FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR
RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2013
APPLIED MATHEMATICS, PAPER-I
Roll Number

TIME ALLOWED: THREE HOURS
MAXIMUM MARKS: 100
NOTE: (i) Candidate must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper.
(ii) Attempt FIVE questions in all by selecting THREE questions from SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks.
(iii) Use of Calculator is allowed.
(iv) Extra attempt of any question or any part of the attempted question will not be considered.

SECTION-A

Q.1.
(a) Find a function φ such that $\nabla \varphi=\stackrel{\leftrightarrow}{f}$

$$
\begin{equation*}
\stackrel{\leftrightarrow}{f}=x \hat{\imath}+2 y \hat{j}+2 \hat{k} \tag{10}
\end{equation*}
$$

(b) Prove that

$$
\nabla \varphi^{n}=n \varphi^{n-1} \nabla \varphi
$$

Q.2. (a) Show that for any vectors \vec{a} and \vec{b}

$$
\begin{equation*}
|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right) \tag{10}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=(\vec{a} \bullet \vec{b} \times \vec{c})^{2} \tag{10}
\end{equation*}
$$

Q.3. (a) The greatest result that two forces can have is of magnitude P and the least is of magnitude Q. Show That when they act an angle α their resultant is of magnitude

$$
\sqrt{P^{2} \cos ^{2} \alpha / 2+Q^{2} \sin ^{2} \alpha / 2}
$$

(b) A uniform rod of length $2 a$ rests in equilibrium against a smooth vertical wall and upon a smooth peg at a distance b from the wall. Show that in the position of equilibrium the rod is inclined to the wall at an angle $\sin ^{-1}\left(\frac{b}{a}\right)^{\frac{1}{3}}$
Q.4. (a) Three forces P, Q and R act along the BC, CA and AB respectively of triangle ABC . Prove that if $P \cos A+Q \cos B+R \cos C=0$, then the line of action of the resultant passes through the circum center of the triangle.
(b) A sphere of weight W and radius a is suspended by a string of length l from a point P and a weight w is also suspended from P by a string sufficiently long for the weight to hang below the sphere. Show that the inclination of the first string to the vertical is

$$
\sin ^{-1}\left(\frac{w a}{(W+w)(a+l)}\right)
$$

APPLIED MATHS, PAPER-I

Q.5.
(a) Find the volume $\iint_{R}\left(x^{3}+4 y\right) d A$ where R is the region bounded by the parabola

$$
y=x^{2} \text { and the line } y=2 x
$$

(b) Evaluate the following line integral

$$
\int_{C} x^{2} d y
$$

bonded by the triangle having the vertices $(-1,0)$ to $(2,0)$, and $(1,1)$

SECTION-B

Q.6. (a) The position of a particle moving along an ellipse is given by $\stackrel{\leftrightarrow}{r}=a \cos t \hat{\imath}+b \sin t \hat{j}$. If $a>b$, find the position of the particle where its velocity has maximum or minimum magnitude.
(b) Prove that the speed at any point of a central orbit is given by:

$$
v p=h,
$$

When h is the areal speed and p is the perpendicular distance from the centre of force, of the tangent at the point, Find the expression for v when a particle subject to the inverse square law of force describes an ellipse, a parabolic and hyperbolic orbit.
Q.7. (a) A particle is moving with the uniform speed v along the curve

$$
\begin{equation*}
x^{2} y=a\left(x^{2}+\frac{a^{2}}{\sqrt{5}}\right) \tag{10}
\end{equation*}
$$

Show that its acceleration has the maximum value at $\frac{10 v^{2}}{9 a}$
(b) An aeroplane is flying with uniform speed v_{0} in an arc of a vertical circle of radius a, whose centre is a height h vertically above a point O of the ground. If a bomb is dropped from the aeroplane when at a height Y and strikes the ground at O , show that Y satisfies the equations

$$
K Y^{2}+Y\left(a^{2}-2 h K\right)+K\left(h^{2}-a^{2}\right)=0,
$$

where $K=h+\frac{g a^{2}}{2 v^{2}{ }_{0}}$
Q.8. (a) Find the tangential and normal components of the acceleration of a particle describing the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{10}
\end{equation*}
$$

With uniform speed v when the particle is a $a>b$
(b) Find the velocity acquired by a block of wood of mass $M \mathrm{lb}$., which is free to recoil when it is struck by a bullet of mass $m \mathrm{lb}$. moving with velocity v in a direction passing through the centre of gravity. If the bullet is embedded $a \mathrm{ft}$., show that the resistance of the wood to the bullet, supposed uniform, is $\frac{M m^{2}}{2(M+m) g a} \mathrm{lb}$.wt. and that the time of penetration is $\frac{2 a}{v}$ sec., during which time the block will move $\frac{m a}{m+M} \mathrm{ft}$.

APPLIED MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS
MAXIMUM MARKS: 100
NOTE: (i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the \mathbf{Q}. Paper.
(ii) Attempt FIVE questions in all by selecting TWO questions from SECTION-A and ONE question from SECTION-B and TWO questions from SECTION-C ALL questions carry EQUAL marks.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.
(iv) Use of Calculator is allowed.

SECTION-A

Q.No.1. Solve the following equations:
(a) $\frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}=\operatorname{Sec}^{2} x$
(b) $\frac{2 d y}{d x}-\frac{x}{y}+x^{3} \operatorname{Cos} y=0$
Q.No.2. (a) Find the power series solution of the differential equation
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$, about the point $x=0$.
(b) Solve $Z(x+y) \frac{\partial Z}{\partial x}+Z(x-y) \frac{\partial Z}{\partial y}=\left(x^{2}+y^{2}\right)$.
Q.No.3. (a) Classify the following equations:
(i) $\frac{\partial^{2} Z}{\partial x^{2}}+x^{2} \frac{\partial^{2} Z}{\partial y^{2}}-\frac{1}{x} \frac{\partial Z}{\partial x}=0$
(ii) $x^{2} \frac{\partial^{2} Z}{\partial x^{2}}+2 x y \frac{\partial^{2} Z}{\partial x \partial y}+y^{2} \frac{\partial^{2} Z}{\partial y^{2}}=4 x^{2}$
(b) Solve: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}},-1<x<1, t>0$

$$
\begin{align*}
& u(-1, t)=u(1, t) ; \frac{\partial u}{\partial x}(-1, t)=\frac{\partial u}{\partial x}(1, t) \text { for } t>0 \tag{15}\\
& u(x, o)=x+1,-1<x<1 .
\end{align*}
$$

SECTION-B

Q.No.4. (a) Highlight the difference between a vector and a tensor. What happens if we permute the subscripts of a tensor?
(b) Transform $g^{a b}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / r^{2}\end{array}\right)$ into Cartesian coordinates.
Q.No.5. (a) Workout the Christoffel symbols for the metric tensor $g_{a b}=\left(\begin{array}{cc}a^{2} & 0 \\ 0 & a^{2} \sin ^{2} \theta\end{array}\right)$
(b) Workout the two dimensional metric tensor for the coordinates p and q given by

$$
p=(x y)^{\frac{1}{3}}, q=\left(x^{2} / y\right)^{1 / 3}
$$

SECTION-C

Q.No.6. (a) Solve the following system of equations by Jacobi iteration method:

$$
\begin{aligned}
& 10 x+y-2 z=7.74 \\
& x+12 y+3 z=39.66 \\
& 3 x+4 y+15 z=54.8
\end{aligned}
$$

(b) Solve Sinx $=1+x^{3}$ Using Newton-Raphson method.
Q.No.7. (a) Find the root of $x e^{x}=3$ by regular falsi method correct to three decimal places.
(b) Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using
(i) Trapezoidal rule and
(ii) Simpson's rule.
Q.No.8. (a) Find the real root of the equation $\operatorname{Cos} x=3 x-1$ correct to seven decimal places by the iterative method.
(b) Use Lagrange's interpolation formula to find the value of y when $x=10$, if the values of x and y are given below:

X	5	6	9	11
Y	12	13	14	16

