FEDERAL PUBLIC SERVICE COMMISSION
 COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BPS-17 UNDER
 THE FEDERAL GOVERNMENT, 2010

APPLIED MATH, PAPER-I

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE:	(i) Attempt FIVE question in all by selecting at least TWO questions from SECTION - A and THREE question from SECTION - B. All questions carry EQUAL marks. (ii) Use of Scientific Calculator is allowed.

SECTION - A

Q.1. Explain the following giving examples and supported by figures:
$(5+5+5+5)$
(a) Gradient
(b) Divergence
(c) Curl
(d) Curvilinear Coordinates
Q.2. Given that A, B, C are vectors having components along axis. Prove that:
$(10+10)$
(a)

$$
B \times C=\left|\begin{array}{ccc}
i & j & k \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

(b) $A x B x C=A_{x} B_{x} C_{x}(i x k)+A_{y} B_{x} C_{y}(j x k)$
Q.3. (a) State and prove Stokes Theorem
(b) Given that $V=4 y i+x j+2 z k$, find
$\int(\square \times V)$. nd σ over the hemi sphere $x^{2}+y^{2}+z^{2}=a^{2}, z>=0$.

SECTION - B

Q.4. Discuss the following systems supported by figures/diagrams:
(a)

- Equilibrium of a System coplanar forces
- Centre of mass of right circular solid cone of height h.
(b) Centre of gravity of a rigid body of any shape.
Q.5. (a) What is Simple Harmonic Motion? Discuss it in detail using Derivatives with respect time. (10)
(b) Describe the Simple Harmonic Motion of a pendulum and Calculate the time period of the motion.
Q.6. (a) Derive expression for the following:
- Moment of inertia
- Product of inertia
(b) Calculate the moment of inertia of solid sphere of mass $\mathrm{m}=37$ and radius $\mathrm{a}=15$.

Derive the general expression.
Q.7. (a) Explain Kepler's Laws.
(b) What is Impulsive Motion? Derive its equation.
Q.8. (a) Define Work, Torque, Power and energy.
(b) A cricket ball is thrown vertically upwards, it attained the maximum height h after t Seconds. Calculate its.

- Velocity of projection in direction vertically upward.
- Acceleration when it returns to the point of projection.

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BPS-17 UNDER
 THE FEDERAL GOVERNMENT, 2010

APPLIED MATH, PAPER-II

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE:	(i) Attempt FIVE question in all by selecting at least TWO questions from SECTION-A, ONE question from SECTION-B and TWO questions from SECTION-C. All questions carry EQUAL marks. (ii) Use of Scientific Calculator is allowed.

$\underline{\text { SECTION - A }}$

Q.1. Solve the following equations:
(a) $d^{2} y / d x^{2}+5 d y / d x+6 y=x$
(10)
(b) $d^{2} y / d x^{2}+5 y x=e^{x}$
Q.2. (a) Derive Cauchy Rieman partial differential equations.
(b) Derive Lapace Equation.
Q.3. Solve:
(a) $\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial x \partial y+\partial^{2} / \partial y^{2}\right) u=4 e^{3 y}$
(b) $u^{\prime \prime}+6 u^{\prime}+9=0$; Given that $u(0)=2$ and $u^{\prime}(0)=0$.

SECTION - B

Q.4. (a) Discuss the following supported by examples:

- Tensor,
- $\in_{i j k} \in_{l m k}$
- Scaler Fields for a continuously differentiable function $\mathrm{f}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(b) Can we call a vector as Tensor, discuss.

What is difference between a vector and a tensor?
What happens if we permute the subscripts of a tensor?
Q.5. (a) Discuss the simplest and efficient method of finding the inverse of a square matrix a_{ij} of order 3×3.
(b) Apply any efficient method to compute the inverse of the following matrix A :

$$
\mathbf{A}=\left[\begin{array}{ccc}
25 & 2 & 1 \\
2 & 10 & 1 \\
1 & 1 & 4
\end{array}\right]
$$

SECTION - C

Q.6. (a) Develop Gauss Siedal iterative Method for solving a linear system of equations $\mathrm{A} x=\mathrm{b}$, where A is the coefficient matrix.
(b) Apply Gauss Siedal iterative Method to solve the following equations:

$$
\begin{array}{r}
25 \mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3}=69 \\
2 \mathrm{X}_{1}+10 \mathrm{X}_{2}+\mathrm{X}_{3}=63 \\
\mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3}=43
\end{array}
$$

Q.7. (a) Derive Simpson's Rule for finding out the integral of a function $f(x)$ from limits $x=a$ to $x=b$ for $\mathrm{n}=6$ subintervals (i.e. steps).
(b) Apply Simpson's Rule for $\mathrm{n}=6$ to evaluate:

$$
\int_{0}^{1} f(x) d x \quad \text { where } \quad f(x)=1 /(1+x 2)
$$

Q.8. (a) Derive Lagrange Interpolation Formula for 4 points:
(b) A curve passes through the following points:
$(0,1),(1,2),(2,5),(3,10)$. Apply this Lagrange Formula to interpolate the polynomial.

