into the element

exactly balancing the reaction within it. Then dnkjdt
-

0, and eq. (17.10)

becomes

rk dY-udck -Q (17.11)

After rk is introduced as a function of ck , the equation can be integrated.

For example, with rk k-^c^

dV _ dck
K

l
U Ck

The integration is carried out between the inlet and the outlet of the reactor.

-k
l
~ = \n (17.12)
u c

ti

The total volume of the reactor is VQ9 and c
kt
and c

ki
are the concentrations

of k at the outlet and inlet, respectively.

It may be noted that eq. (17.12) reduces to the integrated rate law for a

first-order reaction in a static system if the time / is substituted for V /u.

The quantity K /w is called the contact time for the reaction; it is the average
time that a molecule would take to pass through the reactor. Thus eq. (17.12)

allows us to evaluate the rate constant k1 from a knowledge of the contact
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time, and of the concentrations of reactant fed to the tube and recovered at

the end of the tube. For other reaction orders also, the correct flow reactor

equation is obtained by substituting V /u for / in the equation for the static

system. Many reactions that are too swift for convenient study in a static

system can be followed readily in a flow system, in which the contact time

is reduced by use of a high flow rate and a small volume.

The derivation of eq. (17.11) tacitly assumed that there was no volume

change AK as a result of the reaction. Any AK would affect the flow rate

at constant pressure. In liquid-flow systems, the effects of AK lire generally

Fig. 17.7. A stirred flow reactor.

negligible, but for gaseous systems the form of the rate equations is con-

siderably modified. A convenient collection of integrated rate laws including

such cases is given by Hougen and Watson. 14

An example of a stirred flow reactor15 is shown in Fig. 17.7. The reactants

enter the vessel at A, and stirring at 3000 rpm effects mixing within about a

second. The product mixture is removed at B at a rate exactly balancing the

feed. After a steady state is attained, the composition of the mixture in the

reactor remains unchanged as long as the composition and rate of supply of

reactants is unchanged. Equation (17.1 1) still applies, but in this case dV =
K , the total reactor volume, and dck -= c

ki
- c

kn
where c

ki
and c

kt
are

the initial and final concentrations of reactant k. Thus

dt

With this method, there is no need to integrate the rate equation. One point

14 O. A. Hougen and K. M. Watson, Chemical Process Principles (Part 3) (New York:

Wiley, 1947), p. 834.

K. G. Denbigh, Trans. Faraday Soc., 40, 352 (1944) ; Disc. Faraday Soc., 2, 263 (1947).
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on the rate curve is obtained from each steady-state measurement, and a

number of runs with different feed rates and initial concentrations is required

to determine the order of the reaction.

An important application of the stirred flow reactor is the study of

transient intermediate:, the concentration of which in a static system might

quickly reach a maximum value, and then fall to zero. An illustration was

shown in Fig. 17.4. For example, in the reaction between Fe f3 and Na2S2O3 ,

a violet color appears, which fades within one or two minutes. In a stirred

flow reactor, the conditions can be adjusted so that the color is maintained,

and the intermediate responsible, which appears to be FeS2O3
+

,
can be

studied spectroscopically.

The living cell is in some ways analogous to a continuous flow reaction

vessel, in which reactants and products are transferred by diffusion across

the cell membrane.

sWf Effect of temperature on reaction rate. So far we have been concerned

with the problem of finding how the chemical kinetics depends on the con-

centrations of the various components of the reaction system. This first step

is necessary in reducing the raw material of the experimental data to a refined

form suitable for theoretical interpretation. The next question is how the

constants of the rate equations depend on variables such as temperature and

total pressure. The temperature effect has been tremendously useful in

providing an insight into the theory of all rate processes.

In 1889, Arrhenius pointed out that since the van't Hoff equation for

the temperature coefficient of the equilibrium constant was din KJdT =
AE//?r

2
, whereas the mass-action law related the equilibrium constant to a

ratio of rate constants, Kc
= kf/kb ,

a reasonable equation for the variation

of rate constant with temperature might be

The quantity Ea is called the activation energy of the reaction.

If Ea is not itself temperature dependent, eq. (17.10) yields on integration

In k = --- + In A (17.14)
J\T

where In A is the constant of integration. Hence

A is called the frequency factor. This is the famous Arrhenius equation for

the rate constant.

From eq. (17.14) it follows that a plot of the logarithm of the rate con-

stant against the reciprocal of the absolute temperature should be a straight

line. The validity of the equation is excellently confirmed in this way for a

large number of experimental velocity constants. An example from the data
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of Bodenstein on the H2 + I2
= 2 HI reaction is shown in Fig. 17.8. We shall

see later that the Arrhenius equation is only an approximate representation
of the temperature dependence of k y but the approximation is usually a very

good one.

According to Arrhenius, eq. (17.15) indicates that molecules must acquire
a certain critical energy En before they can react, the Boltzmann factor

e
-E /RT be ing the fraction of molecules that manages to obtain the necessary

energy. This interpretation is still held to be essentially correct.

35

25

15

o
o

-05 N
120 130 140 150 160 1.70 1.80

I/T XI03

Fig. 17.8. Temperature dependence of rate constant for formation of

hydrogen iodide, illustrating applicability of the Arrhenius equation.

By referring back to Fig. 17.1 on page 531, we can obtain a picture of the

activation energy as the potential-energy hill that must be climbed to reach

the activated state. It is evident also that the heat of reaction Qv is the differ-

ence between the activation energies of forward and backward reactions,

^2V
- Et -Eb (17.16)

15. Collision theory of gas reactions. Reaction velocities have been studied

in gaseous, liquid, and solid solutions, and at the interfaces between phases.

Homogeneous reactions in liquid solutions have undoubtedly been investi-

gated most extensively, because they are of great practical importance and

usually require only relatively simple experimental techniques. From a

theoretical point of view, however, they suffer from the disadvantage that

our understanding of liquids and solutions is inadequate, especially on the

molecular scale that is important in chemical changes.

Homogeneous gas reactions, therefore, though harder to follow experi-

mentally, should be more amenable to theoretical elucidation. The statistical

theory of gases is well developed and provides an insight into the factors

governing the reaction rates.

The first theory of gas reactions postulated that in order for molecules

to interact, they must approach each other so closely that they can be said

to be in collision. Sometimes a rearrangement of chemical bonds occurs
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during a collision, forming new molecules from the old ones. The speed of

the reaction is equal to the number of collisions per second times the fraction

of the collisions that are effective in producing chemical change.
The formula for the number of collisions per second between like mole-

cules in one cc of gas is obtained from eq. (7.16).

Zn = 4\7r/i =- 2M* (17.17)V 7T/n v m

Here n is the number of molecules per cc, d is the molecular diameter, and

V%kT/7rm is the average speed of a molecule of mass m. In the case of unlike

molecules whose concentrations are ^ and /?2 ,
the collision frequency

becomes

7$kTTTA
(17.18)

TTfA

Now dl2
~ (d} + d2)/2 is the mean molecular diameter and the reduced

mass /* m
l
m2/(fn l + w2 ). Note that the factor \ is not included in the

expression for unlike molecules since a collision of the type B ~> A is now

distinguishable from A -> B.

Let us calculate Zu for hydrogen-iodide molecules at 700K and 1 atm

pressure. From gas viscosity d = 4 x 10~ 8 cm. The mass m =
127.9/6.02 X

1023 - 2.12 x 10~22 g; w = PVNIRT - 1 x 1 x 6.02 x 10*782.05 X 700
- 1.05 x 1019 . Substituting in eq. (17.17), we find Zu = 1.33 x 1028 . At a

given temperature and pressure the Zn for different molecules hardly ever

varies by a factor of more than 50, and for molecules of low molecular

weight the variations are much less. (The variable factor is d2
/mm and rfmay

run from 2 to 20 A.)

Now it is obvious that not every collision can lead to reaction; the

collision frequency is so extremely large that if such were the case all chemical

reactions would be essentially completed in a fraction of a second. The

hypothesis is therefore made that only those collisions lead to reaction in

which the sum of the energies of the colliding molecules exceeds a certain

critical value 16
. The problem is therefore to calculate the chance that a pair

of molecules has an energy greater than E.

The first question that arises is what energy is to be taken into considera-

tion. A complex molecule can acquire energy in various degrees of freedom:

translational kinetic energy, rotational kinetic energy, vibrational kinetic

and potential energy. Can all of this energy be utilized in effecting the re-

arrangement of bonds that is called a "chemical reaction" ?

The simplest form of the collision theory says that only two degrees of

freedom are utilized. These degrees of freedom can best be visualized as the

16 This hypothesis, that if energy is less than E there is never reaction, but if greater than
there is always reaction, is not very reasonable. A reaction probability that is some

function of the energy would be more logical.
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components of the translation of each molecule along the line of centers at

the time of collision. In other words, only the velocity components in the

direction of a head-on collision are effective. The chance that two molecules

have a relative head-on velocity r, such that \mc2 --
,
has already been

calculated, under a slightly different guise, in Chapter 7. Since the choice of

direction is entirely arbitrary, it is simply the distribution law in two dimen-

sions, eq. (7.35):

dn ^ I m \

n^

""

\kTJ

We wish to transform this expression into the distribution function for the

kinetic energy per mole, E^ }>Nmc2
. Since dE --- Nmc dc, and R = Nk,

the result is

^H - - _L e
~ EIRTdE

n RT
This is the chance of a molecule's having an energy between E and E + dE
in two degrees of freedom. The chance of its having an energy greater than

E is obtained by integrating from E to oo,

RT
_ e -EIRT

E

The simple collision theory for a bimolecular reaction therefore gives

for the number of molecules reacting per second:

dn number of collisions per sec x chance of

dt collision having energy E or greater

= Z e~EIRT

The velocity is usually expressed in moles per liter reacting per second,

dc/dt
= kfaCi. Since c =--- l&n/N, dc/dt

= (\&/N)dn/dt. The reaction rate

is, accordingly, .

dc _ \<Pdn 106

eft N dt N 2

N dn . L dn
~~ with
dt dt

Substituting the kinetic-theory expression for Z12 from eq. (17.18), we have

^
or k, = ---r- with - Z122 12

k2
= Ae-*'*T - e

-K'RT
(17.19)

1
3 ^

TTfl

This theoretical expression can be compared with experiment in several

ways. It contains three quantities that are not known a priori, the rate constant

&2 , the collision diameter dl2t and the activation energy E. The following

comparisons are possible: (1) With a value of E from the Arrhenius equation
for the temperature coefficient, and a value of dl2 from kinetic theory (e.g.,

viscosity), k2 can be calculated and compared with experiment. (2) With the
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experimental k2 at one temperature and the kinetic-theory c/12 , a calculated

value of E can be compared with the value from the temperature coefficient.

(3) With the experimental E and k2 , a dl2 can be calculated and compared
with kinetic-theory or electron-diffraction diameters.

Let us apply method (1) to the HI decomposition. Using the previously
cited values for the constants and for dl2 , we obtain

k - 7 r-EiRT _._ -_
2
~

103*2 n " "

103(1.05 x 101
')

2
*

---7.26 x

The experimental is 43,700 cal. Thus at 700K the calculated rate

constant is 2.10 x 10~3
liter mole"1 sec^1

. The experimental value obtained

by Bodenstein was 1.57 x 10~3
. The success of the collision theory in this

case is quite remarkable.

Unfortunately, there are few simple second-order gas reactions that can

be similarly tested. Table 17.3 contains some of the available data. The cal-

culated frequency factors A are usually around 1011
in units of liter mole"1

sec"1
, so that observed differences in the reaction velocities are caused mainly

by activation-energy differences. The experimental A values sometimes

deviate considerably from the theoretical.

TABLE 17.3

SECOND-ORDER GAS REACTIONS

Reaction ..,_ ,

Rate Constant

(liter sec'1 mole~l
)

(1) 2 HI -* H2 + I 2.05 x 10 r1/a *-4

(2) H2 + I
2
-> 2 HI 3.3 X 109 T1/2 e-38,900/J?T

(3) 2 NO2
-> 2 NO f O2 1.31 x 108 T 1 '2 ^-2

(4) 2 NOC1 -> 2 NO + C12 4.3 x 108 J1

(5) CH3I + HI - CH4 -f I2 5.22 x 1010

(6) C2H6I + HI -* C2H 6 + I2 1.34 x 10l T1/a ^-2

CH2

The collision theory gives a crude physical picture of how bimolecular

gas reactions occur which is roughly correct as far as it goes, but factors

other than an activation energy and a rigid-sphere collision frequency may
influence the rate of reaction. At one time it was popular to rewrite the

theoretical equation (17.16) as k2 =pAe~EIRT
9 where/?, which was called
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the stericfactor, was supposed to measure the geometrical requirements that

must be met if two colliding molecules are to interact. Since there was no

independent way to estimate p 9 it was always possible to assign whatever

value was necessary to obtain agreement with experiment. It became simply
a measure of the discrepancy between simple collision theory and the

experimental results.

tx<5ollision theory and activation energy. The collision-theory expression

for the rate constant contains, in addition to the strongly temperature-

dependent e~EIRT term, a mild temperature dependence in the frequency
factor. Equation (1 7. 19) can be written &2

= a T* /2e
~EIRT

9 so that d In k2/dT -=

(E + %RT)/RT
2

. Thus the Arrhenius energy of activation is Ea
-~~- E + %RT.

It is worth while to make this correction in performing calculations with the

theory, but it hardly affects the linear plot of In k vs. 1/7*.

There is no reason to assume that the activation energy should be strictly

independent of temperature and in careful work a slight temperature depend-
ence has often been noted. The dependence of the heat of reaction, AE or

A/f, on temperature is given by Kirchhoff's Equation (page 43) and Ea may
behave similarly.

17. First-order reactions and collision theory. The collision theory was

developed about the time of World War I by M. Trautz, W. C. McC. Lewis,

and others, and as we have seen, it gives a fairly satisfactory account of bi-

molecular reactions. At the same time a number of gas reactions were being
studied that were kinetically of the first order and apparently simple uni-

molecular decompositions. These reactions seemed to present a paradox: the

necessary activation energy must evidently come from the kinetic energy
transferred during collisions, yet the reaction velocity did not depend on the

collision frequency.
In 1919, a flurry of excitement was caused in the small world of kineticists

by the suggestion that the activation of molecules in these unimolecular

decompositions was actually effected, not by collisions, but by the absorption
of radiation from their environment, especially infrared radiation from the

walls of the reaction vessel. This theory was very short-lived since no radia-

tion effects could be demonstrated experimentally, and a better solution of

the problem was proposed shortly thereafter. In 1922, F. A. Lindemann

(now Lord Cherwell) showed how the collisional mechanism for activation

could lead to first-order kinetics.

Consider a molecule A which decomposes according to A -> B + C,

with a first-order rate law, d(A)/dt = k^(A). In a vessel full of A, the

intermolecular collisions are continually producing molecules with higher
than average energy, and indeed sometimes molecules with an energy above

some critical value necessary for the activation that precedes decom-

position. Let us suppose that there is a certain time lag between activation

and decomposition; the activated molecule does not immediately fall to

pieces, but moves around for a while in its activated state. Sometimes it
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may meet an energy-poor molecule, and in the ensuing collision it may be

robbed of enough energy to be deactivated.

The situation can be represented as follows:

k>

A -f A ^ A + A*
*- I *i

B+ C

Activated molecules are denoted by A*. The bimolecular rate constant for

activation is A'2 , for deactivation A'_2 . The decomposition of an activated

molecule is a true unimolecular reaction with rate constant AV
The process called activation consists essentially in transferring trans-

lational kinetic energy into energy stored in internal degrees of freedom,

especially vibrational degrees of freedom. 17 The mere fact that a molecule is

moving rapidly, i.e., has a high translational kinetic energy, does not make

it unstable. In order to cause reaction, the energy must get into the chemical

bonds, where high-amplitude vibrations will lead to ruptures, decompositions,

and rearrangements. The transfer of energy from translation to vibration can

occur only in collisions with other molecules or with the wall. The situation

is like that of two rapidly moving automobiles: their kinetic energies will not

wreck them unless they happen to collide and the kinetic energy of the whole

is transformed into internal energy of the parts.

The point of the Lindemann theory is that there is a lag between the

activation of the internal degrees of freedom and the subsequent decom-

position. The reason is that a polyatomic molecule can take up collisional

energy into a number of its 3n - 6 vibrational degrees of freedom, and then

some time may elapse before this energy flows into the one bond that breaks.

The Lindemann scheme cannot be treated exactly since the differential

equations to which it leads are not soluble in closed form. They are

dt

-d(A)

dt

An approximation is therefore made that is frequently used in chemical

kinetics when the mathematical going becomes too rough. This is the steady-

state approximation. It is assumed that after the reaction has been under way
for a short time, the rate of formation of activated molecules equals their

rate of disappearance, so that the net rate of change in (A*) is zero, d(A*)/dt
= 0. In justification of this assumption it can be said that there are not very

17 Sometimes it is necessary to change the electronic state of a molecule in order to

effect the reaction. Such reactions are exceptionally slow if they depend on thermal activa-

tion. They are called nonadiabatic reactions, an unfortunate name since it has nothing to

do with the term adiabatic as used in thermodynamics.
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many activated molecules present in any event. The value of (A*) is neces-

sarily small, so that the value of its rate of change must be small, and can

usually be set equal to zero without serious error.

With d(A*)jdt = 0, the first equation above becomes k2(A)
2

A'_2

(A*)(A) k^A*) = 0, and the steady-state concentration of A* is

(A*) -
k.'_2(A)

The reaction velocity is the rate at which A* decomposes into B and C, or

(

k(A*)
-) /

-- (17.20)
dt k_2(A) + k

l

Two special cases now arise.

If the rate of decomposition of (A*) is much greater than its rate of

deactivation, k^ :> k_2(A) and the net rate reduces to

This expression is the ordinary second-order law.

On the other hand, if the rate of deactivation of A* is much greater than

its rate of decomposition, k_2(A)^ k\, 300
and the over-all rate becomes

260

_
x 220

180

140

IOOH

60{

d(B) A'^
dt k . 2

Xl

It is evident that it is possible to obtain

first-order kinetics while preserving a

collisional mechanism for activation.

This will be the result whenever the

activated molecule has so long a life-

time that it is usually deactivated by
collision before it has a chance to break

into fragments.

Fortunately, there is a fairly critical

experimental test of the Lindemann

theory. As the pressure in the reacting

system is decreased, the rate of de-

activation, k_2(A*)(A), must likewise

decrease, and at low enough pressures

the condition for first-order kinetics

must always fail when k__2(A) is no longer much greater than kv The

observed first-order rate constant should therefore fall off at low pressures

to reach eventually a second-order constant.

In Fig. 17.9 are plotted the rate constants obtained by H. C. Ramsperger
18

18 H. C. Ramsperger, /. Am. Chem. Soc., 49, 912 (1927).

20*
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Fig. 17.9. Falling-off of rate constant

of azomethane decomposition at low

pressures:

(CH 3 )2
N2

- C2H 6 i N,.
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for the first-order thermal decomposition of azomethane at various initial

pressures. In most of the first-order reactions that have been investigated,

the rate constant decreases at low pressures (usually 10-100 mm). If the

falling rate constant is merely the result of a lowered probability of deactiva-

tion, it should be possible to restore the initial rate by adding a sufficient

pressure of a completely inert gas. This inert-gas effect has been noted in a

number of cases.

The Lindemann theory of unimolecular reactions is very plausible and

provides the best explanation for many experiments. Yet some reactions once

thought to be simple unimolecular decompositions have been shown to pro-

ceed via complex chain mechanisms, which often yield deceptively simple rate

laws. This aspect of gas kinetics will be considered a little later in the chapter.

18. Activation in many degrees of freedom. When the first-order rate

constant begins to fall at lower pressures, the rate of formation of activated

molecules is no longer much greater than their rate of decomposition, and in

fact the over-all rate is beginning to be determined by the rate of supply of

activated molecules. According to simple collision theory, therefore, the rate

at this point should be about Zue~ f:iRT
. When this prediction was compared

with experiment in the typical case of the azomethane decomposition, it was,

found that the reaction was going about 108 times faster than was permissible

by simple collision theory.

This unfortunate contradiction was soon remedied by C. N. Hinshelwood

and G. N. Lewis (independently). The e EIRT term used to calculate the

fraction of activated molecules is based on the condition that the critical

energy is acquired in two translational degrees of freedom only. If energy in

various internal degrees of freedom also can be transferred in collisions, the

probability of a molecule's getting the necessary E is much enhanced. Instead

of a simple e~EIRT term, the chance is now19

Here s is the number of "square terms" in which the energy can be acquired:

translational or rotational energy has one square term per degree of freedom,

\mv2 or i/w2
; vibrational energy has one for kinetic energy, i/wr

2
, and one

for potential energy, i/or
2

.

The rate of activation may now be increased by a large factor/,. For the

azomethane case, with E - 52,400, T = 563, the factor /,
=-- 108 when

s ----- 16. The observed rate of activation can therefore be explained by calling

on 16 "square terms" or about 8 vibrational degrees of freedom. Since the

molecule contains 10 atoms, there are altogether 3/16 ~ 24 vibrations.

The Lewis-Hinshelwood theory would include a third of these in the activa-

tion process.

19 This is a good approximate formula when E> RT. A derivation is given by Moelwyn-
Hughes, Physical Chemistry, p. 69.
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It has so far proved possible in every case to find a value of s that explains
the observed activation rate.

20 Since it may not be easy to transfer energy
from translation to vibration and from one vibration to another, the Lewis-

Hinshelwood theory would seem to necessitate extremely sticky collisions.

Moreover, a clear-cut decision on the validity of the theory is prevented by
the possible occurrence of chain reactions in many first-order decompositions.
It is now necessary to consider in some detail these chain reactions, which

add so many interesting complications to gas kinetics.

19. Chain reactions: formation of hydrogen bromide. After Bodenstein

had completed his study of the hydrogen-iodine reaction, he turned to

hydrogen-bromine, H2 -\- Br2
~ 2 HBr, probably expecting to find another

example of bimolecular kinetics. The results21 were surprisingly different, for

the reaction velocity was found to fit the rather complicated expression,

</(HBr)

dt m + (HBr)/(Br2)

where m and k are constants. Thus the velocity is inhibited by the product,
HBr. In the initial stages of the combination, (HBr)/(Br2) is a small fraction

so that d(HBr)/dt = '(H2)(Br2)
1/2

,
with an over-all order of 3/2.

There was no interpretation of this curious rate law for thirteen years.

Then the problem was solved independently and almost simultaneously by
Christiansen, Herzfeld, and Polanyi. They proposed a chain of reactions

with the following steps:

A-,

Chain initiation (1) Br2 -^2Br

Chain propagation (2) Br f H
2 '-^HBr (- H

(3) H + Br2 *'->HBr } Br

Chain inhibition (4) H + HBr --'- H2 -+ Br

*.

Chain breaking (5) 2 Br * Br2

The reaction is initiated by bromine atoms from the thermal dissociation

Br2
= 2 Br. The chain propagating steps (2) and (3) form two molecules of

HBr and regenerate the bromine atom, ready for another cycle. Thus very
few bromine atoms are needed to cause an extensive reaction. Step (4) is

introduced to account for the observed inhibition by (HBr); since this in-

hibition is proportional to the ratio (HBr)/(Br2^ it is evident that HBr and

Br2 compete, so that the atom being removed must be H rather than Br. .

In order to derive the kinetic law from the chain mechanism, the

20 R. A. Ogg, in J. Chem. Phys., 27, 2079 (1953), has proposed an interesting chain

mechanism for the N2O6 case, which previously appeared exceptional,
21 M. Bodenstein and S. C. Lind, Z. physik. Chem., 57, 168 (1906).
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stationary-state treatment is applied to the reactive atoms, which must be

present in low concentrations.

dt

A:2(Br)(H2) + *3(H)(Br2) + 4(H)(HBr) -

- - A:2(Br)(H2 )
-

Ar3(H)(Br2 )
-

A:4(H)(HBr)

These two simultaneous equations are solved for the steady-state concen-

trations of the atoms, giving

[k 1 1/2 (k I

(Br)- -!

(Br8 ) (H)-*g yf

The rate of formation of the product, HBr, is

^T^ " A'2(Br)(H2) f *3(HXBr2 ) Ar4(H)(HBr)

Introducing the values for (H) and (Br) and rearranging, we find

dYHBr) k AT, AT
-1

Ar
^2

A'
~^2(H )(Br W2

~dT~
~

k.3k~^
1 HHB^Br^F1

This agrees exactly with the empirical expression, but now the constants

k and m are interpreted as composites of constants for step reactions in the

chain. Note that kjk^ = K is the equilibrium constant for the dissociation

Br2
- 2Br.

The H2 -| C12 2 HCl reaction is more difficult to study. It is exceed-

ingly sensitive to light, which starts a chain reaction by photodissociation of

chlorine, C12 + hv -> 2 Cl. The subsequent reaction steps are similar to those

with Br2 . The thermal reaction proceeds similarly but it is complicated by
wall effects and traces of moisture and oxygen.

Why is the reaction of iodine with hydrogen so different from that of

bromine or chlorine? In the iodine case the most rapid mechanism is a

TABLE 17.4

THE HYDROGEN-HALOGEN REACTIONS
APPROXIMATE ACTIVATION ENERGIES OF ELEMENTARY STEPS
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homogeneous bimolecular combination, whereas with bromine the chain

mechanism provides a more rapid path. Whenever parallel processes are

possible, the most rapid one predominates. Approximate activation energies

for the different steps in the H2 -j X2 2 HX reactions are shown in

Table 17.4. The most significant differences are in the X + H 2 HX -f H
reaction. In the case of X = Br, this has an E ~ 24 kcal, and for X I,

E 34 kcal. The higher activation energy effectively prevents the chain-

propagation reaction with iodine atoms.

20. Free-radical chains. During the 1920's, a number of organic-molecule

decompositions were investigated that seemed to be straightforward uni-

molecular reactions displaying a marked Lindemann effect at low pressures.

It now appears that many of these reactions may actually have complicated
chain mechanisms. The clue to their character was found in the transient

existence of organic free radicals.

In 1900, Moses Gomberg discovered that hexaphenylethane dissociates in

solution into two triphenylmethyl radicals,

(C6H 5)3C-C(C6H 5 )3
-> 2 (C6H5 )3C

Such compounds with trivalent carbon atoms were at first believed to be

chemical anomalies capable of occurring only in complex molecules.

One of the first suggestions that simple radicals might act as chain

carriers in chemical reactions was made in 1925 by Hugh S. Taylor.
22 If a

mixture of hydrogen and mercury vapor is irradiated with ultraviolet light

of X =--- 2537 A, the mercury atoms are raised to a higher electronic state.

They then react with hydrogen molecules, producing hydrogen atoms:

Hg(
lS ) 1- M2537 A) -> Hge^)

HgePO I- H2
-> HgH ! H

If ethylene is added to the reaction mixture, there is a rapid reaction to form

ethane, butane, and some higher polymeric hydrocarbons. Taylor suggested
that the hydrogen atom combined with ethylene, forming a free ethyl radical,

C2H5 , which then started a chain reaction,

H + C2
H4 C2

H5

C2H5 + H2
- C2H6 + H, etc.

In 1929, F. Paneth and W. Hofeditz obtained good evidence that aliphatic

free radicals occur in the decomposition of molecules of the metallic alkyls,

such as mercury dimethyl and lead tetraethyl. The experiment of Paneth23
is

represented in Fig. 17.10. A current of pure nitrogen at 1-2 mm pressure was

saturated with lead tetramethyl vapor by passing over the liquid in A. The

vapors were next passed through a tube heated at B to about 450C. A lead

mirror was deposited on the tube at the heated section, owing to the de-

composition of the Pb(CH3)4 . The vapors from the decomposition, after

22 Trans. Faraday Soc., 21, 560 (1925).
23 Berichtet 62t 1335(1929).
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flowing down the tube a distance of 10 to 30cm, were passed over a pre-

viously deposited mirror of lead at 100C. It was observed that this mirror

was gradually removed. It appears therefore that the metal alkyl first breaks

into free methyl radicals, Pb(CH3)4
-> Pb 4- 4 CH3 . These are carried along

in the stream of nitrogen for a considerable distance before they recombine

to stable hydrocarbons. They remove metallic mirrors by reacting with the

metal to form volatile alkyls. Thus if the mirror is zinc, Zn(CH3)2 can be

recovered; if antimony, Sb(CH3)3 is recovered as the mirror is removed.

N, MOVABLE

.TO PUMPS

Fig. 17.10. Paneth apparatus for detection of free radicals.

From 1932 to 1934, F. O. Rice and his collaborators24 showed that the

thermal decomposition by the Paneth technique of many organic compounds
such as (CH3)2CO, C2H 6 and other hydrocarbons, gave products that would

remove metal mirrors. They therefore concluded that free radicals were

formed in the primary steps of the decomposition of all these molecules.

In 1935 an important theoretical advance was made by Rice and Herz-

feld.
25
They showed how free-radical chain mechanisms could be devised that

would lead to a simple over-all kinetics. The products from the decom-

positions were in good agreement with the proposed radical mechanisms. A
typical example is the following possible mechanism for the decomposition
of acetaldehyde, CH3CHO -> CH 4 + CO.

(1) CH3CHO -'-+ CH3 + CHO

(2) CH3CHO + CH3
-*1- CH 4 + CO + CH3

(3) 2CH3 ^C.He
One primary split into methyl radicals can result in the decomposition of

many CH3CHO molecules, since the chain carrier, CH3 , is regenerated in

step (2). Applying the steady-state treatment to the CH 3 concentration,

so that

dt

(CH3)

= = - *3(CH3)
2

(CH3CHO)1/2

24 F. O. Rice, J. Am. Chem. Sbc., 53, 1959 (1931); F. O. Rice, W. R. Johnston, and
B. L. Evering, ibid., 54, 3529 (1932); F. O. Rice and A. L. Glasebrook, ibid., 56, 2381 (1934).

25
/. Am. Chem. Soc., 56, 284 (1934).
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The reaction rate based on methane formation is then

^-^ = A'2(CH3)(CH3CHO) --
Ar2 t^Y* (CH3CHO)3/2

Ctt \^3'

The free-radical scheme predicts an order of 3/2. Actually the experi-
mental data do not permit a clear decision between a 3/2-order reaction and
a first-order reaction falling off gradually to second order in accordance wfth

the Lindemann theory.

According to the chain mechanism the empirical rate constant is actually

composite: /:3/2
=

2(&!/ 3)
1/2

. The empirical activation energy is therefore

related to the activation energies of the elementary reactions by Ea

The activation energy of the primary split El
can be calculated from the

heat of reaction, since Q -= El /, where "/ is the E for the reverse

reaction. For a radical recombination E is almost zero, so that Q ~ E
lt

Thus El can be set equal to the strength of the C C bond, about 84 kcal.

The energy E2 is about 8 kcal and E3 is close to 0. Therefore, the predicted
Ea
= 8 + 1(84 )

r 50 teal. The experimental Ea is 46 kcal.

A primary split into free radicals usually requires a high activation energy
whereas E for an elementary decomposition into the final products may be

considerably lower. Yet a rapid reaction is possible in spite of the high initial

E because of the long chain of steps of low activation energy following the

formation of the radicals. Sometimes the scales may be delicately balanced

between the two mechanisms, and in certain temperature ranges the radical

mechanism and the intramolecular-decomposition mechanism simultane-

ously occur to appreciable extents. There is good evidence that free-radical

chains play an important role in the pyrolyses of hydrocarbons, aldehydes,

ethers, ketones, metal alkyls, and many other organic compounds.
The observed first-order rate constants often decline with pressure, but

the free-radical theory also has an explanation for this behavior. At low

pressures it is easier for radicals to diffuse to the walls of the reaction vessel

where they are destroyed by adsorption and recombination. Thus the radical

chains are shorter at lower pressures and the rate constant declines.

21. Branching chains explosive reactions. Most spectacular of chemical

reactions are the explosions, which proceed so swiftly that they are com-

pleted within a fraction of a second. Special techniques are required to study
their kinetics. 26 The theory of chain reactions gives a good interpretation of

many of their peculiar features.

The formation of H2O from H2 and O2 when the mixture is heated or

reaction is otherwise initiated has been the subject of hundreds of papers,

and is still a problem for active research. This reaction displays the upper
and lower pressure limits characteristic of many explosions, as shown in

28
See, for example, Third Symposium on Combustion, Flame, and Explosion Phenomena

(Baltimore: Williams and Wilkins, 1949).
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Fig. 17.11. If the pressure of a 2: 1 mixture of H2 and O2 is kept below the

lower line on the diagram, the thermal reaction proceeds slowly. At a tem-

perature of 500, this lower pressure limit is shown at 1.5 mm, but its value

depends on the size of the reaction vessel. If the pressure is raised above this

value, the mixture explodes. As the pressure is raised still further, there is a

rather unexpected phenomenon. Above a pressure of 50 mm at 500C there

is no longer an explosion, but once again
a comparatively slow reaction. This upper

explosion limit is strongly temperature-

dependent, but it does not vary with size

of vessel.

There are two general reasons for an

explosive reaction. If an exothermic reaction

is carried out in a confined space, the heat

evolved often cannot be dissipated. The

temperature therefore increases, so that the

reaction is accelerated exponentially, and
there is a corresponding rise in the rate of

heat production. The reaction velocity in-

creases practically without bound and the

result is called a thermal explosion.

In other systems the thermal effects are

less decisive, and the explosion is due to a

different cause, namely, the occurrence of

branched chains in the reaction mechanism.

In the chain reactions discussed so far, each

propagating sequence leads to the forma-

tion of a molecule of product and the

regeneration of the chain carrier. If more than one carrier is produced from

the original one, we have a branched chain.

Let us see how the possibility of branching can influence the kinetics of

the following schematic chain reaction, in which R represents the reactive

chain carrier:

400 44O 460 520 560

TEMPERATURE,'C

Fig. 17.11. Explosion limits of

a stoichiometric hydrogen-oxygen
mixture in a spherical KCl-coated

vessel of 7.4 cm diameter. (After

B. Lewis and G. V. Elbe, Combus-

tion, Flames, and Explosions of

Gases, Academic Press, 1953, p. 29.)

R

R A
k

'-P

R destruction

In this scheme P is the final product and a is the number of chain carriers

formed from one initial R in the chain propagating step. The destruction of

chain carriers can occur in two ways. They may diffuse to the walls of the

reaction vessel where they become adsorbed and combine in a surface

reaction, or they may be destroyed in the gas phase.
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If the above scheme is to yield a steady reaction rate, d(R)/dt must be

zero.

-jf
= = k^AY ~ k2(R)(A) i aA' 2(/?)(/0

- kR)

k (AY1

or (R)
"

r

*,(/ixi r+ A-3

The probability of destruction, proportional to A:3 ,
can be written as the sum

of two terms, one k
(J

for the gas phase reaction, the other kw for the wall

reaction. Then

In all the cases previously treated a has been unity, so that (1 a) --= 0,

leaving a radical concentration proportional to the rate of formation over

the rate of destruction.

If a is greater than unity, chain branching occurs. In particular, a critical

situation arises when a becomes so large that A 2(/4)(a 1)
= kg + kw ,

for

then the denominator becomes zero and the carrier concentration goes to

infinity. The reaction rate is proportional to the concentration of the carrier,

so that it also increases without bound at this critical condition. The steady-

state treatment fails completely, and the reaction goes so rapidly that there

is an explosion.
It is now clear why there can be both upper and lower explosion limits.

The destruction rate at the wall kw depends on diffusion of carriers to the

wall and this is more rapid at low pressures. Thus when the pressure falls

to a point at which chain carriers are being destroyed at the wall as rapidly

as they are being produced, an explosive reaction is no longer possible.

This lower pressure limit therefore depends on the size and material of the

reaction vessel: in a larger vessel fewer radicals reach the wall.

The upper explosion limit is reached when destructive collisions in the

gas phase outweigh the chain branching. This upper limit usually increases

sharply with temperature, because the chain initiating and propagating steps

have an appreciable activation energy, whereas the chain breaking steps,

being recombinations of atoms or radicals, need little activation energy. In

fact, the presence of a third body is often required to carry off the excess

energy generated in the highly exothermic recombination reactions. The

velocity above the upper pressure limit often becomes so great that the

reaction passes over into a thermal explosion.
For the hydrogen-oxygen reaction a chain scheme somewhat like the

following appears to be reasonable:

(1) H2 + O2 ->HO2 + H
(2) H2 + HO2

-> OH + H2O

(3) OH + H2
-* H2 + H
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(4) O2 + H -> OH + O

(5) H2 + O ~> OH + H

(6) HO2 + wall -> removal

(7) H + wall -> removal

(8) OH + wall -> removal

The hydroxyl radical, OH, has been spectroscopically detected in the reaction

mixture. Chain branching occurs in steps (4) and (5) since OH, O, and H are

all active chain propagators.
22. Trimolecular reactions. The necessity of a third body to carry off the

excess energy in atom recombinations is well established. Studies have shown

that such reactions as M + H + H > H2 + M and M + Cl -f Cl -> C12 +
M are of the third order. The factors that determine the relative efficiencies

in promoting recombination of different third bodies M are of great interest

in connection with the problem of energy transfer between molecules. In a

study of the recombination of iodine and bromine atoms produced by thermal

decomposition of the molecules, Rabinowitsch27 measured the rate constants

for the reaction, X + X + M -- X2 + M: -d(X)ldt = k^(X)
2
(M). The

values of k3 in units of (molecules/cc)~
2 sec" 1 x 1032 were:

It is difficult to calculate the number of "triple collisions" that occur in

a gas, but a fairly good estimate should be that the ratio of binary collisions

Z12 to triple collisions Z121 is equal to the ratio of the mean free path to the

molecular diameter A/rf. As d is of the order of 10~8 cm, and A at 1 atm

pressure is about 10~5 cm for most gases, the ratio is about 1000. Rabino-

witsch found that this ratio, Z12/Z121 , closely paralleled the rate constants of

the halogen atom-recombination reactions. In this case at least, the efficiency

of the third body seems to depend mainly on the number of triple collisions

it undergoes.
Besides three-body recombinations, the only known gas reactions that

may be trimolecular are the third-order reactions of nitric oxide mentioned

on page 536. Trautz showed that these may actually consist of two bimole-

cular reactions; for example,

(1) 2 NO ^ N2O2

(2) N2 2 + 2
-'-

27
Rabinowitsch, Trans. Faraday Soc., 33, 283 (1937).
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If equilibrium is set up in (1), K = (N2O2)/(NO)
2

. Then, from (2),

ffi^ - *2(N2 2)(02) = M:(NO)2
(02)

The observed third-order constant is k3 = k2K.

23. The path of a reaction, and the activated complex. With the develop-
ment of quantum theory and statistical mechanics powerful tools became

available for a renewed theoretical attack on chemical kinetics. The simple

collision theory can give only qualitative results. It predicts that all bi-

molecular gas reactions have rate constants around \Qwe~EIRT liter sec"1

mole"1
,
and it is powerless to deal with deviations from this figure. Applied

to reactions in solution, the collision theory is even less adequate for there

is no unequivocal way of calculating a collision frequency in solution. The

newer theories of chemical kinetics dispense with the crude concept of a

collision and inquire how the potential energy of the system of nuclei and

electrons of the reacting molecules varies as the molecules are brought

together.

This is, of course, a problem for quantum mechanics, but it would be

hopeless to attempt an exact solution for complicated molecules. It may be

recalled that even in calculating stable equilibrium states for molecules, the

only success so far achieved has been in the case of H 2 , a two-electron

problem. On the experimental side, molecular spectra have provided much
information about the energy levels and potential-energy diagrams of mole-

cules, and some of these data help to elucidate molecular reactions.

The first successful application of quantum mechanics to a chemical

reaction was made in 1931 by Henry Eyring and M. Polanyi.
28
They chose

as their subject one of the simplest of all chemical processes, the reaction of

a hydrogen atom with a hydrogen molecule.

It is possible to follow this reaction because there are two nuclear-spin

isomers of H2 . Pure para-H2 can t>e made by cooling ordinary equilibrium
H2 (3 ortho to 1 para) to 190C in contact with a charcoal catalyst. This

para-Hz is then stable unless it is heated to high temperatures or brought
into contact with a catalyst after warming. In the presence of hydrogen

atoms, the reaction H + H2 (/?)
-> H 2 (0) + H occurs. This reaction was

studied by A. Farkas between 600 and 900C, the source of H atoms being
the thermal dissociation H2

= 2 H, whose equilibrium is well known. Geib

and Harteck29 followed the reaction between and 100C, using H atoms

produced by passing an electric discharge through H2 . The extent of con-

version could be followed by continuous measurement of the thermal con-

ductivity of the gas, which is different for/?- and o-H2 owing to the difference

in their specific heats. Both investigations agreed that the activation energy
of tine reaction is about 7.0 kcal.

28
Eyring and Polanyi, Z. physik. Chem., B 72, 279 (1931).

29 K. H. Geib and P. Harteck, Z. physik. Chem., Bodenstein Festband, 849 (1931).
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The reaction between hydrogen atoms and hydrogen molecules can also

be followed by using deuterium. Then, D + H H->D H + H. The

activation energy is 8.5 kcal.

Quantum mechanics treats the reaction as the problem of calculating

the potential energy of a system of three hydrogen atoms for all possible

distances of separation between the nuclei. It would seem at first that at

least six coordinates have to be used: atom (1) could be taken as fixed, and

then we could use x2y2z2 for atom (2) and .V3j3z3 for atom (3). Fortunately,

preliminary calculations showed that such great detail is not necessary; it is

sufficient to calculate the potential energy of the system as one atom, say D,

approaches along the line of centers of the molecule H H. This path will

be the most favorable for a reaction to follow, for in this way the approach-

ing atom overlaps the electron cloud of only one of the two other atoms.

Only two coordinates are therefore needed : r2 , the distance between the two

hydrogen nuclei H 4 and H#, and r
l9 the distance of D from H 4 .

The reaction then consists in moving the atom D along a straight line

through H H until it reaches an intermediate configuration D H H. As

the D atom nears the H H, the H atom on the opposite side gradually
stretches away, and finally, if reaction occurs, it departs along the line of

centers, leaving as final product D H + H.

To plot the potential energy as a function of r
t
and r2 , a three-dimen-

sional diagram is needed, but this plot can be represented by contour lines

on a planar map. By appropriately skewing the r
l
and r2 axes with respect

to each other, it is possible to represent the conversion of translational to

vibrational energy by the motion of a point (or ball) sliding on the potential-

energy surface.30

The completed diagram for the system D ~f H H is shown in (a),

Fig. 17.12. It will repay careful study until the three-dimensional form of the

potential energy landscape can be clearly visualized from the map. Even for

this simple system, the quantum-mechanical calculations are forced to rely

on some rather drastic approximations, but the result is essentially correct.

Consider a cut taken through the map at rt
= 4.0 A, i.e., at a D H

separation sufficiently large to leave the H H molecule practically undis-

torted. The cross section, shown in (b), Fig. 17.12, is then simply the poten-
tial energy curve for the H2 molecule that was described on page 298. The
lowest level is the zero point energy of H2 , 6.2 kcal per mole. Higher levels

represent vibrational excitation. The plateau at the northeast of the map
corresponds to complete dissociation of both hydrogen molecules into H
+ H + D. In accord with our previous data from the potential-energy
curve of H2 ,

it is 109 kcal high, or 103 kcal above the zero-point energy
in H2 .

If one travels along the valley floor, following the dashed line on the

30
S. Glasstone, K. J. Laidler, and H. Eyring, The Theory ofRate Processes (New York:

McGraw-Hill, 1941), p. 100.
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map, the view to right and left looks like the cross section in (b), Fig. 17.12.

The elevation, however, gradually rises as one traverses the mountain pass,

reaching a height of 14 kcal at the saddle point, whereupon there is a slight

40/1

10 15 20 25 30
ANGSTROMS -*-r,

(a)

40

1*2

(b)

Fig. 17.12. The potential-energy surface for the reaction D -f Ha
=

(After H. Eyring.)

HD + H.

dip into a shallow bowl or crater situated at the mid-point of the pass. This

depression, where the arrows make a turn on the map, occurs at a con-

figuration D H H, with T!
= r2 0.95 A. This distance is considerably

greater than the normal internuclear separation in H2, which is 0.74 A.
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The configuration at the midpoint of the mountain pass between the two

valleys is the activated complex for the reaction. When the system reaches

this configuration, it can either decompose into DH f H by moving down
into the other valley, or return along its original path into D (- H2 .

If the potential energy is drawn as a function of distance along the

reaction path (dashed line), Fig. 17.12 (c) is obtained. This diagram is almost

the same as Fig. 17.1 on page 531, and indeed the little depression at the

top of the path is not important to the argument. It is evident that the

minimum energy barrier that must be surmounted is 7.8 kcal, and this is

the calculated energy of activation for the reaction.

The potential-energy surface gives a picture of a chemical reaction from

beginning to end. In any reaction there is always a certain configuration at

the top of the barrier, the activated complex, which must be reached by the

reactants before transformation to products can occur. Only in very simple

examples can the potential-energy surface be calculated by quantum mech-

anics, and then only by means of drastic approximations. The important
feature of the new theory, however, is the clear physical picture it gives.

The concept of a collision of hard spheres is replaced by that of a smooth

and continuous transition from reactants to products.
24. The transition-state theory. The rate of any chemical reaction can be

formulated in terms of its activated complex.
31 The rate of reaction is simply

the number of activated complexes passing per second over the top of the

potential-energy barrier. This rate is equal to the concentration of activated

complexes times the average velocity with which a complex moves across to

the product side. It makes no difference how these complexes happen to be

formed, or how many intermediate stages there may be between reactants

and activated complexes. This fact vitiates at one stroke a good deal of

popular speculation on mechanisms leading from reactants to complexes.
The calculation of the concentration of activated complexes is greatly

simplified if it is assumed that they are in equilibrium with the reactants.

This equilibrium can then be treated by means of statistical mechanics. The

activated complex is not a state of stable equilibrium since it lies at a maxi-

mum and not a minimum of potential energy.
32 Yet more detailed calcula-

tions have shown that there is probably little error in treating the equilibrium

by ordinary thermodynamic or statistical methods, except perhaps in the case

of extremely rapid reactions.

31 The quantitative formulation of reaction rates in terms of activated complexes was
first extensively used in the work of H.

Eyring [/. Chem. Phys., 3, 107 (1935); Chem. Rev., 17,

65 (1935)]. This theory has been applied to a wide variety of "rate processes*' besides

chemical reactions, such as the flow of liquids, diffusion, dielectric loss, internal friction in

high polymers. Other noteworthy contributions to the basic theory were made by M. G.
Evans and M. Polanyi [Trans. Faraday Soc., 31, 875 (1935)], H. Pelzer and E. Wigner
[Z.ohysik. Chem., B 15, 445 (1932)].

*a
Strictly speaking the activated state should lie at the maximum in free energy. The

calculation of this would be even more difficult than the calculation of the potential energy
surface.
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For example, consider a simple bimolecular reaction :

A + B -+ (AB)* -> products

If the activated complex (AB)* is in equilibrium with reactants, the equili-

brium constant for the formation of complexes is K* = (AB*)/(A)(B). The

concentration of complexes is (AB)* K*(A)(B).

According to the transition-state theory, the rate of reaction is d(A)ldt

(AB)* x (rate of passage over barrier). The rate of passage over the

barrier is equal to the frequency with which the complex flies apart into the

products. The complex flies apart when one of its vibrations becomes a

translation, and what was formerly one of the bonds holding the complex

together becomes simply the line of centers between separating fragments.

The frequency v is equal to p/h where f is the average energy of the vibration

that leads to decomposition. Since this is by hypothesis a thoroughly excited

vibration at the temperature 7, it has its classical energy E = kT, and the

corresponding frequency becomes v - kT/h.

The reaction rate is therefore

The rate constant is

kT
k, ---- -- K* (17.22)

This is the general expression given by the transition-state theory for the

rate constant of any elementary reaction. To be precise, this expression for k2

should be multiplied by a factor K, the transmission coefficient, which is the

probability that the complex will dissociate into products instead of back into

reactants. For most reactions K is between 0.5 and 1.0.

The activated complex is similar to a normal stable molecule in every

respect save one. The sole difference is that one, of its vibrational degrees of

freedom is missing, having been transformed into the translation along the

reaction coordinate that leads to disruption of the complex. Instead of

3n 6 vibrations, therefore, a nonlinear complex has 3n 7. A linear

complex has 3/76 instead of the 3n 5 for a linear normal molecule.

The statistical expression for the equilibrium constant K*
9 from eq.

(12.41), is

Thus

k*
= T-7T e

~*SJ*T
(17 '23)

n JAJK

The /'s are the partition functions of activated complex and reactants, and

AE0 is the difference in the zero-point energies of reactants and complex,
* - (EOA + EOB + . . .)
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A thermodynamic formulation of eq. (17.22) can also be given by intro-

ducing the standard free energy change, A/^
* == RTln K

c
*. Note that

this is the difference between the free energy of the activated complex and

that of the reactants, when all are in their standard states. In this case the

standard state has been taken to be the state of unit concentration, because

rate constants are usually expressed in terms of concentrations. Since

AF* A//* - T AS *, eq. (17.22) becomes

The quantities A/70 *, A// *, and AS * are called the free energy of activa-

tion, the enthalpv or heat of activation, and the entropy of activation.

Now A//* is almost equivalent to the experimental energy of activation

Ea in the Arrhenius equation. Actually A//* =- AE* + P AK*. In liquid

and solid systems the P&V term is negligible at ordinary pressures, so that

fromeq. (17.24),

</ln*. E. W+ + RT
t ^ ^ = A/r* +^

In Ideal gases, A//* - A* + />AF* - AE* + A/7* RT. In this case,

therefore,

2 a _ A//* -
(A/7*

- l)RT

~dT
" " "" ~ '

and Ea
--= A//* - (A* - \)RT

The term Art* is the number of moles of complex, always equal to one,

minus the number of moles of reactants. In a unimolecular reaction, there-

fore, AA?* = 0; in a bimolecular reaction, A* 1, etc. The entropy
of activation can therefore readily be calculated from the experimental
k and Ea .

25. Collision theory and transition-state theory. Since the activated-

complex theory is more comprehensive than the collision theory, the latter

should appear as one of its special cases. This can be demonstrated by con-

sidering a bimolecular reaction between two atoms, A and B:

A + B -> (AB)* -> products

The statistical theory expresses the rate constant as

k .

2
~

h

The activated complex (A B)* has five degrees of freedom, three trans-

lational and two rotational (the missing vibration has disappeared into the

decomposition coordinate). The atoms A and B have translational degrees of
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freedom only. Using the formulas of Chapter 12, the rate constant, with

concentration units of molecules per cc, can be written

k =.
k
_L .

2
h

Note that the mass of the activated complex is m* = m
t |

mn . If r
,

is the internuclear separation, the moment of inertia of the complex is

Introducing this value of / into the expression for A'2 ,

JSJRT

This becomes identical with the collision-theory expression in cq. (17.19)

when expressed in the same units.

Thus the transition-state theory reduces to collision theory when the

reactants are two atoms, or more generally, whenever all terms due to

internal degrees of freedom, except two rotational terms, cancel out between

reactants and activated complex. The essential defect of the collision theory
is revealed to be its neglect of internal degrees of freedom. It treats the

reactant molecules as rigid spheres rather than as pulsating structures of

nuclei and electrons. The old steric or probability factor
/;
was a measure of

this deficiency. The transition-state theory gives a formally complete account

of the effect of internal degrees of freedom, yet we never have adequate
details of the dimensions of the activated complex and its vibration fre-

quencies. The best that can be done is to assign approximate values to the

partition functions, based on our experience with normal molecules.

The probability of reactions between polyatomic molecules may be

lowered because rotational and translational freedoms are lost when the

reactants are tied together into the activated complex. This loss of freedom

or increase in order is measured also by the entropy of activation, which

simply expresses the statistical factors in thermodynamic language.
26. The entropy of activation. The idea of an entropy of activation was

developed by Rodebush, La Mer, and others, before the advent of the

activated-complex theory, which gave it a precise formulation.

A positive activation entropy AS* means that the entropy of the complex
is greater than the entropy of the reactants. A loosely bound complex has

a higher entropy than a tightly bound one. More often there is a decrease

in entropy in passing to the activated state.

In bimolecular reactions the complex is formed by association of two

individual molecules, and there is a loss of translational and rotational free-

dom, so that AS* is negative. In fact, sometimes AS* is not notably different
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from AS for the complete reaction. This situation is often found in reactions

of the type A -f B -> AB, and indicates that the activated complex (AB)* is

similar in structure to the product molecule AB.

Formerly such reactions were considered to be very "abnormal" since

they had to be assigned very low steric factors. It is now clear that the slow

velocity is simply the result of the increase in order, and consequent decrease

in entropy, when the complex is formed.

27. Theory of unimolecular reactions. The essential theoretical problem in

unimolecular reactions is to extend and refine the Lindemann theory, so that

we can interpret the kinetic constants in terms of the molecular structures and

vibration frequencies of the reacting molecules. Once a molecule has obtained

more than a certain critical amount of internal energy, it is said to be activated.

The first part of the problem is to calculate the rate at which a molecule can

accumulate this energy. The next question is how long will it take, on the

average, for this energy to flow into the bond which is to be broken in the

decomposition process. Kassel33 and others, in 1932, modified the simple

equation (17.20) to take into consideration the fact that the lifetime of an

activated molecule must depend upon the amount of internal energy that it

has acquired in excess of the minimum critical amount required for dissocia-

tion. This theory has been greatly extended by N. B. Slater.34 For the limiting

high-pressure rate (first-order rate constant), Slater finds the expression

/, V--EOIRT /\ 7 *>c\k
l
^ ve (1/.Z3)

where v is a weighted root mean square of the frequencies of the normal

modes of vibration of the molecule.

Va>, 2
\
1/2

The constants a
t ,

called amplitude factors, can be calculated from the force

constants of the vibrations, and the masses of the atoms in the molecule.

Confirmation of the general form of eq. (17.25) is provided by the fact that

molecular vibration frequencies v are of the order of 1013 sec" 1
,
and the fre-

quency factors of most unimolecular reactions cluster closely about this

figure.

The more difficult part of the theory is to calculate the pressure dependence
of the rate in the region where the collisional activations are insufficient to

maintain a first-order kinetics. Slater has obtained a solution for this problem
also, based on a treatment of the vibrating molecule as a collection of classical

harmonic oscillators. The results of this theory are most encouraging, but

their mathematical form is not very succinct, and we must refer the reader to

the original papers for the detailed theoretical equations.

33
L. S. Kassel, J. Chem. Phys., 21, 1093 (1953). This paper contains references to the

earlier work.
34 N. B. Slater, Proc. Roy. Soc., A, 218, 224 (1953); PhiL Trans. A, 246, 57 (1953).
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28. Reactions in solution. It has not been possible to make a complete
theoretical analysis of the rates of reactions in liquid solutions, although

many special aspects of such reactions are quite well understood. It might
seem that collision theory should hardly be applicable at all, since there is

no unequivocal way of calculating collision frequencies. It turns out, how-

ever, that even the gas-kinetic expressions sometimes give reasonable values

for the frequency factors.

First-order reactions, such as the decomposition of N2O5 , C12O, or

CH2I2 , and the isomerization of pinene, proceed at about the same rate in

gas phase and in solution. It appears, therefore, that the rate is the same

whether a molecule becomes activated by collision with solvent molecules

or by gas-phase collisions with others of its own kind. It is more remarkable

that many second-order, presumably bimolecular, reactions have rates close

to those predicted from the gas-kinetic collision theory. Some examples are

shown in the last column of Table 1 7.5. The explanation of such an agreement
seems to be the following. Any given reactant solute molecule will have to

diffuse for some distance through the solution before it meets another

reactant molecule. Thus the number of such encounters will be lower than in

the gas phase. Having once met, however, the two reactant molecules will

remain close to each other for a considerable time, being surrounded by a

"cage" of solvent molecules. Thus repeated collisions between the same pair

of reactant molecules may occur. The net result is that the effective collision

number is not much different from that in the gas phase.

TABLE 17.5

EXAMPLES OF REACTIONS IN SOLUTION

Reaction

C2H 5ONa + CH 3 I

C2H 5ONa I C6H5CH 2 I

NH4CNO -> (NH2)2CO
CH2C1COOH I OH-
C2H 5Br + OH-
(C2H 5 )3N f C2H5Br

CS(NH2)2 + CH3I

C l2H 22On + H 2
-> 2 C6H 12 6

(sucrose)

There are other cases in which the calculated constant deviates by factors

ranging from 109 to 10~9
. A high frequency factor corresponds to a large

positive AS1

*, and a low frequency factor to a negative AS*. The remarks

on the significance of AS* in gas reactions apply equally well here.

Association reactions may be expected to have low frequency factors
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owing to the decrease in entropy when the activated complex is formed. An

example is the Menschutkin reaction, combination of an alkyl halide with a

tertiary amine: (C2H5)3N + C2H6Br -> (C2H5)4NBr. Such reactions have

values of AS* from 35 to 50 eu, usually nearly equal to the AS for the

complete reaction.

A striking example of another kind is found in the rates of denaturation

of proteins. Every time we boil an egg, we carry out, among other reactions,

the denaturation of egg albumin from a soluble globular protein to an in-

soluble fibrous protein. A remarkable property of the denaturation reaction

is its unusually high temperature coefficient. Atop Pikes Peak, where water

boils at 91C, it would take 12 hours to hardboil an egg (without a pressure

cooker). Since about 10 minutes are required at 100C the corresponding

energy of activation is 130 kcal. This is a surprisingly high figure when it is

remembered that the usual reaction proceeding at a measurable rate at 100C
has an activation energy of about 15 kcal. From an activation-energy stand-

point one might think that it should be impossible to hardboil an egg at all.

The reason why the reaction does proceed quite rapidly is that it has the

extraordinarily high positive entropy of activation of -j 315.7 eu.

The native protein is a highly organized structure; it is the very anti-

thesis of randomness or disorder. The denaturated protein, by contrast, is

disordered and random. In such a change there is a great entropy increase,

and apparently the activated complex partakes of a good deal of the dis-

orderliness of the final product. Bound water molecules or ions may be set

free on denaturation, also contributing to the increase in entropy. Hence the

high AS* and the possibility of the hardboiled egg.

29. Ionic reactions salt effects. Electrostatic interactions cause the equi-

librium properties of ionic solutions to deviate greatly from ideality. The

same causes are responsible for a number of unusual features in the kinetics

of reactions between ions. The first effective treatment of these reactions was

provided by J. N. Br0nsted and N. Bjerrum in their activity-rate theory.

Proposed in 1922, this is essentially an activated-complex theory applied to

charged particles.

Consider a reaction between two ions, A z* and BZ
B, ZA and ZB being the

ionic charges. It proceeds through an activated complex, (AB)
1
-^**.

A ZA
-{- BZB -> (AB)

Z*+ Z* > products

Example: S2O8

~-
\- \~ -> (S2O8 if - > 2SO4 + i! 2

The complex is considered to be in equilibrium with reactants, but since

we are dealing with ions, it is necessary to express the equilibrium constant

in activities rather than concentrations:
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The tf's and y's are the activities and activity coefficients. The concentration

of activated complexes is c* =

0.60

.30

Fig. 17.13. Variations of rates of ionic reactions with the ionic strength. The circles

are experimental values: the lines are theoretical, from eq. (17.27).

(1) 2[Co(NH 3) 5Br]^ f Hg++ -\- 2H 2O - 2[Co(NH 3)6H 2O]+++ -f HgBr2

(2) S 2 8

=
4- 21- = I 2 4 2S04

=

(3) [NO 2NCOOC 2H 5]- -4- OH- - N 2O 41 CO3
= + C2H 5OH

(4) Inversion of cane sugar
(5) H 2 2 -f 2H + f 2Br~ = 2H aO 4 Br a

(6) [Co(NH 3) 5Br]++ -f OH~ - [Co(NH3)5OH]^ ^ + Br~

The reaction rate is (dcA/dt)
= k2cAcB = (kT/h)c*. The rate constant is

(17.26)
n y

' n y

In dilute aqueous solution the activity coefficient terms can be estimated

from the Debye-Hiickel theory. From eq. (15.51), at 25C in an aqueous

U
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solution, Iog10 y l

-= 0.509 zf^s. Taking the loglo of eq. (17.26) and sub-

stituting the Debye-Huckel expression, we get

kT v 4v /;>

logw *8 -=log10 -;-A:* + log10^n y~*~

B + [ 0.509 z/ - 0.509 z
/?

2 + 0.509 (ZA + z
/?)

2
] vA

logw *2
* + 1.018 z 4z7,v^ (17.27)

The constant Iog10 (kTjh)K* has been written as B.

The Br0nsted equation (17.27) predicts that the plot of Iog10 A'2 vs. the

square root of the ionic strength should be a straight line. For a water solution

at 25C the slope is nearly equal to ZAZB , the product of the ionic charges.
Three special cases can occur:

(.1) If z
,
and z/y have the same sign, z^z7/ is positive, and the rate constant

increases with the ionic strength.

(2) If ZA and zn have different signs, zAzn is negative, and the rate con-

stant decreases with the ionic strength.

(3) If one of the reactants is uncharged, zAzH is zero and the rate constant

is independent of the ionic strength.

Those theoretical conclusions have been verified in a number of experi-

mental studies. A few examples are illustrated in Fig. 17.13. This change of

k2 with s is called the primary kinetic salt effect. It should be noted that the

ionic strength s is calculated from iw
tz,

2
,
and the summation is extended

over all the ionic species present in solution, not merely the reactant ions.

Much of the earlier work on ionic reactions is comparatively useless

because the salt effect was not understood. It is now often the practice in

following the rate of an ionic reaction to add a considerable excess of an

inert salt, e.g., NaCl, to the solution, so that the ionic strength is effectively

constant throughout the reaction. If pure water is used, the change in ionic

strength as the reaction proceeds may lead to erratic velocity constants.

30. Ionic reaction mechanisms. Besides the salt effect discussed by

Br0nsted, specific interactions between the ions in solution may influence

the reaction rates. For reactions between ions of the same charge sign, the salt

effect often appears to be governed predominantly by the concentrations and

charges of those added ions with a sign opposite to that of the reactant ions.35

The mechanism of ionic reactions is often indirectly determined by
electrostatic factors, in particular the strong repulsion between ions of the

same sign. The reaction 2 Fe i3 + Sn F2 2 Fe f2 + Sn f4
,
for example, occurs

rapidly, but the mechanism is probably a series of steps involving the transfer

of single electrons between species of opposite charge sign :

36

SnCl2 |- 2 Cl~ ^ SnCl4

SnCl4 + Fe+3 -> Fe+2 + SnCl4

"

SnCl4
- + Fe+3 -> Fe+2 + SnCl4

35 A. R. Olson and T. R. Simonson, /. Chem. Phys., 77, 1167 (1949).
86

J. Weiss, J. Chem. Soc., 309 (1944).
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Another instance is the over-all reaction,

5 HBr + HBrO3
= 3 Br2 + 3 H 2O

The rate equation is </(Br2 )/<//
= A'(H+)

2
(Br-)(BKV). Note that the rate

equation bears no relation to the stoichiometric equation. Owing to electro-

static repulsion, it is unlikely that Br~ and BrO3

~
ions react directly, and the

following rate controlling step is suggested by the rate equation:

HBr t HBrO3
-* HBrO + HBrO2

Rapid secondary reactions yield the final products. Since (HBr) ~ (H K
)(Br~),

and (HBrO3 )
~ (H+)(BrO3~), the observed kinetics is obtained.

31. Catalysis. The word "catalysis" (Katalyse) was coined by Berzelius

in 1835: "Catalysts are substances which by their mere presence evoke

chemical reactions that would not otherwise take place." The Chinese Tsoo

Mel is more picturesque; it also means "the marriage broker," and so

implies a theory of catalytic action. The idea of catalysis extends far back

into chemical history. The quest of the alchemist for the philosopher's stone

seems like the search of the modern petroleum chemist for the magical

catalyst that will convert crude petroleum into high octane fuel. In a four-

teenth-century Arabian manuscript, Al Alfani described the "Xerion, aliksir,

noble stone, magisterium, that heals the sick, and turns base metals into

gold, without in itse/f undergoing the least change" The earliest consciously
used catalysts were the ferments or enzymes. "In the seeding and growth of

plants, and in the diverse changes of the fluids of the animal body in sickness

and in health, a fermentative action takes place" (Marquers, 1778).

Noteworthy was the idea that a mere trace of catalyst suffices to produce

great changes, without itself being changed. Its action has been likened to

that of a coin inserted in a slot machine that yields valuable products and

also returns the coin. In a chemical reaction the catalyst enters at one stage

and leaves at another. The essence of catalysis is not the entering but the

falling out.

Wilhelm Ostwald was the first to emphasize that the catalyst influences

the rate of a chemical reaction but has no effect on the position of equi-

librium. His famous definition was: "A catalyst is a substance that changes
the velocity of a chemical reaction without itself appearing in the end

products." Ostwald showed that a catalyst cannot change the equilibrium

position, by a simple argument based on the First Law of Thermodynamics.
Consider a gas reaction that proceeds with a change in volume. The gas is

confined in a cylinder fitted with a piston; the catalyst is in a small receptacle
within the cylinder, and can be alternately exposed and covered. If the

equilibrium position were altered by exposing the catalyst, the volume

would change, the piston wouVJ move up and down, and a perpetual-motion
machine would be available.

Since a catalyst can change t^ rate but not the equilibrium, it follows
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that a catalyst must accelerate the forward and reverse reactions in the same

proportion, since K = k
fjk b . Thus catalysts that accelerate the hydrolysis of

esters must also accelerate the esterification of alcohols; dehydrogenation

catalysts like nickel and platinum are also good hydrogenation catalysts;

enzymes like pepsin and papain that catalyze the splitting of peptides must

also catalyze their synthesis from the amino acids.

A distinction is generally made between homogeneous catalysis, the

entire reaction occurring in a single phase, and heterogeneous catalysis at

phase interfaces. The latter is also called contact or surface catalysis.

32. Homogeneous catalysis. An example of homogeneous catalysis in the

gas phase is the effect of iodine vapor on the decomposition of aldehydes and

ethers. The addition of a few per cent of iodine often increases the rate of

pyrolysis several hundredfold. The reaction velocity follows the equation,

Dependence of the rate on catalyst concentration is characteristic of homo-

geneous catalysis. The catalyst acts by providing a path for the decomposi-
tion that has a considerably lower activation energy than the uncatalyzed

path. In this instance the uncatalyzed pyrolysis has an Ea
- 53 kcal, whereas

with added iodine the Ea drops to 34 kcal.

Most examples of homogeneous catalysis have been studied in liquid

solutions. In fact, catalysis in solution is the rule rather than the exception,
and it can even be maintained that most reactions in liquid solutions would

not proceed at an appreciable rate if catalysts were rigorously excluded.

Since the catalysts are usually acids and bases, it is not easy to controvert

this hypothesis.
The general formulation of catalysis in solution postulates the formation

of an intermediate complex between reactant and catalyst. Suppose the

change A -> B is catalyzed by a substance X, through formation of an

intermediate /. Then

A + X ^ /, I--+B+X
t-i

'

Making the steady-state assumption, d(I)/dt
=

0, we find

i i 2

Two limiting cases of eq. (17.28) now arise. If k^^k2 , most of the

complexes /revert to the initial reactant A, and only a small fraction proceed
to the final product B. Then eq. (17.28) becomes f^A/^-i) (A)(X\ and the

decomposition of the intermediate is the rate-determining step. In a case like

this, / is called an Arrhenius intermediate.

The other limiting case is 2> k_v Tten the slow step is the rate of

formation of intermediate /, and eq. (17.2*) reduces to k^A^X). This kind



Sec. 33] CHEMICAL KINETICS 577

of / is called a van't Hoff intermediate. In either case, the over-all rate is

proportional to the catalyst concentration (X).

The distinction between the two types of intermediate is in most cases

difficult or impossible to make experimentally.
37 In any case, the catalysts

usually act by lowering the activation energy of the reaction.

The reaction, 2I~ ~f- S2O8

=
-> I2 + 2SCV, is markedly catalyzed by

ferrous or ferric ions. Copper ions have a lesser effect. When Fe++ and

Cu-^ ions are both added, their effects are not simply additive; the rate

is still more enhanced. This phenomenon is called promoter action and is

often observed in catalysis. For example, /V/2,500,000 Cu++ has itself no

detectable effect on the velocity, but added to a reaction mixture that

already contains yV/32,000 Fe++ , it increases the rate by 15 per cent. A
possible explanation is that the promoter selectively catalyzes the decom-

position of the intermediate formed with the first catalyst, i.e., it increases

the constant k2 in eq. (17.28).

33. Acid-base catalysis. Among the most interesting cases of homo-

geneous catalysis are reactions catalyzed by acids and bases. This acid-base

catalysis is of the utmost importance, governing the rates of a great number

of organic reactions, and especially many of the processes of physiological

chemistry, for it is likely that many enzymes act as acid-base catalysts.

The earliest studies in this field were those by Kirchhoff in 1812 on the

conversion of starch to glucose by the action of dilute acids, and by Thenard

in 1818 on the decomposition of hydrogen peroxide in alkaline solutions.

The classic investigation of Wilhelmy in 1 850 dealt with the rate of inversion

of cane sugar by acid catalysts. The hydrolysis of esters, catalyzed by both

acids and bases, was extensively studied in the latter half of the nineteenth

century. The catalytic activity of an acid in these reactions became one of

the accepted measures of "acid strength," being very useful to Arrhenius

and Ostwald in the early days of the ionization theory.

In Table 17.6 are some of Ostwald's results on sucrose inversion and

methyl-acetate hydrolysis. If we write the acid as HA these reactions are

C12H22On -f H2 + HA -> C6H12 6 + C6H12O6 + HA
CH3COOCH3 + H2O + HA -> CH^COOH + CH3OH + HA

The reaction rate may be written dx\dt = ^CH3COOCH3)(H2O)(HA).

Since the water is present in large excess, its concentration is effectively

constant. The rate therefore reduces to: dxjdt = fc"(HA)(CH3COOCH3).

Now k*' is called the catalytic constant. The values in Table 17.6 are all

relative to HC1 = 100.

Ostwald and Arrhenius showed that the catalytic constant of an acid is

proportional to its equivalent conductivity. They concluded that the nature

of the anion was unimportant, and that the only active catalyst was the

hydrogen ion, H+.
87 Cf. G. M. Schwab, H. S. Taylor, and R. Spence, Catalysis (New York: Van Nostrand,

1937), p. 68.
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TABLE 17.6

OSTWALD'S DATA ON THE CATALYTIC CONSTANTS OF DIFFERENT ACIDS

In other reactions it was necessary to consider the effect of the OH~ ion

and also the rate of the uncatalyzed reaction. This led to a three-term equa-
tion for the observed rate constant, k --- A' f A'H .(H

f
) -)- A'OH_(OH-). Since

in aqueous solution Kw - (H+)(OH~),

* = * + *H .(H+) +^^ (17.29)

Since Kw is about lO"14
,
in 0.1 N acid (OH~) is 10~13

, and in 0.1 N base

(OH~) is 10-1
. There is a 1012-fold change in (OH~) and (H+) in passing

o
o

pH

Fig. 17.14. Acid-base catalysis: the influence ofpH on rate constants.

from dilute acid to dilute base. Therefore the (OH~) catalysis will be negli-

gible in dilute acid and the (H+) catalysis negligible in dilute base, except in

the unusual event that the catalytic constants for H4 and OH- differ by as

much as 1010 . By measurements in acid and basic solutions it is therefore

generally possible to evaluate kn + and &OH _ separately.
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If kH+ = ii- a minimum in the over-all rate constant occurs at the

neutral point. If either kn+ or /:OH - is very low, there is no rise in k on the

corresponding side of the neutral point. These and other varieties of rate

constant vs. pH curve, arising from different relative values of & , /CH ,, and

^OH- are shown in Fig. 17.14.

Examples of each of the different types have been studied experimen-

tally.
38
They include the following:

(a) The mutarotation of glucose

(b) Hydrolysis of amides, y-lactones, esters; halogenation of acetone

(c) Hydrolysis of alkyl orthoacetates

(d) Hydrolysis of /Mactones, decomposition of nitramide, halogenation
of nitroparaffins

(e) Inversion of sugars, hydrolysis of diazoacetic ester, acetals

(f) Depolymerization of diacetone alcohol; decomposition of nitroso-

acetonamine

34. General acid-base catalysis. Advances in our understanding of acid-

base catalysis have been closely linked with improvements in the theory of

electrolytic solutions. The early notion that the conductance ratio, A/A , of

a strong electrolyte measures its degree of dissociation has been superseded

by the Debye-Hiickel idea of complete ionization. In fact, one of the first

evidences for the latter viewpoint was the observation of Bjerrum that the

catalytic activity of strong acids is proportional to their total concentration

in solution rather than to the H+ concentration as calculated from the

Arrhenius theory.

The influence of added salts in the primary kinetic salt effect has already
been noted. In addition to this direct dependence of reaction rate on ionic

strength, there is an indirect influence important in catalyzed reactions. In

solutions of weak acids and bases, added salts, even if they do not possess

a common ion, may change the H+ or OH~ ion concentration through their

effect on the activity coefficients. For an acid HA -> H+ + A~,

Any change in the ionic strength of the solution affects the y terms and

hence the concentration of H f
. Consequently, if the reaction is catalyzed

by H 1 or OH" ions, the reaction rate is dependent on the ionic strength. This

is called the secondary kinetic salt effect. Unlike the primary effect it does not

alter the rate constant provided this is calculated from the true H+ or OH~
concentration.

The broader picture of the nature of acids and bases given by the work

of Br0nsted and Lowry (page 469) implies that not only H+ and OH~ but

also the undissociated acids and bases should be effective catalysts. The

38 See A. Skrabal, Z. /. Elektrochem., 33, 322 (1927); R. P. Bell, Acid-Base Catalysis

(New York: Oxford, 1941).
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essential feature of catalysis by an acid is the transfer of a proton from acid

to substrate,
39 and catalysis by a base involves the acceptance of a proton

by the base. Thus in Br0nsted-Lowry nomenclature, the substrate acts as a

base in acid catalysis, or as an acid in basic catalysis. In the case of hydrogen
ion catalysis in aqueous solution, the acid is really the hydronium ion, OH3+.

For example, the hydrolysis of nitramide is susceptible to basic but not

to acid catalysis.

NH2N02 + OH- -> H2 + NHN02

~

NHNO2

~ -> N2O + OH-

Not only the OH~ ion but also other bases can act as catalysts, e.g., the

acetate ion :

NH2N02 + CH3COO- >CH3COOH + NHNO2

~

NHNO2
~ -> N2O + OH-

OH- + CH3COOH -> H2O + CH3COO~

The reaction rate with different bases B is always v = kB(B) (NH2NO2).

Br0nsted found that there was a relation between the catalytic constant kB
and the dissociation constant KB of the base, namely,

kB - CKJ (17.30)

or log kB = log C + $ log KB
Here C and /? are constants for bases of a given charge type. Thus the

stronger the base, the higher the catalytic constant.40

The nitramide hydrolysis displays general basic catalysis. Other reactions

provide examples of general acid catalysis, with a relation like eq. (17.30)

between kA and KA . There are also reactions with both general acid and

general basic catalysis.

Since a solvent like water can act as either an acid or a base, it is often

itself a catalyst. What was formerly believed to be the uncatalyzed reaction,

represented by kQ in eq. (17.29), is in most cases undoubtedly a reaction

catalyzed by the solvent acting as acid or base.

35. Heterogeneous reactions. In our description of homogeneous reactions

a number of instances have been noted in which the surface of the reaction

vessel has a definite influence on the kinetics. Such an effect is very important
in establishing the lower pressure limit of an explosive chain reaction. There

are many reactions whose velocities are immeasurably slow in homogeneous

gaseous or liquid solutions, but which go quite swiftly if a suitable solid

surface is available. In fact, in some instances the solid surface can alter the

entire course of the reaction.

The earliest instance of this contact action or contact catalysis was the

dehydrogenation of alcohols by metals studied by van Marum in 1796. In

39 Substance whose reaction is being catalyzed.
40 For polybasic bases, a correction must be made. See R. P. Bell, op. cit., p. 83.
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1817, Davy and Dobereiner investigated the glowing of certain metals in a

mixture of air and combustible gases ; and in 1 825, Faraday worked on the

catalytic combination of hydrogen and oxygen. These studies laid the

experimental foundations of heterogeneous kinetics.

An interesting example was found41 in the bromination of ethylene:

C2H4 + Br2
-- C2H4Br2 . This reaction goes quite readily in a glass vessel

at 200C, and it was at first thought to be an ordinary homogeneous com-

bination, but the rate seemed to be higher in smaller reaction vessels. When
the vessel was packed with lengths of glass tubing or with glass beads, the

rate was considerably enhanced. This method is frequently used for detecting

wall reactions. An increased rate in a packed vessel indicates that a con-

siderable share of the observed reaction is heterogeneous, on the packing and

wall, rather than homogeneous, in the gas phase only. A further test was

made by coating the inside of the reaction bulb with paraffin wax. This

coating inhibited the reaction almost completely.

The decomposition of formic acid illustrates the specificity often dis-

played by surface reactions. If the acid vapor is passed through a heated

glass tube, the reaction is practically one-half dehydration and one-half

dehydrogenation.

(1) HCOOH -> H 2O I CO
(2) HCOOH -> H 2 + CO2

If the tube is packed with alumina, A1 2O3 , only reaction (1) occurs; but if

it is packed with zinc oxide, ZnO, (2) is the exclusive result. Thus different

surfaces can accelerate different parallel paths, and so in effect determine the

nature of the products.

It seems evident that the catalytic action of a surface depends on its

adsorption of the reactants. Many features of heterogeneous kinetics can be

explained by this hypothesis and the application of Langmuir's equation.
A surface reaction can usually be broken into the following elementary

steps :

(1) Diffusion of reactants to surface

(2) Adsorption of reactants at surface

(3) Chemical reaction on the surface

(4) Desorption of products from surface

(5) Diffusion of products away from surface

These are consecutive steps and if any one is much slower than all the others,

it will become rate-determining.

Steps (1) and (5) are usually rapid. Only with extremely active catalysts

might they determine the over-all rate. Diffusion has a \/T and chemical

reaction has an e~ ElRT temperature dependence. Therefore, if a catalytic

reaction rate increases only slightly with temperature, it may be diffusion-

controlled.

41 R. G. W. Norrish, /. Chem. Soc., 3006 (1923).
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Steps (2) and (4) are generally more rapid than step (3), but reactions are

known in which they may be the slow stages. Usually, however, the reaction

at the surface, step (3), is believed to be rate-determining.

36. Gas reactions at solid surfaces. The Langmuir isotherm (page 515)

is based on th
r
e gradual coverage of a surface with adsorbed molecules,

saturation occurring when the adsorbed layer is uniformly one molecule

thick. The isotherm is especially applicable to cases of chemisorption, in

which the adsorbed molecules are held to the surface by bonds comparable
with those in chemical compounds. This is also the kind of adsorption that

can greatly accelerate reaction rates, the chemisorbed layer playing the role

of an intermediate compound in catalyzing the reaction. On the other hand,

physical or van der Waals adsorption can hardly have more than the slight

effect on reaction rates caused by an increased concentration in the adsorbed

layer.

The Langmuir isotherm was illustrated in Fig. 16.10 on page 516. It can

be roughly divided into three sections: (a) the range of small adsorption or

nearly bare surface, where the fractional surface coverage
~-~ bP\ (b) an

intermediate region in which approximately
= bPlfn

\ (c) the region of

almost complete coverage, where effectively
-

1 over a considerable

pressure range. The particular adsorbate gas and adsorbent solid will deter-

mine the region of the isotherm useful in a given system. If a gas is strongly

adsorbed, the surface may be almost covered even at low pressures; but if

a gas is weakly adsorbed, the linear section =- bP may extend to quite high

pressures.

In a heterogeneous gas reaction, it can usually be assumed that only the

adsorbed gas undergoes reaction.42 If a single reactant is being decomposed
at an active surface, three simple special cases can arise. The reaction rate

will be proportional to 0, the fraction of surface covered.

(1) Single reactant, weakly adsorbed, 6?-=bP. Rate: -
dPjdt --=0= =

k bP = k'P. The reaction is first order. Examples of this kind include the

decomposition of arsine and phosphine on glass, AsH3
-> As + $ H2 ;

hydrogen iodide on platinum, 2 HI ~> H 2 + I 2 .

(2) Single reactant, moderately adsorbed, = bPl/n
. Rate: -dPjdt =

k bO = k bPlln -= k'Plln
. An example is the decomposition of arsine on a

surface of metallic arsenic, following the equation dP/dt = kP-Q
.

(3) Single reactant, strongly adsorbed, 0=1. Rate: dP/dt ~~= k =
k P. In such a case the reaction velocity is independent of the pressure.

This is called a zero-order reaction, a variety of concentration dependence

having no parallel in purely homogeneous reactions. The integrated rate

equation is P =
k$t + const or

/V-P-Av (17.31)

where P is the initial pressure. When P =.-- 4P ,
t = r the half life, so that

42
I. Langmuir, Trans. Faraday Soc., 77, 621 (1921).
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r =-
i(A)/^o)- Examples of zero-order reactions include the decomposition of

hydrogen iodide on gold and of ammonia on tungsten. Note that HI on Pt

is first order, but HI on Au is zero order. It can be concluded that HI is

strongly adsorbed on Au, but only weakly adsorbed on Pt.

Many of these reactions on metal surfaces can be conveniently studied

by means of wire filaments sealed into bulbs that can be filled with reactant.

The wire can be heated by passage of an electric current and its temperature
calculated from the electric resistance. A manometer is attached to the bulb

to measure pressure changes.
37. Inhibition by products. So far only adsorption of the reactants has

been considered. In other reactions the products are also adsorbed by the

solid catalyst, and the competition between reactant and product molecules

for the available surface is revealed in the rate equations.

If two adsorbates, A and /?, are rivals for the same surface, the kinetic

treatment of Langmuir can be applied to the condensation and evaporation
of each of them. Corresponding with eq. (16.19), the following result is

obtained for A and Jh the fractions of area covered by A and B at partial

pressures PA and PB , with adsorption coefficients bA and bn .

A =^ -b
4
P
-L__ f ()

bPR
A

\ + bAPA + bHP1{

B
1 -} bAPA I

bnPB
The kinetic equations that arise owing to adsorption of two gases can

usually be interpreted by these Langmuir isotherms. The following are

important special cases:

(1) Reactant A is weakly adsorbed and a product B is strongly adsorbed.

Then bAPA <^b^Pjf ^> 1. The reaction velocity is still proportional to A ,

the surface covered with reactant, which in this case, from eq. (17.32), is

A
~

*>APAlbBPR . Thus, -dPJdt k'0A
-= kPA /PB . An example of this

behavior is found in the decomposition of ammonia on a platinum filament,

2 NH3
-> N 2 -f 3 H 2 , the rate law being dPmiJdt kPyHJPllt

. The

product, H2 ,
is strongly adsorbed and inhibits the reaction.

(2) Both reactant and product are strongly adsorbed. Then bAPA ^>
1 <^bBPB9 and = bAPA /(bAPA -f bBPB). In the dehydration of ethanol on

a copper catalyst,

C2H5OH >C2H4 |
H2O

Traces of water are strongly adsorbed and severely inhibit the reaction.

38. Two reactants on a surface. From the examples already described, it

is simple to extend the Langmuir isotherm treatment to the interaction of

two gases. Usually only the results need be cited, since they are readily
derived from eq. (17.32).

With two reactants, both weakly adsorbed, the rate is -dPjdt =- kOA B
= k2PAPjj. This yields a regular second-order kinetics so that such reactions
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might sometimes be mistaken for homogeneous bimolecular processes. An

example is the previously mentioned bromination of ethylene on glass.

An interesting case is that of two reactants, A weakly and B moderately
adsorbed. Then,

b AP A bnPnn A A r\ u _wU A ,\ . '. _> ^> VTt ,~ . , ~ v

bBPB) baPB )

dt
A B

(1 + bBP^f (i + bBPB)*

If PB is held constant while PA is varied, the reaction appears to be first-

order with respect to A. On the other hand, if PA is held constant while PB

100 200 300 400
CARBON DIOXIDE PRESSURE, mm

Fig. 17.15. Effect of CO2 pressure on the water-gas reaction at

a platinum surface.

is varied, the rate first rises with PB , then passes through a maximum and
declines. The maximum occurs at PB = ljbB . In physical terms, when the

pressure of B becomes too high, B begins to usurp more than its fair share

of the surface and ultimately inhibits the rate.

Hinshelwood and Prichard43 found that the water-gas reaction (H2 +
CO2 ->H2O + CO) on a platinum filament. at 1000C conformed to this

behavior. Normally this reaction would proceed in both directions, but a

* J. Chem. Soc., 806 (1925).



Sec. 39] CHEMICAL KINETICS 585

(

clever expedient rendered it essentially unidirectional. The bulb with the

heated filament was completely immersed in a freezing mixture of dry ice

and ether, so that as soon as any water vapor formed, it condensed imme-

diately on the walls. Under these conditions and a fixed hydrogen pressure

of 100 mm, the results shown in Fig. 17.15 were obtained for the dependence
of velocity on the carbon dioxide pressure.

The case of reactant A weakly and B strongly adsorbed obviously leads

to dP/dt = kPA\PB . Bodenstein found for the oxidation of carbon mon-

oxide on hot quartz, CO + 4 O2
-> CO2 , dPco/dt - kPCQ/P0t . The

oxygen is strongly adsorbed.

The success of the simple Langmuir isotherms in explaining so many
features of heterogeneous gas reactions is indeed one of the most encouraging

chapters in chemical kinetics. The phenomena are so diverse and remarkable

that they would certainly be completely mystifying without the underlying

pattern traced by the theoretical interpretation.

39. Effect of temperature on surface reactions. In all the surface reactions

so far discussed it would appear that the slowest step is the actual chemical

change occurring in the adsorbed molecules. Neither the rate of adsorption
nor the rate of desorption seems to be directly rate-determining, since a

satisfactory explanation of the kinetics is given by the Langmuir isotherm,

which assumes that the adsorption-desorption equilibrium is established.

The observed rate is then determined by the amount of surface covered by

reacting molecules and by the specific velocity of the surface reaction. The

influence of temperature on the rate therefore must include two factors, the

effect on the surface area covered, and the effect on the surface reaction itself.

The plot of log k vs. 1/7" is usually linear for a heterogeneous reaction,

just as it is in the homogeneous case. From the slope of the straight line an

activation energy Ea can be calculated by using the Arrhenius equation.

This Ea is called the apparent activation energy, since it is usually a composite

quantity, including not only the true activation energy of the surface reaction

E
iy

but also heats of adsorption of reactants and products. The relation

between Ea and Et depends on the particular kinetics followed.

A zero-order reaction is a particularly simple case, since here 0=1, and

as long as the reaction remains zero-order, the fraction of surface covered is

independent of temperature, and Ea always equals Et
. The decomposition of

HI on gold is a zero-order reaction with Ea
--- E

i

= 25 kcal. The homo-

geneous gas phase decomposition has an Ea 44 kcal. The lowering of the

activation energy by 19 kcal is a measure of the marked catalytic effect of

the metal surface. An even greater lowering is observed in the zero-order

decomposition of ammonia on tungsten with Ea
= 39 kcal. The homo-

geneous reaction has an activation energy of over 90 kcal.

If the reactant is weakly adsorbed there are two superimposed tempera-
ture effects on the velocity, since the fraction of surface covered is usually

strongly temperature-dependent.
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The relation between true and apparent activation energies becomes

E
(l

-= E
t A, where A is the heat of adsorption. The true activation energy

of the surface reaction is lowered by an amount equal to the heat of

adsorption.
44

If dPjdt kPAIPB (reactant A weakly adsorbed, product or second

reactant B strongly adsorbed) the relation is Ea
- E

t
AA + XR . For example,

Hinshelwood found E
(l

- 140 kcal for the decomposition of ammonia on

platinum. Then En
-- E

t
ANHt h A

II
. The heat of adsorption of hydrogen

is around 1 10 kcal. Since the ammonia is weakly adsorbed, ^NHs is probably

only about 5 kcal. Thus 140 - E
t

5 } 1 10, or E
t

--- 35 kcal. On tungsten,

the ammonia decomposition is zero order, and Ea
--= E

t
-= 39 kcal.

40. Activated adsorption. Often the potential-energy barrier that must be

surmounted before adsorption can occur is small or negligible, and the

adsorption rate is governed by the rate of supply of gas to the bare surface.

Sometimes, however, a considerable activation energy, ad , may be required
for adsorption, and its rate, ae~ E**IRT , may become slow enough to deter-

mine the over-all speed of a surface reaction. Adsorption that requires an

appreciable activation energy has been called activated adsorption.

The chemisorption of gases on metals usually does not require any

appreciable activation energy. The work of J. K. Roberts45 showed that the

adsorption of hydrogen on carefully cleaned metal filaments proceeds

rapidly even at about 25K, to form a tightly held monolayer of adsorbed

hydrogen atoms. The heat of adsorption is close to that expected for the

formation of covalent metal-hydride bonds. These results were confirmed

and extended to other metal-gas systems in the work of O. Beeck with

evaporated metal films. 46

One important exception to this type of behavior has been found in the

adsorption of nitrogen on an iron catalyst at about 400C. 47 This adsorption
is a slow activated adsorption and it seems to be the rate determining step
in the synthesis of ammonia of these catalysts. If S is the catalyst surface,

the reaction can be represented as follows:

NH}5 -^ NH2}S -> NH3}S -> NH3

H)" -
H?

Activated adsorption Surface reaction Desorption

The adsorption and activation of the hydrogen was ruled out as the slow

step because the exchange reaction H 2 -f D2 ^ 2 HD occurs on the catalyst
44 The reader can easily outline the derivations. See Schwab, Taylor, and Spence, op. cit.,

p. 236.
45

J. K. Roberts, Some Problems in Adsorption (London: Cambridge, 1939).
46 O. Beeck, Discussions Faraday Soc., #, 1 18 (1950).
47

P. H. Emmett and S. Brunauer, /. Am. Chem. Soc., 62, 1732 (1940).
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even at liquid-air temperatures, presumably via the dissociation of H2 and

D2 into adsorbed atoms. Then it was found that the hydrogens in NH 3 are

readily exchanged with deuterium from D2 on the catalyst at room tempera-
ture. This indicates that processes involving N H bonds are not likely to

be rate-determining. The only possible slow step seems to be the activated

adsorption of N2 itself, and this probably governs the speed of the synthetic

ammonia reaction. It should be noted that this mechanism is distinctly

different from the rate determining reaction on the surface, which is the basis

of the Langmuir treatment.

41. Poisoning of catalysts. A feature of catalytic action that was noted in

the earliest studies and has been ever since a source of sorrow to the chemical

manufacturer and of pleasure to the research chemist is the poisoning of

catalysts by small amounts of foreign substances. Faraday emphasized that

platinum used in catalyzing the combination of H2 and O2 must be clean and

free of grease, and that carbon monoxide must be absent. The highly effective

catalytic action of platinum on the oxidation of SO2 to SO3 was known early

in the nineteenth century, but the process could not be applied practically

because the catalyst soon lost all its activity. Not until the reactant gases

were obtained in a highly purified state, free of sulfur and arsenic compounds,
was it possible to run the reaction for extended periods of time.

Yet, even in industrial catalysis, poisoning is not an unmitigated evil.

Sometimes a poison will prevent an undesired reaction. In the dehydrogena-
tion of alcohol to acetaldehyde on nickel, C2H 5OH - CH3CHO -> CH4 +
CO, the second stage is poisoned by water vapor. In the preparation of

acetaldehyde, ordinary 95 per cent alcohol gives a better yield than absolute

alcohol. A similar example is the preparation of formaldehyde from methanol

with a copper-ceria catalyst, CH
:i
OH -> HCHO > CO + H 2 . Traces of

chloroform or carbon bisulfide are added to poison the second step.

Sometimes poisoning is highly preferential. A platinum catalyst will

hydrogenate either an aromatic ring, like benzene, or an aliphatic ring, like

limonene. When poisoned with a little thiophene, the first reaction is elimi-

nated but the second remains.

It is not just a coincidence that catalyst poisons such as CO, H2S, arseni-

cals, and the like are also strong physiological poisons. The reason they

poison animals is that they inhibit vital biochemical reactions by poisoning
the enzymes that catalyze them.

Poison and reactants compete for the available catalyst surface. If the

poison wins, the catalyst cannot act. Thus poisons for metallic catalysts are

compounds that are strongly adsorbed by the metals. An important question

now arises: does the extent of inhibition of the catalyst correspond quantita-

tively with the fraction of its surface that is seized by the poison? In some

cases it does, but cases are also known in which a small amount of poison

produces more inhibition than can be explained by a surface-area effect alone.
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42. The nature of the catalytic surface. Even the smoothest solid surface

is rough on a 10 A scale. Examination of the cleavage faces of crystals by
the most refined optical techniques

48 reveals that they have terrace-like sur-

faces. Experiments on photoelectric or thermionic emission from metals

indicate that the surfaces are a patchwork of areas with different work func-

tions. F. C. Frank 49 has elucidated a mechanism by which crystals often

grow from vapor or solution : new atoms or molecules are not deposited on
the planar surfaces, but at jogs in the surface associated with dislocations in

the crystal structure; the resultant surface structure is a miniature replica of

the spiral growth pattern of the Babylonian ziggurat. It has been suggested
that crystal edges and corners, grain bound-

aries, and other physical irregularities of

the surface may provide active centers of

unusually high catalytic activity. Adsorption

may well be stronger on such special sites,

but it must be remembered that strong

adsorption is not necessarily conducive to

high catalytic activity, and may in fact

inhibit the catalysis.

The heat of adsorption often declines

markedly with increasing surface coverage.

Typical results are shown in Fig. 17.16.

This effect obviously indicates a nonuniform

surface. The lack of uniformity, however,

may either preexist in the different adsorp-
tion sites, or be caused by the repulsive

forces between adsorbed atoms or mole-

cules. Especially if the surface to adsorbate

bond is partially ionic, as much recent evidence suggests, the repulsions may
become large, markedly lowering the heat of adsorption at higher coverages.

Attempts have been made to correlate catalytic activity with a possible

geometrical congruence between catalyst ami substrate. An example was the

muhiplet hypothesis of Balandin for the dehydrogenation activity of metal

catalysts. For dehydrogenation of cyclohexane to benzene, simultaneous

adsorption on six metal atoms arranged in a hexagon was supposedly

required. This particular mechanism now appears unlikely, but simultaneous

adsorption on two adjacent atoms the proper distance apart may be impor-
tant in reactions such as the dehydrogenation of paraffins to olefins.

An especially successful explanation of the catalytic mechanism has been

made in the case of the cracking of hydrocarbons. The catalysts are silica-

alumina mixtures formed by calcining the hydrous oxides. The distribution

of the products suggests that the cracking process proceeds through the

48 S. Tolansky, Multiple Beam Interferometry (London : Methuen, 1948).
49 F. C. Frank, Advances in Physics, 1 (1952).
50 H. S. Taylor, Proc. Roy. Soc., A 108, 105 (1925).

.2 4 .6 .8 1.0

FRACTION OF
SURFACE COVERED

Fig. 17.16. Heat of adsorption
at 23C of hydrogen on evaporated
nickel films as a function of surface

covered. [From O. Beeck, W. A.

Cole, and A. Wheeler, Disc. Fara-

day Soc., 5,314(1950).]
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intermediate formation of carbonium ions. 51 Let us first consider a simple

example of a carbonium-ion mechanism, that proposed for the Friedel-Crafts

reaction with an A1C13 catalyst :

(1)

(2)

(3)

CH3C1 + A1C18
- CH3+(A1C14)-

CH3
+ + C6H6

- C6H5-CH3 + H+

H+ f (A1C14)-
= HC1 -f A1C13

The A1C13 acts as a Lewis acid, an acceptor of a pair of electrons. The reaction

is thus an example of a generalized acid catalysis in nonaqueous solution.

It has been shown 52 that the solid silica-alumina cracking catalysts also

have acidic properties : they react with carbonate solutions to evolve carbon

dioxide; they catalyze the inversion of sucrose; they react with and are

poisoned by volatile bases such as ammonia and quinoline. The acidic, active

centers appear to be sites in which an Al f3 ion is surrounded by O ions

tetrahedrally coordinated to Si+ 4 ions. Such a site may act as a strong Lewis

acid as follows :

RH +

O
I I

Al O Si

I I

O

O
I

H Al O Si-

I I

O

The subsequent cracking reaction is a cleavage of the carbonium ion R+ at

a position one carbon atom away from the C+ .

From the examples that have been given, it is evident that no single

theory can account for all the phenomena of contact catalysis. The field has

been of great interest to physical chemists because it combines the problems
of chemical kinetics with those of the fundamental theory of the solid state.

It is also not lacking in industrial applications.

43. Enzyme reactions. The catalysts devised by man have accomplished

many noteworthy results in their appointed role as accelerators of chemical

reaction rates. Yet their successes appear crude and insignificant when com-

pared with the catalytic activity of the enzymes elaborated by living cells to

promote physiological processes.

Consider one example among many, the formation of proteins. This is a

synthesis the most skillful organic chemist has been unable to achieve in the

laboratory, yet it is carried out rapidly and continuously by living cells. The

isotopic tracer experiments of R. Schoenheimer53 have shown that protein

51 B. S. Greensfelder, H. H. Voge, and G. M. Good, Ind. Eng. Chem., 41, 2573 (1949).
52 T. H. Milliken, G. A. Mills, and A. G. Oblad, Disc. Faraday Soc., 8, 279 (1950).
53 R. Schoenheimer, The Dynamic State of Body Constituents (Cambridge, Mass.:

Harvard Univ. Press, 1946).
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molecules in the liver tissue of the rat have an average lifetime of only ten

days. In addition to this continuous self-replacement, the liver synthesizes

glycogen or animal starch from glucose; it manufactures urea which is

excreted as the end product of nitrogen metabolism; and it also undertakes

to detoxicate any number of unwanted substances, rendering them harmless

to the animal organism. This tremendous metabolic activity of the liver is

approached, but nowhere equaled, by the chemical activity of other kinds of

cells.

H. Buchner was the first to establish, in 1897, that the intact cell was not

necessary for many of these catalytic actions, since cell-free filtrates could be

prepared containing the enzymes in solution. Enzymes are specific, colloidal

catalysts. All known enzymes are proteins, so they are necessarily colloids,

falling in the range of particle diameter from 10 to 100 m/. Enzyme catalysis

is therefore midway between homogeneous and heterogeneous catalysis, and

is sometimes called microheterogeneous. A theoretical discussion can be based

either on intermediate compound formation between enzyme and substrate

molecules in solution, or on adsorption of substrate at the surface of the

enzyme.

Enzymes are extremely specific in their catalytic actions. Urease will

catalyze the hydrolysis of urea, (NH2)2CO, in dilutions as high as one part

of enzyme in ten million of solution, yet it has no detectable effect on the

hydrolysis rate of substituted ureas, e.g., methyl urea, (NH2)(CH3NH)CO.
Pepsin will catalyze the hydrolysis of the peptide glycyl-L-glutamyl-L-tyrosine,

but it is completely ineffective if one of the amino acids has the opposite

optical configuration of the D-form, or if the peptide is slightly different,

e.g., L-glutamyl-L-tyrosine.

It must be confessed that little is known about the mechanism of enzyme
action. Almost all enzymes fall into one of two large classes, the hydrolytic

enzymes and the oxidation-reduction enzymes. The enzymes of the first class

appear to be complex acid-base catalysts, accelerating ionic reactions, prin-

cipally the transfer of hydrogen ions. The protein enzymes contain both

NH3
+ and COO groups, and therefore act as both acids and bases, and

should be very effective in this type of catalysis provided geometrical con-

ditions are satisfied. The oxidation-reduction enzymes catalyze electron

transfers, perhaps through intermediate radical formation.

The kinetics of enzyme reactions can often be interpreted successfully

by some sort of intermediate complex theory; e.g., that of Michaelis and

Menten. 54 The work of Sumner, Northrop, and others in preparing pure

crystalline enzymes has now made it possible to measure the absolute rate

constants cf enzyme reactions. When these data are obtained and successfully

interpreted, we shall have made a considerable advance toward an under-

standing of the physical chemistry of living cells.

54 Biochem. Zeit., 49, 333 (1913); B. Chance, J. Biol. Chem., 151, 553 (1943).
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PROBLEMS

1. The conversion of acetochloroacetanilide (A) into /;-chloroacetanilide

(B) was followed by adding KI solution and titrating the iodine liberated

with standardized thiosulfate solution. The KI reacts with A only.

Time, hr: I 2 3 468
ml 0.iyVS2O3--: 49.3 35.6 25.75 18.5 14.0 7.3 4.6

Calculate the first-order rate constant in sec
~ 1

.

2. The inversion of sucrose, C12H 22OU {
H 2O - C6H 12O6 -f C6H 12O6 ,

proceeded as follows at 25C:

Time, min: 30 60 90 130 180

Sucrose inverted,

moles per liter: 0.1001 0.1946 0.2770 0.3726 0.4676

The initial concentration of sucrose was 1.0023 moles per liter. Calculate the

first-order rate constant and the half life of the reaction. Why does this

reaction follow a first-order law despite the fact that water enters into the

stoichiometric equation? How long would it take to invert 95 per cent of a

pound of sugar?

3. The hydrolysis of ethylnitrobenzoate by hydroxyl ions (NO2C6H4
-

COOC2
H 5 + OH- - NO2qsH 4COOH f C2H 5OH) proceeds as follows at

15C [J. Chem. Soc\, 1357 (1936)] when the initial concentrations of both

reactants are 0.05 mole per liter.

Time, sec: 120 180 240 330 530 600

%hydrolyzed: 32.95 41.75 48.8 58.05 69.0 70.35

Calculate the second-order rate constant.

4. The reaction 2 NO -f 2 H 2
= N 2 + 2 H 2O was studied with equi-

molar quantities of NO and H 2 at various initial pressures:

Initial pressure, mm: 354 340.5 375 288 251 243 202

Half life, r min: 81 102 95 140 180 176 224

Calculate the over-all order of reaction.

5. The reaction SO2C12
= SO2 -f C1 2 is a first-order gas reaction with

A'i
- 2.2 x 10 5 sec- 1

at 320C. What per cent of SO2C1 2 is decomposed
on heating at 320C for 90 min?

6. The racemization of an optically active halide in solution is first order

with respect to the reactant in each direction and the rate constants are equal.

R^jjRgCX (dextro) ^ RjR^CX (laevo). If the initial reactant is pure
dextro and the rate constant is 1.90 x 10~6 sec"1

, find (a) the time to 10 per
cent reaction, (b) the per cent reaction after 24 hours.

7. The reaction C2H6
= C2H4 -f H2 follows approximately a 3/2-order

law in its initial stages. At 910K the rate constant is 1.13 sec" 1
lit

172 mole"172
.

Calculate the initial rate, d(C2H6 )/*//, for an ethane pressure of (a) 100 mm,
(b) 300 mm.
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8. Find the reaction order and rate constant for C6H5N2CI = C6H5C1 +
N2 at 50C if the initial diazobenzenechloride concentration is 10 g per liter

and:

/,min: 6 9 12 14 18 22 24 26 30 oo

N2 evolved, cc: 19.3 26.0 32.6 36.0 41.3 45.0 46.5 48.4 50.4 58.3

9. Find the rate law of the reaction 3 HNO2
- H2O + 2 NO + H+ +

NO3
~

if the first two of the following steps rapidly attain equilibrium and the

third step is slow:

(1) 2 HN02
- NO + N02 + H2

(2) 2 N02
= N2 4

(3) N2 4 + H2
- HN02 + H+ + NO3

~

10. Explain the following facts from the standpoint of the adsorption

properties of the reactant and product molecules :

(a) The decomposition of NH3 on W is zero order.

(b) The decomposition of N2O on Au is first order.

(c) The recombination of H atoms on Au is second order.

(d) The decomposition rate of NH3 on Pt is proportional to /^H./^H,-

(e) The decomposition rate ofNH3 on Mo is strongly retarded by N2 but

does not approach zero as the surface becomes saturated with N2 .

(f) The rate of 2 SO2 + O2
- 2 SO3 on Pt is ^ (SO2)/(SO3)

1/2 when O2

is in excess.

11. In what proportion of bimolecular collisions does the energy of the

"head-on" collision exceed 60 kcal at 300K, at 600K, at 1000K?

12. The following mechanism has been proposed for the thermal de-

composition of acetone:

(1) CH3COCH3
-

/q -> CH3 + CH3CO - 84 kcai

(2) CH3CO - k2
~> CH3 + CO E = 10 kcal

(3) CH3 + CH3COCH3
- *3

-> CH4 + CH2COCH3 E - 15 kcal

(4) CH2COCH3
-

4
-> CH3 + CH2CO E - 48 kcal

(5) CH3 + CH2COCH3
- ks

-> C2H5COCH3 E = 5 kcal

Express the over-all rate in terms of the individual rate constants, taking

reaction (1) to be first order. Calculate (a) the over-all energy of activation;

(b) the chain length given by the ratio of the chain propagating reaction to

the cha,in stopping reaction. What is the order of the over-all reaction if

reaction (1) becomes second order?

13. Triethylamine and methyl iodide are mixed at initial concentrations

of 0.02 mole per liter.

Time, sec: 325 1295 1530 1975

% reacted: 31.4 64.9 68.8 73.7

Determine the second-order rate constant. Would you expect the rate to be
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greater or less if (a) neutral salts were added; (b) the dielectric constant of

the solvent were increased? Give reasons.

14. Derive the rate laws for the following competitive reactions :

(1) Dipeptide -\- enzyme = complex
(2) Complex = dipeptide + enzyme
(3) Complex -= enzyme -f- amino acids

Discuss the design of an experiment to obtain the dissociation constant of

the complex from kinetic data.

15. In the polymerization reactions, A + A = A 2 \ A 2 + A A 3 \ A 3 +
A = A . . ., etc., if all the rate constants are identical, the integrated rate

equation has the form

4 + *'

Here y is the amount of polymer (A 2 + A% + A + . . . An), a is the initial

amount of reactant A, k is the rate constant, and / is the time. Find the

equation for dy/dt, the polymerization rate. What will be the apparent order

of reaction during a single run? What will be the order based on the initial

rates if the concentration a is varied?

16. A certain reaction is 20 per cent complete in 15 min at 40C and in

3 min at 60C. Estimate its activation energy.

17. For the decomposition of N2O5 ,

Temperature, C: 25 35 45 55 65

10**! -sec-1
: 1.72 6.65 24.95 75 240

Calculate A and E for the reaction, in the equation k = Ae~KjRT . Calculate

AF*, A//*, and AS*, for the reaction at 50C.

18. Consider a reaction subject to acid catalysis that follows the Br0nsted

relation kA = CAT". Suppose that the reaction is studied in an aqueous
solution 0. 1 molar in acetic acid and 0. 1 molar in sodium acetate. For three

hypothetical values 0.1, 0.5, and 1.0 of a, calculate the proportion of the

catalysis that would be due to each of the following: H3O+, H2O, CH3COOH.

19. The rate constant of 2 N2O = 2 N2 + O2 is 4.2 x 109 exp

( 53,000/#r) sec-1 . A stream of N2O is passed through a tube 20 mm in

diameter and 20 cm long at a rate of 1 liter per min. At what temperature
should the tube be heated in order to have 1 .0 per cent O2 in the exit gas ?

20. A sample of nickel foil weighing 5.328 g and having a surface area of

258 cm2
per g was exposed to pure oxygen at 500C and 10 cm pressure.

Time, hr: 23456789 10

O2 uptake, cc at

10mm,20C: 52.4 70.2 85.1 97.9 106.6 118.0 127.7 137.0 146.3

The reaction is Ni + | O2
= NiO. Fit the data to the parabolic rate law

dy/dt a/y where y is the film thickness, t is the time and a is the rate
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constant. Calculate a. (NOTE: Integrate the rate equation assuming that at

/ = 0, y = y ,
and cast the integrated equation into a linear form. Then plot

the results.)
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CHAPTER 18

Photochemistry and Radiation Chemistry

1. Radiation and chemical reactions. Thus far our account of chemical

kinetics has considered only thermal reactions, those in which the energy
needed to climb the hill leading to the activated state comes from the random

energies of the reacting molecules and their neighbors. A different way of

providing the necessary energy is to bring the reactant molecule into

"collision" with quanta of electromagnetic energy (photons); with high-

velocity electrons (p rays); or with other corpuscular beams, such as neutrons,

protons, or a-particles, obtained either from nuclear reactions or from

electric accelerators. The study of reactions caused by any of these methods

is the field called radiation chemistry. The name arose from the historical

fact that the emissions from radioactive elements were called rays, a, /?,

and y.

The older field called photochemistry would logically appear to be a

subdivision of radiation chemistry. It is the science of the chemical effects

of light, where light includes the infrared and ultraviolet, as well as the

visible regions of the spectrum, i.e., the range of wavelength from about

1000 to 10,000 A. The energies of quanta in this range vary from about

1 to lOev, or 23 to 230 kcal per mole. These energies are comparable in

order of magnitude with the strengths of chemical bonds. Thus, if a molecule

absorbs a photon of visible light, definite chemical effects may be expected,

yet the collision is still a rather gentle one, and the effects usually follow

paths made familiar from spectroscopic studies. In particular, there is

almost never enough energy in a single quantum to activate more than one

molecule in the primary step.

On the other hand, if a 1,000,000 ev y-ray photon traverses a medium,
thousands of molecules may become activated along its trajectory. As we

shall see, these activations often result in ionization of the molecules,

whereas in the photochemical region, ionization would be a rare occurrence.

Radiations like a, /?, y rays, neutrons, and cyclotron beams, are therefore

called ionizing radiations. Usually, when we speak of radiation chemistry

we mean the science of the chemical effects of such highly energetic, ionizing

rays. We tend, therefore, to divide the whole subject, on energetic grounds,
into photochemistry and radiation chemistry.

2. Light absorption and quantum yield. Light incident upon a system can

be transmitted, refracted and scattered, or absorbed. Grotthuss and Draper,
in 1818, first stated the principle that only the absorbed light can produce a

chemical change. The fraction of incident light absorbed by a medium is

595
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proportional to the thickness of the medium that is traversed. This law was

originally stated, in 1729, in a memoir by P. Bouguer, and was later re-

discovered by Lambert. It can be expressed as

~^adx (18.1)

where / is the intensity of light at a distance x from its entry into the medium,
and a is called the absorption coefficient or extinction coefficient. On integra-

tion with the boundary condition / = 7 at x 0, we obtain

I=I e~ a*
(18.2)

In 1852, Beer showed, for many solutions of absorbing compounds in

practically transparent solvents, that the coefficient a was proportional to

the concentration of solute c. Thus Beer's law is

(18.3)

If c is the molar concentration, a' is called the molar extinction coefficient.

The light absorbed is

7a = / -/-/ (l -*-*<*)

These absorption laws are the bases for various spectrophotometric methods

of analysis.
1
They are obeyed strictly only for monochromatic light.

A device that measures the total amount of incident radiation is called

an actinometer. This measurement, actinometry, is a necessary part of any

quantitative study of photochemical reactions. Two types of actinometer are

commonly used.

One is a thermopile. It consists of a number of thermocouples connected

in series, with their hot junctions imbedded at a blackened surface which

absorbs almost all the incident light and converts it into heat. Calibrated

lamps of known energy output are available from the National Bureau of

Standards. The emf developed by the thermopile is measured first with the

standard lamp and then with the source of radiation of unknown intensity.

The reaction vessel is mounted between the thermopile and the light, and

the radiation absorbed by the reacting system is measured by the difference

between readings with the vessel filled and empty.
Instead of a thermopile, it is possible to employ relative methods of

actinometry, which are based on the amount of chemical change produced
in previously studied reactions. The quantum yield of a photochemical
reaction is the number of molecules of reactant consumed or product formed

per quantum of light absorbed. One of the most reproducible reactions is

the decomposition of oxalic acid photosensitized by uranyl salts. The uranyl
ion UO2

++ absorbs radiation from 2500 to 4500 A, becoming an excited ion

1
Sec, for example, the complete account given by M. G. Mellon, Analytical Absorption

Spectroscopy (New York: Wiley, 1950).
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(UO2++)* which decomposes the oxalic acid. This reaction has a quantum

yield of 0.50.

UO2
++ + hv-> (U<V+)*

(UO2++)* + (COOH)2
-> UO2

++
-f- CO2 + CO 4- H2O

The oxalic acid concentration is easily followed by titration with perman-

ganate. A quartz vessel filled with the uranyl oxalate mixture can be used

exactly like the thermopile, the light absorbed being calculated from the

oxalic acid decomposed and the known quantum yield. Another reaction

sometimes used as an actinometer is the photochemical hydrolysis of chloro-

acetic acid, CICH2COOH + H2O + hv -> CH2OHCOOH + HC1. This re-

action has a quantum yield of 0.31.

Shortly after the advent of the quantum theory, Einstein applied it to

photochemical reactions. He stated the rule that one quantum of absorbed

radiation activates one molecule of absorbent, but this activated molecule

does not necessarily undergo chemical reaction. The energy EK = Nhv,

where N is the Avogadro Number, is called one einstein. The value of the

einstein varies with the wavelength. For visible green light with X =- 6000 A,

it has a value in kilocalories of

6.02 x 1023
x_6.62 _x_l(^_

27 x 3.0 xJO
10

~ ~ ": a

This is enough energy to break moderately strong bonds, but for C C
bonds and others with strengths higher than 72 kcal it is necessary to use

radiation in the ultraviolet region.

3. Primary processes in photochemistry. The results of the absorption of

a quantum of radiation were described in some detail in Chapters 10 and 11,

in the sections on atomic and molecular spectra.

Absorption by an atom in the line-spectrum region leads to an excited

atom; in the region of continuous absorption, to an ion plus an electron.

Absorption by molecules can lead to the different results shown in

Fig. 18.1. In (a) the transition is from a stable ground state to a stable

excited state. The corresponding spectrum consists of discontinuous bands

with a fine structure of closely packed lines. In (b) the transition is to an

unstable state that immediately undergoes dissociation. Absorption of a

quantum in case (b') also leads to dissociation, because the energy level

reached lies above the binding energy, of the excited state. Both (b) and (b')

correspond to continuous absorption spectra, without bands. A third and

less usual result is shown in (c). The initial transition is from one stable state

to another, but the upper state is "intersected" by the potential-energy

surface of an unstable state, and the excited molecule can switch over to this

after one or more vibrations. The resultant spectra are quite diffuse but not

completely continuous. This phenomenon was named predissociation by
V. Henri.
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It should be noted that all the transitions in Fig. 18.1 are depicted as

vertical jumps on the potential-energy diagrams. This picture is in accord

\

(0) (b)

(b') (c)

Fig. 18.1. Primary photochemical processes.

with the Franck-Condon principle that electronic transitions occur without

influencing the positions of the nuclei.

4. Secondary processes in photochemistry: fluorescence. If the light absorp-
tion lies in the banded region of the spectrum, there are several careers open
to the excited molecule formed in the primary step. (1) It may re-emit a

quantum of either the same or a different frequency. This emission is called

fluorescence or phosphorescence. (2) It may collide with other molecules and

pass on to them some or all of its excitation energy. This energy either can

cause reaction in the other molecule, or can be gradually degraded into heat.

(3) It may collide with another molecule and react with it. (4) It may spon-

taneously decompose if the excitation energy reaches a bond that can be

broken (predissociation).

Fluorescence is the emission of light which has been absorbed by the

molecule. It should not be confused with the scattering of light which has

not been absorbed, i.e., the Rayleigh scattering without change in wave-

length, and the Raman scattering with change in wavelength. The natural

life time of an excited state in a molecule undisturbed by collisions is about

10~8 sec. At a pressure of one atmosphere, a molecule experiences about
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100 collisions in 10~ 8 sec. As a consequence, excited molecules in most

gaseous systems at ordinary pressures usually lose their energies by collision

before they have a chance to fluoresce. The fluorescence is said to be quenched.

10

!!
S 6

15 UJ
h- O
Z (O
< LJ
r> <r
o o

ID

O.I 1.0 10 100

PRESSURE (mm)

Fig. 18.2. Relative quantum yield for fluorescence of NO2 .

In some such systems, fluorescence can be observed if the pressure is suffi-

ciently reduced. An example is the fluorescence of NO2 excited by light of

wavelength A 4000 A. In Fig. 18.2 the relative quantum yield for the

fluorescence is plotted against the pressure, and the increased quenching at

higher pressures is evident. Actually, this case is rather unusual since the life

time of the excited state is 10 5
sec, instead of about 10~8

.

The distinction between fluorescence and phosphorescence formerly was

made on the basis of the duration of the afterglow, a slow decay of lumi-

nescence being called phosphorescence. Current usage of these terms, how-

ever, bases the distinction on a difference in the mechanisms for re-emission

F-

G-

B-

A-
(i) (2) (3)

Fig. 18.3. Transitions in fluorescence and phosphorescence. (1) Fluorescence:

resonance radiation. (2) Fluorescence (3) Phosphorescence.

of light. In Fig. 18.3 the transitions (1) and (2) indicate the mechanism of

fluorescence, absorption of a quantum, followed by re-emission from the

excited state reached, either back to the initial state or to a different state.
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The re-emission, in exceptional cases, may occur slowly, leading to a long

afterglow. The transitions of type (3) indicate the mechanism of phosphor-
escence. After the initial excitation to the level F, the electron makes a

transition to a nearby level G. The level G may be a metastable level, in that

the transition from G to lower levels is unlikely owing to low quantum
mechanical transition probabilities. Thus, before the molecule can re-emit

a quantum of light, it must jump back up to F, and considerable time may
elapse before the molecule can acquire from suitable collisions enough

energy for this jump. Therefore the afterglow usually has an appreciable
duration in phosphorescence because, as we say, the excited molecule has

become "trapped in a metastable state."

A kinetic expression for the quenching of fluorescence is obtained by

considering the two parallel processes for an excited molecule M* :

Fluorescence M* --*M -f- hv

Quenching M* + X * M + X + kinetic energy

The total rate of deactivation is

- Arx(A/*) + k2(M*)(X)
at

If the intensity of absorbed light is 7
, and the fluorescent intensity is /,

the fraction of excited molecules that fluoresce is

1

Q

If k is known from an independent determination of the life time r of the

excited state in the absence of quencher X(k\ -- r" 1
), we can evaluate k2t

the specific rate of the quenching process. It is usual to express the results

in terms of a quenching cross section aQ . This is calculated from eq. (17.18)

for the number of binary collisions Z12 in a gas. It is the value that must be

taken for the cross section rrd^/4 in order that the value of k2 calculated by

simple collision theory should exactly equal the experimental value. From

eq. (17.19) with E = 0, we therefore obtain

where k2 is in the usual units of liter mole'1 sec"1
.

An example of the results obtained is shown in Table 18.1, which deals

with the quenching of mercury resonance radiation (
3Pt

15 ) by added

gases. The great effectiveness of hydrogen and some of the hydrocarbons is

due to dissociative reactions like

Hg* + H2
= HgH + H, Hg* + RH - HgH + R
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TABLE 18.1

EFFECTIVE CROSS SECTIONS FOR QUENCHING MERCURY FLUORESCENCE

Gas

2

H2

CO
NH3

1018 <rQ
~ cm2

2.48

26.2

0.06

24.0.

5. Luminescence in solids. The phenomena of excitation followed by
re-emission or deactivation are basically the same in solid, liquid, and

gaseous systems. In solids, the processes of energy transfer do not, of course,

involve collisions, but the degradation of the electronic energy of excitation

into the thermal vibrational energy of the crystal provides an analogous
mechanism of quenching.

Luminescent solids have been classified as (I) pure, (2) impurity activated.

Examples of type (1) are certain inorganic salts such as those of the uranyl

ion UO2
+2

. Light absorption by these ions is followed by fluorescence both

in the crystalline state and in solution, and it is evident that quenching is not

efficient. The reason seems to be that electronic excitation occurs in inner

orbitals that are effectively shielded from interaction with vibrational levels

of neighboring ions or molecules. Another example of a pure luminescent

solid is anthracene, which displays a pale violet fluorescence in the purest

samples ever obtained. The reason why quenching is inefficient in anthracene

can be at least qualitatively understood from the nature of its structure. As

shown on page 311 for benzene, the carbon-carbon links in anthracene

consist of strong electron-pair a-bonds in the plane of the rings, and over-

lapping 7r-orbitals filled with electrons which are free to move around the

ring system. When anthracene absorbs a quantum at about 3700 A, a TT-

electron is excited from a filled energy band to an upper empty band. The

vibrations of the C C and C H bonds in anthracene are closely coupled
with the cr-bonds, but are not much influenced by the positions of the

7T-electrons. Therefore the excitation energy of the rr-electrons is not rapidly

degraded into thermal vibrational energy, and is instead re-emitted as the

violet fluorescence.

If an anthracene crystal contains as little as 0.01 per cent of naphthacene,
the characteristic green fluorescence of naphthacene appears and the violet

anthracene fluorescence is almost entirely suppressed. When such a crystal

is heated, the green fluorescence disappears at the instant of melting, and the

violet anthracene fluorescence reappears. The explanation of these remark-

able events seems to be the following. When the anthracene crystal absorbs

a photon and one of its Tr-electrons is excited to an upper band, a hole is left

behind in the lower band. The hole, being a location of missing negative

charge, has an effective positive charge, and hence attracts the electron,

somewhat in the way that an H+ nucleus attracts its planetary electron. Such

an association between an excited electron and the hole it has reluctantly
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TRAPS

left behind is called an exciton. Now the exciton hops about through the

crystal until it happens to hit a naphthacene molecule, which traps it long

enough for the fluorescent emission to take place. Thus, although the photon
is almost always absorbed in an anthracene molecule, it is almost always
emitted from a naphthacene molecule. The example of naphthacene in

anthracene is midway between the pure luminescent crystal and the typical
case of impurity activated crystals.

The example of zinc sulfide may be considered as typical of impurity
activation. Pure ZnS of stoichiometric composition displays practically no

luminescence. If this material is heated at 500-1000C it dissociates slightly

to form ZnS with excess Zn interstitially dissolved: ZnS(c) -> Zn, (in ZnS)
+ 2 $2- The excess Zn atoms form impurity
centers of the type shown in Fig. 13.24 on

page 398. When illuminated with light of

about 3400 A, the heat-treated ZnS displays
a blue fluorescence and a short-lived phos-

phorescence. The spectra of the fluorescence

and of the phosphorescence are the same, as

would be expected from the trap mechanism

of phosphorescence shown in Fig. 18.3. The
ZnS on illumination also becomes a better

conductor of electricity; this phenomenon is

called photoconductivity.

An oversimplified model to account for

these observations is shown in Fig. 18.4. The
levels / and 7t represent a ground state and

an excited state for an impurity center, e.g., an interstitial zinc atom. If a

quantum of radiation of sufficient energy is absorbed by the crystal, an elec-

tron may be driven from the filled band to the empty conduction band,
and a hole is left in the filled band. If the hole and the electron remained

associated, the result would be an exciton, similar to that found in

anthracene. In pure ZnS, the electron and the positive hole will recombine

without the emission of light, the energy being dissipated as heat. The im-

purity centers, such as excess Zn, provide a mechanism by which the excita-

tion energy can be re-emitted as light. The theoretical interpretation of how

they provide this luminescent pathway is still in an unsatisfactory state.

Both pure ZnS and impurity activated ZnS contain "traps" for electrons,

metastable levels from which transition to the ground state is forbidden.

These traps may be dislocations, grain boundaries, or other impurities in the

crystals. Only by thermal excitation back to the conduction band can an
electron escape from its trap and eventually emit the phosphorescent radia-

tion. For such a thermal excitation from T to C, the probability p per unit

time has the simple form of a first order rate constant,/?
~ ae~ Eim\ where E

is the energy gap between T and C. If n is the number of electrons trapped

FILLED BAND

\\\\\\\\\\\Ss

Fig. 18.4. Band model for an

impurity-activated phosphor.
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at any instant, the phosphorescent intensity is proportional to their rate of

escape,

dn
I - - - pn - nae"EIRT (18.5)

For a fixed temperature, integration of this equation gives the decay of

phosphorescence with time. For the typical example of a thallium activated

KC1 phosphor, the constants are a 3 x 10 sec"1
, and E = 15.5 kcal per

mole.

6. Tbermoluminescence. Some phosphors, illuminated while cold, store

energy which can later be released as light when they are heated. This phenom-
enon is called thermolwninescence. In a typical experiment, a SrS phosphor

300 550350 400 450 500

TEMPERATURE, K

Fig. 18.5. Thermoluminescence of a strontium-sulfide phosphor.

was illuminated at room temperature, the light was turned off, and the

phosphor was heated at a steady rate of 2.5 per sec. The resulting light

emission is shown in Fig. 18.5. It is clear that two distinct trap levels occur,

which lead to the two peaks in the thermoluminescent curve.

The mathematical analysis of these curves is based on eq. (18.5), which

may be written

dt

For a constant heating rate, dT ==- c dt, and

Thus, /=--- = n ae"EIRT exp (
-

f

T
- e"E>RT dT\

dt \ J Q c I
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If the reader cares to take the time to plot this expression for a suitable

choice of parameters, he will find that it reproduces an approximately bell-

shaped curve like one of those in Fig. 18.5. Thus experiments on thermo-

luminescence are often used to measure the trap depths E in phosphors.
7. Secondary photochemical processes: initiation of chain reactions. If a

molecule is dissociated into fragments as a consequence of absorbing a

quantum of radiation, extensive secondary reactions may occur. These are

especially likely since the fragments are often atoms or radicals, which are

by nature highly reactive. Sometimes, also, the products of the primary
fission process are still in excited states, as so-called hot atoms or hot radicals.

For example, if a mixture of chlorine and hydrogen is exposed to light

in the continuous region of the absorption spectrum of chlorine (A < 4800 A)
an extremely rapid reaction to hydrogen chloride ensues. The quantum yield

<I> is 104 to 106 . Bodenstein was the first to explain the high value of O in

terms of a long reaction chain. The first step is dissociation of the chlorine

molecule,

(1) C\2 + hv^2C\ (Va K,

This is followed by

(2) Cl + H2
-> HC1 + H k2

(3) H + C12
-> HCi + Cl 3

(4) Cl -> \ C12 (on wall) A:4

If we set up the steady-state expressions for (Cl) and (H) in the usual way
(page 552), we obtain for the rate of HCI production,

- A:2(C1)(H2) +
dt

Instead of reaction (4), the chain-ending step might be a gas-phase re-

combination of chlorine atoms, perhaps with cooperation of a third body M
to carry away excess energy.

(5) C1 + C1 (+Af)->Cl2 (+M) 5

In this case, the calculated rate expression would be

dt
^ '

It might be thought that a few simple experiments would suffice to decide

whether the rate depends on the first power or on the square root of the

light absorbed, and hence to decide the most likely chain-ending mechanism.

In fact, however, after dozens of extensive investigations, some questions
still remain unanswered. It is likely that reactions (4) and (5) both contribute

to the chain ending under most experimental conditions, since in most
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experiments with pure H2 and C12 the rate depends on //, with n somewhere

between and 1. The reaction is very sensitive to traces of impurities,

especially oxygen, which acts as an inhibitor by removing H atoms: H +
2 (+A/)->H02 (+M).
In contrast with the high quantum yields of the H2 + C12 reaction are

yields in the photochemical decompositions (photolyses) of the alky! iodides.

These compounds have a region of continuous absorption in the near ultra-

violet, at 2300 to 2500 A, which leads to a break into free alky!' radicals and

iodine atoms,

CH3I -f Av -> CH3 f I

The quantum yield of the photolysis is only about 10~2
. The reason for the

low O is that the most likely secondary reaction is a recombination, CH3 + I

-> CH3I. Only a few radicals react with more alkyl iodide, CH3 -j- CH3I

-> CH4 + CH2I. The final products are CH4 , CH2I2 , and I2 . If mercury vapor
is added to the system, the quantum yield is much increased. It is evident

that the mercury acts by removing iodine atoms, preventing their recom-

bination with alkyl radicals.

A reaction that has received especially careful study is the photolysis of

acetone; more than fifty research papers have been devoted to it during the

past 25 years.

(CH3)2CO + hv -> C2H6 + CO

Small amounts of methane and biacetyl are also formed. Acetone absorbs

ultraviolet light, with a banded spectrum from 3300 to 2950 A merging into

a continuous absorption that extends to 2200 A. Electronic excitation in the

carbonyl group is responsible for this absorption, but the C=O bond is

strong and energy must flow into the weaker C C bonds before dissociation

can occur.

In an investigation by Farrington Daniels and G. H. Damon,2 acetone

vapor contained in a quartz vessel was irradiated with virtually mono-
chromatic light obtained from a high-pressure mercury-vapor lamp with a

quartz monochromator. (This instrument is an adaptation of the spectro-

graph, designed to isolate and focus a concentrated beam of light having a

well defined wavelength.) In a typical experiment, radiation at A ~ 3130 A
was used. Measurement with a thermopile gave an absorption rate of

85,200 erg per sec over a period of 23,000 sec. The volume of the vessel was

60.3 cc, the thermostat temperature 56C, and the pressure increased from

760 to 790.4 mm or AP = 30.4 mm.

Apart from minor subsidiary reactions, two moles of product appear for

each mole of acetone decomposed. The number of molecules decomposed
was therefore

1 J. Am. Chem. Soc., 55, 2363 (1933).

X
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The number of quanta absorbed was

_ 85,200 x 23,000 x 3.13 x I0~5

q '
"6.62 x fo-~x 3.0 x

" 3 " 8 X I0

The quantum yield was therefore O n/q
^ 0.17. It is evident that of the

quanta absorbed, less than one in five leads to reaction.

When acetone vapor is irradiated with ultraviolet light there is an intense

and beautiful green fluorescence, and it was thought at first that the light

that did not cause reaction was emitted in fluorescence. Daniels measured

the fluorescent intensity and found that it actually accounted for less than

3 per cent of the light absorbed. Thus about 80 per cent of the radiation

absorbed is degraded into heat. It was later shown that the fluorescence was

due to biacetyl.

^ The products from acetone photolysis in a flow system remove lead

mirrors, forming Pb(CH 3 )4
3

. This result, as well as other evidence, indicates

that methyl radicals are formed. The most likely mechanism for the photoly-
sis appears to be4

(CH3 )2CO + hv > CH3 4- CH3CO
CH3 f CH3

. C2H6

CH3CO 4- CH 3CO - (CH3CO)2

CH3CO >CH3 -f CO
CH3 4- CH3CO ^ (CH3 )2CO

The recombination reaction accounts for the low quantum yield, and, as

would be expected, the yield therefore increases as the pressure is lowered.

8. Flash photolysis. The new technique called flash photolysis promises
to be especially useful in the study of atoms and radicals that have only a

short lifetime before reacting.
5 A powerful flash of light, with an energy up

to 10* joules and a duration of about 10~4
sec, is obtained by discharging a

bank of capacitors through an inert gas such as argon or krypton. The
reactants are in a vessel aligned parallel with the lamp, and at the instant of

the flash, an extensive photolysis of the absorbing gas occurs in the reaction

vessel. Thus the primary products of photolysis, usually radicals and atoms,
are produced in much higher concentrations than in the usual experiment
with continuous, relatively low-level illumination. A good method for

following the subsequent reactions of the radicals is to make a continuous

photographic record of their absorption spectra.

An example of a flash-photolysis investigation is the study by Porter and

Wright of the reaction between chlorine and oxygen. A mixture of 10 mm
3 T. G. Pearson, /. Chem Soc., 1934, 1718; T. G. Pearson and R. H. Purcell, ibid.,

1935, 1151.
4 A complete discussion of the evidence for the mechanism and a solution of the steady-

state rate equation are given by W. Davis, Chem. Rev., 40, 201 (1947).
5 R. G. W. Norrish and G. Porter, Nature, 164, 658 (1950); G. Porter, Proc. Roy. Soc.

A 200,284(1950).
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C1 2 and 600 mm O2 was used in a typical experiment. The flash dissociates

almost all the C12 to Cl atoms. In the first second after the flash there is a

rapid reaction to form the previously unobserved radical CIO, which is

detected by its absorption spectrum.

C12 4 hv-+2 Cl

2 Cl + O2
> 2 CIO

The kinetics of the subsequent disappearance of the CIO radicals is now

readily followed by a continuous measurement of the intensities of their

absorption spectra. The removal of CIO is found to be a second-order

reaction,
-
d(C\Q)jdt -- /:

2(C1O)
2

,
with k2

- 4.2 x 107
exp [(0 650)/RT]

liter mole"1 sec"1
. The constant is uncertain because the molar extinc-

tion coefficient of the CIO radicals has not been accurately determined,

and the experimental measurements give spectral intensities and not tdft-

centrations.

9. Effects of intermittent light. In the flash-photolysis experiment, a high

initial concentration is formed of reactive intermediates, which gradually

disappear by various reactions during the dark period. In the usual photo-
chemical experiments, a steady intensity of light is used, so that inter-

mediates build up to a steady-state concentration, which is maintained

during the course of the run. Let us consider now a situation in which there

is a regular sequence of light and dark periods. A convenient way to achieve

such an intermittent illumination is to place between the light source and

the reaction vessel a rotating circular disk from which sectors have been cut.

If four sectors, for example, have angles of 22i and are evenly spaced, the

light and dark periods in the vessel will be in the ratio 1 : 3, and the flashing

rate will be four times the rotation speed of the disk.

The use of the method can be illustrated in terms of a simple schematic

reaction mechanism:

(1) A 2 { hv - 2A

(2) A + B -> C + A

(3) 2A ~> stable product

The steady-state concentration of the radicals A is (A) (O/a/2/r3)
1/2

. If the

sector wheel with one-quarter open area is rotated very rapidly (and by

"rapidly" we mean with a period much less than the half life for disappear-
ance of radicals A in the dark), the net result is the same as if the intensity

of a steady illumination was reduced to one-quarter. Thus the steady-state

concentration of A, and hence the rate of reaction, is reduced by a factor of

(i)
1/2 =

i- On the other hand, suppose that the period of rotation of the

sector is long compared to the half life of A. In this case, the concentration

of A during each dark period will fall far below the steady-state value. The

net result will be the same as if the time of reaction is reduced to one-quarter
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with the light intensity unchanged. Thus the rate of reaction would be

reduced by a factor of . In Fig. 18.6, (a) shows how the concentration of

radicals varies during the two experiments, and (b) shows how the reaction

rate varies with sector speed.
The transition region between reaction rates for slow rotation and those

for fast rotation will occur when the sector period is about equal to the half

life of the reactive intermediate. Thus the experiments with intermittent

(a)

TIME

(b)

SECTOR ROTATION SPEED

Fig. 18.6. The effect of intermittent light on (a) radical concentration

(b) reaction rate, for a case in which rate depends on /a
1 /2.

illumination provide a method for measuring short half lives of inter-

mediates, which would be difficult to study by other methods. It must be

noted, however, that the method cannot be used if the over-all rate is pro-

portional to /a , the first power of the light intensity.

A typical sector study
6 was that of the photochemical formation of

phosgene, which follows a mechanism proposed by Bodenstein:

Cl2 + Av

Cl + CO
COCI

COCI + CI2

COCI + CI

Cl + Cl

COCI

Cl + CO
COCI2 + Cl

CO + C1
2

6 W. G. Burns and F. S. Dainton, Trans. Faraday Soc., 48, 39 (1952).
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The observed rate law is

From the Bodenstein mechanism, k' k^k^lkjc^11
*. The application of

the sector technique made it possible to evaluate each of the rate constants.

For example, in liter mole"1 sec"1
,

4
- 2.5 x 109 exp(-2960//?r)

A:5
= 4.0 X 1011 exp (-830/flr)

Reaction (5) goes at almost every collision, with a very small energy barrier.

In reaction (4) the activation energy is only 5 per cent of the energy of

the Cl Cl bond that is broken, whereas the frequency factor is only 1

per cent of the collision frequency. The low frequency factor indicates a

loss of freedom and decrease in entropy when the activated complex is

formed.

In addition to its use in studying intermediates of short life, there is

evidence that the principle of intermittent illumination is used by Nature in

the ingenious fashion that is typical of her chemical processes. The response
of plants to the relative length of day and night is called photoperiodism.
This phenomenon was first clearly described in 1920, by Garner and Allard

of the U.S. Department of Agriculture. Flowering plants may be divided

into three classes :

(1) Long-day plants flower only when the daily period of illumination is

greater than some critical time, e.g., spinach flowers only when the length of

day exceeds 13 to 14hr.

(2) Short-day plants flower only when the length of day is less than a

critical value; for example, 14 to 14.5 hr for chrysanthemum.

(3) Day-neutral plants do not exhibit photoperiodism in their flowering.

Depending on the plant, from 2 to 30 cycles of light and dark are needed

to initiate flowering. Even a single flash of light during a dark period may
sometimes prevent flowering. The photoperiodic process that controls

flowering occurs in the leaves of the plants; in some cases the plant will

flower if even one leaf receives the proper light cycle. Although the chemical

compounds responsible for initiation or inhibition of flowering are not yet

completely known, they appear to act as hormones which build up to a

critical concentration in dark periods, and are photochemically destroyed
in light periods. Other photoperiodic effects are known in both plants and

animals, such as the shedding leaves by deciduous trees, and, possibly, the

hibernation of the groundhog.
10. Photosynthesis in green plants. The ultimate source of most of the

energy on earth, except nuclear energy, is the radiation received from the

sun. This radiation is converted by photosynthesis in green plants into

chemical potential energy stored in coal, oil, and carbohydrates. Green
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plants are reducing agents, converting carbon dioxide and water into fuels.

Animals are oxidizing agents, burning the fuels back into water and carbon

dioxide. The Second Law of Thermodynamics insists that this vital cycle

cannot continue without some outside energy source besides the heat of the

environment. The external energy that keeps the cycle spinning comes from

the sun's rays. The mechanism of photosynthesis is one of the greatest

problems in chemical kinetics.

It has been estimated that during the summer season an average of 1 to

2 cal per cm
2
per min of radiant energy is incident upon green plants in an

open field. Of this energy only 2 to 3 per cent is stored in the plant at the

end of the summer.

The photosynthetic reaction can be written schematically as

(1) n CO2 -f n H2O + light > (CH2O)n 4- n O2

The final products are carbohydrates, such as cellulose and starch. The

reaction occurs through the mediation of chlorophyll, a magnesium-por-

phyrin compound. This compound is green since it has two strong absorption

bands, one in the red around 6600 A, the other in the blue around 4250 A.

The maximum intensity of sunlight is in the green region of the spectrum,
but most of this green light is not utilized by plants.

Reaction (1) above for n = 1, i.e., one monomer unit incorporated in a

carbohydrate, has a A// = 120 kcal. Photosynthesis can occur with light of

7000 A. Since quanta of this red light amount to 38 kcal per mole, at least

three or four quanta would be needed to fulfil the energetic requirement for

photosynthesis. Under favorable conditions and for short intervals of time,

the quantum efficiency of photosynthesis may approach this theoretical

limit, reaching perhaps 5 or 6 quanta per CH2O unit, or a quantum yield O
of 0.1 6 to 0.20.

Important information on the photosynthetic mechanism has been

obtained from tracer experiments. By means of O-18 it was shown that the

evolved oxygen comes entirely from the H2O, with none from the CO2 . In

other words, the H2O reduces the CO2 .

Good progress in elucidating the mechanism of photosynthesis has been

made by Melvin Calvin and his co-workers at Berkeley. Their technique has

been to supply radioactive (C-14) CO2 to an aqueous suspension of algae,

and to isolate the various radioactive carbon compounds formed after

exposure of the suspension to light. Even after 60 sec illumination, about a

dozen compounds incorporating C-14 could be detected by an autoradio-

graph of a paper chromatogram. If the temperature of the algae is lowered

to 4C and they are given only 10 sec illumination, only one product appears
on the chromatogram, phosphoglyceric acid, H

2O3PO CH2 CHOH
C*O2H. This is the earliest intermediate yet identified in the photosynthetic

process. Since most of the radioactivity occurs in the carboxyl carbon, the

step by which CO2 is incorporated appears to be a reaction between CO2
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and some two-carbon compound, or some two-carbon group that readily

splits off from a larger molecule.

Calvin has also suggested a plausible mechanism for the elementary step

that utilizes the light quantum, the so-called quantum conversion in photo-

synthesis. The chloroplasts of the plant contain granules (grana) which each

contain thousands of molecules of chlorophyll stacked in an almost close

packed array. Each packet of molecules acts as a unit in light absorption,

so that a quantum absorbed by any one molecule produces an exciton which

can move freely throughout the entire granum. Associated with each 1000

chlorophyll molecules is a molecule of 6,8 thioctic acid,

CH2

/\
CH2 CH ~(CH2 )4-CO2H

I
I

s s

Calvin suggested in 1952 that the conversion of the light quantum occurs

when the exciton finds itself next to an adsorbed disulfide,

+ (CHL.)*~> +(CHL.)

S S S S

The dithiyl free radical can then abstract hydrogen from suitable donors,

forming the disulfhydryl compound, which can reduce other reducing agents

in the cell, and thus lead to the reduction of CO2 .

11. The photographic process. The general features of photography are

familiar. A photographic plate is prepared by coating glass or plastic with

a film of gelatin in which are suspended small crystals of silver bromide.

The AgBr grains average 10~5 to 10~ 4 cm in diameter, and contain 1011 to

1012 ion pairs. When the film is exposed to light, a latent image is formed,

which is believed to consist of submicroscopic specks of silver in some of

the grains. The photochemical formation of this latent image is very sensitive

to traces of substances, such as silver or silver sulfide, which act as nuclei at

which growth of silver can begin in the grains. The latent image is developed
to a negative image by exposure to a mild reducing agent; in this step the

grains which contain silver specks are largely reduced to silver. Finally, the

negative is fixed by dissolving the unreduced silver bromide in sodium

thiosulfate.

The problem of outstanding photochemical interest is how the absorbed

light forms the latent image. The quantum yield with light of low intensity

approaches <!> = 1, i.e., every quantum of light absorbed leads to the forma-

tion of one silver atom. The light quanta, however, are absorbed at random

over the surface of the AgBr grain, and yet the silver is deposited at relatively

few specks within each grain. How is this process accomplished?
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The first satisfactory theory was proposed in 1938 by R. W. Gurney and

N. F. Mott. 7 There is good evidence that the primary absorption in the AgBr
crystal occurs in the Br~ ions as Br~ + hv -> Br -f e. Light absorption in the

ultraviolet region is required to excite an electron from a Br~ ion in an

ordinary lattice position. The absorption at longer wavelengths is probably
due to Br~ ions at dislocations or other disturbed positions in the structure.

The electron is raised to an empty band in which it can move freely;

hence the AgBr becomes photoconducting. The mobile electron moves

through the AgBr crystal until it becomes trapped in a pre-existing silver

nucleus or in a low-lying energy level of a sensitizer such as Ag2S. Thus a

center of negative charge is produced, attracting Ag+ ions, which can move

through the crystal via interstitial positions. When an Ag^ ion reaches the

negative center it is neutralized, Ag+ + e -> Ag, and the silver nucleus is

thus enlarged. Once a few specks of silver emerge as nuclei, they will catch

the photochemically produced electrons, and then grow further by attracting

Ag+ ions.

The Br atom eventually reaches the surface of the AgBr by a process of

electron transfer, Br~ + Br -> Br + Br~. It can then react with constituents

of the gelatin. The Br atom is a center of missing negative charge, and it is

called a positive hole. The Gurney-Mott theory in its original form requires

that these positive holes do not recombine with the electrons. As a result of

ingenious experiments with thin films of pure AgBr single crystals, J. M.

Hedges and J. W. Mitchell8 have been led to a modification of the theory.

They suggest that the function of the sensitizer is to trap the positive holes,

preventing their recombination with the electrons. The electrons are then

trapped at crystal imperfections, and the silver particles grow there to form

the latent image.
It may not be too far-fetched to see a certain similarity between the

processes of photography and those of photosynthesis. In both cases a light

quantum absorbed in one place can produce a chemical effect some distance

away, and in both cases the absorbent is dispersed in small grains in a

protein material.

12. Primary processes with high-energy radiation. Table 18.2 summarizes

some information about the sources of high-energy radiations. All these

radiations produce ionization in the matter through which they pass. The

Einstein law of photochemical equivalence (page 597) has its counterpart in

the principle that the amount of chemical reaction is proportional to the

number of ion pairs produced in the reaction medium by an ionizing radia-

tion. The history of this principle goes back to a calculation made by W. H.

Bragg in 1907, which indicated that the number of molecules of water de-

composed by radon was equal to the number of ions that the same amount
of radon would have produced in air. Bragg, however, was evidently not

7 Proc. Roy. Soc., A 164, 151 (1938).
8 Phil. Mag. 44, 357 (1953).
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TABLE 18.2

RADIATIONS EMPLOYED IN RADIATION CHEMISTRY

c Radiation Typical Maximumbource
Particle Energy, mev

X-ray tube Photon 0.6

Van de Graaf generator Electron 6

Proton 6

Cyclotron Proton 40
Deuteron 20

Alpha 10

Neutron 40

Betatron Electron 20
Photon

Nuclear reactor (pile) Photon Dependent on conditions

Neutron
Fission recoil

Natural or artificial Photon Dependent on isotope
radioactive isotope Electron

Alpha
Atom recoil

impressed by this agreement, which he noted as "a curious parallelism in

numbers." In 1908, W. Duane demonstrated that the chemical effects of

a-particles were due to the ionization they caused, and in 1910 Marie Curie

clearly stated the law of equivalence for a-particles in water. From about

1911 onwards S. C. Lind made use of ion-pair yields in an extensive series

of experiments. He found that for some reactions the quantum yield with

light and the ion-pair yield with a-particles were nearly identical, but in

other cases they might differ by a factor of two or three.

The details of the ionization process depend somewhat on the particle

concerned. When an X ray or y ray interacts with a molecule, the most

frequent result is the ejection of an electron by the Compton effect (page

233); i.e., the process is a "collision" between a photon and an electron, in

which the electron is driven out of its molecule, and the photon is deflected

with altered energy and momentum. The formation of a photoelectron by a

process of absorption of the photon, which is the usual event with low-

energy quanta, is much less likely at high energies. For example, with 100 kv

X rays, only 3 per cent of the electrons are photoelectrons, and 97 per cent

are Compton electrons. At 1 mev, almost all the electrons ejected are Comp-
tons, which have an average energy of 440 kv. As a 440 kv electron is slowed

to room temperature (~ 0.02 ev) it ionizes or excites many molecules as it

passes near them. One ion pair is produced for about each 30 ev, so that the
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440 kv electron produces about 15,000 ion pairs, and two or three times

that many excited molecules. The effect of the single ion formed in the first

ionization will obviously be negligible compared with that of the numerous

secondary ions and excited molecules.

The principal difference between the effects of electrons and those of ions

is due to the slower speed of the latter. A proton travels one-fortieth as fast

as an electron of the same energy. Thus, for a given path distance, the slowly

moving ion produces many more ionizations than the swift electron. For

example, per micron of path in water, a 440-kv electron would cause about

two ionizations, but a proton of the same energy would cause about 2000

ionizations. The effectiveness in causing ionization simply depends on the

length of time that the moving particle remains in the immediate neighbor-
hood of the molecule.

The primary effects of fast neutrons differ somewhat from those of the

charged particles, since a neutron can penetrate the electron cloud around

an atomic nucleus without electrostatic repulsion. A neutron can thus

literally knock the nucleus out of an atom, and usually the nucleus is knocked

out so vigorously that some of the electrons are left behind and ionization

results. The ejected nuclei may produce further secondary displacements and

ionizations. Energetic ions can also knock out nuclei in this way, but they
are much less effective than neutrons. For example,

9 in aluminum, a 2-mev

neutron will produce about 6000 primary displacements, but a 20-mev

proton will produce only about 80. Available sources of radiation are intense

enough to produce extensive displacements in solids. For example, in a

layer 1 mm deep exposed to a cyclotron beam of 20 mev protons, about

10 per cent of the nuclei would be displaced after an irradiation of 1 coulomb

per cm
2

. A solid in which the atoms have been displaced in this way is said

to be discomposed. The phenomena of discomposition were first described by
E. Wigner during the development of nuclear reactors (piles).

13. Secondary processes in radiation chemistry. As radiation passes

through a reaction medium, several excited molecules are formed for each

ion formed. The excited molecules are even more important than this fact

would indicate, however, since one of the most probable secondary reactions

of an ion is its neutralization to yield an excited molecule. 10 If we use a

broken arrow to indicate a reaction caused by high-energy radiation, a

schematic reaction sequence is as follows.

+ e

A*

> break into radicals

A* --> rearrangement to molecules

9 F. Scitz, Disc. Faraday Soc., 5, 271 (1949).
10 H. Eyring, J. Hirschfelder, and H. S. Taylor, /. Chem. Phys., 4, 479, 570 (1936).
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It should be noted that any one of these steps may involve reactions more

complicated than the simple ones written. For example, the ionization step

may occur with a rupture of bonds, as A -~~-> B+ 4 C f- e. The large

number of excited molecules formed in irradiated systems explains the

parallelism frequently observed between photochemical and radiochemical

reactions.

Examples of many typical reactions are provided by the results observe^
on irradiation of water. Aqueous systems have been most intensively studied

because of their great importance in radiobiology. In pure water, the first

steps, regardless of the source of radiation, appear to be

H2O H 2O )
e

H2CM f H2O > HgO* + OH

The fate of the OH radicals seems to depend on the type of radiation. With

slow moving particles (a's) many OH radicals may be produced close to-

gether, and a likely subsequent step is radical combination,

2 OH -> H2O2

With fast particles (/?, y) the OH radical concentration along the paths is

much lower, and removal of radicals by the following sequence appears
reasonable:

e + H 2O -> OH + H
H -f H -> H 2

H + OH > H2O

The dependence of intermediate concentrations on the path of radiation

through the system, and the diffusion of intermediates away from the tracks

of the radiation particles are typical features of this field of chemical

kinetics.

14. Chemical effects of nuclear recoil. When a nucleus emits an a, /?, or y

particle, conservation of momentum requires that the product nucleus recoil

in a direction opposite to that of the emitted particle. An important effect

of such recoil was discovered by Szilard and Chalmers in 1934. They
irradiated ethyl iodide (C2H5 I

127
) with neutrons: I

127
(, y)I

128
. The I

128
is a

/? emitter of 25 min half life. The ethyl iodide, after irradiation, was shaken

with a dilute aqueous solution of ordinary iodine, in which it is not appre-

ciably soluble; much of the radioactive I128 was then found in the aqueous

layer. Exchange between iodine in ethyl iodide and that in aqueous solution

is known to be very slow. It appears, therefore, that the recoil of the iodine

nucleus on emission of the y particle is sufficiently energetic to break the

C I bond in C2H5I, thereby converting the iodine into a water-soluble form.

The Szilard-Chalmers effect has since been' observed in many n, y re-

actions. Besides its intrinsic interest as a new kind of chemical reaction, the

effect has practical value in that it provides a method of preparing highly
concentrated radioactive elements.
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PROBLEMS

1. When propionaldehyde is irradiated at 200 mm and 30C with light

of wavelength 3020 A, the quantum yield for CO production is found to be

0.54. If the incident light intensity is 15,000 erg per sec, calculate the rate of

CO formation. What is the light intensity in einsteins per sec?

2. The photochemical chlorination of chloroform (CHC13 + C12
=

HC1 + CC14) follows the rate equation d(CC\^)/dt
= A:7a

1/2
(Cl2)

1/2(CHCl3),

where /a is the intensity of light absorbed. Devise a reaction scheme to

explain this kinetics.

3. In a study of the quenching of sodium resonance radiation at 200C,
it is found that 1.6 mm of N2 reduces the fluorescence intensity to 50 per
cent of the value in the absence of added gas. If the natural lifetime of the

excited Na atom is 10~7
sec, calculate the quenching cross section for N2 .

4. Show that when a y ray of energy EY in ev, is ejected from a nucleus

of mass m atomic weight units, the recoil kinetic energy of the nucleus in

ev is Ea
= 5.33 x \Q~wEY

2
/m. Calculate the recoil energy of Zn-65 on

emission of a 1.1 mev y ray.

5. Consider a europium-activated SrSiO3 phosphor with a single trap

depth of 0.72 ev and a= 1.5 x 109 seer1
. Calculate the time for the

luminescent intensity to decay to one-half its initial value at 100K and

at 400K.

6. A photographic film is exposed for 10~3 sec to a 100-watt incandescent

light at a distance of 10 meters. If 5 per cent of the power is emitted as visible

light to which the film is sensitive, estimate the number of silver atoms that

will be produced in a AgBr grain 10 microns in diameter.
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PHYSICAL CONSTANTS AND CONVERSION FACTORS

Electronic charge e

Planck constant /?

Velocity of light c

Electron rest mass m

Avogadro number TV

Gas constant per mole R

Boltzmann constant k

Faraday constant

Physical Constants

(4.8029 0.0002) x 10~10 esu

(6.6252 0.0005) x 10~27
erg sec

(299,792.9 0.8) km sec'1

(9.1085 0.0006) x 10~ 28
g

(6.0247 0.0004) x lO^mole-1

(8. 3 166 0.0004) x 107
erg deg-

1 mole'1

(1.3804 0.0001) x 10-16 erg deg-
1

(96,520 3) coulomb mole-1

Conversion Factors

1 bar - 1.000 x 106 dyne cm
2

1 atm - 1.01325 bar - 1.0332 x 104 kg m 2

1 erg
- 1 x 10~7

joule
^ 2.3901 x 10" 8 defined calorie

1 defined calorie = 4.1840 joule

1 BTU - 1055 joule

1 electron volt - (1.60207 0.00007) x 10~12 erg
=- 23.053 kcal mole"1

Wavelength corresponding to 1 ev - (12,397.8 0.5) x 10~8 cm

1 kw - 1.341 hp - 239 cal sec-1 - 2545 BTU hr'1

1 coulomb = 3 x 109 esu

1 weber m~2 = 104 gauss
= (3 x 106)-

1 esu
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ABBE, 273, 384

Abegg, 295

Abelson, 243

Allard, 609

Anderson, 235

Andrews, 16

Aristotle, 160, 518

Arrhenius, 435, 439, 469, 546, 576, 577

Aston, F. W., 219

Aston, J. G., 360, 363

Avogadro, 12, 162

BACON, 163

Balmer, 261

Barkla, 212, 213

Barlow, 390

Beattie, 19

Becker, 234

Becquerel, 211

Beeck, 586, 588

Beer, 596

Berkeley, 133

Bernal, 414

Bernouilli, 162

Berthelot, 16,45, 70, 72

Berthollot 69

Berzehus, 162, 202, 295, 575

Bethe, 245

Bjerrum, 465, 572, 578

Black, 21

Blackett, 229

Bloch, 325

Bodenstein, 78, 83, 538, 555, 604, 608

Bohr, 262

Boltzmann, 163, 183, 196, 349

Bom, 295, 405, 415, 428

Bothe, 234

Bouguer, 596

Boyle, 10,69,421
Bracken, 262

Bragg, 376, 387, 404

Bravais, 371

Brewer, 98

Brickwedde, 225

Bridgman, 24, 112,429
Brillouin, 399

Broglie, 270

Bronsted, 464, 469, 572, 580

Brown, 193

Brunauer, 586

Buerger, 384

CAILLETET, 430

Calvin, 610

Cannizzaro, 163

Carlyle, 201

Carnot, 48

Celsius, 9

Chadwick, 234

Chalmers, 614

Charles, 10

Cherwell, 551, 570

Christiansen, 555

Clapeyron, 106

Clausius, 51, 55, 57, 106, 163, 316, 437

Clement, 86

Clusius, 223

Cockroft, 229

Compton, 233

Condon, 338

Coster, 292

Coulson, 303

Craig, 131

Crookes, 205

Curie, 211, 613

DAINTON, 608

Dalence, 7

Dalton, 27, 162, 165

Daniels, 534, 605

Davisson, 271

Davy, 27, 201, 581

Debye, 87, 318, 327, 382, 408, 425, 450,

458, 468

Democritus, 160

Dempster, 218

Denbigh, 24, 545

Descartes, 161

Desormes, 86

Dewar, 86, 312

Dickel, 223

Dieterici, 16

Dillon, 536

Dirac, 235, 365

Dobereiner, 589

Dodge, 95

Dorn, 522

Draper, 595

Drude, 295

Duane, 613

Duhem, 119

Dulong, 203, 407

DuNoiiy, 502

EDDINGTON, 58

Einstein, 228, 233, 251, 261, 365, 407, 597
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Emmett, 586

Epicurus, 160

Epstein, 54

Esson, 529

Evans, 566

Ewald, 375

Eyring, 428, 563, 565, 614

FAJANS, 215

Falkenhagen, 468

Faraday, 73, 201,435, 581

Farkas, 543

Fermi, 234, 365

Fick, 448

Flerov, 242

Fowler, 87, 348, 366

Franck, 338

Frank, 588

Franklin, B., 200

Franklin, E. C., 470

Frazer, 133

Freundlich, 518

Friedrich, 257, 375

Fuoss, 465

GALVANI, 162, 200

Gamow, 245

Garner, 609

Gassendi, 161

Gay-Lussac, 10, 162

Geiger, 212

Geissler, 205

Geoffrey, 69

Germer, 271

Giauque, 87

Gibbs, 60, 62, 74, 99, 102, 107, 119, 478,
507

Gilbert, 200

Goldschmidt, 401

Goldstein, 205, 216

Gomberg, 557

Goudsmit, 285

Gouy, 193

Graham, 169

Gregory, 161

Gronwall, 465

Grotthuss, 437, 595

Guggenheim, 87, 321, 348

Guldberg, 70, 528

Gurney, 612

Guzman, 431

HABER, 78, 405

Hahn, 215, 241

Harcourt, 529

Harkins, 516

Hartley, 133

Harvey, 506

Hauy, 369

Heisenberg, 273, 275

Heitler, 295

Helmholtz, 60, 62, 74, 205, 519

Henri, 597

Henry, 122

Heraclitus, 160

Hermann, 373

Hertz, 205, 233

Herzberg, 341

Herzfeld, 183, 555, 558

Hess, 39

Hevesy, 292

Hildebrand, 424

Hinshelwood, 554, 584

Hirschfelder, 614

Hittorf, 205, 443

Hofeditz, 557

Hooke, 25, 1<61

Hoppler, 431

Hougen, 545

Huckel, 450, 458

Hume-Rothery, 399

Hund, 303

Huygens, 255

JEANS, 180, 185,230
Johnston, 530

Johot, 234, 235

Joule, 27, 32

Jura, 516

KAMMERLINGH-ONNES, 19, 86

Kassel, 570

Keesom, 425

Kelvin, 33, 51, 504

Kepler, 228

Kirchhoff, 43, 577

Kirkwood, 415, 428

Kistiakowsky, 41, 537

Klerk, 87

Knipping, 257

Knudsen, 197

Kohlrausch, 435, 437, 439, 450, 473

Kossel, 295

Kraus, 465, 470

Krishnan, 340

LAMBERT, 596

LaMer, 464, 465, 569

Langevin, 317

Langmuir, 509, 515, 582

Larson, 95

Latimer, 257, 370, 375

Lavoisier, 20, 162

Lawrence, 231

LeChatelier, 79

Lennard-Jones, 303, 428

Lewis, G. N., 142, 295, 471, 554

Lewis, W. C., 551
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Libby, 248

Lind, 555, 613

Lindemann, 551, 570

Locke, 161

Lodge, 444

London, 295, 426

Longsworth, 448

Lorentz, 320

Lorenz, 320

Lowry, 469, 580

Lucretius, 160

Lummer, 258

MADELUNG, 405

Marquers, 575

Marsden, 212

Matthias, 430

Mauguin, 373

Maxwell, 163, 173, 177, 187, 228 320

Mayer, J. E., 295, 348, 428

Mayer, R., 28

McBain, 508, 513

McLeod, 504

McMillan, 243

Mendeleev, 204, 295

Menzies, 108

Meyer, 205

Michaelis, 485, 590

Miller, 370

Millikan, 210

Milner, 450

Mitchell, 612

Mitscherlich, 109, 203

Morgan, 417

Morrison, 242

Morse, H. N., 133

Morse, P. M., 336

Moseley, 213, 295

Mossotti, 316

Mott, 612

Mulliken, 303

Murphy, 225

NEEDHAM, 420

Nernst, 78, 89, 130,446,448
Newlands, 204

Newton, 1., 2, 69, 161, 162, 173

Newton, R., 94

Nicholson, 201

Nier, 241

Nollet, 131

Norrish, 581, 606

Northrup, 590

OBLAD, 589

Ogg, 555

Onsager, 466

Ostwald, 430. 435, 440, 542, 575, 577

PANETH, 557

Paracelsus, 161

Paschen, 262

Pauli, 285, 297

Pauling, 309, 343, 400, 401, 403

Pelzer, 566

Perrin, 193

Petit, 203, 407

Petrzhak, 242

Pfeffer, 131

Pfund, 262

Pirenne, 327

Planck, 89, 259

Plucker, 205

Pockels, 508

Poiseuille, 174

Poisson, 458

Polanyi, 247, 555, 563, 566

Porter, 606

Powell, 235

Pringsheim, 258

Prout, 204

Purcell, 325

RABINOWITSCH, 562

Rainwater, 239

Raman, 340

Ramsay, 204, 504

Ramsperger, 553

Raoult, 121

Rayleigh, 508

Regnault, 10

Reid, 271

Rey, 7

Rice, 558

Rinaldi, 8

Roberts, 586

Robertson, 389

Rodebush, 569

Rontgen, 205

Roozeboom, 153

Rossini, 40

Rumford, 27

Russell, 215

Rutherford, 122, 213, 215, 229

SACKUR, 357

Sandved, 465

Scherrer, 382

Schiebold, 383

Schoenheimer, 589

Schrodinger, 275

Seaborg, 243

Siemens, 86

Slater, 570

Soddy, 213, 215,216
Sommerfeld, 262, 375

Sorensen, 486
St. Gilles, 70
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Stahl, 162

Stas, 204
Stensen, 369

Stern, 520
Stewart, 417

Stoney, 203

Strassman, 241

Su, 15

Sugden, 504

Sumner, 590
Sutherland, 180

Szilard, 614

TAMMANN, 112

Taylor, 557, 588, 614
Tetrode, 357

Thode, 224

Thompson, B., 27

Thomsen, J., 45, 72, 435
Thomson, G. P., 271

Thomson, J. J., 205, 206, 209, 212, 216
Thomson, W., 33, 51, 504

Tobolsky, 65

Tolman, 348

Torncelli, 10

Townsend, 209

Traube, 131, 508

Trautz, 551, 562
Trouton, 107

UHLENBECK, 285

Urey, 224, 225

VAN DER HULST, 324
van der Waals, 16, 425
van Laar, 450
van Marum, 580
van't Hoff, 132, 435, 439, 577
Volta, 162, 201

WAAGE, 70, 528

Walden, 446
Walton, 229

Warren, 417
Washburn, 225

Watson, 205
Watt, 48
Weiss, 574

Weissenberg, 383

Weizsacker, 245

Whewell, 201

Wien, 216, 468
Wierl, 327

Wigner, 566, 614

Wilhelmy, 70, 528, 557
Williamson, 202

Wilson, 209
Wohler, 295

YOST, 530

Yukawa, 235

ZACHARIASEN, 422
Zawidski, 135
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ABSOLUTF ZFRO, 85, 165

unattamability, 87

Absorption coefficient, 596

Accelerators, 229

Acids, 469

catalysts, 577-580
dissociation constants 471

Lewis, 470

nonaqueous solution, 470

proton theory, 469

Actmides, 292

Actmometry, 596

Action, 260
Activated complex, 531, 563, 566

Activation, 551, 554

Activation energy, 546

apparent, 585

calculation of, 563-566
collision theory, 551

viscous flow, 432
Active centers, 588

Activity, 141-144

coefficient, 94, 142, 453

electrolytes, 451-457

freezing point and, 455

ionic, 454

solubility and, 456

solutions, 451

vapor pressure and, 143

Activity-rate theory, 572

Adiabatic, 30

demagnetization, 87

ideal gas, 36

Adsorption, 503, 507

activated, 586

catalysis and, 581

chemical, 514

gases on solids, 512

heat of, 525, 586, 588

isotherm, 513, 516

Freundhch, 518

Gibbs, 507

Langmuir, 515

physical, 514

from solution, 517

Affinity, 45, 69

free energy and, 71

Age hardening, 152

Allotropy, 109, 391

Alloys, 399, 484

Alpha particle, 212, 213, 613

Alums, 203

Ammonia synthesis, 95

Amplitude, 252

factor, 570

Angular momentum, 267, 333

Anharmonicity, 335

Antiferromagnetism, 389

Arr'nemus:

equation, 545

intermediate, 576

lomzjtion theory, 439, 450

Asymmetry effect, 467

Atomic:

energy levels, 287

number, 212, 236, 295

recombination, 539

srattermg factor, 386

spectra, 261

structure, 200 227

theory, 160

weights, 162, 202, 221, 231

chemical, 223

physical, 223

Austenite, 153

Avogadro:
number, 173, 178, 194, 226

principle, 12, 162, 202

Azeotropic solution, 136

BAND, ENFRGY, 395-399, 602

Barn, the, 239

Barometric formula, 182

Base, 469

Benzene, resonance, 31 1

Berthollides, 70

Beta rays, 211,

Bimolecular reaction, 531

Black-body radiation, 257

Boiling point, 125, 126-128, 136

Boltzmann constant, 183

Boltzmann equation, 183, 317, 349-352, 366

Bond:

angles, 341

covalent, 296, 393

crystalline, 392

energies, 342

frequencies, 341

ionic, 296, 393

metallic, 395

van der Waals, 392

Born-Haber cycle, 405

Bottleneck principle, 541

Boyle's Law, 10, 165

Bragg equation, 377

Bravais lattices. 372
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Brillouin zones, 399

Broglie equation, 270
Brownian motion, 193-195

Bubbles, 502

CADMIUM, CROSS-SECTION, 240

Cage, solvent, 571

Caloric, 20, 27, 48, 200

Calorie, 20

Calorimetry, 20, 40
Canal rays, 216

Capacity factors, 9, 101

Capillary condensation, 515

Capillary rise, 501

Carbon, atomic orbitals, 309
Carbon-14 dating, 248
Carbon dioxide:

isotherms, 17

Joule-Thomson coefficients, 34
Carnot cycle, 48, 51, 53, 54

Catalysis, 575-590

acid-base, 577

contact, 580

homogeneous, 576

poisoning, 587

Catalytic constant, 577
Cathode rays, 205
Cavendish Laboratory, 205, 212

Cells, see Electrochemical cells

Cementite, 152

COS units, 2

Chain reaction, 243, 555, 557, 559, 604
Chemical potential, 91, 118, 126, 129, 134

diffusion and, 447
ideal gas, 92

ions, 478

solutes, 141

Chemisorption, 514, 586

Chlorophyll, 611

Chromatographic analysis, 519

Clapeyron-Clausius equation, 105

Clark cell, 73
Closest packing, 179, 390
Cloud chamber, 209

Colligative properties, 128
Collision diameter, 549

Collisions, molecular, 171, 548

triple, 562
Collision theory, 547-555, 568

in solution, 571

Colloids, 498-500
Color, 339
Column:

Clusius, 224

fractionating, 126

Combining volumes, 162

Compensation method, 73

Components, 99

Compounds, phase diagrams, 149

Compressibility, 13, 429

Compressibility factor, 12, 15

Compton effect, 233, 251, 273, 613

Conductivity, electrical, 435-447

equivalent, 437, 445

Grotthuss, 437, 447
of water, 473, 437

theory, 466

Configuration integral, 428
Conservation :

energy, 4, 27

mass-energy, 230
Contact angle, 501

Contact time, 544

Continuity of states, 18

Cooling curve, 148
Coordination number, 401

Coordination polyhedra, 403

Corresponding states, 14, 94
Cosmic rays, 235

Cosmotron, 232

Coulometers, 435

Covalence, 296, 393

Cracking, catalytic, 588

Creep, 430
Critical:

constants, 14

opalescence, 141

point, 14, 140

Cryogenics, 86

Crystals, 369-412
bonds in, 392

classes, 373

cleavage, 370

defects, 414

energy, 405

growth, 369, 588

habit, 369
mterfacial angles, 369

interplanar spacing, 378

ionic, 401

lattice, 371

structure factor, 384

systems, 370
unit cells, 371

Crystallography, first law, 369

point groups, 373

space groups, 374

X-ray, 375-389

powder method, 382
rotation method, 383

Crystal structures:

brass, 399
Cdl 2 , 402

CsCl, 401

diamond, 393
Fourier synthesis, 387

graphite, 393

ice, 395
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Crystal structures (cont.):

KC1, 377

metals, 391

MnO, 389

NaCl, 377

S, 394

Se, 394

silicates, 404

ZnS, 393, 401

Curie, the, 226

Curie-Weiss Law, 87

Cybotactic groups, 418

Cyclic process, 22, 53

Cyclotron, 231

DEBYE :

equation, 318

length, 461

unit, 314

Debye-Falkenhagen effect, 468

Debye-Hiickel theory, 458-465

Decomposition voltage, 488

Definite proportions, law of, 70, 162

Degeneracy, 265

Degree of freedom, 100, 165, 188, 191

Deliquescence, 145

Delocalization, 310, 339

Deuterium, 220, 225

Diamagnetism, 322

Diatomic molecule, 189

average energy, 190

electron diffraction, 327

spectroscopic data, 341

Dielectric constant, 315, 321

Differential, exact, 30

Diffraction, 255-257

electron, 271, 326

neutron, 389

x-ray, 257, 375, 415

Diffusion :

coefficient, 448

differential equation, 448

gas, 178, 223, 581

ionic solutions, 447

solids, 246

thermal, 223

Dilution law (Ostwald), 440, 472

Dipole moments, 314-322

interaction of, 425

Dislocations, 588

Dispersion forces, 426

Displacement, 315

Dissociation:

acids and bases, 471

atomic, 268

electrolytic, 439-441, 450

gases, 81

Distillation, 125

Distribution coefficient, 130

Distribution Law, Maxwell, 186

Planck, 259, 261, 348

Dorn effect, 522

Double-bond character, 331

Double-layer, electrical, 519

Driving force, 71, 197

Dyne, the, 2

EARTH, 216, 432

Efficiency, heat engines, 48-52

Efflorescence, 145

Effusion, 166-169

Eigenfunction, 276, 281

Einstein, the, 597

Electricity, 200

discharge in gases, 205

Electrochemical cells, 72, 473-^92

electrode concentration, 483

electrolyte concentration, 482

half, 474

liquid junction, 475, 484, 487

sign convention, 475

Electrochemical equivalents, 201

Electrochemical potential, 478

Electrochemistry, 435-497
Electrode:

amalgam, 474

calomel, 479

gas, 474

hydrogen, 474, 478

metal, 474

oxidation-reduction, 475

second-kind, 475

standard potential, 478

Electrodotic reagent, 471

Electrokinetic phenomena, 520-522

Electrolysis, 201,488
Electron, 204-210

affinity, 287-

charge, 209

compounds, 399

configuration in atoms, 288

diffraction, 271, 326

gas, 366, 381

gun, 218

indistinguishability, 299

mass, 206-209

microscope, 272

octet, 286

optical, 266

orbits, 263

pi, 310, 394

-positron pairs, 235

spin, 284

traps, 602

valence, 266

volt, 229

wavelength, 270

Electronegativity, 313
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Electro-osmosis, 520

Electrophi lie reagent, 470

Electrophoresis, 521

Electrophoretic effect, 467

Elements, electronic structure, 288

Emanation, 213

EMF, 73

hack, 489

standard, 476

Enantiotropy, 1 1 1

Energy, 29, 532

average, 352

bands, 395-399

bond, 46, 342

conservation, 4

coulombic, 301

crystal, 405

equipartition, 166, 189, 192, 258

exchange, 301

hydrogen molecule, 298

mterionic, 297

intermolecular, 180,426
kinetic, 3, 29, 188

levels, molecular, 332

mass and, 228

melting, 423

potential, 4, 6

resonance, 310

stellar, 245

unavailable, 61

vibrational, 252, 261

zero-point, 275

Enthalpy, 30, 45, 83

Entropy, 53-63

activation, 568-569
cell reactions, 73

equilibrium and, 58

heat capacity and, 85, 90

ideal gas, 55

ionic solutions, 441, 481

isolated system, 56

mixing, 64, 89

nuclear spin, 353

phase change and, 58

pressure dependence, 63

probability and, 195-197

Second Law and, 54, 57

spcctroscopic, 353

statistical formula, 357

temperature dependence, 63

Third Law and, 89, 352

time's arrow, 58

zero-point, 87-89

Enzymes, 589

Equation of state, 8

gases, 16

intermolecular forces and, 426

rubber band, 421

thermodynamic, 65

Equilibrium, 5, 91

chemical, 70, 77, 102

enthalpy and, 74

free energy and, 61, 77

ideal solution, 122

mechanical, 102

nomdeal solution, 143

phase, 101, 126, 128, 144, 145

thermal, 101

thermodynamics, and, 69-98

Equilibrium constants, 76, 77, 93, 143

inert gas effect, 81

isotopic, 224

pressure dependence, 80

rate constants and, 528

statistical formula, 361

temperature dependence, 83

Erg, the, 4

Escaping tendency, 94, 120

Etch figures, 374

Eutectic, 129, 146-148, 154

Eutectoid, 153

Exchange reaction, 224

Exciton, 602

Exclusion principle, 285, 296, 300, 305, 397

Expansion, work of, 21

Expansivity, 10

Explosions, 559

Extensive properties, 8

Extinction coefficient, 596

FARADAY, THE, 73, 203

Faraday's Laws, 201

Ferromagnetism, 322, 389

Films, suface, 508-512, 517

Fission, 242

Flow :

effusive, 169

jet, 169

laminar, 174

viscous, 173

Flow systems, 543

Fluctuation, 197, 505

Fluorescence, 211, 598-601

Force, 2

centrifugal, 192

conservative, 4

intermolecular, 171

nuclear, 236

surface, 506

vital, 295

Force constant, 190, 252, 334

Fourier synthesis, 387

Fractional distillation, 125

Franck-Condon Principle, 338, 598

Free energy, 59

activation, 568

affinity and, 71
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Free energy (cont.):

cell reactions, 73, 476
concentration and, 92

equilibrium and, 61, 75

formation, 75

Gibbs, 60

Helmholtz, 60

ideal gas, 76

ionic, 481

pressure dependence, 61

solubility and, 139

standard, 74

statistical formula, 354

surface, 498, 507

temperature dependence, 62

Free path, mean, 172

Free radicals, 557, 604, 608

Free volume, 428

Freezing-point depression, 128-130

Frequency, 252, 306, 341-342

Frequency factor, 546, 570

Fugacity, 93, 120

charts, 95

equilibrium and, 95

solids, 145

solutions, 141

GAMMA RAYS, 211, 613

Gas:
collision frequency in, 198

constant, 12

diffusion in, 177

elasticity, 161, 421

electron-diffraction, 326-331

free path, 172, 176

heat capacity, 44, 192, 361

ideal, 10, 34

imperfect, 169

liquefaction, 18

pressure, 10, 164

reactions, 547, 550

solubility, 123

thermal conductivity, 175, 177

thermometry, 10

viscosity, 173-177

volume, 163

Gauss theorem, 459

Gay-Lussac Law, 1 1

Gels, 522

Gibbs-Duhem equation, 117, 143

Gibbs-Helmholtz equation, 62, 73

Glass, 422

Gravitation, 3

Gyromagnetic ratio, 323

HALF-LIFE, 215, 543

Harmonic oscillator, 190, 251, 335, 360
Heat, 4, 19

Joulean, 73

Heat (cont.):

kinetic theory, 163

latent, 21, 58,422
of activation, 568

of adsorption, 525, 586
of dilution, 42

of dissociation, 335, 341

of formation, 41

of hydrogenation, 41

of reaction, 38, 40, 43

of solution, 41, 481

pump, 50

summation, constant, 39

theorem, Nernst, 89

Heat capacity, 20, 31

crystals, 407 410

gases, 44, 361

hydrogen, 364

metals", 203, 408

statistical formula, 352

Heitler-London theory, 300-303

Helium, liquid, 86

Henry's Law, 122,452
Hess's Law, 39

Hume-Rothery rule, 399

Hydrogen :

electrode, 474

liquid, 86

ortho-para, 247, 543, 563

reactions, 538, 556, 562, 565, 604

Hydrogen atom, 264, 280, 282

spectra, 261

wave functions, 280, 281

Hydrogen bond, 313, 395

Hydrogen ion, 447

Hydrogen molecule, 298, 300-303, 363

Hydrolysis, 473

Hydromum ion, 441, 447, 469

Hydroqumone, 485

ICF POLYMORPHISM, 113

Ideal gas, 10, 11, 34

calculations, 35, 37

Carnot cycle, 53

entropy, 55

equilibrium, 75

free energy, 62

heat capacity, 35

mixture, 92

Ideal solution, 120-122

deviations, 135

solubility in, 129

Indicator diagram, 22, 49

Induction, dipole, 315

Inequality of Clausius, 55

Integrating multiplier, 54

Intensity factors, 8, 101, 118

Intercept method, 118

Interfaces, phase, 498, 512
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Interfacial angles, 369

Interference, 255
Intermediate complex, 576
Intermolecular forces, 180, 425
Internuclear distance, 334, 337, 341
Intramolecular rearrangement, 537
Inversion temperature, 34, 66, 86
Ion exchange, 518
Ionic atmosphere, 460, 467
Ionic character, 313, 319
Ionic radii, crystal, 401
Ionic strength, 457, 573

lonization, 613

potential, 268

theory, 439, 450
Ions :

activities, 454

hydration, 441, 446

interactions, 458, 465

migration, 439
Iron-carbon system, 1 52

Isobar, 9

Isochore, 9

Isometric, 9

Isomorphism, 203

Isopleth, 138

Isoteniscope, 108

Isotherm, 9, 30, 510

Isotopes, 216-219, 221
dilution analysis, 246

exchange, 224

separation, 223

JOULE, THE, 5, 20
Joule experiment, 32
Joule-Thomson experiment, 33, 66, 86

KELVIN EQUATION, 504
Kinetic energy, 3, 165, 183, 188
Kinetic salt effect, 574, 579

Kinetics, chemical, 528-594
Kinetic theory of gases, 160-199
Konovalov rule, 136

x

LANTHANIDES, 292

Laplacian, 254
Latent heat, 21

Lattice, 371

Le Chatelier Principle, 79, 105, 128

Leveling effect, 470
Lever rule, 124
Lewis acid, 470

Light, 251

absorption, 595

intermittent, 607

scattering, 598
Linde process, 86
Linear differential equation, 254

Liquefaction of gases, 1 8, 66, 86

Liquid-crystals, 418

Liquid junction (cell), 475, 484

Liquids, 413-434
cohesion, 422
holes in, 428
internal pressure, 422-424

partition function, 427, 429
radial distribution function, 417
surface tension, 503

theory, 415, 426-430

X-ray diffraction, 415

Liquidus curve, 124

Liver, turnover in, 590

Luminescence, solids, 601

MADELUNG CONSTANT, 405

Magnetic:
balance, 322

moment, 322-323

quenching, 324

resonance, 325

susceptibility, 322

Magneton, Bohr, 323

nuclear, 324

Mass, 2,3

energy and, 228
^

reduced, 180

rest, i9
Mass action, 70

Mass-energy, 29, 22?, 230
Mass number, 222

Mass-spectrometry, 216-221
Maxwell distribution law, 187
Mean free p^th, 172

Mechanical equivalent of heat, 27

Meltirk point, 105, 414, 422, 149

depression, 128-130

incongruent, 149

Mernbranev semipermeable, 131

Mesomorphic state, 419

Meson, ^35
Metals, 395-399

liquid, 418
Metastable system, 105, 110

Michelson-Morley experiment, 251

Micron, the, 194

Microwaves, 336
Miller indices, 370
MKS system, 3, 209

Mobility, ionic, 442, 446
diffusion and, 447

Moderator, 239

Mole, 12

Molecularity, 531

Molecular orbitals, 303-308
Molecular spectra, 331-342
Molecular structure, 295-346
Molecular weight, 128
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Molecules, 162

collisions in gas, 171

cross-section, 510

diameter, 170, 179

diatomic, 190, 306-307

effusion, 166-169

hitting unit area, 168

linear, 190

mean free path, 172

polyatomic, 190

speed, 187, 198, 164-166

structure, 295-346

velocity distribution, 181-187

Moment of inertia, 189, 333, 341

rotational levels and, 358

Momentum, 2, 273

Monolayer, 510

Monotropy, 1 1 1

Morse function, 336

Multiple proportions, law of, 162

NEUTRALIZATION, 470

Neutrino, 236

Neutron, 234

beams, 244

capture, 238

chemical effects, 614

diffraction, 389

magnetic moment, 324

nuclear structure and, 237-238

thermal, 238

Newton, the, 3

Normal modes, 191, 254, 570

Nuclear magnetic resonance, 325

Nuclear reactions, 240, 243, 244

Nucleation, 505

Nucleons, 236

Nucleus, atomic, 212

artificial disintegration, 229

binding energy, 236

cross section, 239

density, 236

spin, 247

OCTET, 286

Ohm's Law, 435

Oil-drop experiment, 210

Orbital, 284
bond, 308

bonding, 304

energies, 291

hybrid, 308

linear combination, 303

molecular, 303-307

penetration, 290

pi, 310, 601

tetrahedral, 309

>rder of reaction, 530, 541

dentation, dipole, 315

Osmotic pressure, 108, 131-135

electrolytes, 439
van't Hoff equation, 132, 439

Overvoltage, 490-492
Oxidation potentials, 479

Oxidation-reduction, 485

PACKING FRACTION, 222, 238

Parachor, 504

Paracrystallme state, 419

Paramagnetism, 87, 322

nuclear, 324

Partial molar quantities, 116, 118

Partial pressure, 76, 165

Particle in a box, 277

Partition function, 352-354

crystals, 356

electronic, 363

equilibrium constant and, 361

ideal gas, 356

liquids, 427, 429

rotational, 358

translational, 356

vibrational, 359

Pauli principle, see Exclusion principle
Pearlite, 153

Penetration, 290

Period, 252

Periodic Law, 204

Periodic table, 285

Peritectic, 150

Permeability, magnetic, 322

Perpetual motion, 28

second kind, 50

/?H, 486

Phase, 99

equilibria, 116-159

rule, 102

surface, 506

wave, 253

Phlogiston, 162

Phosphorescence, 598

Photochemistry, 595-617

primary processes, 597

secondary processes, 598, 604

Photoconductivity, 602, 612

Photoelectric effect, 233, 251

Photography, 61 1

Photolysis, 605

flash, 606

Photon, 232

Photoperiodism, 609

Photosensitization, 596

Photosynthesis, 609-611

Pile, nuclear, 244

voltaic, 201

Planck constant, 233, 260, 263

Plasticity, 430

Plate, theoretical, 126
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Poise, the, 1 73

Poisemlle equation, 175, 430
Poisson equation, 458

Polarizability, 316

Polarization:

concentration, 490

crystal structure and, 395

dielectric, 314-316

electrolytic, 488

Poltergeist, 197

Polymorphism, 109

Positive hole, 612

Positron, 235

Potential energy, 4-6

surface, 564

vibrational, 188

Potentiometer, 72

Potentiometnc titration, 485

Predissociation, 597

Pressure, 6

bubble, 502

center of earth, 1 12

curved surface, 500

dissociation, 145

gas, 10, 164

high, 112

internal, 32, 422-424

relative, 514

surface, 509

statistical formula, 354

units, 12

Probability, 348

entropy and, 195-197

Promoter, 577

Promotion, 308

Protein denaturation, 572

Proton resonance, 326

Prout's hypothesis, 204, 222

Pseudobinary system, 1 1 1

Pyroelectncity, 374

QUALITIES, 161

Quantum:
action, 260

energy, 260

mechanics, 275-284, 297-303, 563

statistics, 365

yield, 595

Quantum number, 263, 278, 285

azimuthal, 265, 281

magnetic, 267,281

molecular, 303

principal, 265, 281

spin, 285

Quenching of fluorescence, 600

RADIAL DISTRIBUTION FUNCTION, 282, 417

Radiation:

black-body, 257

Radiation (cont.Y.

chemistry, 595, 612-617

density, 257

frequency distribution, 258

ionizing, 595

pressure, 228, 257

Radioactivity, 21 1-216

artificial, 235

decay law, 213

half life, 215

series, 213-215

tracers, 246

Radioastronomy, 324

Radium, 21 1

Radius ratio, 402

Raman spectra, 340

Randomness, 195, 354

Raoult's Law, 120-122, 135, 451

Rare earths, 292
Rare gases, 204

Rate constant, 528, 532, 549

Rational intercepts, law of, 370

Rays, a, ft ;>, 211

positive, 216

Reactions:

chain, 555

consecutive, 539

elementary, 531, 581

first-order, 533, 551,570
flow system, 543-546

heterogeneous, 580-589
inhibition of, 583

ionic, 572-575

nonadiabatic, 552

opposing, 537

parallel, 541

quantum theory, 563

rate and temperature, 546, 551, 560, 572
585

second-order, 534, 550

solution, 571

surface, 581-589

third-order, 536

trimolecular, 562

zero-order, 582

Reciprocity relation (Euler), 30, 65

Rectilinear diameters, law of, 429

Reduced variables, 14

Refraction, molar, 321

Refractive index, 320

Refractivity, 320

Refrigeration, 85-87

Relativity, 228, 251

Resistivity, 436

Resonance, 310, 312, 394
color and, 339

nuclear, 239, 325

proton, 326
Resonance radiation, 599
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Reversibility, 22

of cells, 473

Rontgen, the, 249

Rotation, 188

internal, 363

Rotator, rigid, 1 89

Rubber, 420

Rydberg constant, 261, 265

SALT BRIDGE, 484
Salt hydrates, 145

Salting-out, 466

Scattering:

alpha particles, 212

cross sections, 240

neutron, 238

X-ray, 385

Schrbdmger equation, 276, 277, 280

Sector, photochemical, 608

Sedimentation, 193

Selection rules, 267

Semiconductors, 399

Separation factor, 223

Slip planes, 391

Solid-state, theory of, 392-399

Sols, 522

Solubility:

curve, 129

equation, ideal, 129

gap, 139, 151

product constant, 456, 482

solid-solid, 151

Solutions, 116-158

boiling point, 125

concentration units, 116

conjugate, 138

gases in water, 123

heats, 41

ideal, 120

nonideal, 141

partial vapor pressures, 121

pressure vs. composition, 124

solid, 150-151

surface tension, 503

temperature vs. composition, 124

Solvolysis, 473

Space groups, 374

Space quantization, 267

Specific heat, 20, see also Heat capacity
Specific rate, 528

Spectra:
alkali metals, 265

atomic, 261-269

band, 261

Bohr theory, 262

electronic, 332
fine structure, 265

hyperfine structure, 324

infra-red, 333

Spectra (cont.):

line, 261-262
line widths, 274-275

microwave, 336

molecular, 331-342

*multiplets, 284

Raman, 340

rotation, 332

vibration, 332, 334

Speed, relative, 172, 549

Standard state:

activated complexes, 568

electrolytes, 451-454

elements, 74

energy, 28

free energy, 74

fugacity, 93

heat of formation, 39

solution, 142, 451

Stark effect, 268

Stars, energy of, 244

State, 5

nonaccessible, 89

steady, 552

variables of, 6, 30

Statistical thermodynamics, 347-368

crystals, 406-410
Statistical weight, 351, 358

Statistics, quantum, 365

Steady-state, 552

Steam engine, 48

Steel, 153

Stenc factor, 551

Stirred-flow reactor, 545

Stokes equation, 210, 446, 466

Streaming potential, 521

Structure factor, 384

Sublimation, 107

Sulfur, 109, 394

Sum-over-states, 352

Superposition principle, 254

Surface:

balance, 508

chemistry, 498-527

concentration, 507

entropy, 507

films, 508-512, 517

phase, 506

pressure, 509

reactions, 580-589

tension, 498-504, 512

Susceptibility, magnetic, 87, 322

Symmetry:
crystallographic, 373

number, 358

wave functions and, 299

Synchrotron, 232

System, 5

condensed-liquid, 140
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System (cont.):

one-component, 104

two-component, 123

three-component, 153

TEMPERATURE, 8, 19, 51, 163, 351 .y

absolute, 11

characteristic, 363, 409

consolute, 140

critical, 14, 140

Debye, 409

geologic (0-1 8), 225

ideal-gas scale, 1 1

reaction rate and, 546, 585

thermodynamic, 51

Tensiometer, 502

Thermal conductivity, 177

Thermal expansivity, 10

Thermal variables, 7

Thermochemistry, 38-45

Thermodynamic potential, 60

Thermodynamics, 23, 160

adsorption, 516

basic equations, 65

Brownian motion and, 194

chemical equilibrium and, 69-98
First Law, 27-47, 49, 57, 65, 85, 575

harmonic-oscillator functions, 360

nonideal solutions, 141

Second Law, 48-68, 50, 58, 65, 85, 194,

610

statistical, 347-366

surface, 506
Third Law, 85, 87-91, 352-354

Zeroth law, 8

Thermoluminescence, 603

Thermometer, 8

Thermonuclear reactions, 245

Thermopile, 596

Thermoscope, 7

Themostatics, 23

Three-body reaction, 562

Tie-line, 124, 154

Tracers, 245-247

Transference number, see Transport number
Transition :

first-order, 112

order-disorder, 400

second-order, 112

Transition series, 290

Transition-state theory, 566-569
Transmission coefficient, 567

Transport number, 442-450
cell-emf method, 487

Hi|torf method, 442

rowing-boundary method, 444

Transport phenomena, 175

Transuranium elements, 243

Triangular diagram, 153

Triple ions, 469

Triple point, 105, 109

Tritium, 245

Trouton's rule, 107, 422
Tunnel effect, 277-279

ULTRAVIOLET CATASTROPHE, 259

Uncertainty principle, 272-275
Unimolecular reactions, 532, 551, 570
Unit cell, 371

Uranium, 211,215, 223

fission, 241

VALENCE, 202, 295-313
bond method, 303, 307

directed, 308

spin, 303

van der Waals equation, 16, 18, 169-171,
425

van't Hoff /-factor, 439, 450
van't Hoff intermediate, 577

Vapor pressure, 106, 109

external pressure and, 107

fugacity and, 120, 142

measurement, 108

osmotic pressure and, 134

small droplets, 504

solutions, 121

Variance, 101

Velocity distribution, 184-187

Vibrations, 188-192

anharmonic, 335

degenerate, 191

energy levels, 332

harmonic, 254

normal modes, 191

of string, 255

Vinal equation, 19

Viscosity :

coefficient, 173

gas, 173-180
ionic mobility and, 467

liquids, 430-433

sols, 522

Volume:

atomic, 204

critical, 14

excluded, 170

partial molar, 116-120, 134

WALDEN'S RULE, 446

Water, 104

conductivity, 473

heavy, 225

high pressure, 113

ionic dissociation in, 441

ion product, 473

molecular orbitals, 308

radiation chemistry of, 615
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Water (cont.):

structure, 418

Water-gas equilibrium, 78

Watt, the, 5

Wave function, 276, see Orbital

of H atom, 281

Wavelength, 253

of particles, 271

Wave mechanics, 275-284
Wave number, 253

Waves, 251

frequency distribution, 259

one-dimensional, 255

stationary, 253

uncertainty principle and, 274

Weight, 3

Wierl equation, 329

\\ieneffect, 468

Work, 3

expansion, 21

maximum, 23

net, 60

Work function, 59-60
statistical formula, 354

X-RAYS:

characteristic, 213

crystallography, 375-389

discovery, 205

diffraction, 257, 376,415
emission spectra, 398

scattering, 385

spectra, 268

spectrometer, 376

unit of, 249

wavelength, 381

ZEEMAN EFFECT, 268

Zeitschnft f. physikalische Chemie, 435

Zeolites, 405, 518

Zero-order reaction, 582

Zero-point energy, 275, 360
Zeroth law of thermodynamics, 8

Zeta potential, 520, 522, 524












