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1 Introduction 

What is software architecture?  

There is no standard, universally-accepted definition of the term, for software 

architecture is a field in its infancy, although its roots run deep in software engineering.  

1.1 What is a Software Architecture 

An architecture is  

  set of significant decisions about the organization of a software system,  

  selection of the structural elements and their interfaces by which the system is composed,  

  behavior of the structural elements as specified in the collaborations among those elements,  

  composition of these structural and behavioral elements into progressively larger subsystems,  

  architectural style that guides this organization (i.e. these elements and their interfaces, their 

collaborations, and their composition).  

In the definition above, we assume that components can make of a component.  

The intent of this definition is that a software architecture must abstract away some information 

from the system (otherwise there is no point looking at the architecture, we are simply viewing 

the entire system) and yet provide enough information to be a basis for analysis, decision making, 

and hence risk reduction.  

First, architecture defines components. The architecture embodies information about how the 

components interact with each other. This means that architecture specifically omits content 

information about components that does not pertain to their interaction.  
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Second, the definition makes clear that systems can comprise more than one structure, and that no 

one structure holds the irrefutable claim to being the architecture.  

By intention, the definition does not specify what architectural components and relationships are.  

Is a software component an object? A process? A library? A database? A commercial product? It 

can be any of these things and more.  

Third, the definition implies that every software system has an architecture, because every system 

can be shown to be composed of components and relations among them.  

 

Fourth, the behavior of each component is part of the architecture, insofar as that behavior can be 

observed or discerned from the point of view of another component. This behavior is what allows 

components to interact with each other, which is clearly part of the architecture.  

Hence, most of the box-and-line drawings that are passed off as architectures are in fact 

not architectures at all. They are simply box-and-line drawings.  
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2  System Quality Attributes 

Fifth, the architecture essentially defines "externally visible" properties also known as system 

quality attributes for the whole software project, we are referring to such properties as its 

provided services, performance characteristics, fault handling, shared resource usage, and so on.  

Evaluation of an architecture's properties is critical to successful system development. However, 

reasoning about a system's intended architecture must be recognized as distinct from reasoning 

about its realized architecture. As design and eventually implementation of an architecture 

proceed, faithfulness to the principles of the intended architecture is not always easy to achieve. 

This is particularly true in cases where the intended architecture is not completely specified, 

documented or disseminated to all of the project members.  

2.1 Run-Time Quality Attributes 

There are attributes of a software-intensive system that define the system functionality and are 

visible at runtime. They are discussed in the following subsections.  

Performance refers to the responsiveness of the system − the 'time required to respond to stimuli 

(events) or the number of events processed in some interval of time.  

Performance qualities are often expressed by the number of transactions per unit time or 

by the amount of time it takes a transaction with the system to complete.  

Since communication usually takes longer than computation, performance is often a 

function of how much communication and interaction there is between the components of 

the system-clearly an architectural issue.  

Security is a measure of the system's ability to resist unauthorized attempts at usage and denial of 

service while still providing its services to legitimate users.  

It is categorized in terms of the types of threats that might be made to system;  

Availability measures the proportion of time the system is up and running.  

It is measured by the length of time between failures as well as by how quickly the 

system is able to resume operation in the event of failure. The steady state availability of 

a system is the proportion of time that the system is functioning correctly and is typically 

seen as follows:  

time to failure/(time to failure + time to repair)  

Availability comes from both "time to failure" and "time to repair"; both are addressed through 

architectural means.  

Reliability is closely related to availability, the ability of the system to keep operating over time. 

Reliability is usually measured with "time to failure". This is a quality attribute that is tied to the 

architecture:  

careful attention to error reporting and handling (which involves constraining the 

interaction patterns among the components), and special kinds of components such as 

time-out monitors.  

Mean time to failure is lengthened primarily by making an architecture fault tolerant.  
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Fault tolerance, in turn, is achieved by the replication of critical processing elements and 

connections within the architecture. Mean time to failure can also be lengthened by 

gelding a less error-prone system, which is addressed architecturally by careful separation 

of concerns, which leads to better inerrability and testability.  

Functionality is the ability of the system to do the work for which it was intended.  

Performing a task requires that many or most of the system's components work in a 

coordinated manner to complete the job, just as framers, electricians, plumbers, drywall 

hangers, painters, and finish carpenters all come together to cooperatively perform the 

task of getting a house built.  

Therefore, if the components have not been assigned the correct responsibilities or have 

not been endowed with the correct facilities for coordinating with other components (so 

that, for instance, they know when it is time for them to begin their portion of the task), 

the system will be unable to perform the required functionality.  

Usability can be broken down into the following areas:  

 Learnability: How quick and easy is it for a user to learn to use the system's interface?  

 Efficiency: Does the system respond with appropriate speed to a user's requests?  

 Memorability: Can the user remember how to do system operations between uses of the 

system?  

 Error avoidance: Does the system anticipate and prevent common user errors?  

 Error handling: Does the system help the user recover from errors?  

 Satisfaction: Does the system make the user's job easy?  

2.2 Engineering Quality Attributes 

There are other attributes of a software-intensive system that cannot be discerned at runtime. 

They are discussed in the following subsections.  

Modifiability, in all its forms, may be the quality attribute most closely aligned to the architecture 

of a system.  

The ability to make changes quickly and cost effectively follows directly from the 

architecture: Modifiability is largely a function of the locality of any change.  

Making a widespread change to the system is more costly than making a change to a 

single component, all other things being equal.  

There are exceptions, of course.  

A single component, if excessively large and complex, may be more costly to change 

than five simple ones.  

It's also easy to imagine a global change that in each place is simple and systematic: changing the 

value of a constant that appears everywhere, for instance.  

However, in large systems, making a change is much more costly than just, well, making 

the change. Development process costs start to dominate, such as maintaining version 
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control, approving the change across many change control boards, coordinating the 

change time across many large teams, retesting all the units, perhaps assuring backward 

compatibility, and so forth. We take as a general principle that local is better.  

Since the architecture defines the components and the responsibilities of each, it also 

defines the circumstances under which each component will have to change. An 

architecture effectively classifies all possible changes into four categories  

 Extending or changing capabilities. Adding new functionality, enhancing existing 

functionality, or repairing bugs. The ability to acquire new features is called extensibility. 

Adding new capabilities is important to remain competitive against other products in the 

same market.  

 Deleting unwanted capabilities. To streamline or simplify the functionality of an existing 

application, perhaps to deliver a less-capable (and therefore less expensive) version of a 

product to a wider customer base.  

 Adapting to new operating environments. For example, processor hardware, input/output 

devices, and logical devices. This kind of modification occurs so often that the quality of 

being amenable to it has a special name, portability, which we will discuss separately. 

Portability makes a product more flexible in how it can be fielded, appealing to a broader 

customer base.  

 Restructuring. For example, rationalizing system services, modularising, . optimising, or 

creating reusable components that may serve to give the organization a head start on 

future systems.  

Portability is the ability of the system to run under different computing environments.  

These environments can be hardware, software, or a combination of the two. A system is 

portable to the extent that all of the assumptions about any particular computing 

environment are confined to one component (or at worst, a small number of easily 

changed components).  

The encapsulation of platform-specific considerations in an architecture typically takes 

the form of a portability layer, a set of software services that gives application software 

an abstract interface to its environment. This interface remains constant (thus insulating 

the application software from change) even though the implementation of that layer 

changes as the system is ported from environment to environment.  

Reusability is usually taken to mean designing a system so that the system's structure or some of 

its components can be reused again in future applications.  

Designing for reusability means that the system has been structured so that its 

components can be chosen from previously built products, in which case it is a synonym 

for integrability . In either case, reusability can be conceived of as another special case of 

modifiability.  

Integrability is the ability to make the separately developed components of the system work 

correctly together. This in turn depends on the external complexity of the components, their 

interaction mechanisms and protocols, and the degree to which responsibilities have been cleanly 

partitioned, all architecture-level issues.  
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Inerrability also depends upon how well and completely the interfaces to the components 

have been specified. Integrating a component depends not only on the interaction 

mechanisms used (e.g., procedure call versus process spawning) but also on the 

functionality assigned to the component to be integrated and how that functionality is 

related to the functionality of this new component's environment.  

Interoperability is a special kind of integrability.  

lntegrability measures the ability of parts of a system to work together; interoperability 

measures the ability of a group of parts (constituting a system) to work with another 

system.  

Software testability refers to the ease with which software can be made to demonstrate its faults 

through (typically execution-based) testing.  

In particular, testability refers to the probability that, assuming that the software does 

have at least one fault, the software will fail on its next test execution.  

Testability is related to the concepts of absorbability and coagulability. For a system to be 

properly testable, it must be possible to control each component's internal state and inputs 

and then to observe its outputs.  

A system's testability relates to several structural or architectural issues: its level of 

architectural documentation, its separation of concerns, and the degree to which the 

system uses information hiding. Incremental development also benefits testability in the 

same way it enhances interoperability.  

2.3 Business Quality Attributes 

In addition to the preceding qualities that apply directly to a system, there are a number of 

business quality goals that frequently shape a system's architecture.  

We (briefly) distinguish two kinds of business goals.  

 The first concerns cost and schedule considerations;  

 The other business goal deals with market and marketing considerations;  

Time to market. If there is competitive pressure or if there is a short window of opportunity for a 

system or product, development time becomes important.  

This in turn leads to pressure to buy or otherwise reuse existing components. Time to 

market is often reduced by using prebuilt components such as commercial off-the-shelf 

(COTS) products or components reused from previous projects. The ability to insert a 

component into a system depends on the decomposition of the system into components, 

one or more of which are prebuilt.  

Cost. The development effort will naturally have a budget that must not be exceeded.  

Different architectures will yield different development costs; for instance, an 

architecture that relies on technology (or expertise with a technology) that is not resident 
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within the developing organization will be more expensive to realize than one that takes 

advantage of assets already in-house.  

Projected lifetime of the system. lf the system is intended to have a long lifetime, modifiability 

and portability across different platforms become important. But building in the additional 

infrastructure (such as a portability layer) to support modifiability and portability will usually 

compromise time to market.  

On the other hand, a modifiable, extensible product is more likely to survive longer in the 

marketplace, extending its lifetime.  

Targeted market. For general-purpose (mass-market) software, the platforms on which a system 

runs as well as its feature set will determine the size of the potential market. Thus, portability and 

functionality are key to market share. Other qualities such as performance, reliability, and 

usability also play a role.  

For a large but specific market, a product-line approach should be considered, in which a 

core of the system is common (frequently including provisions for portability) and around 

which layers of software of increasing specificity are constructed.  

Rollout schedule. lf a product is to be introduced as base functionality with many options, 

flexibility and customizability are important. Particularly, the system must be constructed with 

ease of expansion and contraction in mind.  

Extensive use of legacy systems. If the new system must integrate with existing systems, care 

must be taken to define appropriate integration mechanisms.  

This is a property that is clearly of marketing importance but which has substantial 

architectural implications.  

For example, the ability to integrate a legacy system with an HTTP server to make it 

accessible from the World Wide Web is currently a marketing goal in many corporations. 

The architectural constraints implied by this integration must be analyzed.  
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3  The Technical Architecting Process 

The architecting process incorporates a technical process and an organizational process.  

 The technical process includes steps and heuristics for creating a good architecture.  

The focal deliverable of the architecting process is the architectural specification, motivating and 

describing the structure of the system through various views. However, though system structuring 

is at the heart of the architecting process, it is just one of several activities critical to the creation 

of a good architecture.  

 

3.1 Architectural requirements 

Architectural requirements are needed to focus the structuring activities. Different architectural 

approaches tend to yield differing degrees of fit to various system requirements, and evaluating 

alternatives or performing architectural tradeoff analyses are an important adjunct to the 

structuring phase.  

Architectural requirements are a subset of the system requirements, determined by architectural 

relevance. The business objectives for the system, and the architecture in particular, are important 

to ensure that the architecture is aligned with the business agenda. The system context helps 

determine what is in scope and what is out of scope, what the system interface is, and what 

factors impinge on the architecture.  

 

The system value proposition helps establish how the system will fit the users’ agenda and top-

level, high-priority goals. These goals are translated into a set of use cases, which are used to 

document functional requirements. The system structure fails if it does not support the services or 

functionality that users value, or if the qualities associated with this functionality inhibit user 

performance or are otherwise unsatisfactory.  
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System qualities that have architectural significance (e.g., performance and security, but not 

usability at the user interface level) are therefore also important in directing architectural choices 

during structuring.  

Of course, requirements may already have been collected by product teams. In that case, the 

architecture team needs to review those requirements for architectural relevance and 

completeness (especially with respect to non-functional requirements), and be concerned with 

requirements for future products that the architecture will need to support.  

Lastly, for the architecture of a product line or family, architectural requirements that are unique 

to each product and those that are common across the product set need to be distinguished so that 

the structure can be designed to support both the commonality and the uniqueness in each 

product.  

3.2 System Structuring 

The architecture is created and documented in the system structuring phase.  

This is decomposed into sub-phases, along the lines of our model of software 

architecture:  

 

First, the architectural vision is formulated, to act as a beacon guiding decisions during the rest 

of system structuring.  

It is a good practice to explicitly allocate time for research in documented architectural 

styles, patterns, dominant designs and reference architectures, other architectures your 

organization, competitors, partners, or suppliers have created or you find documented in 

the literature, etc.  
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Based on this study, and your and the team’s past experience, the meta-architecture is 

formulated. This includes the architectural style, concepts, mechanisms and principles 

that will guide the architecture team during the next steps of structuring.  

 

The system is  

  decomposed into components and  

  the responsibilities of each component, and interconnections between components are 

identified.  

The intent of the conceptual architecture is to direct attention at an appropriate 

decomposition of the system without delving into the details of interface specification 

and type information.  

Moreover, it provides a useful vehicle for communicating the architecture to non-

technical audiences, such as management, marketing, and many users.  

 

The conceptual architecture forms the starting point for the logical architecture, and is likely to 

be modified as well as refined during the course of the creation of the logical architecture.  

Modeling the dynamic behavior of the system (at the architectural−or component−level) is a 

useful way to think through and refine the responsibilities and interfaces of the components.  
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Component specifications make the architecture concrete. These should include a summary 

description of services the component provides, the component owner’s name, IID and version 

names, message signatures (IDL), a description of the operations, constraints or pre-post 

conditions for each operation (these may be represented in a state diagram), the concurrency 

model, constraints on component composition, a lifecycle model, how the component is 

instantiated, how it is named, a typical use scenario, a programming example, exceptions, and a 

test or performance suite.  

An execution architecture is created for distributed or concurrent systems.  

It is formed by mapping the components onto the processes of the physical system.  

Different possible configurations are evaluated against requirements such as performance 

and scaling.  

At each step in structuring, it is worthwhile challenging the team’s creativity to expand the 

solution set under consideration, and then evaluating the different architecture alternatives 

against the prioritized architectural requirements.  

This is known as architecture tradeoff analysis (Barbacci et. al., 1998), and it recognizes 

that different approaches yield differing degrees of fit to the requirements. Selection of 

the best solution generally involves some compromise, but it is best to make this explicit.  

3.3 Architecture Validation 

Lastly, a validation phase provides early indicators of, and hence an opportunity to resolve, 

problems with the architecture.  

 

During structuring, the architects obviously make their best effort to meet the requirements on the 

architecture. The architecture validation phase involves additional people from outside the 
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architecting team to help provide an objective assessment of the architecture. In addition to 

enhancing confidence that the architecture will meet the demands placed on it, including the right 

participants in this phase can help create buy-in to the architecture.  

Architecture assessment involves:  

  "thought experiments",  

  modeling and walking-through scenarios that exemplify requirements,  

  assessment by experts who look for gaps and weaknesses in the architecture based on their 

experience.  

Another important part of validation is the development of prototypes or proofs-of-

concept. Taking a skeletal version of the architecture all the way through to 

implementation, for example, is a really good way to prove out aspects of the 

architecture.  

Though described sequentially above, the architecting process is best conducted iteratively, with 

multiple cycles through requirements, structuring and validation.  

 

One approach is to have at least one cycle devoted to each of Meta, Conceptual, Logical, and 

Execution architecture phases and cycles for developing the architectural guidelines and any other 

materials to help in deploying the architecture (such as tutorials). At each cycle, just enough 

requirements are collected to proceed with the next structuring step, and validation concentrates 

on the architecture in its current phase of maturity and depth.  

Moreover, a number of architecture teams that we have worked with have stopped at different 

points, leaving more detailed architecting to the product and component teams.  

At one end of the spectrum, a very small team of architects created the meta-architecture, and 

each of the product teams created their own architectures within the guidelines and constraints of 

the meta-architecture. Other architecture teams created the meta- and conceptual architectures, 

and a broader team of component owners developed the logical architecture.  

At the other end of the spectrum, the architecture team developed the entire architecture, all the 

way to its detailed logical architecture specification. This approach yields the most control over 

the architecture specification, but is typically fraught with organizational issues (e.g., the "NIH 

syndrome") that slow or even completely inhibit the use of the architecture.  
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4 The Organizational Architecting Process 

The architecting process incorporates a technical process and an organizational process.  

 However, a technically good architecture is not sufficient to ensure the successful use of 

the architecture, and the organizational process is oriented toward ensuring support for, 

and adoption of, the architecture.  

Architecture projects are susceptible to three major organizational sources of failure:  

  the project is under-resourced or cancelled prematurely by an uncommitted management;  

  it is stalled with endless infighting or a lack of leadership;  

  the architecture is ignored or resisted by product developers.  

The organizational process helps address these pitfalls. Two phases − namely 

Init/Commit and Deployment − support the technical process.  

However, the principal activities in these phases, namely championing the architecture 

and leading/teaming in Init/Commit, and consulting in Deployment, also overlap with the 

technical process activities.  

The Init/Commit phase focuses on initiating the architecture project on a sound footing, and 

gaining strong commitment from upper management.  

The creation of the architecture vision is central both to aligning the architecture team and 

gaining management sponsorship.  

A communication plan is also helpful in sensitizing the team to the need for frequent 

communication with others in the organization.  

A heads-down, hidden skunkworks architecture project may make quick progress − as long as it 

is well-led and its members act as a team. However, not listening to the needs of the management, 

developers, marketing, manufacturing and user communities and not paying attention to gaining 

and sustaining sponsorship in the management and technical leadership of the organization, or 

buy-in from the developer community, will lead to failure.  

The communication plan places attention on balancing the need for communication and 

isolation, as well as planning what to communicate when, and to whom.  

The Deployment phase follows the technical process, and addresses the needs of the developers 

who are meant to use the architecture to design and implement products. These range from 

understanding the architecture and its rationale, to responding to the need for changes to the 

architecture.  

This entails consulting, and perhaps tutorials and demos, as well as the architects' 

involvement in design reviews.  

It is important that at least the senior architect and the architecture project manager (if there is 

one) champion (fight for !) the architecture and gain the support of all levels of management 

affected by the architecture.  
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Championing the architecture starts early, and continues throughout the life of the architecture, 

though attention to championing tapers off as the architecture comes to be embraced by the 

management and developer communities.  

For the architecture team to be successful, there must be a leader and the team members must 

collaborate to bring their creativity and experience to bear on creating an architecture that will 

best serve the organization.  

This would seem so obvious as to not warrant being said, but unfortunately this is easier said than 

done. Explicit attention to developing the designated lead architect’s leadership skills, in the same 

way one would attend to developing these skills in management, is a worthy investment.  

Likewise, investing in activities aimed at developing the team as a team also has great 

payoff in the team’s efficacy.  

Consulting with and assisting the developer community in their use of the architecture is 

important in facilitating its successful adoption and appropriate use. These activities are most 

intense during deployment.  

However, earlier communication and consulting helps create buy-in the developer community 

through participation and understanding. This allows the architecture team to understand the 

developers’ needs and the developers to understand the architecture (and its rationale) as it 

evolves through the cycles of the technical process.  
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5  Architectural Styles 

An architectural style in software consists of a few key features and rules for combining those 

features so that architectural integrity is preserved.  

An architectural software style is determined by the following:  

 set of component types (e.g., data repository, a process, a procedure) that perform some 

function at runtime  

 topological layout of these components indicating their runtime interrelationships  

 set of semantic constraints (for example, a data repository is not allowed to change the 

values stored in it)  

 set of connectors (e.g., subroutine call, remote procedure call, data streams, sockets) that 

mediate communication, coordination, or cooperation among components.  

5.1 Data Centered Architectures 

Data-Centered architectures have the goal of achieving the quality of integrability of data.  

The term Data-Centered Architectures refers to systems in which the access and update 

of a widely accessed data store is an apt description.  

 

At its heart, it is nothing more than a centralized data store that communicates with a number of 

clients. The means of communication (sometimes called the coordination model) distinguishes 

the two subtypes: repository (the one shown) and blackboard. A blackboard sends notification to 

subscribers when data of interest changes, and is thus active.  

Data-centered styles are becoming increasingly important because they offer a structural 

solution to illegibility. Many systems, especially those built from preexisting components, are 

achieving data integration through the use of blackboard mechanisms. They have the advantage 

that the clients are relatively independent of each other, and the data store is independent of the 

clients.  

Thus, this style is scalable: New clients can be easily added. It is also modifiable with 

respect to changing the functionality of any particular client because otherwise will not 

be affected. Coupling among clients will lessen this benefit but may occur to enhance 

performance.  
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5.2 Data-Flow Architectures 

Data-Flow architectures have the goal of achieving the qualities of reuse and modifiability.  

The data-bow style is characterized by viewing the system as a series of transformations 

on successive pieces of input data. Data enter the system and then flows through the 

components one at a time until they are assigned to some final destination (output or a 

data store).  

 

In the batch sequential style, processing steps, or components, are independent programs, and the 

assumption is that each step runs to completion before the next step starts. Each batch of data is 

transmitted as a whole between the steps.  

The typical application for this style is classical data processing.  

 

The Pipe-and-Filter style emphasizes the incremental transformation of data by successive 

components. This is a typical style in the UNIX family of operating systems.  

 

Filters are stream transducers. They incrementally transform data (stream to stream), use little 

contextual information, and retain no state information between instantiations. Pipes are stateless 

and simply exist to move data between filters.  
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Both pipes and alters are run non-deterministically until no more computations or transmissions 

are possible. Constraints on the pipe-and-alter style indicate the ways in which pipes and alters 

can be joined.  

A pipe has a source end that can only be connected to a filter's output port and a sink end that can 

only be connected to a alter's input port.  

Pipe-and-filter systems, like all other styles, have a number of advantages and disadvantages.  

Their advantages principally flow from their simplicity-the limited ways in which they 

can interact with their environment.  

This simplicity means that a pipe-and-filter system's function is no more and no less than 

the composition of the functions of its primitives.  

There are no complex component interactions to manage.  

 

Pipe-and-filter systems advantages:  

 The pipe-and-filter style simplifies system maintenance and enhances reuse for the same 

reason-filters stand alone, and we can treat them as black boxes.  

 Both pipes and filters can be hierarchically composed: Any combination of filters, connected 

by pipes, can be packaged and appear to the external world as a filter.  

 Because a filter can process its input in isolation from the rest of the system, a pipe-and-filter 

system is easily made parallel or distributed, providing opportunities for enhancing a system's 

performance without modifying it.  

Pipe-and-filter systems also suffer from some disadvantages.  

 There is no way for filters to cooperatively interact to solve a problem.  

 Performance in such a system is frequently poor for several reasons, all of which 

stem from the isolation of functionality that makes pipes and alters so modifiable; 

these reasons are listed below:  

 Filters typically force the lowest common denominator of data representation 

(such as an ASCII stream). lf the input stream needs to be transformed into tokens, 

every filter pays this parsing/unparsing overhead.  

 If a alter cannot produce its output until it has received all of its input, it will 

require an input buffer of unlimited size. A sort filter is an example of a filter that 

suffers from this problem. lf bounded buffers are used, the system could deadlock.  
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 Each filter operates as a separate process or procedure call, thus incurring 

some overhead each time it is invoked.  

5.3 Virtual Machine Architecture 

Virtual Machine architectures have the goal of achieving the quality of portability.  

Virtual machines are software styles that simulate some functionality that is not native to the 

hardware and/or software on which it is implemented.  

 

This can be useful in a number of ways:  

 It can allow one to simulate (and test) platforms that have not yet been built (such as 

new hardware), and it can simulate "disaster'' modes (as is common in flight 

simulators and safety-critical systems) that would be too complex, costly, or 

dangerous to test with the real system.  

 Common examples of virtual machines are interpreters, rule-based systems, syntactic 

shells, and command language processors.  

Interpretation of a particular module via a Virtual Machine may be seen as follows:  

 the interpretation engine selects an instruction from the module being interpreted;  

 based on the instruction, the engine updates the virtual machine internal state;  

 the process above is repeated;  

Executing a module via a virtual machine adds flexibility through the ability to interrupt and 

query the program and introduce modifications at runtime, but there is a performance cost 

because of the additional computation involved in execution.  

5.4 Call-and-Return Architectures 

Call-and-Return architectures have the goal of achieving the qualities of modifiability and 

solvability.  

Call-and-Return architectures have been the dominant architectural style in large software 

systems for the past 30 years.  

However, within this style a number of substyles, each of which has interesting features, 

have emerged.  
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Main-Program-and-Subroutine architectures is the classical programming paradigm. The goal is 

to decompose a program into smaller pieces to help achieve modifiability.  

A program is decomposed hierarchically. There is typically a single thread of control and each 

component in the hierarchy gets this control (optionally along with some data) from its parent and 

passes it along to its children.  

 

Remote procedure call systems are main-program-and-subroutine systems that are decomposed 

into parts that live on computers connected via a network.  

The goal is to increase performance by distributing the computations and taking advantage of 

multiple processors. In remote procedure call systems, the actual assignment of parts to 

processors is deferred until runtime, meaning that the assignment is easily changed to 

accommodate performance tuning. In fact, except that subroutine calls may take longer to 

accomplish if it is invoking a function on a remote machine, a remote procedure call is 

indistinguishable from standard main program and subroutine systems.  

Object-oriented or abstract data type systems are the modern version of call-and-return 

architectures.  

The object-oriented paradigm, like the abstract data type paradigm from which it evolved, 

emphasizes the bundling of data and methods to manipulate and access that data (Public 

Interface).  

The object abstractions form components that provide black-box services and other 

components that request those services. The goal is to achieve the quality of 

modifiability.  

 

This bundle is an encapsulation that hides its internal secrets from its environment. Access to the 

object is allowed only through provided operations, typically known as methods, which are 

constrained forms of procedure calls. This encapsulation promotes reuse and modifiability, 

principally because it promotes separation of concerns:  
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The user of a service need not know, and should not know, anything about how that service is 

implemented.  

Layered systems are ones in which components are assigned to layers to control intercomponent 

interaction. In the pure version of this architecture, each level communicates only with its 

immediate neighbours.  

 

The goal is to achieve the qualities of modifiability and, usually, portability. The lowest layer 

provides some core functionality, such as hardware, or an operating system kernel. Each 

successive layer is built on its predecessor, hiding the lower layer and providing some services 

that the upper layers make use of.  

5.5 Independent Component Architectures 

Independent component architectures consist of a number of independent processes or objects 

that communicate through messages.  

 

All of these architectures have the goal of achieving modifiability by decoupling various portions 

of the computations. They send data to each other but typically do not directly control each other.  

The messages may be passed to  

  named participants (Communicating Processes style);  

  unnamed participants using the publish/subscribe paradigm (Event Style) .  

Event systems are a substyle in which control is part of the model. Individual components 

announce data that they wish to share (publish) with their environment − a set of unnamed 

components.  

These other components may register an interest in this class of data (subscribe). If they 

do so, when the data appears, they are invoked and receive the data.  
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Typically, event systems make use of a message manager that manages communication among 

the components, invoking a component (thus controlling it) when a message arrives for it. In this 

publish/subscribe paradigm, a message manager may or may not control the components to which 

it forwards messages.  

Components register types of information that they are willing to provide and that they wish to 

receive.  

They then publish information by sending it to the message manager, which forwards the 

message, or in some cases an object reference, to all interested participants.  

This paradigm is important because it decouples component implementations from knowing each 

others' names and locations. As mentioned, it may involve decoupling control as well, which 

means that components can run in parallel, only interacting through an exchange of data when 

they so choose. This decoupling eases component integration  

Besides event systems, the other substyle of independent components is the communicating 

processes style. These are the classic multiprocess systems.  

Of these, client-server is a well-known subtype. The goal is to achieve the quality of 

scalability.  

 

A server exists to serve data to one or more clients, which are typically located across a network. 

The client originates a call to the server, which works, synchronously or asynchronously, to 

service the client's request.  

If the server works synchronously, it returns control to the client at the same time that it 

returns data. If the server works asynchronously, it returns only data to the client (which 

has its own thread of control).  

5.6 Heterogeneous Styles 

Systems are seldom built from a single style, and we say that such systems are heterogeneous.  

There are three kinds of heterogeneity, they are as follows.  



The CSS Point 

 

24 

www.css.theazkp.com 

www.facebook.com/thecsspoint 

 

Locationally heterogeneous means that a drawing of its runtime structures will reveal patterns of 

different styles in different areas.  

For example, some branches of a Main-Program-and-Subroutines system might have a 

shared data repository (i.e. a database).  

 

Hierarchically Heterogeneous means that a component of one style, when decomposed, is 

structured according to the rules of a different style  

For example, an end-user interface sub-system might be built using Event System 

architectural style, while all other sub-systems − using Layered Architecture.  

 

Simultaneously Heterogeneous means that any of several styles may well be apt descriptions of 

the system.  

This last form of heterogeneity recognizes that styles do not partition software architectures into 

non-overlapping, clean categories. You may have noticed this already. The data-centered style at 

the beginning of this discussion was composed of thread-independent clients, much like an 

independent component architecture.  

The layers in a layered system may comprise objects or independent components or even 

subroutines in a main-program-and-subroutines system. The components in a pipe-and-

filter system are usually implemented as processes that operate independently, waiting 

until input is at their ports, again, this is similar to independent component systems whose 

order of execution is predetermined.  


