FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

APPLIED MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS	MAXIMUM MARKS: 100
NOTE: (i)	Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii)	Use of Scientific Calculator is allowed. (iii)
Extra attempt of any question or any part of the attempted question will not be considered.	

SECTION - A

Q.1. (a) Find the divergence and curl \vec{f} If $\vec{f}=\mathbf{2 x y z} \hat{i}+\left(\boldsymbol{x}^{2} z+\mathbf{2 y}\right) \hat{\boldsymbol{j}}+\left(\boldsymbol{x}^{2} y+\mathbf{3} z^{2}\right) \hat{\boldsymbol{k}}$
(b) Also find a function φ such that $\nabla \varphi=\vec{f}$
Q.2. (a) Find the volume $\iint_{R} \boldsymbol{x} \boldsymbol{y} \boldsymbol{d} \boldsymbol{A}$ where R is the region bounded by the line $\mathrm{y}=\mathrm{x}-1$ and the parabola $y^{2}=2 x+6$.
(b) Evaluate the following line intergral:
$\int_{c} y^{2} d x+x d y$ where $c=c_{2}$ is the line segment joining the points $(-5,-3)$ to $(0,2)$, and $\mathrm{c}=$ c_{2} is the arc of the parabola $\mathrm{x}=4-\mathrm{y}^{2}$.
Q.3. (a) Three forces P, Q and R act at a point parallel to the sides of a triangle ABC taken in the same order. Show that the magnitude of the resultant is
$\sqrt{p^{2}+Q^{2}+R^{2}-2 Q R \cos A-2 R P \cos B-2 P Q \cos C}$
(b) A hemispherical shell rests on a rough inclined plane whose angle of friction is λ. Show that the inclination of the plane base to the horizontal cannot be greater than $\arcsin (2 \sin \lambda)$
Q.4. (a) A uniform square lamina of side $2 a$ rests in a vertical plane with two of its sides in contact with two smooth pegs distant b apart and in the same horizontal line. Show that if $\frac{\boldsymbol{\theta}}{\sqrt{2}}<\boldsymbol{b}<\boldsymbol{a}$, a non symmetric position of equilibrium is possible in which $b(\sin \theta+\cos \theta)=a$
(b) Find the centre of mass of a semi circular lamina of radius a whose density varies as the square of the distance from the centre.

APPLIED MATHEMATICS, PAPER-I

Q.5. (a) Evaluate the integral $\int_{0}^{1} \int_{x^{2}}^{x}\left(x^{2}+y^{2}\right) d y d x$
also show that the order of integration is immaterial.
(b) Find the directional derivative of the function at the point P along z - axis

$$
\begin{equation*}
f(x, y)=4 x z^{3}-3 x^{2} y^{2} z, P=(2,-1,2) \tag{10}
\end{equation*}
$$

SECTION - B

Q.6. (a) A particle is moving along the parabola $\mathrm{X}^{2}=4 \mathrm{ay}$ with constant speed V . Determine the tangential and the normal components of its acceleration when it reaches the point whose abscissa is $\sqrt{\mathbf{5}} \boldsymbol{a}$
(b) Find the distance travelled and the velocity attained by a particle moving in a straight line at any time t , if it starts from rest at $\mathrm{t}=0$ and is subject to an acceleration $\boldsymbol{t}^{2}+\boldsymbol{\operatorname { s i n }} \boldsymbol{t}+\boldsymbol{e}^{\boldsymbol{t}}$
Q.7. (a) A particle moves in the $x y$ - plane under the influence of a force field which is parallel to the axis of y and varies as the distance from x - axis. Show that, if the force is repulsive, the path of the particle supposed not straight and then

$$
y=a \cosh n x+a \sinh n x
$$

where a and b are constants.
(b) Discuss the motion of a particle moving in a straight line with an acceleration X^{3}, where x is the distance of the particle from a fixed point O on the line, if it starts at $t=0$ from a point $x=c$ with the velocity $\mathrm{c}^{2} / \sqrt{2}$.
Q.8. (a) A battleship is steaming ahead with speed V and a gun is mounted on the battleship so as to point straight backwards and is set at angle of elevation $\boldsymbol{\alpha}$. If v_{0} is the speed of projection (relative to the gun) show that the range is $\frac{2 v_{0}}{g} \sin \alpha\left(v_{0} \cos \alpha-V\right)$
(b) Show that the law of force towards the pole of a particle describing the survey $\boldsymbol{r}^{n}=\boldsymbol{a}^{n} \boldsymbol{\operatorname { c o s }} \boldsymbol{n} \boldsymbol{\theta}$ is given by $\boldsymbol{f}=\frac{(\boldsymbol{n}+\mathbf{1}) \boldsymbol{h}^{2} \boldsymbol{a}^{2 n}}{\boldsymbol{r}^{2 \boldsymbol{+}+3}}$ where \boldsymbol{h} is a constant.

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

APPLIED MATHEMATICS, PAPER-II
TIME ALLOWED: THREE HOURS
MAXIMUM MARKS: 100
NOTE: (i) Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii) Use of Scientific Calculator is allowed.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.

SECTION - A

Q.1. (a) Solve by method of variation of parameter

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \ln x \tag{10}
\end{equation*}
$$

(b) Solve first order non-linear differential equation

$$
\begin{equation*}
x \frac{d y}{d x}+y=y^{2} 1 n x \tag{10}
\end{equation*}
$$

Q.2. (a) Solve
(b) Solve

$$
\begin{align*}
& c^{2} u_{x x}=u_{t t} . \tag{10}\\
& u(0, t)=0 \\
& u(l, t)=0 \\
& u(x, 0)=\lambda \operatorname{Sin}\left(\frac{\pi}{l} x\right) \\
& u_{t}(x, 0)=0
\end{align*}
$$

$$
\begin{equation*}
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z \tag{10}
\end{equation*}
$$

Q.3. (a) Work out the two dimensional metric tensor for the coordinates p and q given by

$$
\begin{equation*}
p=(x y)^{\frac{1}{3}}, q=\left(x^{2} / y\right)^{\frac{1}{3}} \tag{10}
\end{equation*}
$$

(b) Prove that $\quad \Gamma_{a b}^{d}=\frac{1}{2} g d c\left(g_{a c, b}+g_{b c, a}-g_{a b, c}\right)$

APPLIED MATHEMATICS, PAPER-II

Q.4. (a) Work out the Christoffel symbols for the following metric tensor
(10)

$$
g_{a b}=\left(\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right)
$$

(b) Work out the covariant derivative of the tensor with components

$$
\left(\begin{array}{ccc}
r \cos \theta & a r \sin \varphi & a r \tag{10}\\
\sin \theta \sin \varphi & a \sin \theta \cos \varphi & a \\
\cos \varphi & a \sin \varphi & 0
\end{array}\right)
$$

Q.5. (a) Find recurrence relations and power series solution of $(x-3) y^{\prime}+2 y=0$
(b) Solve the Cauchy Euler's equation $x^{4} y^{\prime \prime \prime}+2 x^{3} y^{\prime \prime}-x^{2} y^{\prime}+x y=1$

SECTION - B

Q.6. (a) Find the positive solution of the following equation by Newton Raphson method

$$
\begin{equation*}
2 \sin x=x \tag{10}
\end{equation*}
$$

(b) Solve the following system by Jacobi method:

$$
\begin{align*}
10 x_{1}-8 x_{2} & =-6 \tag{10}\\
-8 x_{1}+10 x_{2}-x_{3} & =9 \\
-x_{2}+10 x_{3} & =28
\end{align*}
$$

Q.7. (a) Evaluate the following by using the trapezoidal rule.

$$
\begin{equation*}
\int_{0}^{1}(x+1) d x \tag{10}
\end{equation*}
$$

(b) Evaluate the following integral by using Simpson's rule

$$
\begin{equation*}
\int_{0}^{4} e^{x} d x \tag{10}
\end{equation*}
$$

Q.8. (a) Solve the following equation by regular falsi method:

$$
\begin{equation*}
2 x^{3}+x-2=0 \tag{10}
\end{equation*}
$$

(b) Calculate the Lagrange interpolating polynomial using the following table:

x	0	1	2
$f(x)$	1	0	-1

also calculate $f(0.5)$.

