

FEDERAL PUBLIC SERVICE COMMISSION
COMPETITIVE EXAMINATION FOR
RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2009

APPLIED MATH, PAPER-I

S.No.	
R.No.	

TIME ALLOWED: 3 HOURS
MAXIMUM MARKS:100
NOTE:
(i) Attempt FIVE question in all by selecting at least TWO questions from SECTION - A
(ii) Use of Scientific Calculator is allowed.

$\underline{\text { SECTION - A }}$

Q.1. (a) Show that in orthogonal coordinates:
(i) $\nabla \times\left(A_{1} e_{1}\right)=\frac{e_{2}}{h_{1} h_{3}} \frac{\partial}{\partial u_{3}}\left(A_{1} h_{1}\right)-\frac{e_{3}}{h_{1} h_{2}} \frac{\partial}{\partial u_{2}}\left(A_{1} h_{1}\right)$,
(ii) $\nabla \bullet\left(A_{1} e_{1}\right)=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial u_{1}}\left(A_{1} h_{2} h_{3}\right)$.
(b) Write Laplace's equation in parabolic cylindrical coordinates.
(10)
Q.2. (a) Evaluate $\iint_{S} \stackrel{\mu}{A} \bullet \rho d s$, where $\stackrel{\mu}{A}=z \hat{i}+x \hat{j}-3 y^{2} \hat{k}$ and s is the surface of cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
(b) Verify Green's theorem in the plane for

$$
\begin{equation*}
\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y \tag{10}
\end{equation*}
$$

where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
Q.3. (a) Find centre of mass of a right circular solid cone of height h.
(b) A light thin rod, 4 m long, can turn in a vertical plane about one of its point which is attached to a pivot. If weights of 3 kg and 4 kg are suspended from its ends it rests in a horizontal position. Find the position of the pivot and its reaction on the rod.

$\underline{\text { SECTION - B }}$

Q.4. (a) Find the radial and transverse components of the velocity of a particle moving along the curve $\mathrm{ax}^{2}+\mathrm{by}^{2}=1$ at any time t if the polar angle $\theta=\mathrm{ct}^{2}$.
(b) A particle is projected vertically upwards. After a time t, another particle is sent up from the same point with the same velocity and meets the first a height h during the downward flight of the first. Find the velocity of projection.
Q.5. (a) If a point P moves with a velocity v given by

$$
\begin{equation*}
\mathrm{v}^{2}=\mathrm{n}^{2}(\mathrm{ax}+\mathrm{bx}+\mathrm{c}) \tag{10}
\end{equation*}
$$

show that P executes a simple harmonic motion. Find also, the centre, the amplitude and the time period of the motion.

APPLIED MATH, PAPER-I

(b) A particle of mass m moves on xy-plane under the force

$$
\begin{equation*}
\stackrel{\varpi}{F}=-\frac{k}{r^{4}} \stackrel{\varpi}{\stackrel{\sigma}{r}}, \tag{10}
\end{equation*}
$$

where r is its distance from the origin O. If it starts on the positive x-axis at a distance " a " from O with speed v_{o} in a direction making an angle θ with the positive x-direction, prove that at time t ,

$$
\frac{m a^{2} v_{o}^{2} \sin ^{2} \theta-k}{m r^{3}}
$$

Q.6. (a) Define angular momentum and prove that rate of change of angular momentum of a particle about a point O is equal to the tarque (about O) of the force acting on the particle.
(b) Find the least speed with which a particle must be projected so that it passes through two points P and Q at heights h_{1} and h_{2}, respectively.
Q.7. (a) Discuss the polar form of an orbit and prove that when a particle moves under central force, the areal velocity is constant.
(b) A particle moves under a central repulsive force μ / r^{3} and is projected from an apse at a distance "a" with velocity V. Show that the equation to the path is

$$
\mathrm{r} \operatorname{cosp} \theta=\mathrm{a}
$$

and that the angle θ described in time t is
where

$$
\begin{aligned}
& \frac{1}{p} \tan ^{-1} \frac{p V t}{a} \\
& p^{2}=1+\frac{\mu}{a^{2} v^{2}}, \quad \mu=G M .
\end{aligned}
$$

Q.8. (a) Define the terms moment of inertia and product of inertia, and find the moment of inertia of uniform solid sphere of mass m and radius "a".
(b) Let AB and BC be two equal similar rods freely hinged at B and lie in a straight line on the smooth table. The end A is struck by a blow P perpendicular to AB. Show that the resulting velocity of A is $3 \frac{1}{2}$ times that of B.

S.No.	
R.No.	

SECTION - A

Q.1. (a) Using method of variation of parameters, find the general solution of the differential equation.

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x} \tag{10}
\end{equation*}
$$

(b) Find the recurrence formula for the power series solution around $x=0$ for the differential equation

$$
\begin{equation*}
y^{\prime \prime}+x y=e^{x+1} . \tag{10}
\end{equation*}
$$

Q.2. (a) Find the solution of the problem

$$
\begin{align*}
& u^{\prime \prime}+6 u^{\prime}+9 u=0 \tag{10}\\
& u(0)=2, \quad u^{\prime}(0)=0
\end{align*}
$$

(b) Find the integral curve of the equation

$$
\begin{equation*}
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}=-\left(x^{2}+y^{2}\right) . \tag{10}
\end{equation*}
$$

Q.3. (a) Using method of separation of variables, solve

$$
\frac{\partial^{2} u}{\partial t^{2}}=900 \frac{\partial^{2} u}{\partial x^{2}} \quad\left\{\begin{array}{l}
0<x<2 \\
t>0
\end{array}\right.
$$

subject to the conditions

$$
\begin{aligned}
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=\left.0 \quad \frac{\partial u}{\partial t}\right|_{t=0}=30 \sin 4 \pi x
\end{aligned}
$$

(b) Find the solution of

$$
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=4 e^{3 y}+\cos x
$$

SECTION - B

Q.4. (a) Define alternating symbol $\in_{i j k}$ and Kronecker delta $\delta_{i j}$. Also prove that

$$
\begin{equation*}
\in_{i j k} \in_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \tag{10}
\end{equation*}
$$

(b) Using the tensor notation, prove that

APPLIED MATH, PAPER-II

Q.5. (a) Show that the transformation matrix

$$
\mathbf{T}=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \tag{10}\\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

is orthogonal and right-handed.
(b) Prove that

$$
l_{i k} l_{j k}=\delta_{i j}
$$

where $l_{i k}$ is the cosine of the angle between ith-axis of the system K^{\prime} and j th-axis of the system K.

SECTION - C

Q.6. (a) Use Newton's method to find the solution accurate to within 10^{-4} for the equation

$$
x^{3}-2 x^{2}-5=0, \quad[1,4]
$$

(b) Solve the following system of equations, using Gauss-Siedal iteration method

$$
\begin{align*}
& 4 x_{1}-x_{2}+x_{3}=8 \tag{10}\\
& 2 x_{1}+5 x_{2}+2 x_{3}=3, \\
& x_{1}+2 x_{2}+4 x_{3}=11
\end{align*}
$$

Q.7. (a) Approximate the following integral, using Simpson's $\frac{1}{3}$ rules

$$
\begin{equation*}
\int_{0}^{1} x^{2} e^{-x} d x \tag{10}
\end{equation*}
$$

(b) Approximate the following integral, using Trapezoidal rule

$$
\begin{equation*}
\int_{0}^{\pi / 4} e^{3 x} \sin 2 x d x \tag{10}
\end{equation*}
$$

Q.8. (a) The polynomial
$f(x)=230 x^{4}+18 x^{3}+9 x^{2}-221 x-9$
has one real zero in $[-1,0]$. Attempt approximate this zero to within 10^{-6}, using the Regula Falsi method.
(b) Using Lagrange interpolation, approximate.
$f(1.15)$, if $f(1)=1.684370, f(1.1)=1.949477, f(1.2)=2.199796, f(1.3)=2.439189$, $f(1.4)=2.670324$

