
The CSS Point

1

www.css.theazkp.com

www.facebook.com/thecsspoint

Introduction to Software Architecture

Table of Contents

1 Introduction .. 2
1.1 What is a Software Architecture... 2

2 System Quality Attributes ... 5
2.1 Run-Time Quality Attributes .. 5
2.2 Engineering Quality Attributes .. 6
2.3 Business Quality Attributes .. 8

3 The Technical Architecting Process ... 10
3.1 Architectural requirements ... 10
3.2 System Structuring ... 11
3.3 Architecture Validation .. 13

4 The Organizational Architecting Process .. 15

5 Architectural Styles .. 17
5.1 Data Centered Architectures .. 17
5.2 Data-Flow Architectures .. 18
5.3 Virtual Machine Architecture ... 20
5.4 Call-and-Return Architectures ... 20
5.5 Independent Component Architectures .. 22
5.6 Heterogeneous Styles ... 23

The CSS Point

2

www.css.theazkp.com

www.facebook.com/thecsspoint

1 Introduction

What is software architecture?

There is no standard, universally-accepted definition of the term, for software

architecture is a field in its infancy, although its roots run deep in software engineering.

1.1 What is a Software Architecture

An architecture is

 set of significant decisions about the organization of a software system,

 selection of the structural elements and their interfaces by which the system is composed,

 behavior of the structural elements as specified in the collaborations among those elements,

 composition of these structural and behavioral elements into progressively larger subsystems,

 architectural style that guides this organization (i.e. these elements and their interfaces, their

collaborations, and their composition).

In the definition above, we assume that components can make of a component.

The intent of this definition is that a software architecture must abstract away some information

from the system (otherwise there is no point looking at the architecture, we are simply viewing

the entire system) and yet provide enough information to be a basis for analysis, decision making,

and hence risk reduction.

First, architecture defines components. The architecture embodies information about how the

components interact with each other. This means that architecture specifically omits content

information about components that does not pertain to their interaction.

The CSS Point

3

www.css.theazkp.com

www.facebook.com/thecsspoint

Second, the definition makes clear that systems can comprise more than one structure, and that no

one structure holds the irrefutable claim to being the architecture.

By intention, the definition does not specify what architectural components and relationships are.

Is a software component an object? A process? A library? A database? A commercial product? It

can be any of these things and more.

Third, the definition implies that every software system has an architecture, because every system

can be shown to be composed of components and relations among them.

Fourth, the behavior of each component is part of the architecture, insofar as that behavior can be

observed or discerned from the point of view of another component. This behavior is what allows

components to interact with each other, which is clearly part of the architecture.

Hence, most of the box-and-line drawings that are passed off as architectures are in fact

not architectures at all. They are simply box-and-line drawings.

The CSS Point

4

www.css.theazkp.com

www.facebook.com/thecsspoint

The CSS Point

5

www.css.theazkp.com

www.facebook.com/thecsspoint

2 System Quality Attributes

Fifth, the architecture essentially defines "externally visible" properties also known as system

quality attributes for the whole software project, we are referring to such properties as its

provided services, performance characteristics, fault handling, shared resource usage, and so on.

Evaluation of an architecture's properties is critical to successful system development. However,

reasoning about a system's intended architecture must be recognized as distinct from reasoning

about its realized architecture. As design and eventually implementation of an architecture

proceed, faithfulness to the principles of the intended architecture is not always easy to achieve.

This is particularly true in cases where the intended architecture is not completely specified,

documented or disseminated to all of the project members.

2.1 Run-Time Quality Attributes

There are attributes of a software-intensive system that define the system functionality and are

visible at runtime. They are discussed in the following subsections.

Performance refers to the responsiveness of the system − the 'time required to respond to stimuli

(events) or the number of events processed in some interval of time.

Performance qualities are often expressed by the number of transactions per unit time or

by the amount of time it takes a transaction with the system to complete.

Since communication usually takes longer than computation, performance is often a

function of how much communication and interaction there is between the components of

the system-clearly an architectural issue.

Security is a measure of the system's ability to resist unauthorized attempts at usage and denial of

service while still providing its services to legitimate users.

It is categorized in terms of the types of threats that might be made to system;

Availability measures the proportion of time the system is up and running.

It is measured by the length of time between failures as well as by how quickly the

system is able to resume operation in the event of failure. The steady state availability of

a system is the proportion of time that the system is functioning correctly and is typically

seen as follows:

time to failure/(time to failure + time to repair)

Availability comes from both "time to failure" and "time to repair"; both are addressed through

architectural means.

Reliability is closely related to availability, the ability of the system to keep operating over time.

Reliability is usually measured with "time to failure". This is a quality attribute that is tied to the

architecture:

careful attention to error reporting and handling (which involves constraining the

interaction patterns among the components), and special kinds of components such as

time-out monitors.

Mean time to failure is lengthened primarily by making an architecture fault tolerant.

The CSS Point

6

www.css.theazkp.com

www.facebook.com/thecsspoint

Fault tolerance, in turn, is achieved by the replication of critical processing elements and

connections within the architecture. Mean time to failure can also be lengthened by

gelding a less error-prone system, which is addressed architecturally by careful separation

of concerns, which leads to better inerrability and testability.

Functionality is the ability of the system to do the work for which it was intended.

Performing a task requires that many or most of the system's components work in a

coordinated manner to complete the job, just as framers, electricians, plumbers, drywall

hangers, painters, and finish carpenters all come together to cooperatively perform the

task of getting a house built.

Therefore, if the components have not been assigned the correct responsibilities or have

not been endowed with the correct facilities for coordinating with other components (so

that, for instance, they know when it is time for them to begin their portion of the task),

the system will be unable to perform the required functionality.

Usability can be broken down into the following areas:

 Learnability: How quick and easy is it for a user to learn to use the system's interface?

 Efficiency: Does the system respond with appropriate speed to a user's requests?

 Memorability: Can the user remember how to do system operations between uses of the

system?

 Error avoidance: Does the system anticipate and prevent common user errors?

 Error handling: Does the system help the user recover from errors?

 Satisfaction: Does the system make the user's job easy?

2.2 Engineering Quality Attributes

There are other attributes of a software-intensive system that cannot be discerned at runtime.

They are discussed in the following subsections.

Modifiability, in all its forms, may be the quality attribute most closely aligned to the architecture

of a system.

The ability to make changes quickly and cost effectively follows directly from the

architecture: Modifiability is largely a function of the locality of any change.

Making a widespread change to the system is more costly than making a change to a

single component, all other things being equal.

There are exceptions, of course.

A single component, if excessively large and complex, may be more costly to change

than five simple ones.

It's also easy to imagine a global change that in each place is simple and systematic: changing the

value of a constant that appears everywhere, for instance.

However, in large systems, making a change is much more costly than just, well, making

the change. Development process costs start to dominate, such as maintaining version

The CSS Point

7

www.css.theazkp.com

www.facebook.com/thecsspoint

control, approving the change across many change control boards, coordinating the

change time across many large teams, retesting all the units, perhaps assuring backward

compatibility, and so forth. We take as a general principle that local is better.

Since the architecture defines the components and the responsibilities of each, it also

defines the circumstances under which each component will have to change. An

architecture effectively classifies all possible changes into four categories

 Extending or changing capabilities. Adding new functionality, enhancing existing

functionality, or repairing bugs. The ability to acquire new features is called extensibility.

Adding new capabilities is important to remain competitive against other products in the

same market.

 Deleting unwanted capabilities. To streamline or simplify the functionality of an existing

application, perhaps to deliver a less-capable (and therefore less expensive) version of a

product to a wider customer base.

 Adapting to new operating environments. For example, processor hardware, input/output

devices, and logical devices. This kind of modification occurs so often that the quality of

being amenable to it has a special name, portability, which we will discuss separately.

Portability makes a product more flexible in how it can be fielded, appealing to a broader

customer base.

 Restructuring. For example, rationalizing system services, modularising, . optimising, or

creating reusable components that may serve to give the organization a head start on

future systems.

Portability is the ability of the system to run under different computing environments.

These environments can be hardware, software, or a combination of the two. A system is

portable to the extent that all of the assumptions about any particular computing

environment are confined to one component (or at worst, a small number of easily

changed components).

The encapsulation of platform-specific considerations in an architecture typically takes

the form of a portability layer, a set of software services that gives application software

an abstract interface to its environment. This interface remains constant (thus insulating

the application software from change) even though the implementation of that layer

changes as the system is ported from environment to environment.

Reusability is usually taken to mean designing a system so that the system's structure or some of

its components can be reused again in future applications.

Designing for reusability means that the system has been structured so that its

components can be chosen from previously built products, in which case it is a synonym

for integrability . In either case, reusability can be conceived of as another special case of

modifiability.

Integrability is the ability to make the separately developed components of the system work

correctly together. This in turn depends on the external complexity of the components, their

interaction mechanisms and protocols, and the degree to which responsibilities have been cleanly

partitioned, all architecture-level issues.

The CSS Point

8

www.css.theazkp.com

www.facebook.com/thecsspoint

Inerrability also depends upon how well and completely the interfaces to the components

have been specified. Integrating a component depends not only on the interaction

mechanisms used (e.g., procedure call versus process spawning) but also on the

functionality assigned to the component to be integrated and how that functionality is

related to the functionality of this new component's environment.

Interoperability is a special kind of integrability.

lntegrability measures the ability of parts of a system to work together; interoperability

measures the ability of a group of parts (constituting a system) to work with another

system.

Software testability refers to the ease with which software can be made to demonstrate its faults

through (typically execution-based) testing.

In particular, testability refers to the probability that, assuming that the software does

have at least one fault, the software will fail on its next test execution.

Testability is related to the concepts of absorbability and coagulability. For a system to be

properly testable, it must be possible to control each component's internal state and inputs

and then to observe its outputs.

A system's testability relates to several structural or architectural issues: its level of

architectural documentation, its separation of concerns, and the degree to which the

system uses information hiding. Incremental development also benefits testability in the

same way it enhances interoperability.

2.3 Business Quality Attributes

In addition to the preceding qualities that apply directly to a system, there are a number of

business quality goals that frequently shape a system's architecture.

We (briefly) distinguish two kinds of business goals.

 The first concerns cost and schedule considerations;

 The other business goal deals with market and marketing considerations;

Time to market. If there is competitive pressure or if there is a short window of opportunity for a

system or product, development time becomes important.

This in turn leads to pressure to buy or otherwise reuse existing components. Time to

market is often reduced by using prebuilt components such as commercial off-the-shelf

(COTS) products or components reused from previous projects. The ability to insert a

component into a system depends on the decomposition of the system into components,

one or more of which are prebuilt.

Cost. The development effort will naturally have a budget that must not be exceeded.

Different architectures will yield different development costs; for instance, an

architecture that relies on technology (or expertise with a technology) that is not resident

The CSS Point

9

www.css.theazkp.com

www.facebook.com/thecsspoint

within the developing organization will be more expensive to realize than one that takes

advantage of assets already in-house.

Projected lifetime of the system. lf the system is intended to have a long lifetime, modifiability

and portability across different platforms become important. But building in the additional

infrastructure (such as a portability layer) to support modifiability and portability will usually

compromise time to market.

On the other hand, a modifiable, extensible product is more likely to survive longer in the

marketplace, extending its lifetime.

Targeted market. For general-purpose (mass-market) software, the platforms on which a system

runs as well as its feature set will determine the size of the potential market. Thus, portability and

functionality are key to market share. Other qualities such as performance, reliability, and

usability also play a role.

For a large but specific market, a product-line approach should be considered, in which a

core of the system is common (frequently including provisions for portability) and around

which layers of software of increasing specificity are constructed.

Rollout schedule. lf a product is to be introduced as base functionality with many options,

flexibility and customizability are important. Particularly, the system must be constructed with

ease of expansion and contraction in mind.

Extensive use of legacy systems. If the new system must integrate with existing systems, care

must be taken to define appropriate integration mechanisms.

This is a property that is clearly of marketing importance but which has substantial

architectural implications.

For example, the ability to integrate a legacy system with an HTTP server to make it

accessible from the World Wide Web is currently a marketing goal in many corporations.

The architectural constraints implied by this integration must be analyzed.

The CSS Point

10

www.css.theazkp.com

www.facebook.com/thecsspoint

3 The Technical Architecting Process

The architecting process incorporates a technical process and an organizational process.

 The technical process includes steps and heuristics for creating a good architecture.

The focal deliverable of the architecting process is the architectural specification, motivating and

describing the structure of the system through various views. However, though system structuring

is at the heart of the architecting process, it is just one of several activities critical to the creation

of a good architecture.

3.1 Architectural requirements

Architectural requirements are needed to focus the structuring activities. Different architectural

approaches tend to yield differing degrees of fit to various system requirements, and evaluating

alternatives or performing architectural tradeoff analyses are an important adjunct to the

structuring phase.

Architectural requirements are a subset of the system requirements, determined by architectural

relevance. The business objectives for the system, and the architecture in particular, are important

to ensure that the architecture is aligned with the business agenda. The system context helps

determine what is in scope and what is out of scope, what the system interface is, and what

factors impinge on the architecture.

The system value proposition helps establish how the system will fit the users’ agenda and top-

level, high-priority goals. These goals are translated into a set of use cases, which are used to

document functional requirements. The system structure fails if it does not support the services or

functionality that users value, or if the qualities associated with this functionality inhibit user

performance or are otherwise unsatisfactory.

The CSS Point

11

www.css.theazkp.com

www.facebook.com/thecsspoint

System qualities that have architectural significance (e.g., performance and security, but not

usability at the user interface level) are therefore also important in directing architectural choices

during structuring.

Of course, requirements may already have been collected by product teams. In that case, the

architecture team needs to review those requirements for architectural relevance and

completeness (especially with respect to non-functional requirements), and be concerned with

requirements for future products that the architecture will need to support.

Lastly, for the architecture of a product line or family, architectural requirements that are unique

to each product and those that are common across the product set need to be distinguished so that

the structure can be designed to support both the commonality and the uniqueness in each

product.

3.2 System Structuring

The architecture is created and documented in the system structuring phase.

This is decomposed into sub-phases, along the lines of our model of software

architecture:

First, the architectural vision is formulated, to act as a beacon guiding decisions during the rest

of system structuring.

It is a good practice to explicitly allocate time for research in documented architectural

styles, patterns, dominant designs and reference architectures, other architectures your

organization, competitors, partners, or suppliers have created or you find documented in

the literature, etc.

The CSS Point

12

www.css.theazkp.com

www.facebook.com/thecsspoint

Based on this study, and your and the team’s past experience, the meta-architecture is

formulated. This includes the architectural style, concepts, mechanisms and principles

that will guide the architecture team during the next steps of structuring.

The system is

 decomposed into components and

 the responsibilities of each component, and interconnections between components are

identified.

The intent of the conceptual architecture is to direct attention at an appropriate

decomposition of the system without delving into the details of interface specification

and type information.

Moreover, it provides a useful vehicle for communicating the architecture to non-

technical audiences, such as management, marketing, and many users.

The conceptual architecture forms the starting point for the logical architecture, and is likely to

be modified as well as refined during the course of the creation of the logical architecture.

Modeling the dynamic behavior of the system (at the architectural−or component−level) is a

useful way to think through and refine the responsibilities and interfaces of the components.

The CSS Point

13

www.css.theazkp.com

www.facebook.com/thecsspoint

Component specifications make the architecture concrete. These should include a summary

description of services the component provides, the component owner’s name, IID and version

names, message signatures (IDL), a description of the operations, constraints or pre-post

conditions for each operation (these may be represented in a state diagram), the concurrency

model, constraints on component composition, a lifecycle model, how the component is

instantiated, how it is named, a typical use scenario, a programming example, exceptions, and a

test or performance suite.

An execution architecture is created for distributed or concurrent systems.

It is formed by mapping the components onto the processes of the physical system.

Different possible configurations are evaluated against requirements such as performance

and scaling.

At each step in structuring, it is worthwhile challenging the team’s creativity to expand the

solution set under consideration, and then evaluating the different architecture alternatives

against the prioritized architectural requirements.

This is known as architecture tradeoff analysis (Barbacci et. al., 1998), and it recognizes

that different approaches yield differing degrees of fit to the requirements. Selection of

the best solution generally involves some compromise, but it is best to make this explicit.

3.3 Architecture Validation

Lastly, a validation phase provides early indicators of, and hence an opportunity to resolve,

problems with the architecture.

During structuring, the architects obviously make their best effort to meet the requirements on the

architecture. The architecture validation phase involves additional people from outside the

The CSS Point

14

www.css.theazkp.com

www.facebook.com/thecsspoint

architecting team to help provide an objective assessment of the architecture. In addition to

enhancing confidence that the architecture will meet the demands placed on it, including the right

participants in this phase can help create buy-in to the architecture.

Architecture assessment involves:

 "thought experiments",

 modeling and walking-through scenarios that exemplify requirements,

 assessment by experts who look for gaps and weaknesses in the architecture based on their

experience.

Another important part of validation is the development of prototypes or proofs-of-

concept. Taking a skeletal version of the architecture all the way through to

implementation, for example, is a really good way to prove out aspects of the

architecture.

Though described sequentially above, the architecting process is best conducted iteratively, with

multiple cycles through requirements, structuring and validation.

One approach is to have at least one cycle devoted to each of Meta, Conceptual, Logical, and

Execution architecture phases and cycles for developing the architectural guidelines and any other

materials to help in deploying the architecture (such as tutorials). At each cycle, just enough

requirements are collected to proceed with the next structuring step, and validation concentrates

on the architecture in its current phase of maturity and depth.

Moreover, a number of architecture teams that we have worked with have stopped at different

points, leaving more detailed architecting to the product and component teams.

At one end of the spectrum, a very small team of architects created the meta-architecture, and

each of the product teams created their own architectures within the guidelines and constraints of

the meta-architecture. Other architecture teams created the meta- and conceptual architectures,

and a broader team of component owners developed the logical architecture.

At the other end of the spectrum, the architecture team developed the entire architecture, all the

way to its detailed logical architecture specification. This approach yields the most control over

the architecture specification, but is typically fraught with organizational issues (e.g., the "NIH

syndrome") that slow or even completely inhibit the use of the architecture.

The CSS Point

15

www.css.theazkp.com

www.facebook.com/thecsspoint

4 The Organizational Architecting Process

The architecting process incorporates a technical process and an organizational process.

 However, a technically good architecture is not sufficient to ensure the successful use of

the architecture, and the organizational process is oriented toward ensuring support for,

and adoption of, the architecture.

Architecture projects are susceptible to three major organizational sources of failure:

 the project is under-resourced or cancelled prematurely by an uncommitted management;

 it is stalled with endless infighting or a lack of leadership;

 the architecture is ignored or resisted by product developers.

The organizational process helps address these pitfalls. Two phases − namely

Init/Commit and Deployment − support the technical process.

However, the principal activities in these phases, namely championing the architecture

and leading/teaming in Init/Commit, and consulting in Deployment, also overlap with the

technical process activities.

The Init/Commit phase focuses on initiating the architecture project on a sound footing, and

gaining strong commitment from upper management.

The creation of the architecture vision is central both to aligning the architecture team and

gaining management sponsorship.

A communication plan is also helpful in sensitizing the team to the need for frequent

communication with others in the organization.

A heads-down, hidden skunkworks architecture project may make quick progress − as long as it

is well-led and its members act as a team. However, not listening to the needs of the management,

developers, marketing, manufacturing and user communities and not paying attention to gaining

and sustaining sponsorship in the management and technical leadership of the organization, or

buy-in from the developer community, will lead to failure.

The communication plan places attention on balancing the need for communication and

isolation, as well as planning what to communicate when, and to whom.

The Deployment phase follows the technical process, and addresses the needs of the developers

who are meant to use the architecture to design and implement products. These range from

understanding the architecture and its rationale, to responding to the need for changes to the

architecture.

This entails consulting, and perhaps tutorials and demos, as well as the architects'

involvement in design reviews.

It is important that at least the senior architect and the architecture project manager (if there is

one) champion (fight for !) the architecture and gain the support of all levels of management

affected by the architecture.

The CSS Point

16

www.css.theazkp.com

www.facebook.com/thecsspoint

Championing the architecture starts early, and continues throughout the life of the architecture,

though attention to championing tapers off as the architecture comes to be embraced by the

management and developer communities.

For the architecture team to be successful, there must be a leader and the team members must

collaborate to bring their creativity and experience to bear on creating an architecture that will

best serve the organization.

This would seem so obvious as to not warrant being said, but unfortunately this is easier said than

done. Explicit attention to developing the designated lead architect’s leadership skills, in the same

way one would attend to developing these skills in management, is a worthy investment.

Likewise, investing in activities aimed at developing the team as a team also has great

payoff in the team’s efficacy.

Consulting with and assisting the developer community in their use of the architecture is

important in facilitating its successful adoption and appropriate use. These activities are most

intense during deployment.

However, earlier communication and consulting helps create buy-in the developer community

through participation and understanding. This allows the architecture team to understand the

developers’ needs and the developers to understand the architecture (and its rationale) as it

evolves through the cycles of the technical process.

The CSS Point

17

www.css.theazkp.com

www.facebook.com/thecsspoint

5 Architectural Styles

An architectural style in software consists of a few key features and rules for combining those

features so that architectural integrity is preserved.

An architectural software style is determined by the following:

 set of component types (e.g., data repository, a process, a procedure) that perform some

function at runtime

 topological layout of these components indicating their runtime interrelationships

 set of semantic constraints (for example, a data repository is not allowed to change the

values stored in it)

 set of connectors (e.g., subroutine call, remote procedure call, data streams, sockets) that

mediate communication, coordination, or cooperation among components.

5.1 Data Centered Architectures

Data-Centered architectures have the goal of achieving the quality of integrability of data.

The term Data-Centered Architectures refers to systems in which the access and update

of a widely accessed data store is an apt description.

At its heart, it is nothing more than a centralized data store that communicates with a number of

clients. The means of communication (sometimes called the coordination model) distinguishes

the two subtypes: repository (the one shown) and blackboard. A blackboard sends notification to

subscribers when data of interest changes, and is thus active.

Data-centered styles are becoming increasingly important because they offer a structural

solution to illegibility. Many systems, especially those built from preexisting components, are

achieving data integration through the use of blackboard mechanisms. They have the advantage

that the clients are relatively independent of each other, and the data store is independent of the

clients.

Thus, this style is scalable: New clients can be easily added. It is also modifiable with

respect to changing the functionality of any particular client because otherwise will not

be affected. Coupling among clients will lessen this benefit but may occur to enhance

performance.

The CSS Point

18

www.css.theazkp.com

www.facebook.com/thecsspoint

5.2 Data-Flow Architectures

Data-Flow architectures have the goal of achieving the qualities of reuse and modifiability.

The data-bow style is characterized by viewing the system as a series of transformations

on successive pieces of input data. Data enter the system and then flows through the

components one at a time until they are assigned to some final destination (output or a

data store).

In the batch sequential style, processing steps, or components, are independent programs, and the

assumption is that each step runs to completion before the next step starts. Each batch of data is

transmitted as a whole between the steps.

The typical application for this style is classical data processing.

The Pipe-and-Filter style emphasizes the incremental transformation of data by successive

components. This is a typical style in the UNIX family of operating systems.

Filters are stream transducers. They incrementally transform data (stream to stream), use little

contextual information, and retain no state information between instantiations. Pipes are stateless

and simply exist to move data between filters.

The CSS Point

19

www.css.theazkp.com

www.facebook.com/thecsspoint

Both pipes and alters are run non-deterministically until no more computations or transmissions

are possible. Constraints on the pipe-and-alter style indicate the ways in which pipes and alters

can be joined.

A pipe has a source end that can only be connected to a filter's output port and a sink end that can

only be connected to a alter's input port.

Pipe-and-filter systems, like all other styles, have a number of advantages and disadvantages.

Their advantages principally flow from their simplicity-the limited ways in which they

can interact with their environment.

This simplicity means that a pipe-and-filter system's function is no more and no less than

the composition of the functions of its primitives.

There are no complex component interactions to manage.

Pipe-and-filter systems advantages:

 The pipe-and-filter style simplifies system maintenance and enhances reuse for the same

reason-filters stand alone, and we can treat them as black boxes.

 Both pipes and filters can be hierarchically composed: Any combination of filters, connected

by pipes, can be packaged and appear to the external world as a filter.

 Because a filter can process its input in isolation from the rest of the system, a pipe-and-filter

system is easily made parallel or distributed, providing opportunities for enhancing a system's

performance without modifying it.

Pipe-and-filter systems also suffer from some disadvantages.

 There is no way for filters to cooperatively interact to solve a problem.

 Performance in such a system is frequently poor for several reasons, all of which

stem from the isolation of functionality that makes pipes and alters so modifiable;

these reasons are listed below:

 Filters typically force the lowest common denominator of data representation

(such as an ASCII stream). lf the input stream needs to be transformed into tokens,

every filter pays this parsing/unparsing overhead.

 If a alter cannot produce its output until it has received all of its input, it will

require an input buffer of unlimited size. A sort filter is an example of a filter that

suffers from this problem. lf bounded buffers are used, the system could deadlock.

The CSS Point

20

www.css.theazkp.com

www.facebook.com/thecsspoint

 Each filter operates as a separate process or procedure call, thus incurring

some overhead each time it is invoked.

5.3 Virtual Machine Architecture

Virtual Machine architectures have the goal of achieving the quality of portability.

Virtual machines are software styles that simulate some functionality that is not native to the

hardware and/or software on which it is implemented.

This can be useful in a number of ways:

 It can allow one to simulate (and test) platforms that have not yet been built (such as

new hardware), and it can simulate "disaster'' modes (as is common in flight

simulators and safety-critical systems) that would be too complex, costly, or

dangerous to test with the real system.

 Common examples of virtual machines are interpreters, rule-based systems, syntactic

shells, and command language processors.

Interpretation of a particular module via a Virtual Machine may be seen as follows:

 the interpretation engine selects an instruction from the module being interpreted;

 based on the instruction, the engine updates the virtual machine internal state;

 the process above is repeated;

Executing a module via a virtual machine adds flexibility through the ability to interrupt and

query the program and introduce modifications at runtime, but there is a performance cost

because of the additional computation involved in execution.

5.4 Call-and-Return Architectures

Call-and-Return architectures have the goal of achieving the qualities of modifiability and

solvability.

Call-and-Return architectures have been the dominant architectural style in large software

systems for the past 30 years.

However, within this style a number of substyles, each of which has interesting features,

have emerged.

The CSS Point

21

www.css.theazkp.com

www.facebook.com/thecsspoint

Main-Program-and-Subroutine architectures is the classical programming paradigm. The goal is

to decompose a program into smaller pieces to help achieve modifiability.

A program is decomposed hierarchically. There is typically a single thread of control and each

component in the hierarchy gets this control (optionally along with some data) from its parent and

passes it along to its children.

Remote procedure call systems are main-program-and-subroutine systems that are decomposed

into parts that live on computers connected via a network.

The goal is to increase performance by distributing the computations and taking advantage of

multiple processors. In remote procedure call systems, the actual assignment of parts to

processors is deferred until runtime, meaning that the assignment is easily changed to

accommodate performance tuning. In fact, except that subroutine calls may take longer to

accomplish if it is invoking a function on a remote machine, a remote procedure call is

indistinguishable from standard main program and subroutine systems.

Object-oriented or abstract data type systems are the modern version of call-and-return

architectures.

The object-oriented paradigm, like the abstract data type paradigm from which it evolved,

emphasizes the bundling of data and methods to manipulate and access that data (Public

Interface).

The object abstractions form components that provide black-box services and other

components that request those services. The goal is to achieve the quality of

modifiability.

This bundle is an encapsulation that hides its internal secrets from its environment. Access to the

object is allowed only through provided operations, typically known as methods, which are

constrained forms of procedure calls. This encapsulation promotes reuse and modifiability,

principally because it promotes separation of concerns:

The CSS Point

22

www.css.theazkp.com

www.facebook.com/thecsspoint

The user of a service need not know, and should not know, anything about how that service is

implemented.

Layered systems are ones in which components are assigned to layers to control intercomponent

interaction. In the pure version of this architecture, each level communicates only with its

immediate neighbours.

The goal is to achieve the qualities of modifiability and, usually, portability. The lowest layer

provides some core functionality, such as hardware, or an operating system kernel. Each

successive layer is built on its predecessor, hiding the lower layer and providing some services

that the upper layers make use of.

5.5 Independent Component Architectures

Independent component architectures consist of a number of independent processes or objects

that communicate through messages.

All of these architectures have the goal of achieving modifiability by decoupling various portions

of the computations. They send data to each other but typically do not directly control each other.

The messages may be passed to

 named participants (Communicating Processes style);

 unnamed participants using the publish/subscribe paradigm (Event Style) .

Event systems are a substyle in which control is part of the model. Individual components

announce data that they wish to share (publish) with their environment − a set of unnamed

components.

These other components may register an interest in this class of data (subscribe). If they

do so, when the data appears, they are invoked and receive the data.

The CSS Point

23

www.css.theazkp.com

www.facebook.com/thecsspoint

Typically, event systems make use of a message manager that manages communication among

the components, invoking a component (thus controlling it) when a message arrives for it. In this

publish/subscribe paradigm, a message manager may or may not control the components to which

it forwards messages.

Components register types of information that they are willing to provide and that they wish to

receive.

They then publish information by sending it to the message manager, which forwards the

message, or in some cases an object reference, to all interested participants.

This paradigm is important because it decouples component implementations from knowing each

others' names and locations. As mentioned, it may involve decoupling control as well, which

means that components can run in parallel, only interacting through an exchange of data when

they so choose. This decoupling eases component integration

Besides event systems, the other substyle of independent components is the communicating

processes style. These are the classic multiprocess systems.

Of these, client-server is a well-known subtype. The goal is to achieve the quality of

scalability.

A server exists to serve data to one or more clients, which are typically located across a network.

The client originates a call to the server, which works, synchronously or asynchronously, to

service the client's request.

If the server works synchronously, it returns control to the client at the same time that it

returns data. If the server works asynchronously, it returns only data to the client (which

has its own thread of control).

5.6 Heterogeneous Styles

Systems are seldom built from a single style, and we say that such systems are heterogeneous.

There are three kinds of heterogeneity, they are as follows.

The CSS Point

24

www.css.theazkp.com

www.facebook.com/thecsspoint

Locationally heterogeneous means that a drawing of its runtime structures will reveal patterns of

different styles in different areas.

For example, some branches of a Main-Program-and-Subroutines system might have a

shared data repository (i.e. a database).

Hierarchically Heterogeneous means that a component of one style, when decomposed, is

structured according to the rules of a different style

For example, an end-user interface sub-system might be built using Event System

architectural style, while all other sub-systems − using Layered Architecture.

Simultaneously Heterogeneous means that any of several styles may well be apt descriptions of

the system.

This last form of heterogeneity recognizes that styles do not partition software architectures into

non-overlapping, clean categories. You may have noticed this already. The data-centered style at

the beginning of this discussion was composed of thread-independent clients, much like an

independent component architecture.

The layers in a layered system may comprise objects or independent components or even

subroutines in a main-program-and-subroutines system. The components in a pipe-and-

filter system are usually implemented as processes that operate independently, waiting

until input is at their ports, again, this is similar to independent component systems whose

order of execution is predetermined.

