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Preface

Statistical ideas and methods underlie just about every aspect of
modern life. Sometimes the role of statistics is obvious, but often
the statistical ideas and tools are hidden in the background. In
either case, because of the ubiquity of statistical ideas, it is clearly
extremely useful to have some understanding of them. The aim of
this book is to provide such understanding.

Statistics suffers from an unfortunate but fundamental
misconception which misleads people about its essential nature.
This mistaken belief is that it requires extensive tedious arithmetic
manipulation, and that, as a consequence, it is a dry and dusty
discipline, devoid of imagination, creativity, or excitement. But
this is a completely false image of the modern discipline of
statistics. It is an image based on a perception dating from more
than half a century ago. In particular, it entirely ignores the fact
that the computer has transformed the discipline, changing it
from one hinging around arithmetic to one based on the use of
advanced software tools to probe data in a search for
understanding and enlightenment. That is what the modern
discipline is all about: the use of tools to aid perception and
provide ways to shed light, routes to understanding, instruments
for monitoring and guiding, and systemstoassistdecision-making.
All of these, and more, are aspects of the modern discipline.



The aim of this book is to give the reader some understanding of
this modern discipline. Now, clearly, in a book as short as this one,
I cannot go into detail. Instead of detail, I have taken a high-level
view, a bird’s eye view, of the entire discipline, trying to convey the
nature of statistical philosophy, ideas, tools, and methods. I hope
the book will give the reader some understanding of how the
modern discipline works, how important it is, and, indeed, why it
is so important.

The first chapter presents some basic definitions, along with
illustrations to convey some of the power, importance, and,
indeed, excitement of statistics. The second chapter introduces
some of the most elementary of statistical ideas, ideas which the
reader may well have already encountered, concerned with basic
summaries of data. Chapter 3 cautions us that the validity of any
conclusions we draw depends critically on the quality of the raw
data, and also describes strategies for efficient collection of data.
If data provide one of the legs on which statistics stands, the other
is probability, and Chapter 4 introduces basic concepts of
probability. Proceeding from the two legs of data and probability,
in Chapter 5 statistics starts to walk, with a description of how one
draws conclusions and makes inferences from data. Chapter 6
presents a lightning overview of some important statistical
methods, showing how they form part of an interconnected
network of ideas and methods for extracting understanding from
data. Finally, Chapter 7 looks at just some of the ways the
computer has impacted the discipline.

I would like to thank Emily Kenway, Shelley Channon, Martin
Crowder, and an anonymous reader for commenting on drafts of
this book. Their comments have materially improved it, and
helped to iron out obscurities in the explanations. Of course, any
such which remain are entirely my own fault.

David J. Hand
Imperial College, London
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Chapter 1

Surrounded by statistics

To those who say ‘there are lies, damned lies, and statistics’, I

often quote Frederick Mosteller, who said that ‘it is easy to lie with

statistics, but easier to lie without them’.

Modern statistics

I want to begin with an assertion that many readers might find
surprising: statistics is the most exciting of disciplines. My aim in
this book is to show you that this assertion is true and to show you
why it is true. I hope to dispel some of the old misconceptions of
the nature of statistics, and to show what the modern discipline
looks like, as well as to illustrate some of its awesome power, as
well as its ubiquity.

In particular, in this introductory chapter I want to convey two
things. The first is a flavour of the revolution that has taken place
in the past few decades. I want to explain how statistics has been
transformed from a dry Victorian discipline concerned with the
manual manipulation of columns of numbers, to a highly
sophisticated modern technology involving the use of the most
advanced of software tools. I want to illustrate how today’s
statisticians use these tools to probe data in the search for
structures and patterns, and how they use this technology to peel
back the layers of mystification and obscurity, revealing the truths
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beneath. Modern statistics, like telescopes, microscopes, X-rays,
radar, and medical scans, enables us to see things invisible to the
naked eye. Modern statistics enables us to see through the mists
and confusion of the world about us, to grasp the underlying
reality.

So that is the first thing I want to convey in this chapter: the sheer
power and excitement of the modern discipline, where it has come
from, and what it can do. The second thing I hope to convey is the
ubiquity of statistics. No aspect of modern life is untouched by
it. Modern medicine is built on statistics: for example, the
randomized controlled trial has been described as ‘one of the
simplest, most powerful, and revolutionary tools of research’.
Understanding the processes by which plagues spread prevent
them from decimating humanity. Effective government hinges on
careful statistical analysis of data describing the economy and
society: perhaps that is an argument for insisting that all those in
government should take mandatory statistics courses. Farmers,
food technologists, and supermarkets all implicitly use statistics to
decide what to grow, how to process it, and how to package and
distribute it. Hydrologists decide how high to build flood defences
by analysing meteorological statistics. Engineers building
computer systems use the statistics of reliability to ensure that
they do not crash too often. Air traffic control systems are built on
complex statistical models, working in real time. Although you
may not recognize it, statistical ideas and tools are hidden in just
about every aspect of modern life.

Some definitions

One good working definition of statistics might be that it is the
technology of extracting meaning from data. However, no
definition is perfect. In particular, this definition makes no
reference to chance and probability, which are the mainstays of
many applications of statistics. So another working definition
might be that it is the technology of handling uncertainty. Yet

2
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other definitions, or more precise definitions, might put more
emphasis on the roles that statistics plays. Thus we might say that
statistics is the key discipline for predicting the future or for
making inferences about the unknown, or for producing
convenient summaries of data. Taken together these definitions
broadly cover the essence of the discipline, though different
applications will provide very different manifestations. For
example, decision-making, forecasting, real-time monitoring,
fraud detection, census enumeration, and analysis of gene
sequences are all applications of statistics, and yet may require
very different methods and tools. One thing to note about these
definitions is that I have deliberately chosen the word ‘technology’
rather than science. A technology is the application of science and
its discoveries, and that is what statistics is: the application of our
understanding of how to extract information from data, and our
understanding of uncertainty. Nevertheless, statistics is sometimes
referred to as a science. Indeed, one of the most stimulating
statistical journals is called just that: Statistical Science.

So far in this book, and in particular in the preceding paragraph,
I have referred to the discipline of statistics, but the word
‘statistics’ also has another meaning: it is the plural of ‘statistic’. A
statistic is a numerical fact or summary. For example, a summary
of the data describing some population: perhaps its size, the birth
rate, or the crime rate. So in one sense this book is about
individual numerical facts. But in a very real sense it is about
much more than that. It is about how to collect, manipulate,
analyse, and deduce things from those numerical facts. It is about
the technology itself. This means that a reader hoping to find
tables of numbers in this book (e.g. ‘sports statistics’) will be
disappointed. But a reader hoping to gain understanding of how
businesses make decisions, of how astronomers discover new types
of stars, of how medical researchers identify the genes associated
with a particular disease, of how banks decide whether or not to
give someone a credit card, of how insurance companies decide on
the cost of a premium, of how to construct spam filters which
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prevent obscene advertisements reaching your email inbox, and so
on and on, will be rewarded.

All of this explains why ‘statistics’ can be both singular and plural:
there is one discipline which is statistics, but there are many
numbers which are statistics.

So much for the word ‘statistics’. My first working definition also
used the word ‘data’. The word ‘data’ is the plural of the Latin word
‘datum’, meaning ‘something given’, from dare, meaning ‘to give’.
As such, one might imagine that it should be treated as a plural
word: ‘the data are poor’ and ‘these data show that . . . ’, rather than
‘the data is poor’ and ‘this data shows that’. However, the English
language changes over time. Increasingly, nowadays ‘data’ is
treated as describing a continuum, as in ‘the water is wet’ rather
than ‘the water are wet’. My own inclination is to adopt whatever
sounds more euphonious in any particular context. Usually, to my
ears, this means sticking to the plural usage, but occasionally I
may lapse.

Data are typically numbers: the results of measurements, counts,
or other processes. We can think of such data as providing a
simplified representation of whatever we are studying. If we are
concerned with school children, and in particular their academic
ability and suitability for different kinds of careers, we might
choose to study the numbers giving their results in various tests
and examinations. These numbers would provide an indication of
their abilities and inclinations. Admittedly, the representation
would not be perfect. A low score might simply indicate that
someone was feeling ill during the examination. A missing value
does not tell us much about their ability, but merely that they did
not sit the examination. I will say more about data quality later.
It matters because of the general principle (which applies
throughout life, not merely in statistics) that if we have poor
material to work with then the results will be poor. Statisticians
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can perform amazing feats in extracting understanding from
numbers, but they cannot perform miracles.

Of course, many situations do not appear to produce numerical
data directly. Much raw data appears to be in the form of pictures,
words, or even things such as electronic or acoustic signals. Thus,
satellite images of crops or rain forest coverage, verbal
descriptions of side effects suffered when taking medication, and
sounds uttered when speaking, do not appear to be numbers.
However, close examination shows that, when these things are
measured and recorded, they are translated into numerical
representations or into representations which can themselves be
further translated into numbers. Satellite pictures and other
photographs, for example, are represented as millions of tiny
elements, called pixels, each of which is described in terms of the
(numerical) intensities of the different colours making it up. Text
can be processed into word counts or measures of similarity
between words and phrases; this is the sort of representation used
by web search engines, such as Google. Spoken words are
represented by the numerical intensities of the waveforms making
up the individual parts of speech. In general, although not all data
are numerical, most data are translated into numerical form at
some stage. And most of statistics deals with numerical data.

Lies, damned lies, and setting the record straight

The remark that there are ‘lies, damned lies, and statistics’, which
was quoted at the start of this chapter, has been variously
attributed to Mark Twain and Benjamin Disraeli, among others.
Several people have made similar remarks. Thus ‘like dreams,
statistics are a form of wish fulfilment’ (Jean Baudrillard, in Cool
Memories, Chapter 4); ‘. . . the worship of statistics has had the
particularly unfortunate result of making the job of the plain,
outright liar that much easier’ (Tom Burnan, in The Dictionary of
Misinformation, p. 246); ‘statistics is “hocuspocus” with numbers’
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(Audrey Habera and Richard Runyon, in General Statistics, p. 3);
‘legal proceedings are like statistics. If you manipulate them, you
can prove anything’ (Arthur Hailey, in Airport, p. 385). And so on.

Clearly there is much suspicion of statistics. We might also wonder
if there is an element of fear of the discipline. It is certainly true
that the statistician often plays the role of someone who must
exercise caution, possibly even being the bearer of bad news.
Statisticians working in research environments, for example in
medical schools or social contexts, may well have to explain that
the data are inadequate to answer a particular question, or simply
that the answer is not what the researcher wanted to hear. That
may be unfortunate from the researcher’s perspective, but it is a
little unfair then to blame the statistical messenger.

In many cases, suspicion is generated by those who selectively
choose statistics. If there is more than one way to summarize a set
of data, all looking at slightly different aspects, then different
people can choose to emphasize different summaries. A particular
example is in crime statistics. In Britain, perhaps the most
important source of crime statistics is the British Crime Survey.
This estimates the level of crime by directly asking a sample of
people of which crimes they have been victims over the past year.
In contrast, the Recorded Crime Statistics series includes all
offences notifiable to the Home Office which have been recorded
by the police. By definition, this excludes certain minor offences.
More importantly, of course, it excludes crimes which are not
reported to the police in the first place. With such differences, it is
no wonder that the figures can differ between the two sets of
statistics, even to the extent that certain categories of crime may
appear to be decreasing over time according to one set of figures
but increasing according to the other.

The crime statistics figures also illustrate another potential cause
of suspicion of statistics. When a particular measure is used as an
indicator of the performance of a system, people may choose to
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target that measure, improving its value but at the cost of other
aspects of the system. The chosen measure then improves
disproportionately, and becomes useless as a measure of
performance of the system. For example, the police could reduce
the rate of shoplifting by focusing all their resources on it, at the
cost of allowing other kinds of crime to rise. As a result, the rate of
shoplifting becomes useless as an indicator of crime rate. This
phenomenon has been termed ‘Goodhart’s law’, named after
Charles Goodhart, a former Chief Adviser to the Bank of England.

The point to all this is that the problem lies not with the statistics
per se, but with the use made of those statistics, and the
misunderstanding of how the statistics are produced and what
they really mean. Perhaps it is perfectly natural to be suspicious of
things we do not understand. The solution is to dispel that lack of
understanding.

Yet another cause of suspicion arises in a fundamental way as a
consequence of the very nature of scientific advance. Thus, one
day we might read in the newspaper of a scientific study appearing
to show that a particular kind of food is bad for us, and the next
day that it is good. Naturally enough this generates confusion, the
feeling that the scientists do not know the answer, and perhaps
that they are not to be trusted. Inevitably, such scientific
investigations make heavy use of statistical analyses, so some of
this suspicion transfers to statistics. But it is the very essence of
scientific advance that new discoveries are made that change our
understanding. Where we once might have thought simply that
dietary fat was bad for us, further studies may have led us to
recognize that there are different kinds of fats, some beneficial and
some detrimental. The picture is more complicated than we first
thought, so it is hardly surprising that the initial studies led to
conflicting and apparently contradictory conclusions.

A fourth cause of suspicion arises from elementary
misunderstandings of basic statistics. As an exercise, the reader
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might try to decide what is suspicious about each of the following
statements (the answers are in the endnote at the back of the
book).

1) We read in a report that earlier diagnosis of a medical condition

leads to longer survival times, so that screening programmes are

beneficial.

2) We are told that a stated price has already been reduced by a 25%

discount for eligible customers, but we are not eligible so we have

to pay 25% more than the stated price.

3) We hear of a prediction that life expectancy will reach 150 years in

the next century, based on simple extrapolation from increases

over the past 100 years.

4) We are told that ‘every year since 1950, the number of American

children gunned down has doubled’.

Sometimes the misunderstandings are not so elementary, or, at
least, they arise from relatively deep statistical concepts. It would
be surprising if, after more than a century of development, there
were not some deep counter-intuitive ideas in statistics. One such
is known as the Prosecutor’s Fallacy. It describes confusion
between the probability that something will be true (e.g. the
defendant is guilty) if you have some evidence (e.g. the defendant’s
gloves at the scene of the crime), with the probability of finding
that evidence if you assume that the defendant is guilty. This is a
common confusion, not merely in the courts, and we will examine
it more closely later.

If there is suspicion and mistrust of statistics, it is clear that the
blame lies not with the statistics or how they were calculated, but
rather with the use made of those statistics. It is unfair to blame
the discipline, or the statistician who extracts the meaning from
the data. Rather, the blame lies with those who do not understand
what the numbers are saying, or who wilfully misuse the results.
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We do not blame a gun for murdering someone: rather it is the
person firing the gun who is blamed.

Data

We have seen that data are the raw material on which the
discipline of statistics is built, as well as the raw material from
which individual statistics themselves are calculated, and that
these data are typically numbers. In fact, however, data are more
than merely numbers. To be useful, that is to enable us to carry
out some meaningful statistical analysis, the numbers must be
associated with some meaning. For example, we need to know
what the measurements are measurements of, and just what has
been counted when we are presented with a count. To produce
valid and accurate results when we carry out our statistical
analysis, we also need to know something about how the values
have been obtained. Did everyone we asked give answers to a
questionnaire, or did only some people answer? If only some
answered, are they properly representative of the population of
people we wish to make a statement about, or is the sample
distorted in some way? Does, for example, our sample
disproportionately exclude young people? Likewise, we need to
know if patients dropped out of a clinical trial. And whether the
data are up to date. We need to know if a measuring instrument is
reliable, or if it has a maximum value which is recorded when the
true value is excessively high. Can we assume that a pulse rate
recorded by a nurse is accurate, or is it only a rough value? There
is an infinite number of such questions which could be asked, and
we need to be alert for any which could influence the conclusions
we draw. Or else suspicions of the kind described above might be
entirely legitimate.

One way of looking at data is to regard it as evidence. Without
data, our ideas and theories about the world around us are mere
speculations. Data provide a grounding, linking our ideas and
theories to reality, and allowing us to validate and test our
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understanding. Statistical methods are then used to compare the
data with our ideas and theories, to see how good a match there is.
A poor match leads us to think again, to re-evaluate our ideas and
reformulate them so that they better match what we actually
observe to be the case. But perhaps I should insert a cautionary
note here. This is that a poor match could also be a consequence
of poor data quality. We must be alert for this possibility: our
theories may be sound but our measuring instruments may be
lacking in some way. In general, however, a good match between
the observed data and what our theories say the data should be
like reassures us that we are on the right track. It reassures us that
our ideas really do reflect the truth of what is going on.

Implicit in this is that, to be meaningful, our ideas and theories
must yield predictions, which we can compare with our data. If
they do not tell us what we should expect to observe, or if the
predictions are so general that any data will conform with our
theories, then the theories are not much use: anything would do.
Psychoanalysis and astrology have been criticized on such
grounds.

Data also allow us to steer our way through a complex world – to
make decisions about the best actions to take. We take our
measurements, count our totals, and we use statistical methods to
extract information from these data to describe how the world is
behaving and what we should do to make it behave how we want.
These principles are illustrated by aircraft autopilots, automobile
SatNav systems, economic indicators such as inflation rate and
GDP, monitoring patients in intensive care units, and evaluations
of complex social policies.

Given the fundamental role of data as tying observations about the
world around us to our ideas and understanding of that world, it is
not stretching things too far to describe data, and the technology
of extracting meaning from it, as the cornerstone of modern
civilization. That is why I used the subtitle ‘how data rule our
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world’, for my book Information Generation (see Further
reading).

Greater statistics

Although the roots can be traced as far back as we like, the
discipline of statistics itself is really only a couple of centuries old.
The Royal Statistical Society was established in 1834, and the
American Statistical Association in 1839, whilst the world’s first
university statistics department was set up in 1911, at University
College, London. Early statistics had several strands, which
eventually combined to become the modern discipline. One of
these strands was the understanding of probability, dating from
the mid-17th century, which emerged in part from questions
concerning gambling. Another was the appreciation that
measurements are rarely error free, so that some analysis was
needed to extract sensible meaning from them. In the early years,
this was especially important in astronomy. Yet another strand
was the gradual use of statistical data to enable governments to
run their country. In fact, it is this usage which led to the word
‘statistics’: data about ‘the State’. Every advanced country now has
its own national statistical office.

As it developed, so the discipline of statistics went through several
phases. The first, leading up to around the end of the 19th century,
was characterized by discursive explorations of data. Then the
first half of the 20th century saw the discipline becoming
mathematicized, to the extent that many saw it as a branch of
mathematics (it deals with numbers, doesn’t it?). Indeed,
university statisticians are still often based within mathematics
departments. The second half of the 20th century saw the advent
of the computer, and it was this change which elevated statistics
from drudgery to excitement. The computer removed the need for
practitioners to have special arithmetic skills – they no longer
needed to spend endless hours on numerical manipulation. It is
analogous to the change from having to walk everywhere to being
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able to drive: journeys which would have previously taken days
now take a matter of minutes; journeys which would have been
too lengthy to contemplate now become feasible.

The second half of the 20th century also saw the appearance of
other schools of data analysis, with origins not in classical
statistics but in other areas, especially computer science. These
include machine learning, pattern recognition, and data mining.
As these other disciplines developed, so there were sometimes
tensions between the different schools and statistics. The truth is,
however, that the varying perspectives provided by these different
schools all have something to contribute to the analysis of data, to
the extent that nowadays modern statisticians pick freely from the
tools provided by all these areas. I will describe some of these tools
later on. With this in mind, in this book I take a broad definition
of statistics, following the definition of ‘greater statistics’ given by
the eminent statistician John Chambers, who said: ‘Greater
statistics can be defined simply, if loosely, as everything related to
learning from data, from the first planning or collection to the last
presentation or report.’ Trying to define boundaries between the
different data-analytic disciplines is both pointless and futile.

So, modern statistics is not about calculation, it is about
investigation. Some have even described statistics as the scientific
method in action. Although, as I noted above, one still often finds
many statisticians based in mathematics departments in
universities, one also finds them in medical schools, social science
departments, including economics, and many other departments,
ranging from engineering to psychology. And outside universities
large numbers work in government and in industry, in the
pharmaceutical sector, marketing, telecoms, banking, and a host
of other areas. All managers rely on statistical skills to help them
interpret the data describing their department, corporation,
production, personnel, etc. These people are not manipulating
mathematical symbols and formulae, but are using statistical tools
and methods to gain insight and understanding from evidence,
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from data. In doing so, they need to consider a wide variety of
intrinsically non-mathematical issues such as data quality, how
the data were or should be collected, defining the problem,
identifying the broader objective of the analysis (understanding,
prediction, decision, etc.), determining how much uncertainty is
associated with the conclusion, and a host of other issues.

As I hope is clear from the above, statistics is ubiquitous, in that it
is applied in all walks of life. This has had a reciprocal impact on
the development of statistics itself. As statistical methods were
applied in new areas, so the particular problems, requirements,
and characteristics of those areas led to the development of new
statistical methods and tools. And then, once they had been
developed, these new methods and tools spread out, finding
applications in other areas.

Some examples

Example 1: Spam filtering

‘Spam’ is the term used to describe unsolicited bulk email
messages automatically sent out to many recipients, typically
many millions of recipients. These messages will be advertising
messages, often offensive, and they may be fronts for confidence
tricksters. They include things such as debt consolidation offers,
get-rich-quick schemes, prescription drugs, stock market tips, and
dubious sexual aids. The principle underlying them is that if you
email enough people, some are likely to be interested in – or taken
in by – your offer. Unless the messages are from organizations
specifically asked for information, most of them will be of no
interest, and nobody will want to waste time reading and deleting
them. Which brings us to spam filters. These are computer
programs that automatically scan incoming email messages and
decide which are likely to be spam. The filters can be set up so that
the program deletes the spam messages automatically, sends them
to a holding folder for later examination, or takes some other
appropriate action. There are various estimates of the amount of
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spam sent out, but at the time of writing, one estimate is that over
90 billion spam messages are sent each day – and since this
number has been rising dramatically month on month, it is likely
to be substantially greater by the time you read this.

There are various techniques for preventing spam. Very simple
approaches just check for the occurrence of keywords in the
message. For example, if a message includes the word ‘viagra’ it
might be blocked. However, one of the characteristics of spam
detection is that it is something of an arms race. Once those
responsible become aware that their messages are being blocked
by a particular method, they seek ways round that method. For
example, they might seek deliberately to misspell ‘viagra’ as
‘v1agra’ or ‘v-iagra’, so that you can recognize it but the automatic
program cannot.

More sophisticated spam detection tools are based on statistical
models of the word content of spam messages. For example, they
might use estimates of the probabilities of particular words or
word combinations arising in spam messages. Then a message
that contains too many high-probability words is suspect. More
sophisticated tools build models for the probability that one word
will follow another, in a sequence, hence enabling the detection
of suspicious phrases and sets of words. Yet other methods use
statistical models of images, to detect such things as skin tones in
an emailed picture.

Example 2: The Sally Clark case

In 1999, Sally Clark, a young British lawyer, was tried, convicted,
and given a life sentence for murdering her two baby sons. Her
first child died in 1996, aged 11 weeks, and her second died in
1998, aged 8 weeks. The verdict depended on what has become a
byword for the misunderstanding and misuse of statistics, when
the paediatrician Sir Roy Meadow, in his role as expert witness for
the prosecution, claimed that the chance of two children dying
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from cot death was 1 in 73 million. He obtained this figure by
simply multiplying together the chance for the two deaths
separately. In doing so, in his ignorance of basic statistics, he
entirely ignored the fact that one such death in a family is likely to
mean that another such death is more likely.

Study of past data shows that the probability of a randomly
selected baby suffering a cot death in a family such as the Clarks’
is about 1 in 8,500. If one then makes the assumption that the
occurrence of one such death does not change the probability of
another, then the chances of two such deaths in the same family
would be 1/8,500 times 1/8,500; that is, about one in 73 million.
But the assumption here is a big one, and careful statistical
analysis of past data suggests that, in fact, the chance of a second
cot death is substantially increased when one has already
occurred. Indeed, the calculations suggest that several such
multiple deaths should be expected to occur each year in a nation
the size of the UK. The website of the Foundation for the Study
of Infant Death says ‘it is very rare for cot death to occur twice in
the same family, though occasionally an inherited disorder,
such as a metabolic defect, may cause more than one infant to die
unexpectedly’.

In the Sally Clark case, there was more evidence suggesting that
she was innocent, and eventually it became clear that her second
son had a bacterial infection known to predispose towards sudden
infant death. Ms Clark was subsequently released on appeal in
2003. Tragically, she died in March 2007, aged just 42. More
details of this terrible misunderstanding and misuse of statistics
are given in an excellent article by Helen Joyce and on the website
listed in the Further reading at the end of this book.

Example 3: Star clusters

As our ability to probe further and further into the universe has
increased, so it has become apparent that astronomic objects tend
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to cluster together, and do so in a hierarchical way, so that stars
form clusters, clusters of stars themselves form higher level
clusters, and these then cluster in turn. In particular, our own
galaxy, which is a cluster of stars, is a member of the Local Group
of about thirty galaxies, and this in turn is a member of the Local
Supercluster. At the largest scale, the Universe looks rather like a
foam, with filaments consisting of Superclusters lying on the edges
of vast empty spaces. But how was all this discovered? Even if we
use powerful telescopes to look out from the Earth, we simply see
a sky of stars. The answer is that teasing out this clustering
structure, and indeed discovering it in the first place, required
statistical techniques. One class of techniques involves calculating
the distances from each star to its few closest stars. Stars which
have more stars closer than expected by chance are in locally dense
regions – local clusters.

Of course, there is much more to it than that. Interstellar dust
clouds will obscure the view of distant objects, and these dust
clouds are not distributed uniformly in space. Likewise, faint
objects will only be seen if they are near enough to the Earth.
A thin filament of galaxies seen end on from the Earth could
appear to be a dense cluster. And so on. Sophisticated statistical
corrections need to be applied so that we can discern the
underlying truth from the apparent distributions of objects.

Understanding the structure of the universe sheds light both on
how it came to be, and on its future development.

Example 4: Manufacturing chemicals

I have already remarked that while statisticians may be able to
perform amazing feats, they cannot perform miracles. In
particular, the quality of their conclusions will be moderated by
the quality of the data. Given this, it is hardly surprising that there
are important subdisciplines of statistics concerned with how best
to collect data. These are discussed in Chapter 3. One of these
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subdisciplines is experimental design. Experimental design
techniques are used in situations where it is possible to control or
manipulate some of the ‘variables’ being studied. The tools of
experimental design enable us to extract maximum information
for a given use of resources. For example, in producing a particular
chemical polymer we might be able to set the temperature,
pressure, and time of the chemical reaction to any values we want.
Different values of these three variables will lead to variations in
the quality of the final product. The question is, what is the best
set of values?

In principle, this is an easy question to answer. We simply make
many batches of the polymer, each with different values of the
three variables. This allows us to estimate the ‘response surface’,
showing the quality of the polymer at each set of three values of
the variables, and we can then choose the particular triple which
maximizes the quality.

But what if the manufacturing process is such that it takes several
days to make each batch? Making many such batches, just to
work out the best way of doing so, may be infeasible. Making
100 batches, each of which takes three days, would take the better
part of a year. Fortunately, cleverly designed experiments allow us
to extract the same information from far fewer carefully chosen
sets of values. Sometimes a tiny fraction of batches can yield
enough information for us to determine the best set of values,
provided those batches are properly selected.

Example 5: Customer satisfaction

To run any retail organization effectively, so that it makes a profit
and grows over time, requires paying careful attention to the
customers, and giving them the product or service that they want.
Failing to do so will mean that they go to a competitor who does
provide what is wanted. The bottom line here is that failure will
be indicated by declining revenues. We can try to avoid that by
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collecting data on how the customers feel before they begin voting
with their wallets. We can carry out surveys of customer
satisfaction, asking customers if they are happy with the product
or service and in what ways these might be improved.

At first glance, it might look as if, to obtain reliable conclusions
which reflect the behaviour of the entire customer base, it is
necessary to give questionnaires to all the customers. This could
clearly be an expensive and time-consuming exercise. Fortunately,
however, there are statistical methods which enable sufficiently
accurate results to be obtained from just a sample of customers.
Indeed, the results can sometimes be even more accurate than
surveying all customers. Needless to say, great care is needed in
such an exercise. It is necessary to be wary of basing conclusions
on a distorted sample: the results would be useless as a description
of how customers behaved in general if only those who spent large
sums of money were interviewed. Once again, statistical methods
have been developed which enable us to avoid such mistakes – and
so to draw valid conclusions.

Example 6: Detecting credit card fraud

Not all credit card transactions are legitimate. Fraudulent
transactions cost the bank money, and also cost the bank’s
customers money. Detecting and preventing fraud is thus very
important. Many readers of this book will have had the experience
of their bank telephoning them to check that they made certain
transactions. These calls are based on the predictions made by
statistical models which describe how legitimate customers
behave. Departures from the behaviour predicted by these models
suggest that something suspicious is going on, deserving
investigation.

There are various kinds of model. Some are based simply on
intrinsically suspicious patterns of behaviour: simultaneous use of
a single card in geographically distant locations, for example.
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Others are based on more elaborate models of the kinds of
transactions someone habitually makes, when they tend to make
them, for how much money, at what kinds of outlets, for which
kinds of products, and so on.

Of course, no such predictive model is perfect. Credit card
transactions patterns are often varied, with people suddenly
making purchases of a kind they have never made before.
Moreover, only a tiny percentage of transactions are fraudulent –
perhaps around one in a thousand. This makes detection
especially difficult.

Detecting and preventing fraud is a constant battle: when one
fraud avenue is stopped, fraudsters tend not to abandon their
chosen career path and take up a legitimate occupation, but switch
to other methods of fraud, so requiring the development of further
statistical models.

Example 7: Inflation

We are all familiar with the notion that things become more
expensive as time passes. But how can we compare today’s cost of
living with yesterday’s? To do so, we need to compare the same
things bought on the two dates. Unfortunately, there are
complications: different shops charge different prices for the same
things, different people buy different things, the same people
change in their purchasing patterns, new products appear on the
market and old ones vanish, and so on. How can we allow for
changes such as these in determining whether life is more
expensive nowadays?

Statisticians and economists construct indicators such as the
Retail Price Index and the Consumer Price Index to measure the
cost of living. These are based on a notional ‘basket’ of (hundreds
of) goods that people buy, along with surveys to discover what
prices are being charged for each item in the basket. Sophisticated
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statistical models are used to combine the prices of the different
items to yield a single overall number which can be compared over
time. As well as serving as an indicator of inflation, such indices
are also used to adjust tax thresholds and index-linked salaries,
pensions, and so on.

Conclusion

It may not always be apparent to the untutored eye, but statistics
and statistical methods lie at the heart of scientific discovery,
commercial operations, government, social policy, manufacturing,
medicine, and most other aspects of human endeavour.
Furthermore, as the world progresses, so this role is becoming
more and more important. For example, the development of new
medicines has long had a legal requirement for statisticians to be
involved and something similar is now happening in the banking
industry, with new international agreements requiring statistical
risk models to be built. Given this pivotal role, it is clearly
important that no educated citizen should be unaware of basic
statistical principles.

Modern statistics, with its use of sophisticated software tools to
probe data, permits us to make voyages of discovery paralleling
those of pre-20th-century explorers, investigating new and
exciting realms. This recognition – that real statistics is about
exploring the unknown, not about tedious arithmetic
manipulation – is central to an appreciation of the modern
discipline.
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Chapter 2

Simple descriptions

Data are nature’s evidence

Introduction

In this chapter, I aim to introduce some of the basic concepts and
tools which form the foundation of statistics, and which enable it
to play its many roles.

In Chapter 1, I noted that modern statistics suffered from many
misconceptions and misunderstandings. Yet another such
misunderstanding is often (probably inadvertently) propagated by
textbooks which describe statistical methods for experts in other
disciplines. This is that statistics is a bag of tools, with the role of
the statistician or user of statistics being to pick one tool to match
the question, and then to apply it.

The problem with this view of statistics is that it gives the
impression that the discipline is simply a collection of
disconnected methods of manipulating numbers. It fails to convey
the truth that statistics is a connected whole, built on deep
philosophical principles, so that the data analytic tools are linked
and related: some may generalize to others, some may appear to
differ simply because they work with different kinds of data, even
though they search for the same kind of structures, and so on. I
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suspect that this impression of a collection of isolated methods
may be another reason why newcomers find statistics rather
tedious and hard to learn (apart from any fear of numbers they
may have). Learning a disconnected and apparently quite distinct
set of methods is much tougher than learning about such methods
through their relationship of derivation from underlying
principles. It is rather like the difficulty of learning a random
collection of unrelated words, compared with learning words in a
meaningful sentence. I have endeavoured, in this chapter and
throughout the book, to convey the relationships between
statistical ideas, to show that the discipline is really an
interconnected whole.

Data again

Whatever else it does, and whatever the details of the definition
we adopt, statistics begins with data. Data describe the universe
we wish to study. I am using the word ‘universe’ here in a very
general sense. It could be the physical world about us, but it
could be the world of credit card transactions, of microarray
experiments in genetics, of schools and their teaching and
examination performance, of trade between countries, of how
people behave when exposed to different advertisements, of
subatomic particles, and so on. There is no end to the worlds
which can be studied, and therefore of the worlds represented by
data.

Of course, no finite data set can tell us about all of the infinite
complexities of the real world, just as no verbal description, even
that written by the most eloquent of authors, can convey
everything about every facet of the world around us. That means
we must be specially aware of any potential shortcomings or gaps
in our data. It means that, when collecting data, we need to take
special care to ensure that they do cover the aspects we are
interested in, or about which we wish to draw conclusions. There
is also a more positive way of looking at this: by collecting only a
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finite set of descriptive aspects, we are forced to eliminate the
irrelevant ones. When studying the safety of different designs of
cars, we might decide not to record the colour of the fabric
covering the seats.

Broadly speaking, it is convenient to regard data as having two
aspects. One aspect is concerned with the objects we wish to
study, and the other aspect is concerned with the characteristics
of those objects we wish to study. For example, our objects might
be children at school and the characteristics might be their test
scores. Or perhaps the objects might be children, but we are
studying their diet and physical development, in which case the
characteristics might be the children’s height and weight. Or our
objects might be physical materials, with the characteristics of
interest being their electrical and magnetic properties. In
statistics, it is common to call the characteristics variables,
with each object having a value of a variable (the child’s score in a
spelling test would be the value of the test variable, the magnitude
of material’s electrical conductivity would be the value of the
conductivity variable, etc.). In other data-analytic disciplines,
alternative words are sometimes used (such as ‘feature’,
‘characteristic’, or ‘attribute’), but when I get on to discussing the
technical aspects I shall usually stick to ‘variable’.

In fact, in any one study we might be interested in multiple kinds
of objects. We might want to understand and make statements not
only about school children, but also about the schools themselves,
and perhaps about the teachers, the styles of teaching, and
different kinds of school management structure, all in one study.
Moreover, we will typically not be interested in any single
characteristic of the objects being studied, but in relationships
between characteristics, and indeed, perhaps relationships
between characteristics for objects of different kinds and at
different levels. We see that things are often really quite
complicated, as we might expect, given the complexity of the
subjects we might be studying.
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Many people are resistant to the notion that numerical data can
convey the beauty of the real world. They feel that somehow
converting things to numbers strips away the magic. In fact, they
could not be more wrong. Numbers have the potential to allow us
to perceive that beauty, that magic, more clearly and more deeply,
and to appreciate it more fully. Admittedly, ambiguitymay be
removed by couching things in numerical form: if I say that there
are four people in the room, you know exactly what I mean,
whereas, in contrast, if I say that someone is attractive you may
not be entirely sure what I mean. You may even disagree with my
view that someone is attractive, but you are unlikely to disagree
with my view that there are four people in the room (barring
errors in our counting, of course, but that’s a different matter).
Numbers are universally understood, regardless of nationality,
religion, gender, age, or any other human characteristic.
Removing ambiguity, and with it removing the risk of
misunderstanding, can only be beneficial when trying to
understand something – when trying to see to its heart.

This lack of ambiguity in the interpretation of numbers is closely
tied to the fact that numbers have only one property: their value or
magnitude. Contrary to what fortune tellers may have us believe,
numbers are not lucky or unlucky – in just the same way that
numbers do not have a colour, or a flavour, or an odour. They have
no properties but their intrinsic numerical value. (Admittedly,
some people experience synaesthesia, in which they do associate a
particular colour or sensation with particular numbers. However,
the associated sensations are different for different people, and
cannot be regarded as properties of the numbers themselves.)

Numerical data give us a more direct and immediate link to the
phenomena we are studying than do words, because numerical
data are typically produced by measuring instruments with a more
direct link to those phenomena than are words. Numbers come
directly from the things being studied, whereas words are filtered
by a human brain. Of course, things are more complicated if our
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data-collection procedure is mediated by words (as would be the
case if the data are collected by questionnaires), but the principle
still holds good. While measuring instruments may not be perfect,
the data are a proper representation of the results of applying
those instruments to the phenomenon being investigated. I
sometimes summarize this by the comment at the start of this
chapter: data are nature’s evidence, seen through the lens of the
measuring instrument.

On top of all this, numbers have practical consequences in terms
of societal advance. It is the civilized world’s facility with
manipulating the representations of reality provided by numbers
that has led to such awesome material progress in the past few
centuries.

Although numbers have only one property, their numerical value,
we might choose to use that property in different ways. For
example, when deciding on the order of merit of students in a
class, we might rank them according to their examination scores.
That is, we might care only about whether one score is higher than
another, and not about the precise numerical difference. When we
are concerned only with the order of the values in this way we say
we are treating the data as lying on an ‘ordinal’ scale. On the other
hand, when a farmer measures the amount of corn he has
produced, he does not simply want to know whether he has grown
more than he grew last year. He also wants to know how much he
has produced: its actual weight. It is on this basis, after all, that it
will be sold in the market. In this situation, the farmer is really
comparing the weight of corn he has produced with a standard
weight, such as a ton, so that he can say how many tons of corn he
has produced. Implicit in this is the calculation of the ratio of the
weight of the corn the farmer has produced to the weight of one
ton of corn. For this reason, when we use the values in this way,
we say we are treating the data as lying on a ‘ratio’ scale. Note
that in this case we could choose to change the basic unit of
measurement: we could calculate the weight in pounds or
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kilograms rather than tons. As long as we say what unit we have
used, then it is easy for anyone else to convert back, or to convert
to whatever unit they normally use.

In yet another situation, we might want to know how many
patients have suffered from a particular side effect of a medicine.
If the number is large enough we might want to withdraw the
drug from the market as being too risky. In this case, we are simply
counting discrete well-defined units (patients). No rescaling by
changing units would be meaningful (we would not contemplate
counting the number of ‘half patients’!), so we say we are treating
the data as lying on an ‘absolute’ scale.

Simple summary statistics

Whilst simple numbers constitute the elements of data, in order
for them to be useful we need to look at the relationships between
them, and perhaps combine them in some way. And this is where
statistics comes in. Later chapters will explore more complex
ways of comparing and combining numbers, but this chapter
serves to introduce the ideas. Here we look at some of the most
straightforward ways: we will not explore relationships between
different variables in this chapter, but simply look at information
and insights which can be extracted from relationships between
values measured on the same variable. For example, we might
have recorded the ages of the applicants for a place at a university,
the luminosity of the stars in a cluster, the monthly expenditures
of families in a town, the weights of cows in a herd at the time
of sending them to market, and so on. In each case, a single
numerical value is recorded for each ‘object’ in a population
of objects.

The individual values in the collection, when taken together, are
said to form a ‘distribution’ of values. Summary statistics are ways
of characterizing that distribution: of saying whether the values
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are very similar, whether there are some exceptionally large or
small values, what a ‘typical’ value is like, and so on.

Averages

One of the most basic kinds of descriptions, or summary statistics,
of a set of numbers is an ‘average’. An average is a representative
value; it is close, in some sense, to the numbers in the set. The need
for such a thing is most apparent when the set of numbers is large.
For example, suppose we had a table recording the ages of each of
the people in a large city – perhaps with a million inhabitants. For
administrative and business purposes it would obviously be useful
to know the average age of the inhabitants. Very different services
would be needed and sales opportunities would arise if the average
age was 16 instead of 60. We could try to get a ball-park feel for
the general size of the numbers in the table, the ages, by looking
at each of the values. But this would clearly be a tough exercise.
Indeed, if it took only one second to look at each number, it would
take over 270 hours to look through a table of a million numbers,
and that’s ignoring the actual business of trying to remember and
compare them. But we can use our computer to help us.

First, we need to be clear about exactly what we mean by ‘average’,
because the word has several meanings. Perhaps the most widely
used type of average is the arithmetic mean, or justmean for
short. If people use the word ‘average’ without saying how they
interpret it, then they probably intend the arithmetic mean.

Before I show how to calculate the arithmetic mean, imagine
another table of a million numbers. Only, in this second table,
suppose that all the numbers are identical to each other. That is,
suppose that they all have the same value. Now add up all the
numbers in the first table, to find their total (this takes but a split
second using a computer). And add up all the numbers in the
second table, to find their total. If the two totals are the same, then
the number which is repeated a million times in the second table
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is capturing some sort of essence of the numbers in the first table.
This single number, for which a million copies add up to the same
total as the first table, is called the arithmetic mean (of the
numbers in the first table).

In fact, the arithmetic mean is most easily calculated simply by
dividing the total of the million numbers in the first table by a
million. In general, the arithmetic mean of a set of numbers is
found by adding all the numbers up and dividing by how many
there are. Here is a further example. In a test, the percentage
scores for five students in a class were 78, 63, 53, 91, and 55. The
total is 78 + 63 + 53 + 91 + 55 = 340. The arithmetic mean is then
simply given by dividing 340 by 5. It is 68. We would get the same
total of 340 if all five students each scored the mean value, 68.

The arithmetic mean has many attractive properties. It always
takes a value between the largest and smallest values in the set of
numbers. Moreover, it balances the numbers in the set, in the
sense that the sum of the differences between the arithmetic mean
and those values larger than it is exactly equal to the sum of the
differences between the arithmetic mean and those values smaller
than it. In that sense, it is a ‘central’ value. Those of a mechanical
turn of mind might like to picture a set of 1kg weights placed at
various positions along a (weightless) plank of wood. The distances
of the weights from one end of the plank represent the values in
the set of numbers. The mean is the distance from the end such
that a pivot placed there would perfectly balance the plank.

The arithmetic mean is a statistic. It summarizes the entire set of
values in our collection to a single value. It follows from this that it
also throws away information: we should not expect to represent a
million (or five, or however many) different numbers by a single
number without sacrificing something. We shall explore this
sacrifice later. But since it is a central value in the sense illustrated
above it can be a useful summary. We can compare the average
class size in different schools, the average test score of different
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students, the average time it takes different people to get to work,
the average daily temperature in different years, and so on.

The arithmetic mean is one important statistic, a summary of a set
of numbers. Another important summary is themedian. The
mean was the pivotal value, a sort of central point balancing the
sum of differences between it and the numbers in the set. The
median balances the set in another way: it is the value such that
half the numbers in the data set are larger and half are smaller.
Returning to the class of five students illustrated above, their
scores, in order from smallest to largest, are 53, 55, 63, 78, and 91.
The middle score here is 63, so this is the median.

Obviously complications arise if there are equal values in the data
set (e.g. suppose it consists of 99 copies of the value 0 and a single
copy of the value 1), but these can be overcome. In any case, once
again the median is a representative value in some sense, although
in a different sense from the mean. Because of this difference, we
should expect it to take a value different from the mean. Obviously
the median is easier to calculate than the mean. We do not even
have to add up any values to reach it, let alone divide by the
number of values in the set. All we have to do is order the
numbers, and locate the one in the middle. But in fact this
computational advantage is essentially irrelevant in the computer
age: in real statistical analyses the computer takes over the tedium
of arithmetic juggling.

Presented with these two summary statistics, both providing
representative values, how should we choose which to use in any
particular situation? Since they are defined in different ways,
combining the numerical values differently, they are likely to
produce different values, so any conclusions based on them may
well be different. A full answer to the question of which to choose
would get us into technicalities beyond the level of this book, but a
short answer is that the choice will depend on the precise details
of the question one wishes to answer.

29



St
at
is
ti
cs

Here is an illustration. Suppose that a small company has five
staff, each in a different grade and earning, respectively, $10,000,
$10,001, $10,002, $10,003, and $99,999. The mean of these is
$28,001, while the median is $10,002. Now suppose that the
company intends to recruit five new employees, one to each grade.
The employer might argue that in this case, ‘on average’, she would
have to pay the newcomers a salary of $28,001, so that this is the
average salary she states in the advertisement. The employees,
however, might feel that this is dishonest, since as many new
employees will be paid less than $10,002 as will be paid more than
$10,002. They might feel it is more honest to put this figure in the
advertisement. Sometimes it requires careful thought to decide
which measure is appropriate. (And in case you think this
argument is contrived, Figure 1 shows the distribution of
American baseball players’ salaries prior to the 1994 strike.
The arithmetic mean was $1.2 million, but the median was only
$0.5 million.)

This example also illustrates the relative impact of extreme values
on the mean and the median. In the pay example above, the mean
is nearly three times the median. But suppose the largest value had
been $10,004 instead of $99,999. Then the median would remain
as $10,002 (half the values above and half below), but the mean
would shrink to $10,002. The size of just a single value can have a
dramatic effect on the mean, but leave the median untouched.
This sensitivity of the mean to extreme values is one reason why
the median may sometimes be chosen in preference to the mean.

The mean and the median are not the only two representative
value summaries. Another important one is themode. This is the
value taken most frequently in a sample. For example, suppose
that I count the number of children per family for families in a
certain population. I might find that some families have one child,
some two, some three, and so on, and, in particular, I might find
that more families have two children than any other value. In this
case, the mode of the number of children per family would be two.
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1. Distribution of American baseball players’ salaries in 1994. The
horizontal axis shows salaries in millions of dollars, and the vertical
axis the numbers in each salary range

Dispersion

Averages, such as the mean and the median, provide single
numerical summaries of collections of numerical values. They are
useful because they can give an indication of the general size of the
values in the data. But, as we have seen in the example above,
single summary values can be misleading. In particular, single
values might deviate substantially from individual values in a set
of numbers. To illustrate, suppose that we have a set of a million
and one numbers, taking the values 0, 1, 2, 3, 4, . . . , 1,000,000.
Both the mean and the median of this set of values are 500,000.
But it is readily apparent that this is not a very ‘representative’
value of the set. At the extremes, one value in the set is half a
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million larger and one value is half a million smaller than the
mean (and median).

What is missing when we rely solely on an average to summarize a
set of data is some indication of how widely dispersed the data are
around that average. Are some data points much larger than the
average? Are some much smaller? Or are they all tightly bunched
about the average? In general, how different are the values in the
data set from each other? Statistical measures of dispersion
provide precisely this information, and as with averages there is
more than one such measure.

The simplest measure of dispersion is the range. This is defined as
the difference between the largest and smallest values in the data
set. In our data set of a million and one numbers, the range is
1,000,000 − 0 = 1,000,000. In our example of five salaries, the
range is $99,999 − $10,000 = $89,999. Both of these examples,
with large ranges, show that there are substantial departures from
the mean. For example, if the employees had been earning the
respective salaries of $27,999, $28,000, $28,001, $28,002,
$28,003 then the mean would also be $28,001, but the range
would be only $4. This paints a very different picture, telling us
that the employees with these new salaries earn much the same as
each other. The large range of the earlier example, $89,999,
immediately tells us that there are gross differences.

The range is all very well, and has many attractive properties
as a measure of dispersion, not least its simplicity and ready
interpretability. However, we might feel that it is not ideal. After
all, it ignores most of the data, being based on only the largest
and smallest values. To illustrate, consider two data sets, each
consisting of a thousand values. One data set has one value of 0,
998 values of 500, and one value of 1000. The other data set has
500 values of 0 and 500 values of 1000. Both of these data sets
have a range of 1000 (and, incidentally, both also have a mean of
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500), but they are clearly very different in character. By focusing
solely on the largest and smallest values, the range has failed to
detect the fact that the first data set is mostly densely concentrated
around the mean.

This shortcoming can be overcome by using a measure of
dispersion which takes all of the values into account.

One common way to do this is to take the differences between the
(arithmetic) mean and each number in the data set, square these
differences, and then find the mean of these squared differences.
(Squaring the differences makes the values all positive, otherwise
positive and negative differences would cancel out when we
calculated the mean.) If the resulting mean of the squared
differences is small, it tells us that, on average, the numbers are
not too different from their mean. That is, they are not widely
dispersed. This mean squared difference measure is called the
variance of the data – or, in some disciplines, simply themean
squared deviation. Illustrating with our five students, their test
scores were 78, 63, 53, 91, and 55 and their mean was 68. The
squared differences between the first score and the mean is
(78 − 68)2 = 100, and so on. The sum of the squared differences
is 100 + 25 + 225 + 529 + 169 = 1048, so that the mean of the
squared differences is 1048 ÷ 5 = 209.6. This is the variance.

One slight complication arises from the fact that the variance
involves squared values. This implies that the variance itself is
measured in ‘square units’. If we measure the productivity of farms
in terms of tons of corn, the variance of the values is measured in
‘tons squared’. It is not obvious what to make of this. Because of
this difficulty, it is common to take the square root of the variance.
This changes the units back to the original units, and produces
the measure of dispersion called the standard deviation. In the
example above, the standard deviation of the students’ test scores
is the square root of 209.6, or 14.5.
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The standard deviation overcomes the problem that we identified
with the range: it uses all of the data. If most of the data points are
clustered very closely together, with just a few outlying points, this
will be recognized by the standard deviation being small. In
contrast, if the data points take very different values, even if they
have the same largest and smallest value, the standard deviation
will be much larger.

Skewness

Measures of dispersion tell us how much the individual values
deviate from each other. But they do not tell us in what way they
deviate. In particular, they do not tell us if the larger deviations
tend to be for the larger values or the smaller values in the data
set. Recall our example of the five company employees, in which
four earned about $10,000 per year, and one earned around ten
times that. A measure of dispersion (the standard deviation, for
example) would tell us that the values were quite widely spread
out, but would not tell us that one of the values was much larger
than the others. Indeed, the standard deviation for the five values
$90,000, $89,999, $89,998, $89,997, and $1 is exactly the same
as for the original five values. What is different is that the
anomalous value (the $1 value) is now very small instead of very
large. To detect this difference, we need another statistic to
summarize the data, one which picks up on and measures the
asymmetry in the distribution of values. One kind of asymmetry
in distributions of values is called skewness. Our original employee
salary example, with one anomalously large value of $99,999, is
right skewed because the distribution of values has a long ‘tail’
stretching out to the single very large value of $99,999. This
distribution has many smaller values and very few larger values. In
contrast, the distribution of values given above, in which $1 is the
anomaly, is left skewed, because the bulk of the values bunch
together and there is a long tail stretching down to the single very
small value.
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Right skewed distributions are very common. A classic example is
the distribution of wealth, in which there are many individuals
with small sums and just a few individuals with many billions of
dollars. The distribution of baseball players’ salaries in Figure 1 is
heavily right skewed.

Quantiles

Averages, measures of dispersion, and measures of skewness
provide overall summary statistics, condensing the values in a
distribution down to a few convenient numbers. We might,
however, be interested in just parts of a distribution. For example,
we might be concerned with just the largest or smallest few – say,
the largest 5% – values in the data set. We have already met the
median, the value which is in the middle of the data in the sense
that 50% of the values are larger and 50% are smaller. This idea
can be generalized. For example, the upper quartile of a set of
numbers is that value such that 25% (i.e. a quarter) of the data
values are larger, and the lower quartile is that value such that
25% of the data values are smaller.

This is taken further to produce deciles (dividing the data set into
tenths, from the lowest tenth through to the highest tenth) and
percentiles (dividing the data into 100ths). Thus someone might
be described as scoring above the 95th percentile, meaning that
they are in the top 5% of the set of scores. The general term,
including quartiles, deciles, percentiles, etc., as special cases, is
quantile.
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Chapter 3

Collecting good data

Raw data, like raw potatoes, usually require cleaning before use.

Ronald A. Thisted

Data provide a window to the world, but it is important that they
give us a clear view. A window with scratches, distortions, or with
marks on the glass is likely to mislead us about what lies beyond,
and it is the same with data. If data are distorted or corrupted in
some way then mistaken conclusions can easily arise. In general,
not all data are of high quality. Indeed, I might go further than this
and suggest that it is rare to meet a data set which does not have
quality problems of some kind, perhaps to the extent that if you
encounter such a ‘perfect’ data set you should be suspicious.
Perhaps you should ask what preprocessing the data set has been
subjected to which makes it look so perfect. We will return to the
question of preprocessing later.

Standard textbook descriptions of statistical ideas and methods
tend to assume that the data have no problems (statisticians say
the data are ‘clean’, as opposed to ‘dirty’ or ‘messy’). This is
understandable, since the aim in such books is to describe the
methods, and it detracts from the clarity of the description to say
what to do if the data are not what they should be. However, this
book is rather different. The aim here is not to teach the
mechanics of statistical methods, but rather to introduce and
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convey the flavour of the real discipline. And the real discipline of
statistics has to cope with dirty data.

In order to develop our discussion, we need to understand what
could be meant by ‘bad data’, how to recognize them, and what to
do about them. Unfortunately, data are like people: they can ‘go
bad’ in an unlimited number of different ways. However, many of
those ways can be classified as either incomplete or incorrect.

Incomplete data

A data set is incomplete if some of the observations are missing.
Data may be randomly missing, for reasons entirely unrelated to
the study. For example, perhaps a chemist dropped a test tube, or a
patient in a clinical trial of a skin cream missed an appointment
because of a delayed plane, or someone moved house and so could
not be contacted for a follow-up questionnaire. But the fact that a
data item is missing can also in itself be informative. For example,
people completing an application form or questionnaire may wish
to conceal something, and, rather than lie outright, may simply
not answer that question. Or perhaps only people with a particular
view bother to complete a questionnaire. For example, if
customers are asked to complete forms evaluating the service they
have received, those with axes to grind may be more inclined to
complete them. If this is not recognized in the analysis, a distorted
view of customers’ opinions will result. Internet surveys are
especially vulnerable to this kind of thing, with people often
simply being invited to respond. There is no control over how
representative the respondents are of the overall population, or
even if the same people respond multiple times.

Other examples of this sort of ‘selection bias’ abound, and can be
quite subtle. For example, it is not uncommon for patients to drop
out of clinical trials of medicines. Suppose that patients who
recovered while using the medicine failed to return for their next
appointment, because they felt it was unnecessary (since they had
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recovered). Then we could easily draw the conclusion that the
medicine did not work, since we would see only patients who were
still sick.

A classic case of this sort of bias arose when the Literary Digest
incorrectly predicted that Landon would overwhelmingly defeat
Roosevelt in the 1936 US presidential election. Unfortunately,
the questionnaires were mailed only to people who had both
telephones and cars, and in 1936 these people were wealthier
on average than the overall population. The people sent
questionnaires were not properly representative of the overall
population. As it turned out, the bulk of the others supported
Roosevelt.

Another, rather different kind of case of incorrect conclusions
arising from failure to take account of missing data has become
a minor statistical classic. This is the case of the Challenger space
shuttle, which blew up on launch in 1986, killing everyone on
board. The night before the launch, a meeting was held to
discuss whether to go ahead, since the forecast temperature
for the launch date was exceptionally low. Data were produced
showing that there was apparently no relationship between air
temperature and damage to certain seals on the booster rockets.
However, the data were incomplete, and did not include all those
launches involving no damage. This was unfortunate because the
launches when no damage occurred were predominantly made
at higher temperatures. A plot of all of the data shows a clear
relationship, with damage being more likely at lower
temperatures.

As a final example, people applying for bank loans, credit cards,
and so on, have a ‘credit score’ calculated, which is essentially an
estimate of the probability that they will fail to repay. These
estimates are derived from statistical models built (as described in
Chapter 6) using data from previous customers who have already
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repaid or failed to repay. But there is a problem. Previous
customers are not representative of all people who applied for a
loan. After all, previous customers were chosen because they
were thought to be good risks. Those applicants thought to be
intrinsically poor risks and likely to default would not have been
accepted in the first place, and would therefore not be included in
the data. Any statistical model which fails to take account of this
distortion of the data set is likely to lead to mistaken conclusions.
In this case, it could well mean the bank collapsing.

If only some values are missing for each record (e.g. some of the
answers to a questionnaire), then there are two common
elementary approaches to analysis. One is simply to discard any
incomplete records. This has two potentially serious weaknesses.
The first is that it can lead to selection bias distortions of the kind
discussed above. If records of a particular kind are more likely to
have some values missing, then deleting these records will leave
a distorted data set. The second serious weakness is that it can
lead to a dramatic reduction in the size of the data set available
for analysis. For example, suppose a questionnaire contains
100 questions. It is entirely possible that no respondent answered
every question, so that all records may have something missing.
This means that dropping incomplete responses would lead to
dropping all of the data.

The second popular approach to handling missing values is to
insert substitute values. For example, suppose age is missing from
some records. Then we could replace the missing values by the
average of the ages which had been recorded. Although this results
in a complete(d) data set, it also has disadvantages. Essentially we
would be making up data.

If there is reason to suspect that the fact that a number is missing
is related to the value it would have had (for example, if older
people are less likely to give their age) then more elaborate
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statistical techniques are needed. We need to construct a statistical
model, perhaps of the kind discussed in Chapter 6, of the
probability of being missing, as well as for the other relationships
in the data.

It is also worth mentioning that it is necessary to allow for the fact
that not all values have been recorded. It is common practice to
use a special symbol to indicate that a value is missing. For
example, N/A, for ‘not available’. But sometimes numerical codes
are used, such as 9999 for age. In this case, failure to let the
computer know that 9999 represents missing values can lead to a
wildly inaccurate result. Imagine the estimated average age when
there are many values of 9999 included in the calculation . . .

In general, and perhaps this should be expected, there is no perfect
solution to missing data. All methods to handle it require some
kind of additional assumptions to be made. The best solution is to
minimize the problem during the data collection phase.

Incorrect data

Incomplete data is one kind of data problem, but data may be
incorrect in any number of ways and for any number of reasons.
There are both high and low level reasons for such problems.

One high level reason is the difficulty of deciding on suitable
(and universally agreed) definitions. Crime rate, referred to in
Chapter 1, provides an example of this. Suicide rate provides
another. Typically, suicide is a solitary activity, so that no one else
can know for certain that it was suicide. Often a note is left, but
not in all cases, and then evidence must be adduced that the death
was in fact suicide. This moves us to murky ground, since it raises
the question of what evidence is relevant and how much is needed.
Moreover, many suicides disguise the fact that they took their own
life; for example so that the family can collect on the life
insurance.
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In a different, but even more complicated situation, the National
Patient Safety Agency in the UK is responsible for collating
reports of accidents which have occurred in hospitals. The Agency
then tries to classify them to identify commonalities, so that steps
can be taken to prevent accidents happening in the future. The
difficulty is that accidents are reported by many thousands of
different people, and described in different ways. Even the same
incident can be described very differently.

At a lower level, mistakes are often made in reading instruments
or recording values. For example, a common tendency in reading
instruments is to subconsciously round to the nearest whole
number. Distributions of blood pressure measurements recorded
using old-fashioned (non-electronic) sphygmomanometers show a
clear tendency for more values to be recorded at 60, 70, and
80mm of mercury than at neighbouring values, such as 69 or 72.
As far as recording errors go, digits may be transposed (28, instead
of 82); the handwritten digit 7 may be mistaken for 1 (less likely in
continental Europe, where 7 is written 7); data may be put in the
wrong column on a form, so accidentally multiplying values by 10;
the US style of date (month/day/year) might be confused with the
UK style (day/month/year) or vice versa; and so on. In 1796, the
Astronomer Royal Nevil Maskelyne dismissed his assistant, David
Kinnebrook, on the grounds that the latter’s observations of the
times at which a chosen star crossed the meridian wire in a
telescope at Greenwich were too inaccurate. This mattered,
because the accuracy of the clock at Greenwich hinged on accurate
measurements of the transit times, estimates of the longitude of
the nation’s ships depended on the clock, and the British Empire
depended on its ships. However, later investigators have explained
the inaccuracies in terms of psychological reaction time delays and
the subconscious rounding phenomenon mentioned above. And,
as a final example from the many I could have chosen, the 1970 US
Census said there were 289 girls who had been both widowed and
divorced by the age of 14. We should also note the general point
that the larger the data set, the more hands involved in its
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compilation, and the more stages involved in its processing, the
more likely it is to contain errors.

Other low level examples of data errors often arise with units of
measurement, such as recording height in metres rather than feet,
or weight in pounds rather than kilograms. In 1999, the Climate
Orbiter Mars probe was lost when it failed to enter the Martian
atmosphere at the correct angle because of confusion between
pressure measurements based on pounds and on newtons. In
another example of confusion of units, this time in a medical
context, an elderly lady usually had normal blood calcium levels,
in the range 8.6 to 9.1, which suddenly appeared to drop to a much
lower value of 4.8. The nurse in charge was about to begin infusing
calcium, when Dr Salvatore Benvenga discovered that the
apparent drop was simply because the laboratory had changed the
units in which it reported its results (from milligrams per decilitre
to milliequivalents per litre).

Error propagation

Once made, errors can propagate with serious consequences. For
example, budget shortfalls and possible job layoffs in Northwest
Indiana in 2006 were attributed to the effect of a mistake in just
one number working its way up through the system. A house that
should have been valued at $121,900 had its value accidentally
changed to $400 million. Unfortunately, this mistaken value was
used in calculating tax rates.

In another case, the Times of 2 December 2004 reported how
66,500 of around 170,000 firms were accidentally removed from a
list used to compile official estimates of construction output in the
UK. This led to a reported fall of 2.6% in construction growth in
the first quarter, rather than the correct value of an increase of
0.5%, followed by a reported growth of 5.3% rather than the
correct 2.1% in the second quarter.
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Preprocessing

As must be obvious from the examples above, an essential initial
component of any statistical analysis is a close examination of the
data, checking for errors, and correcting them if possible. In some
contexts, this initial stage can take longer than the later analysis
stages.

A key concept in data cleaning is that of an outlier. An outlier is a
value that is very different from the others, or from what is
expected. It is way out in the tail of a distribution. Sometimes such
extreme values occur by chance. For example, although most
weather is fairly mild, we do get occasional severe storms. But in
other instances anomalies arise because of the sorts of errors
illustrated above, such as the anemometer which apparently
reported a sudden huge gust of wind every midnight,
coincidentally at the same time that it automatically reset its
calibration. So one good general strategy for detecting errors in
data is to look for outliers, which can then be checked by a human.
These might be outliers on single variables (e.g. the man with a
reported age of 210), or on multiple variables, neither of which is
anomalous in itself (e.g. the 5-year-old girl with 3 children).

Of course, outlier detection is not a universal solution to detecting
data errors. After all, errors can be made that lead to values which
appear perfectly normal. Someone’s sex may mistakenly be coded
as male instead of female. The best answer is to adopt data-entry
practices that minimize the number of errors. I say a little more
about this below.

If an apparent error is detected, there is then the problem of what
to do about it. We could drop the value, regarding it as missing,
and then try to use one of the missing value procedures mentioned
above. Sometimes we can make an intelligent guess as to what the
value should have been. For example, suppose that, in recording
the ages of a group of students, one had obtained the string of
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values 18, 19, 17, 21, 23, 19, 210, 18, 18, 23. Studying these, we
might think it likely that the 210 had been entered into a wrong
column, and that it should be 21. By the way, note the phrase
‘intelligent guess’ used above. As with all statistical data analysis,
careful thought is crucial. It is not simply a question of choosing
a particular statistical method and letting the computer do the
work. The computer only does the arithmetic.

The example of student ages in the previous paragraph was very
small, just involving ten numbers, so it was easy to look through
them, identify the outlier, and make an intelligent guess about
what it should have been. But we are increasingly faced with larger
and larger data sets. Data sets of many billions of values are
commonplace nowadays in scientific applications (e.g. particle
experiments), commercial applications (e.g. telecommunications),
and other areas. It will often be quite infeasible to explore all the
values manually. We have to rely on the computer. Statisticians
have developed automatic procedures for detecting outliers, but
these do not completely solve the problem. Automatic procedures
may raise flags about certain kinds of strange values, but they will
ignore peculiarities they have not been told about. And then there
is the question of what to do about an apparent anomaly detected
by the computer. This is fine if only 1 in those billion numbers is
flagged as suspicious, but what if 100,000 are so flagged? Again,
human examination and correction is impracticable. To cope with
such situations, statisticians have again developed automated
procedures. Some of the earliest such automated editing and
correcting methods were developed in the context of censuses and
large surveys. But they are not foolproof. The bottom line is,
I am afraid, once again, that statisticians cannot work miracles.
Poor data risk yielding poor (meaning inaccurate, mistaken,
error-prone) results. The best strategy for avoiding this is to
ensure good-quality data from the start.

Many strategies have been developed for avoiding errors in data in
the first place. They vary according to the application domain and
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the mode of data capture. For example, when clinical trial data are
copied from hand-completed case record forms, there is a danger
of introducing errors in the transcription phase. This is reduced by
arranging for the exercise to be repeated twice, by different people
working independently, and then checking any differences. When
applying for a loan, the application data (e.g. age, income, other
debts, and so on) may be entered directly into a computer, and
interactive computer software can cross-check the answers as they
are given (e.g. if a house owner, do the debts include a mortgage?).
In general, forms should be designed so as to minimize errors.
They should not be excessively complicated, and all questions
should be unambiguous. It is obviously a good idea to conduct a
small pilot survey to pick up any problems with the data capture
exercise before going live.

Incidentally, the phrase ‘computer error’ is a familiar one, and the
computer is a popular scapegoat when data mistakes are made.
But the computer is just doing what it is told, using the data
provided. When errors are made, it is not the computer’s fault.

Observational versus experimental data

It is often useful to distinguish between observational and
experimental studies, and similarly between observational and
experimental data. The word ‘observational’ refers to situations
in which one cannot interfere or intervene in the process of
capturing the data. Thus, for example, in a survey (see below) of
people’s attitudes to politicians, an appropriate sample of people
would be asked how they felt. Or, in a study of the properties of
distant galaxies, those properties would be observed and recorded.
In both of these examples, the researchers simply chose who or
what to study and then recorded the properties of those people or
objects. There is no notion of doing something to the people or
galaxies before measuring them. In contrast, in an experimental
study the researchers would actually manipulate the objects in
some way. For example, in a clinical trial they might expose
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volunteers to a particular medication, before taking the
measurements. In a manufacturing experiment to find the
conditions which yield the strongest finished product, they would
try different conditions.

One fundamental difference between observational and
experimental studies is that experimental studies are much
more effective at sorting out what causes what. For example,
we might conjecture that a particular way of teaching children
to read (method A, say) is much more effective than another
(method B). In an observational study, we will look at children
who have been taught by each method, and compare their reading
ability. But we will not be able to influence who is taught by
method A and who by method B; this is determined by someone
else. This raises a potential problem. It means that it is possible
that there are other differences between the two reading groups,
as well as teaching method. For example, to take an extreme
illustration, a teacher may have assigned all the faster learners
to method A. Or perhaps the children themselves were allowed to
choose, and those already more advanced in reading tended to
choose method A. If we are a little more sophisticated in statistics,
we might use statistical methods to try to control for any
pre-existing differences between the children, as well as other
factors we think are likely to influence how quickly they would
learn to read. But there will always remain the possibility that
there are other influences we have not thought of which cause
the difference.

Experimental studies overcome this possibility by deliberately
choosing which child is taught by each method. If we did know all
the possible factors, in addition to teaching method, which could
influence reading ability, we could make sure that the assignment
to teaching method was ‘balanced’. For example, if we thought that
reading ability was influenced by age, we could assign the same
number of young children to each method. By this means, any
differences in reading ability arising from age would have no
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impact on the difference between our two groups: if age did
influence reading ability, the impact would be the same in each
group. However, as it happens, experimental studies have an even
more powerful way of choosing which child receives which
method, called randomization. I discuss this below.

The upshot of this is that, in an experimental study we can be
more confident of the cause of any observed effect. In the
experiment comparing teaching reading, we can be more
confident that any difference between the reading ability in the
two groups is a consequence of the teaching method, rather than
of some other factor.

Unfortunately it is not always possible to conduct experiments
rather than observational studies. We do not have much
opportunity to expose different galaxies to different treatments!
In any case, sometimes it would be misleading to use an
experimental approach: in many social surveys, the aim is to find
out what the population is actually like, not ‘what would be the
effect if we did such and such’. However, if we do want to know
what would be the effect of a potential intervention, then
experimental studies are the better strategy. They are universal in
the pharmaceutical sector, very widespread in medicine and
psychology, ubiquitous in industry and manufacturing, and
increasingly used to evaluate social policy and in areas such as
customer value management.

In general, when collecting data with the aim of answering or
exploring certain questions, the more data that are collected, the
more accurate an answer that can be obtained. This is a
consequence of the law of large numbers, discussed in Chapter 4.
But collecting more data incurs greater cost. It is therefore
necessary to strike a suitable compromise between the amount of
data collected and the cost of collecting it. Various subdisciplines
of statistics are central to this exercise. In particular, experimental
design and survey sampling are two key disciplines.
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Experimental design

We have already seen examples of very simple experiments. One of
the simplest is a two-group randomized clinical trial. Here the aim
is to compare two alternative treatments (A and B, say) so that we
can say which of the two should be given to a new patient. To
explore this, we give treatment A to one sample of patients,
treatment B to another sample of patients, and evaluate the
treatments’ effectiveness. If, on average, A beats B, then we will
recommend that the new patient receives treatment A. The
meaning of the word ‘beats’ in the previous sentence will depend
on the precise study. It could mean ‘cures more patients’, ‘extends
average lifespan’, ‘yields greater average reduction in pain’, and
so on.

Now, as we have already noted above, if the two groups of patients
differ in some way, then the conclusions we can draw are limited.
If those who received treatment A were all male, and those who
received treatment B were all female, then we would not know if
any difference between the groups that we observed was due to the
treatment or to the sex difference: maybe females get better faster,
regardless of treatment. The same point applies to any other
factor – age, height, weight, duration of illness, previous treatment
history, and so on.

One strategy to alleviate this difficulty is to randomly allocate
patients to the two treatment groups. The strength of this
approach is that, while it does not guarantee balance (e.g., it is
possible that this random allocation procedure might lead to a
substantially higher proportion of males in one group than the
other), basic rules of probability (discussed in Chapter 4) tell us
that large imbalances are extremely unlikely. In fact, it is possible
to go further than this and work out just how likely different
degrees of imbalance are. This in turn enables us to calculate how
confident we should be in our conclusions.
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Moreover, if the random allocation is double blind, there is no
risk of subconscious bias creeping into the allocation or the
measurement of patients. A study is double blind if neither the
patient nor the doctor conducting the trial knows which treatment
the patient is receiving. This can be achieved by making the tablets
or medicines look identical, and simply coding them as X or Y
without indicating which of the treatments is which. Only later,
after the analysis has revealed that X is better than Y, is the coding
broken, to show that X is really treatment A or B as the case
may be.

The two-group randomized clinical trial is very simple, and has
obvious extensions: for example, we can immediately extend it to
more than two treatment groups. However, for the sake of variety,
I shall switch examples. A market gardener might want to know
which of low and high levels of water is better, in terms of
producing greater crop yield. He could conduct a simple
two-group experiment, of the kind described above, to determine
this. Since we know that outcomes are not totally predictable, he
will want to expose more than one greenhouse to the low level of
water, and more than one to the high level, and then calculate the
average yields at each level. He might, for example, decide to use
four greenhouses for each level. This is precisely the same sort of
design as in the teaching methods study above.

But now suppose that the farmer also wants to know which of low
and high levels of fertilizer is more effective. The obvious thing to
do is to conduct another two-group experiment, this time with
four greenhouses receiving the low level of fertilizer and four
receiving the high level. This is all very well, but to answer both of
the questions, the water one and the fertilizer one, requires a total
of sixteen greenhouses. If the farmer is also interested in the
effectiveness of low and high levels of humidity, temperature,
hours of sunlight, and so on, we see that we will soon run out of
greenhouses.
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Now, there is a very clever way round this, using the notion of a
factorial experimental design. Instead of carrying out two separate
experiments, one for water and one for fertilizer, the farmer can
treat two greenhouses with (fertilizer = low, water = low), two with
(low, high), two with (high, low), and two with (high, high). This
requires just eight greenhouses, and yet we are still treating four of
them with the low water level and four with the high water level,
as well as four with the low fertilizer level and four with the high
fertilizer level, so that the results of the analysis will be just as
accurate as when we did two separate experiments.

In fact, this factorial design (each of water and fertilizer is a
‘factor’) has an additional attractive feature. It allows us to see if
the impact of the level of fertilizer is different at the two levels of
water: perhaps the difference between yields with the low and
high levels of fertilizer varies between the two levels of water. This
so-called interaction effect cannot be examined in the two
separate experiments approach.

This basic idea has been extended in many ways to yield very
powerful tools for obtaining accurate information for the
minimum cost. When combined with other experimental design
tools, such as balance, randomization, and controlling for known
influences, some highly sophisticated experimental designs have
been developed.

Sometimes, in experiments, non-statistical issues are important.
For example, in clinical trials and other medical and social policy
investigations, ethical issues may be relevant. In a clinical trial
comparing a proposed new treatment against an (inactive)
placebo, we will know that half of the volunteer patients will
receive something which has no biological impact. Is that
appropriate? Is there a danger that those exposed to the proposed
new treatment might suffer from side effects? Such things have
to be balanced against the fact that untold numbers of future
patients will benefit from what is learned in the trial.
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Survey sampling

Imagine that, in order to run the country effectively, we wish to
know the average income of the one million employed men and
women in a certain town. In principle, we could determine this by
asking each of them what their income was, and averaging the
results. In practice, this would be extremely difficult, verging on
the impossible. Apart from anything else, over the course of the
time taken to collect the data it is likely that incomes would
change: some people would have left or changed their jobs, others
would have received raises, and so on. Furthermore, it would be
extremely costly tracking down each person. We might try to
reduce costs by relying on the telephone, rather than face to face
interviews. However, as we have already seen, in the extreme case
of the 1936 US presidential election, there is a great risk that we
would miss important parts of the population.

What we need is some way to reduce the cost of collecting the data
while at the same time making the process quicker and, if possible,
also more accurate. Put this way, it probably sounds like a tall
order, but statistical ideas and tools that have these properties do
exist. The key idea is one we have met several times before: the
notion of a sample.

Suppose that, instead of finding out what each of the one million
employees earned, we simply asked a thousand of them. Now
clearly we have to be careful about exactly which thousand we ask.
The reasons are essentially the same as when we were designing a
simple two-group experiment and had to take steps to ensure that
the only difference between the groups was that one received
treatment A and one received treatment B. Now we have to
ensure that the particular thousand people we approach are
representative of the full population of a million.

What do we mean by ‘representative’? Ideally, our sample of a
thousand should have the same proportion of men in it as the
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entire population, the same number of young people, the same
number of part-time workers, and so on. To some extent we can
ensure this, choosing the thousand so that the proportion of men
is correct, for example. But there is obviously a practical limit to
what we can deliberately balance in this way.

We saw how to handle this when we looked at experimental
design. There we tackled the difficulty by randomly allocating
patients to each group. Here we tackle it by randomly sampling
the thousand people from the total population. Once again, while
this does not guarantee that the sample will be similar in
composition to the entire population, basic probability tells us that
the chance of obtaining a seriously dissimilar sample is very small.
In particular, it follows that the probability that our estimate of
the average income, derived from the sample, will be very different
from the average income in the entire population is very small.
Indeed, two properties of probability which we will explore later,
the law of large numbers and the Central Limit Theorem also tell
us that we can make this probability as small as we like by
increasing the sample size. It turns out that what matters is not
how large a fraction of the population is included in the sample,
but simply how large the sample is. Our estimate, based on a
sample size of one thousand, would essentially be just as accurate
if the entire population consisted of ten million or ten billion
people. Since sample size is directly related to the cost of collecting
the data, we now have an immediate relationship between
accuracy and cost: the larger our sample the greater the cost but
the smaller the probability of significant deviation between the
sample estimate and the overall population average.

While ‘randomly sampling a thousand people from the population’
of employed people in the town may sound like a simple exercise,
in fact it takes considerable care. We cannot, for example, simply
choose the thousand people from the largest employer in the town,
since these may not be representative of the overall million.
Likewise, we cannot call at a random sample of people’s homes at
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8pm in the evening, since we would miss those who worked late,
and these workers may differ in average income from the others.
In general, to ensure that our sample of a thousand is properly
representative we need a sampling frame, a list of all the one
million employed people in our population, from which we can
randomly choose a thousand. Having such a list ensures that
everyone is equally likely to be included.

This notion of simple random sampling is the basic idea behind
survey sampling. We draw up a sampling frame and from it
randomly choose the people to be included in our sample. We
then track them down (interview, phone, letter, email, or
whatever) and record the data we want. This basic idea has been
elaborated in many very sophisticated and advanced ways,
yielding more accurate and cheaper approaches. For example,
if we intended to interview each of the thousand respondents it
could be quite costly in terms of time and travel expenses. It
would be better, from this perspective, to choose respondents from
small geographically local clusters. Cluster sampling extends
simple random sampling by allowing this. Instead of randomly
choosing a thousand people from the entire population, it selects
(say) ten groups of a hundred people each, with the people in
each group located near to each other. Likewise, we can be certain
that balance is achieved on some factors, rather than simply
relying on the random sampling procedure, if we enforce the
balance in the way we choose the sample. For example, we could
randomly choose a number of women from the population, and
separately randomly choose a number of men from the
population, where the numbers are chosen so that the proportions
of males and females are the same as in the population. This
procedure is known as stratified sampling, since it divides the
overall population listed in the sampling frame into strata (men
and women in this case). If the variable used for the stratification
(sex in this example) is strongly related to the variable we are
interested in (here, income), then this can yield improved accuracy
for the same sample size.
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In general, in survey sampling, we are very lucky if we obtain
responses from everyone approached. Almost always there is some
non-response. We are back to the missing data problem discussed
earlier, and, as we have seen, missing data can lead to a biased
sample and incorrect conclusions. If those earning large salaries
refused to reply, then we would underestimate the average income
in the population. Because of this, survey experts have developed
a wide range of methods of minimizing and adjusting for
non-response, including repeated call-backs to non-responders
and statistical reweighting procedures.

Conclusion

This chapter has described the raw material of statistics, the data.
Sophisticated data collection technologies have been developed
by statisticians to maximize the information obtained for the
minimum cost. But it would be naive to believe that perfect data
can usually be obtained. Data are a reflection of the real world,
and the real world is complicated. Recognizing this, statisticians
have also developed tools to cope with poor-quality data. But it is
important to recognize that statisticians are not magicians. The
old adage of ‘garbage in, garbage out’ is just as true in statistics as
elsewhere.
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Chapter 4

Probability

Being a statistician means never having to say you are certain.

Anon

The essence of chance

One of the definitions of statistics given in Chapter 1 was that it is
the science of handling uncertainty. Since it is abundantly clear
that the world is full of uncertainty, this is one reason for the
ubiquity of statistical ideas and methods. The future is an
unknown land and we cannot be certain about what will happen.
The unexpected does occur: cars break down, we have accidents,
lightning does strike, and, lest I am giving the impression that
such things are always bad, people do even win lotteries. More
prosaically, it is uncertain which horse will win the race or which
number will come up on the throw of a die. And, at the end of it
all, we cannot predict exactly how long our lives will be.

However, notwithstanding all that, one of the greatest discoveries
mankind has made is that there are certain principles covering
chance and uncertainty. Perhaps this seems like a contradiction in
terms. Uncertain events are, by their very nature, uncertain. How,
then, can there be natural laws governing such things?
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One answer is that while an individual event may be uncertain
and unpredictable, it is often possible to say something about
collections of events. A classic example is the tossing of a coin.
While I cannot say whether a coin will come up heads or tails on a
particular toss, I can say with considerable confidence that if I toss
the coin many times then around half of those times it will show
heads and around half tails. (I am assuming here that the coin is
‘fair’, and that no sleight of hand is being used when tossing it.)
Another example in the same vein is whether a baby will be male
or female. It is, on conception, a purely chance and unpredictable
event which gender the child will become. But we know that over
many births just over a half will be male.

This observable property of nature is an example of one of the laws
governing uncertainty. It is called the law of large numbers
because of the fact that the proportion gets closer and closer to a
particular value (a half in the cases of the fair coin and of babies’
gender) the more cases we consider. This law has all sorts of
implications, and is one of the most powerful of statistical tools
in taming, controlling, and allowing us to take advantage of
uncertainty. We return to it later in this chapter, and repeatedly
throughout the book.

Understanding probability

So that we can discuss matters of uncertainty and unpredictability
without ambiguity, statistics, like any other scientific discipline,
uses a precise language: the language of probability. If this is your
first exposure to the language of probability, then you should be
warned that, as with one’s first exposure to any new language,
some effort will be required to understand it. Indeed, bearing that
in mind, you might find that this chapter requires more than one
reading: you might like to reread this chapter once you have
reached the end of the book.
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Development of the language of probability blossomed in the 17th
century. Mathematicians such as Blaise Pascal, Pierre de Fermat,
Christiaan Huygens, Jacob Bernoulli, and later Pierre Simon
Laplace, Abraham De Moivre, Siméon-Denis Poisson, Antoine
Cournot, John Venn, and others laid its foundations. By the early
20th century, all the ideas for a solid science of probability were in
place, and in 1933 the Russian mathematician Andrei Kolmogorov
presented a set of axioms which provided a complete formal
mathematical calculus of probability. Since then, this axiom
system has been almost universally adopted.

Kolmogorov’s axioms provide the machinery by which to
manipulate probabilities, but they are a mathematical
construction. To use this construction to make statements about
the real world, it is necessary to say what the symbols in the
mathematical machinery represent in that world. That is, we need
to say what the mathematics ‘means’.

The probability calculus assigns numbers between 0 and 1 to
uncertain events to represent the probability that they will
happen. A probability of 1 means that an event is certain (e.g. the
probability that, if someone looked through my study window
while I was writing this book, they would have seen me seated at
my desk). A probability of 0 means that an event is impossible
(e.g., the probability that someone will run a marathon in ten
minutes). For an event that can happen but is neither certain nor
impossible, a number between 0 and 1 represents its ‘probability’
of happening.

One way of looking at this number is that it represents the
degree of belief an individual has that the event will happen.
Now, different people will have more or less information relating
to whether the event will happen, so different people might be
expected to have different degrees of belief, that is different
probabilities for the event. For this reason, this view of probability
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is called subjective or personal probability: it depends on who is
assessing the probability. It is also clear that someone’s probability
might change as more information becomes available. You might
start with a probability, a degree of belief, of 1/2 that a particular
coin will come up heads (based on your previous experience with
other tossed coins), but after observing 100 consecutive heads and
no tails appear you might become suspicious and change your
subjective probability that this coin will come up heads.

Tools have been developed to estimate individuals’ subjective
probabilities based on betting strategies, but, as with any
measurement procedure, there are practical limitations on how
accurately probabilities can be estimated.

A different view of the probability of an event is that it is the
proportion of times the event would happen if identical
circumstances were repeated an infinite number of times.
The fair coin tossing example above is an illustration. We have
seen that, as the coin is tossed, so the proportion of heads gets
closer and closer to some specific value. This value is defined as
the probability that the coin will come up heads on any single toss.
Because of the role of frequencies, or counts, in defining this
interpretation of probability, it is called the frequentist
interpretation.

Just as with the subjective approach, there are practical
limitations preventing us from finding the exact frequentist
probability. Two tosses of a coin cannot really have completely
identical circumstances. Some molecules will have worn from the
coin in the first toss, air currents will differ, the coin will have been
slightly warmed by contact with the fingers the first time. And in
any case we have to stop tossing the coin sometime, so we cannot
actually toss it an infinite number of times.

These two different interpretations of what is meant by probability
have different properties. The subjective approach can be used to
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assign a probability to a unique event, something about which it
makes no sense to contemplate an infinite, or even a large number
of repetitions under identical circumstances. For example, it is
difficult to know what to make of the suggestion of an infinite
sequence of identical attempts to assassinate the next president of
the USA, with some having one outcome and some another. So it
seems difficult to apply the frequentist interpretation to such an
event. On the other hand, the subjective approach shifts
probability from being an objective property of the external world
(like mass or length) to being a property of the interaction
between the observer and the world. Subjective probability is, like
beauty, in the eye of the beholder. Some might feel that this is a
weakness: it means that different people could draw different
conclusions from the same analysis of the same data. Others
might regard it as a strength: the conclusions would have been
influenced by your prior knowledge.

There are yet other interpretations of probability. The ‘classical’
approach, for example, assumes that all events are composed of a
collection of equally likely elementary events. For example, a
throw of a die might produce a 1, 2, 3, 4, 5, or 6 and the symmetry
of the die suggests these six outcomes are equally likely, so each
has a probability of 1/6 (they must sum to 1, since it is certain that
one of 1, 2, 3, 4, 5, or 6 will come up). Then, for example, the
probability of getting an even number is the sum of the
probabilities of each of the equally likely events of getting a 2, a 4,
or a 6, and is therefore equal to 1/2. In less artificial circumstances,
however, there are difficulties in deciding what these ‘equally
likely’ events are. For example, if I want to know the probability
that my morning journey to work will take less than one hour, it is
not at all clear what the equally likely elementary events should
be. There is no obvious symmetry in the situation, analogous to
that of the die. Moreover, there is the problem of the circular
content of the definition in requiring the elementary events to be
‘equally likely’. We seem to be defining probability in terms of
probability.
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It is worth emphasizing here that all of these different
interpretations of probability conform to the same axioms and are
manipulated by the same mathematical machinery. It is simply the
mapping to the real world which differs; the definition of what the
mathematical objectmeans. I sometimes say that the calculus is
the same, but the theory is different. In statistical applications,
as we will see in Chapter 5, the different interpretations can
sometimes lead to different conclusions being drawn.

The laws of chance

We have already noted one law of probability, the law of large
numbers. This is a law linking the mathematics of probability to
empirical observations in the real world. Other laws of probability
are implicit in the axioms of probability. Some very important laws
involve the concept of independence.

Two events are said to be independent if the occurrence of one
does not affect the probability that the other will occur. The fact
that a coin tossed with my left hand comes up tails rather than
heads does not influence the outcome of a coin tossed with my
right hand. These two coin tosses are independent. If the
probability is 1/2 that the coin in my left hand will come up heads,
and the probability is 1/2 that the coin in my right hand will come
up heads, then the probability that both will come up heads is
1/2 × 1/2 = 1/4. This is easy to see since we would expect that in
many repetitions of the double tossing experiment we would
obtain about half of the left hand coins showing heads, and,
amongst those, about half of the right hand coins would show
heads because the outcome of the first toss does not influence the
second. Overall, then, about 1/4 of the double tosses would show
two heads. Similarly, about 1/4 would show left tails, right heads,
about 1/4 would show left heads, right tails, and about 1/4 would
show both left and right tails.
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In contrast, the probability of falling over in the street is certainly
not independent of whether it has snowed; these events are
dependent. We saw another example of dependent events in
Chapter 1: the tragic Sally Clark case of two cot deaths in the same
family. When events are not independent, we cannot calculate the
probability that both will happen simply by multiplying together
their separate probabilities. Indeed, this was the mistake which lay
at the root of the Sally Clark case. To see this, let us take the most
extreme situation of events which are completely dependent: that
is, when the outcome of one completely determines the outcome of
the other. For example, consider a single toss of a coin, and the two
events ‘the coin faces heads up’ and ‘the coin faces tails down’.
Each of these events has a probability of a half: the probability
that the coin will show heads up is 1/2, and the probability that
the coin will show tails down is 1/2. But they are clearly not
independent events. In fact, they are completely dependent. After
all, if the first event is true (heads up) the secondmust be true
(tails down). Because they are completely dependent, the
probability that they will both occur is simply the probability that
the first will occur – a probability of a half. This is not what we get
if we multiply the two separate probabilities of a half together.

In general, dependence between two events means that the
probability that one will occur depends on whether or not the
other has occurred.

Statisticians call the probability that two events will both occur the
joint probability of those two events. For example, we can speak of
the joint probability that I will slip over and that it snowed. The
joint probability of two events is closely related to the probability
that an event will occur if another one has occurred. This is called
the conditional probability – the probability that one event will
occur given that we know that the other one has occurred. Thus
we can talk of the conditional probability that I will slip over,
given that it snowed.
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The (joint) probability that both events A and B occur is simply
the probability that A occurs times the (conditional) probability
that B occurs given that A occurs. The (joint) probability that it
snows and I slip over is the probability that it snows times the
(conditional) probability that I slip over if it has snowed.

To illustrate, consider a single throw of a die, and two events.
Event A is that the number showing is divisible by 2, and Event B
is that the number showing is divisible by 3. The joint probability
of these two events A and B is the probability that I get a number
which is both divisible by 2 and is divisible by 3. This is just 1/6,
since only one of the numbers 1, 2, 3, 4, 5, and 6 is divisible by
both 2 and 3. Now, the conditional probability of B given A is the
probability that I get a number which is divisible by 3 amongst
those that are divisible by 2. Well, amongst all the numbers which
are divisible by 2 (that is, amongst 2, 4, or 6) only one is divisible
by 3, so this conditional probability is 1/3. Finally, the probability
of event A is 1/2 (half of the numbers 1, 2, 3, 4, 5, and 6 are
divisible by 2). We therefore find that the probability of A (1/2)
times the (conditional) probability of B given A (1/3) is 1/6. This is
the same as the joint probability of obtaining a number divisible
by both 2 and 3; that is, the joint probability of events A and B
both occurring.

In fact, we previously met the concept of conditional probability in
Chapter 1, in the form of the Prosecutor’s Fallacy. This pointed out
that the probability of event A occurring given that event B had
occurred was not the same as the probability of event B occurring
given that event A had occurred. For example, the probability that
someone who runs a major corporation can drive a car is not the
same as the probability that someone who can drive a car runs a
major corporation. This leads us to another very important law of
probability: Bayes’s theorem (or Bayes’s rule). Bayes’s theorem
allows us to relate these two conditional probabilities, the
conditional probability of A given B and the conditional
probability of B given A.
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We have just seen that the probability that both events A and B
will occur is equal to the probability that A will occur, times the
(conditional) probability that B will occur given that A has
occurred. But this can also be written the other way round: the
probability that both events A and B will occur is also equal to the
probability that B will occur times the probability that A will occur
given that B has occurred. All Bayes’s theorem says (though it is
usually expressed in a different way) is that these are simply two
alternative ways of writing the joint probability of A and B. That
is, the probability of A times the probability of B given A is equal
to the probability of B times the probability of A given B. Both are
equal to the joint probability of A and B. In our ‘car-driving
corporate head’ example, Bayes’s theorem is equivalent to saying
that the probability of running a major corporation given that you
can drive a car, times the probability that you can drive a car, is
equal to the probability that you can drive a car given that you are
a corporate head, times the probability of being a corporate head.
Both equal the joint probability of being a corporate head and
being able to drive a car.

Another law of probability says that if either one of two
events can occur, but not both together, then the probability
that one or the other will occur is the sum of the separate
probabilities that each will occur. If I toss a coin, which obviously
cannot show heads and tails simultaneously, then the probability
that a head or tail will show is the sum of the probability that a
head will show and the probability that a tail will show. If the coin
is fair, each of these separate probabilities is a half, so that the
overall probability of a head or a tail is 1. This makes sense: 1
corresponds to certainty and it is certain that a head or a tail must
show (I am assuming the coin cannot end up on its edge!).
Returning to our die-throwing example: the probability of getting
an even number was the sum of the probabilities of getting one of
2, or 4, or 6, because none of these can occur together (and there
are no other ways of getting an even number on a single throw of
the die).
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Random variables and their distributions

We saw, in Chapter 2, how simple summary statistics may be used
to extract information from a large collection of values of some
variable, condensing the collection down so that a distribution of
values could be easily understood. Now, any real data set is limited
in length – it can contain only a finite number of values. This finite
set might be the values of all objects of the type we are considering
(e.g. the scores of all major league football players in a certain
year) or it might be the values of just some, a sample, of the
objects. We saw examples of this when we looked at survey
sampling.

A sample is a subset of the complete ‘population’ of values. In
some cases, the complete population is ill-defined, and possibly
huge or even infinite, so we have no choice but to work with a
sample. For example, in experiments to measure the speed of light,
each time I take a measurement I expect to get a slightly different
value, simply due to the inaccuracies of the measurement process.
And I could, at least in principle, go on taking measurements for
ever; that is, the potential population of measurements is infinite.
Since this is impossible, I must be content with a finite sample of
measurements. Each of these measurements will be drawn from
the population of values I could possibly have obtained. In other
cases, the complete population is finite. For example, in a study of
obesity amongst males in a certain town, the population is finite
and, while in principle I might be able to weigh every man in the
town, in practice I would probably not want to, and would work
with a sample. Once again, each value in my sample is drawn from
the population of possible values.

In both of these examples, all I know before I take each
measurement is that it will have some value from the population
of possible values. Each value will occur with some probability, but
I cannot pin it down more than that, and I may not know what
that probability is. I certainly cannot say exactly what value I will
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get in the next speed of light measurement or what will be the
weight of the next man I measure. Similarly, in a throw of a die, I
know that the outcome can be 1, 2, 3, 4, 5, or 6, and here I know
that these are equally likely (my die is a perfect cube), but beyond
that I cannot say which will come up. Like the speed and weight
measurements, the outcome is random. For this reason such
variables are called random variables.

We have already met the concept of quantiles. For example, in the
case of percentiles, the 20th percentile of a distribution is the
value such that 20% of the data values are smaller, the 8th
percentile the value such that 8% of the data values are smaller,
and so on. In general, the kth percentile has k% of the sample
values smaller than it. And we can imagine similar percentiles
defined, not merely for the sample we have observed, but for the
complete population of values we could have observed. If we knew
the 20th percentile for the complete population of values, then we
would know that a value randomly taken from that population had
a probability of 0.20 of being smaller than this percentile. In
general, if we knew all the percentiles of a population, we would
know the probability of drawing a value in the bottom 10%, or
25%, or 16%, or 98%, or any other percentage we cared to choose.
In a sense, then, we would know everything about the distribution
of possible values which we could draw. We would not know what
value would be drawn next, but we would know the probability
that it would be in the smallest 1% of the values in the population,
in the smallest 2%, and so on.

There is a name for the complete set of quantiles of a distribution.
It is called the cumulative probability distribution. It is a
‘probability distribution’ because it tells us the probability of
drawing a value lower than any value we care to choose. And it is
‘cumulative’ because, obviously, the probability of drawing a value
less than some value x gets larger the larger x is. In the example of
the weights of males, if I know that the probability of choosing
a man weighing less than 70kg is 1/2, then I know that the
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probability of choosing a man weighing less than 80kg is more
than 1/2 because I can choose from all those weighing less than
70kg as well as those weighing between 70kg and 80kg. At the
limit, the probability of drawing a value less than or equal to the
largest value in the population is 1; it is a certain event.

This idea is illustrated in Figure 2. In this figure, the values of the
random variable (think of weight) are plotted on the horizontal
axis, and the probability of drawing smaller values is plotted on
the vertical axis. The curve shows, for any given value of the
random variable, the probability that a randomly chosen value will
be smaller than this given value.

The cumulative probability distribution of a random variable tells
us the probability that a randomly chosen value will be less than
any given value. An alternative way to look at things is to look at
the probability that a randomly chosen value will lie between any
two given values. Such probabilities are conveniently represented
in terms of areas between two values under a curve of the density
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2. A cumulative probability distribution
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3. A probability density function

of the probability. For example, Figure 3, shows such a probability
density curve, with the (shaded) area under the curve between
points a and b giving the probability that a randomly chosen value
will fall between a and b. Using such a curve for the distribution
of weights of men in our town, for example, we could find the
probability that a randomly chosen man would lie between 70kg
and 80kg, or any other pair of values, or above or below any value
we wanted. In general, randomly chosen values are more likely to
occur in regions where the probability is most dense; that is,
where the probability density curve is highest.

Note that the total area under the curve in Figure 3 must be 1,
corresponding to certainty: a randomly chosen value must have
some value.

Distribution curves for random variables have various shapes. The
probability that a randomly chosen woman will have a weight
between 70kg and 80kg will typically not be the same as the
probability that a randomly chosen man will have a weight
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between these two values. We might expect the curve of the
distribution of women’s weights to take larger values at smaller
weights than does the men’s curve.

Certain shapes have particular importance. There are various
reasons for this. In some cases, the particular shapes, or very close
approximations to them, arise in natural phenomena. In other
cases, the distributions arise as consequences of the laws of
probability.

Perhaps the simplest of all distributions is the Bernoulli
distribution. This can take only two values, one with probability p,
say, and the other with probability 1 − p. Since it can take only two
values, it is certain that one or the other value will come up, so the
probabilities of these two outcomes have to sum to 1. We have
already seen examples illustrating why this distribution is useful:
situations with only two outcomes are very common – the coin
toss, with outcomes head or tail, and births, with outcomes male
or female. In these two cases, p had the value 1/2 or nearly 1/2.
But a huge number of other situations arise in which there are
only two possible outcomes: yes/no, good/bad, default or not,
break or not, stop/go, and so on.

The binomial distribution extends the Bernoulli distribution. If
we toss a coin three times, then we may obtain no, one, two, or
three heads. If we have three operators in a call centre, responding
independently to calls as they come in, then none, one, two, or all
three may be busy at any particular moment. The binomial
distribution tells us the probability that we will obtain each of
those numbers, 0, 1, 2, or 3. Of course, it applies more generally,
not just to the total from three events. If we toss a coin 100 times,
then the binomial distribution also tells us the probabilities that
we will obtain each of 0, 1, 2, . . . , 100 heads.

Emails arrive at my computer at random. On average, during a
working morning, about (say) five an hour arrive, but the number
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arriving in each hour can deviate from this very substantially:
sometimes ten arrive, occasionally none do. The Poisson
distribution can be used to describe the probability distribution of
the number of emails arriving in each hour. It can tell us the
probability (if emails arrive independently and the overall rate at
which they arrive is constant) that none will arrive, that one will,
that two will, and so on. This differs from the binomial
distribution because, at least in principle, there is no upper limit
on the number which could arrive in any hour. With the 100 coin
tosses, we could not observe more than 100 heads, but I could
(on a very bad day!) receive more than 100 emails in one hour.

So far, all the probability distributions I have described are for
discrete random variables. That is, the random variables can take
only certain values (two values in the Bernoulli case, counts up to
the number of coin tosses/operators in the binomial case, the
integers 0, 1, 2, 3, . . . in the Poisson case). Other random variables
are continuous, and can take any value from some range. Height,
for example, can (subject to the accuracy of the measuring
instrument) take any value within a certain range, and is not
restricted to, for example, 4′, 5′, or 6′.

If a random variable can take values only within some finite
interval (e.g. between 0 and 1) and if it is equally likely that it will
take any of the values in that interval, then it is said to follow a
uniform distribution. For example, if the postman always arrives
between 10am and 11am, but in a totally unpredictable way (he is
as likely to arrive between 10:05 and 10:10 as in any other five
minute interval, for example), the distribution of his arrival time
within this interval would be uniform.

Some random variables can take any positive value; perhaps, for
example, the time duration of some phenomenon. As an
illustration, consider how long glass vases survive before getting
broken. Glass vases do not age, so it is no more likely that a
particular favourite vase will be broken in the next year, if it is
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80 years old, than that it will be broken in the next year, if it is only
10 years old (all other things being equal). Contrast this with the
probability that an 80-year-old human will die next year
compared with the probability that a 10-year-old human will die
next year. For a glass vase, if it has not been smashed by time t,
then the probability that it will be smashed in the next instant is
the same, whatever the value of t (again, all other things being
equal). Lifetimes of glass vases are said to follow an exponential
distribution. In fact, there are huge numbers of applications
of exponential distributions, not merely to the lifetimes of
glass vases!

Perhaps the most famous of continuous distributions is the
normal or Gaussian distribution. It is often loosely described in
terms of its general shape: ‘bell-shaped’, as shown in Figure 4.

4. The normal distribution
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That means that values in the middle are much more likely to
occur than are values in the tails, far from the middle. The normal
distribution provides a good approximation to many naturally
occurring distributions. For example, the distribution of the
heights of a random sample of adult men follows a roughly normal
distribution.

The normal distribution also often crops up as a good model for
the shape of the distribution of sample statistics (like the summary
statistics described in Chapter 2) when large samples are involved.
For example, suppose we repeatedly took random samples from
some distribution, and calculated the means of each of these
samples. Since each sample is different, we would expect each
mean to be different. That is, we would have a distribution of
means. If each sample is large enough, it turns out that this
distribution of the means is roughly normal.

In Chapter 2, I made the point that statistics was not simply a
collection of isolated tools, but was a connected language. A
similar point applies to probability distributions. Although I have
introduced them individually above, the fact is that the Bernoulli
distribution can be seen as a special case of the binomial
distribution (it is the binomial distribution when there are only
two possible outcomes). Likewise, although the mathematics
showing this is beyond this book, the Poisson distribution is an
extreme case of the binomial distribution, the Poisson distribution
and exponential distribution form a natural pair, the binomial
distribution becomes more and more similar to the normal
distribution the larger the maximum number of events, and so on.
They are really all part of an integrated mathematical whole.

I have described the distributions above by saying that they have
different shapes. In fact, these shapes can be conveniently
described. We saw that the Bernoulli distribution was
characterized by a value p. This told us the probability that we
would get a certain outcome. Different values of p correspond to
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different Bernoulli distributions. We might model the outcome of
a coin toss by a Bernoulli distribution with probability of heads, p,
equal to a half, and model the probability of a car crash on a single
journey by a Bernoulli distribution with p equal to some very
small value (I hope!). In such a situation, p is called a parameter.

Other distributions are also characterized by parameters, serving
the same role of telling us exactly which member of a family of
distributions we are talking about. To see how, let us take a step
back and recall the law of large numbers. This says that if we make
repeated independent observations of an event which has outcome
A with probability p and outcome B with probability 1 − p, then
we should expect the proportion of times outcome A is observed to
get closer and closer to p the more observations we make. This
property generalizes in important ways. In particular, suppose
that, instead of observing an event which had only two possible
outcomes, we observed an event which could take any value from a
distribution on a range of values; perhaps any value in the interval
[0,1], for example. Suppose that we repeatedly took sets of n
measurements from such a distribution. Then the law of large
numbers also tells us that we should expect the mean of the n
measurements to get closer to some fixed value, the larger n is.
Indeed, we can picture increasing nwithout limit, and in that case
it makes sense to talk about the mean of an unlimited sample
drawn from the distribution – and even the mean of the
distribution itself. For example, using this idea we can talk about
not simply the mean of ‘a sample drawn from an exponential
distribution’, but the mean of the exponential distribution itself.
And, just as different Bernoulli distributions will have different
parameters p, so different exponential distributions will have
different means. The mean, then, is a parameter for the
exponential distribution.

In an earlier example, we saw that the exponential distribution
was a reasonable model for the ‘lifetimes’ of glass vases (under
certain circumstances). Now we can imagine that we have two
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populations of such vases: one consisting of solid vases made of
very thick glass, and the other consisting of delicate vases made
of wafer-thin glass. Clearly, on average, glasses from the former
population are likely to survive longer than those from the latter
population. The two populations have different parameters.

We can define parameters for other distributions in a similar way:
we imagine calculating the summary statistics for samples of
infinite size drawn from the distributions. For example, we could
imagine calculating the means of infinitely large samples drawn
from members of the normal family of distributions. Things are a
little more complicated here, however, because the members of
this family of distributions are not uniquely identified by a single
parameter. They require two parameters. In fact, the mean and
standard deviation of the distributions will do. Together they serve
to uniquely identify which member of the family we are talking
about.

The law of large numbers has been refined even further. Imagine
drawing many sets of values from some distribution, each set
being of size n. For each set calculate its mean. Then the calculated
means themselves are a sample from a distribution – the
distribution of possible values for the mean of a sample of size n.
The Central Limit Theorem then tells us that the distribution of
these means itself approximately follows a normal distribution,
and that the approximation gets better and better the larger the
value of n. In fact, more than this, it also tells us that the mean of
this distribution of means is identical to the mean of the overall
population of values, and that the variance of the distribution of
means is only 1/n times the size of the variance of the distribution
of the overall population. This turns out to be extremely useful in
statistics, because it implies that we can estimate a population
mean as accurately as we like, just by taking a large enough sample
(taking n large enough), with the Central Limit Theorem telling us
how large a sample we must take to achieve a high probability of
being that accurate. More generally, the principle that we can get
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better and better estimates by taking larger samples is an
immensely powerful one. We already saw one way that this idea is
used in practice when we looked at survey sampling in Chapter 3.

Here is another example. In astronomy, distant objects are very
faint, and observations are complicated by random fluctuations
in the signals. However, if we take many pictures of the same
object and superimpose them, it is as if we are averaging many
measurements of the same thing, each measurement drawn from
the same distribution but with some extra random component.
The laws of probability outlined above mean that the randomness
is averaged away, leaving a clear view of the underlying signal – the
astronomical object.
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Chapter 5

Estimation and inference

Statistics is applied philosophy of science.

A. P. Dawid

In Chapter 1, we saw that statistics served the dual roles of
summarizing data and making inferences from data. We explored
some simple tools for summarizing data in Chapter 2. In this
chapter, using the concepts of probability covered in Chapter 4, we
look at estimation and inference. That is, we look at methods for
determining the value of quantities we cannot actually observe,
and making statements about them. Here are some examples.

Example 1: To determine the speed of light, we will carry out some
measurement procedure. Now, no measurement procedure is
perfect, and if we were to repeat the exercise we would probably
obtain a slightly different value. Repeating the measurement
100 times is likely to give us 100 slightly different values. Our aim,
then, is to use this sample of values to estimate the true speed of
light, untarnished by measurement error.

Example 2: In a simple randomized clinical trial, we might give a
new drug to one sample of patients and a standard drug to
another sample. Based on observations of the effects in these two
patient groups we will want to make some statement, or inference,
about the relative effectiveness of the new drug. Put another way,
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we would want to estimate how large a difference in the
effectiveness of the two drugs we might expect if we prescribed
each of the drugs to the general population of patients. We would
also ideally like some indication of how confident we were in the
size of the estimate.

Example 3: In studying unemployment in London, it would be
infeasible to interview everyone, so a sample of people would be
interviewed, with the aim of using the responses from this sample
to make some general statement about the whole of London.
That is, using the sample data, we would like to estimate
unemployment in the whole of London.

Example 4:More abstractly, in Chapter 4 I introduced the notion
of a ‘parameter’ of a distribution. We saw the example of the
Bernoulli family of distributions, where a random variable could
take values 0 or 1, and where p was a parameter giving the
probability of observing a 1. We also saw the example of a normal
distribution, which had two parameters, its mean and standard
deviation. Our aim might be to estimate the value of such a
parameter. For example, an anthropologist might be studying the
heights of a particular group of people. She might be prepared
to assume that the heights were normally distributed, but to
characterize the distribution fully she will need to know the mean
and standard deviation of this distribution. She would like to use
the heights of a sample of people from the group to estimate the
mean and standard deviation of the entire population.

Point estimation

A friend offers me the following deal. He will repeatedly toss a
coin, and whenever it comes up heads he will give me £10, but
whenever it comes up tails I will give him £5.

At first glance, this looks like a good deal for me. After all, it is well
known that coins are equally likely to come up heads and tails
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(probability of heads equals 1/2), so I am just as likely to win £10
as lose £5 on each toss. On average, I will be a winner.

But then I become suspicious. Why would he be offering me a deal
which appears to be so much in my favour? I begin to suspect that
perhaps the coin has been tampered with, so that the probability
that it will show heads is in fact less than a half. After all, if the
probability of it showing heads is really very small, so that it rarely
comes up heads, the deal could be a poor one for me. To sort this
out, what I would like is an estimate of this probability. My friend,
who is very obliging but knows no statistics, offers to flip the coin
six times, so I can see how it falls on each of those times. My aim,
then, is to use these data to estimate the probability that the coin
will come up heads in future tosses.

Suppose that the coin had been tampered with, and that the
probability of it showing heads on any one toss was only 1/3. Since
tosses of the coin are independent (the outcome of one toss does
not affect the outcome on any other), we know that the probability
of getting heads in two tosses is simply the product of the
probability of getting heads on each toss: 1/3 × 1/3 = 1/9.
Similarly, since the probability of a tail is 1 − 1/3 = 2/3, the
probability of getting a head followed by a tail would be the
product of 1/3 and 2/3, that is 2/9. In general, assuming that the
probability of getting a head on each toss is 1/3, we can calculate
the probability of getting any sequence of heads and tails – and, in
particular, a sequence identical to that observed in the six tosses
we actually saw. For example, if the six tosses showed HTHTTT,
the probability of obtaining an identical sequence by chance
would be 1/3 × 2/3 × 1/3 × 2/3 × 2/3 × 2/3 = 16/729, which is
approximately 0.022.

In the same way, we can calculate the probability of getting the
HTHTTT sequence if the probability of heads on each toss really
had any other value. For example, if the probability of heads is 1/2
(so the probability of tails is 1 − 1/2 = 1/2), the probability of
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obtaining such a sequence is 1/2 × 1/2 × 1/2 × 1/2 × 1/2 × 1/2 =
1/64, which is approximately 0.016. And if the probability of heads
is 1/10, the probability of obtaining such a sequence is
approximately 0.007. And so on.

Now, our aim is to estimate the probability that the coin will come
up heads in any future toss. That is, we want to pick a single
value – 1/3 or 1/2 or 1/10, or whatever – as an estimate of this
probability. Looking at the calculations above, we see that the
probability of obtaining the observed outcome for the six tosses is
0.022 if the true probability of heads is 1/3, whereas it is only
0.016 if the true probability of heads is really 1/2, and it is lower
still, only 0.007 if the true probability of heads is really 1/10. What
this means is that we are more likely to get the observed six tosses
if the true probability is 1/3 than if it is 1/2 or 1/10. It thus seems
sensible to pick the value of 1/3 as our single estimate of the
probability that heads will show. This is the value most likely to
yield the data we actually obtained.

This example illustrates themaximum likelihood approach to
estimation: we choose that value of the parameter which has the
highest probability of yielding the observed data. In the example,
I only calculated this probability for three values of the probability
of heads coming up (1/3, 1/2, 1/10), but in principle we could
calculate it for all possible values. The function showing the
probability of the observed data for each possible choice of the
probability of heads is called the likelihood function. This function
plays a central role in statistical inference.

The same sort of principle can be applied to obtain estimates of
the parameters of the normal distribution, or any other
distribution. For different choices for the possible values of the
parameter, we simply calculate what would be the probability of
obtaining a data set like that actually obtained. Then the
maximum likelihood estimator is that parameter value which
yields the greatest probability. Note that this procedure yields a
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single value, an estimate which is best in the maximum likelihood
sense. Because it is just a single value, it is called a point
estimate.

An alternative way of thinking about this approach to estimation
is to regard the likelihood function as a measure of agreement
between the observed data (our sequence of six coin toss results)
and what our theory predicts (where ‘theory’ here means a
suggested value for the probability of being heads; for example,
1/3 or 1/2). Choosing the theory (the probability of getting heads)
to maximize agreement, or, equivalently, to minimize discrepancy,
is clearly sensible. Thinking of it in this way allows us to
generalize: we can consider other measures of discrepancy. For
example, in many situations a good measure of discrepancy is the
sum of squared differences between the proposed parameter
value and individual sample values. Choosing the parameter to
minimize this measure means that a ‘best’ estimate is obtained, in
the sense of smallest sum-of-squared-differences. In fact, this is a
very common approach to estimation. It is called, for obvious
reasons, least squares estimation.

Sometimes we might have ideas, before analysing the data, of the
sort of value we expect the parameter to have. Such ideas might
have come from previous experience or earlier experiments. For
example, based on our previous experience in tossing coins, we
might believe that the parameter p, giving the probability that a
tossed coin will show heads, is near to 1/2, and that it is very
unlikely to be far from 1/2. We say that we have a prior
distribution of our belief that the unknown parameter takes
different values. This distribution represents a subjective belief
about the value of the parameter – as with the subjective
interpretation of probability discussed in Chapter 4. In such cases,
rather than analysing the data in isolation to yield an estimate for
the value of the parameter, it makes sense to combine the data
with our prior belief to yield a posterior distribution of our beliefs
about the likely values of the parameter. That is, we start out with
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a distribution describing our beliefs about the possible values of
the parameter, and we adjust this according to what we observe in
the data. For example, our prior distribution for the probability
that a coin will come up heads might be heavily concentrated
around the value of 1/2: we think it is highly likely to be near 1/2.
However, if 100 coin tosses show heads only 3 out of the 100
times, we might want to adjust that distribution, so that smaller
values of the probability are regarded as more likely and values
near 1/2 less likely.

In fact, it is Bayes’s theorem, described in Chapter 4, which
enables us to combine prior beliefs with observed data to give
posterior beliefs. For this reason, this approach to estimation is
termed the Bayesian approach. Recall that Bayes’s theorem relates
two conditional probabilities: the probability of A happening
given that B has occurred, and the probability of B happening
given that A has occurred. In the present case, we use the theorem
to relate the probability that the parameter has some value, given
the data we observe, to the probability of observing such data,
given a particular value of the parameter. Now, the second of
these, the probability of observing such data given a particular
value of the parameter, is just the likelihood function. Bayes’s
theorem thus uses the likelihood of the data to adjust our prior
beliefs, to yield our posterior beliefs.

Note that there is a subtle but important difference between this
approach and the other approaches described above (often termed
frequentist or classical approaches). There we assumed that the
unknown parameter had some fixed but unknown value. For the
Bayesian approach, however, we have assumed that the unknown
parameter has a distribution over a set of possible values, initially
given by the prior distribution, and then, when updated by the
information in the data, by the posterior distribution. The
researcher is acknowledging that the parameter could have
different values, and using the probability distribution to express
their belief about each value.
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The notion of a prior distribution is not without its controversial
aspects. At the very least, different people, with different
background experience, might be expected to have different prior
distributions. These would be combined with the data to yield
different posterior distributions, and possibly different
conclusions. Any pretence to objectivity has thus been sacrificed.
There is also a practical difficulty. While the mean of a normal
distribution and the parameter p in a Bernoulli distribution have
clear and straightforward interpretations, it is not always the case
that the parameters of distributions have straightforward
interpretations. It can sometimes be very difficult coming up with
sensible prior distributions reflecting our prior knowledge.

At this point in our description of the Bayesian approach we have
arrived at the posterior distribution, a distribution summarizing
the researcher’s belief that the parameter takes each value, after
having seen the data. If we wish, we can reduce that entire
distribution to a single point estimate by using some summary
statistic of the distribution. For example, we could use its mean or
its mode.

Which estimate is best?

How can we tell if a method of point estimation is effective, and
which of several estimators is best? For example, while I might
choose to estimate the mean of a distribution using the mean of a
sample drawn from that distribution, an alternative would be
to drop the largest and smallest values of the sample before
calculating the mean. In general, the largest and smallest values
have greatest variability from sample to sample, so perhaps a more
reliable and less variable estimate would result from dropping
them.

For the frequentist approach to estimation, which assumes that
there is some fixed, but unknown, true value for the parameter
being estimated, we would ideally like to know which of these two
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approaches yields an estimate closer to the true value.
Unfortunately, since the true value is unknown (the whole point is
to estimate it!), we can never know this. On the other hand, what
we can hope to know is how often we might expect the estimated
value to be close to the true value if we were to repeat the exercise
of taking a sample of measurements and calculating an estimate.
After all, since the estimated value is based on a sample, it is likely
that the estimated value would be different if a different sample
was drawn. This means that the estimate is itself a random
variable, varying from sample to sample. As a random variable, it
has a distribution. If we know that this distribution is tightly
clustered about the true value, we might regard the estimation
method as a good one. Put another way, if we knew that a method
usually yielded an estimate which was very near to the true value
of a parameter, we might regard that as a good method of
estimation. Whilst this tells us nothing about our particular case,
we would justifiably have confidence in the method. After all, if
you knew that 999 out of 1000 times someone made a correct
prediction, you would surely be inclined to trust them in any
particular case. You do this with train drivers, pilots, restaurants,
etc: you know that the driver and pilot rarely crash, and the
restaurant rarely serves contaminated food, so you are happy to
take the risk that this time things will be OK.

Using this principle, several different measures have been
developed to evaluate alternative frequentist estimation methods.
One such measure is bias. This tells us how large the difference is
between the true value of a parameter and the mean value of the
distribution of estimated values. In particular, if this difference is
zero (that is, if the mean of the distribution of estimated values is
equal to the true value) then the estimator is said to be unbiased.

For example, the proportion of heads obtained when a coin is
tossed several times is an unbiased estimator of the probability
that the coin will come up heads: the mean value of the
distribution of this proportion in repeated experiments is equal to

82



Estim
atio

n
an

d
in
feren

ce

the true probability that it will come up heads. To illustrate,
suppose that, unknown to us, the true probability that a coin will
come up heads is 0.55. We toss a coin ten times, and estimate this
probability by the proportion of heads. Our ten tosses might yield
six heads; that is a proportion of 0.6. Or three heads; a proportion
of 0.3. Or five heads; a proportion of 0.5. And so on. On average
(averaged over imaginary repetitions of the ten tosses) the
proportion will be 0.55 because the proportion of heads is an
unbiased estimator of the probability that the coin will show
heads.

In general, an estimator which has a large bias will not be
regarded as favourably as one which is unbiased. On average, over
repetitions of the experiment, an estimator with large bias would
yield a value very different from the truth.

Themean squared error is another measure of how good an
estimator is. For any particular estimated value we could, if we
knew the true parameter value, calculate the squared difference
(the ‘squared error’) between the estimate and the true value.
Squaring is useful, for one reason because it makes everything
positive. Now, since the estimate itself is a random variable,
varying from sample to sample, so also is this squared error. As a
random variable, it has a distribution. Themean squared error is
simply the mean of this distribution. A small mean squared error
means that, on average, the squared difference between the
estimated value and the true value is small. An estimator which is
known to have a large mean squared error would not be regarded
as favourably as one which had a small mean squared error: one
would not have much confidence that its value was near to the
truth.

Interval estimation

When we considered some basic summary statistics in Chapter 2,
we saw that it was all very well summarizing a sample of values by
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their mean or some other single summary, but that this left a lot to
be desired. In particular, it failed to show how widely the sample
values were spread about this mean. We tackled that problem by
introducing further summary statistics, such as the range and
standard deviation, which indicated how widely dispersed the
sample values were.

The same sort of principle applies in estimation. So far we have
looked at point estimates, that is estimates which are single best
estimated values in some sense. An alternative is to give a range of
values, an interval, which we are confident includes the true value.
Let us return to the £10/£5 deal offered by my friend. Previously
we sought the single best estimate for the probability that a toss of
the coin would produce heads. Instead, we could seek a range of
values which we are confident will include the true probability.
Perhaps we can be very confident that the true probability lies
between 1/4 and 2/5, for example. This is an example of an
interval estimate.

Now, since the true value is unknown, we cannot say for certain
whether any particular interval will actually include the true value.
But imagine repeating the exercise again and again with different
random samples (just as we imagined when we defined bias
above). For each of these samples we could calculate an interval
estimate. Then, if the intervals are constructed in the right way it
is possible to say that a certain percentage of the intervals (e.g.
95% or 99% or whatever we choose) would include the unknown
true value.

Returning to my friend’s coin, we cannot say for certain that any
particular interval, calculated for any particular data sample, will
contain the true probability that the coin will show heads. But we
can say that 95% (or whatever we choose) of such intervals will
contain the true probability. Since 95% of such intervals will
contain the true value, we can have considerable confidence that
the one interval we did calculate, based on the sample we actually
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obtained (HTHTTT in the example) would include the true value.
For this reason, such intervals are called confidence intervals.

Turning to Bayesian methods, we saw that the outcome of a
Bayesian analysis is an entire posterior distribution of values. This
distribution tells us the strength of our belief that the parameter
has any particular value. We could leave things at that. For
example, if the distribution had a small standard deviation it
would mean we were very confident that the parameter value lay
in a narrow range. But sometimes it is convenient to summarize
things in a way rather analogous to the confidence intervals above,
and give an interval, defined by a largest and smallest value. For
example, we could find an interval which contained 95% of the
area beneath the posterior probability distribution within it. Since
the distributions have the degree of belief interpretation, such
intervals can be interpreted as giving the probability that the true
value lies within them. To distinguish them from the frequentist
confidence intervals, such intervals are called credibility intervals.

Testing

Statisticians use the phrases hypothesis testing and significance
testing to describe the processes of exploring whether parameters
in a model take specified values or lie in certain ranges. At its
simplest level, this might mean testing just a single parameter. For
example, we might know that 50% of patients suffering from a
particular disease recover under the standard treatment, and we
might conjecture that a proposed new drug treatment cures 80%
of such patients. The single parameter we are interested in testing
is the cure rate of the new treatment, and we would like to know if
it is 80% rather than 50%.

Now, it is a fact that people are different. They differ in terms of
age, sex, fitness, severity of disease, weight, and a host of other
things. This means that, when even similar people are given the
same dose of the same drug, the responses differ: some may be
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cured and some not. Indeed, it is entirely possible that the
response will differ for the same patient at different times and
under different circumstances. A reasonable model for this
situation might be that a patient given a drug has a probability p
of being cured. In our example, we know that p = 0.5 under the
standard treatment and we conjecture that p = 0.8 under the new
treatment.

In principle, at this point, to find what proportion are cured by
the new drug, what we would like to do is give the new drug to
everyone in the patient population, under all possible
circumstances, and see what proportion are cured. This is clearly
impossible, and what we have to do is give the drug to just a
sample of patients. We can then calculate the proportion cured in
the sample. Unfortunately, since we are merely working with a
sample, and not the entire population, the mere fact that, say,
80% of the sample is cured, or 60%, or 90%, or whatever, does not
necessarily mean that that proportion would be cured in the
population. If we drew a different sample, we would be likely to
obtain a different result.

However, a sample drawn from a population in which, overall,
only 50% of the patients are cured will usually have a lower
proportion cured than a sample drawn from a population in which
80% of the patients are cured.

This means that we can adopt a threshold, t say, such that if we
observe the proportion cured in the sample to be less than t we
will favour the 50% hypothesis, and if we observe a sample
proportion cured to be greater than t we will favour the 80%
hypothesis. In the latter case, we say that the sample statistic lies
in the rejection or critical region, since the cure rate of the
standard treatment, 50%, has been ‘rejected’.

In doing this, we risk making one of two kinds of mistake. We
might decide that the new drug cures 80% of the patients in the
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overall population when in truth it cures only 50%. Or we might
decide that the new drug cures 50% of the patients in the
overall population when in fact it cures 80%. The so-called
Neyman-Pearson hypothesis testing approach arranges things so
that the probability of making each of these two kinds of errors is
known, and is sufficiently small to give us confidence in the
conclusions.

Here is how it works. We begin by making a working assumption:
let us assume that the new drug cures only 50% of patients. This
working assumption is called the null hypothesis. The so-called
alternative hypothesis is that the new drug cures 80% of the
patients. Using basic probability calculations we can work out
what proportion of samples would show a cure rate, by chance,
greater than any chosen t, if the 50% assumption (the null
hypothesis) were true. Typically, t is chosen so that, if the null
hypothesis were true, only 5% or 1% of the time would the sample
proportion cured exceed t.

In this situation, when the null hypothesis is true (i.e. if only 50%
of the overall population would be cured) and we actually
obtained a sample cure proportion greater than t, leading us to
decide in favour of the overall 80% cure rate, we would be making
the first kind of error noted above (which is conventionally called
a Type I error). The symbol · is typically used to represent the
probability of a Type I error. Our choice of t in the example means
that we have fixed · at 0.05, or 0.01, or whatever value we chose.

If we observe a sample cure proportion greater than t, then either
the null hypothesis is true (true rate of 50%) and an event of low
probability (sample rate higher than t, occurring with probability
·) has occurred, or the null hypothesis is incorrect. These are the
only possibilities. This is the essence of the Neyman-Pearson
approach to hypothesis testing. By choosing t so that · is small
enough (and 0.05 and 0.01 are generally thought of as small
enough), we feel reasonably confident in suggesting that the null

87



St
at
is
ti
cs

hypothesis is not true because, if it was, an unlikely event would
have occurred.

The other kind of error (Type II, naturally) arises when the
alternative hypothesis is true (the 80% one in the example) but the
observed sample cure proportion is less than t. Since we chose t to
control the probability of making a Type I error, we cannot choose
t also to control the probability of making a Type II error.
However, we can make the probability of a Type II error as small
as we like by taking a large enough sample. This is again a
consequence of the law of large numbers. Increasing the sample
size decreases the range of variability of the sample estimate, and
hence decreases the probability that the sample estimate will be
below t when the true population value is the higher, 80% value.
In particular, by making the sample large enough we can reduce
the probability of a Type II error to whatever value we think
appropriate. The symbol ‚ is typically used to represent the
probability of a Type II error. The term power is used to represent
1 − ‚, the probability of choosing the alternative hypothesis when
it is true.

The hypothesis testing situation described above is analogous to
the situation in a court of law, where the accused is initially
presumed innocent (null hypothesis), and where two kinds of
mistakes can arise: an innocent person is found guilty (Type I) or a
guilty person is found innocent (Type II).

Note that two hypotheses are involved in Neyman-Pearson
hypothesis testing: the null hypothesis and the alternative
hypothesis. In significance testing, only the null hypothesis is
considered. The aim is to ‘reject’ the null hypothesis if a value of
some test statistic (the sample proportion cured in the example
above) is sufficiently different from what would be expected under
the null hypothesis, or ‘fail to reject’ it if the value is not so
extreme. No alternative hypothesis is explicitly mentioned. The
term p-value is used to describe the probability that we would
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observe a value of the test statistic as extreme or more extreme
than that actually observed, if the null hypothesis were true.

The ideas of hypothesis and significance testing have been
developed for a huge variety of problems. Particular tests have
been developed often named after one of the original developers
(e.g. the Wald test, the Mann-Whitney test) or named after the
distribution of the test statistic involved (e.g. the t-test, the
chi-squared test).

In principle, at least, Bayesian hypothesis testing is more
straightforward. Under the Bayesian formulation, we have
posterior probabilities that each hypothesis is true, so we can use
these to choose a hypothesis. In practice, things are sometimes
rather more complicated.

Decision theory

I informally described ‘testing’ as seeing if the parameters of a
model took particular values or fell in certain ranges. This is a
good description of much of what goes in a scientific context: the
aim is to discover how things are. But in other contexts, such as
commerce or medicine for example, the aim is typically not simply
to discover what values the parameters have, but to act on this
information. We want to look at a patient, make a number of
observations and tests, and, using the resulting data, take the best
course of action. ‘Best’ might mean many different things, but,
speaking abstractly, we will want to maximize gain, profit, or
‘utility’, or, equivalently, to minimize cost or loss. If we can define a
suitable such utility function, describing what the gain will be if
each action is taken when the unknown truth takes each of its
possible values, then we can compare different decision rules –
that is, different ways of choosing between actions. For example,
we might choose that decision rule which maximizes the
minimum gain that could be incurred, whatever the unknown
truth. Alternatively, if we are working within a Bayesian
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framework, and so have a posterior distribution of probabilities
across the unknown state of the truth, we could calculate the
average value of the gain for each decision rule, and choose that
which had the largest average value.

Here is an example. A company might want to know which course
of action, sending a letter or making a phone call, is most effective
in encouraging its customers to buy its latest product. Now, it
would be unrealistic to imagine that the same action would be
most effective for all kinds of customers. Some will respond better
to the letter, some to the phone call, and we do not know which is
which. But the company might have data about each customer:
the information they supplied when they first enrolled, the data
describing their previous purchases, and so on. Using these data,
we can formulate decision rules which say things such as ‘if the
customer is aged less than 25 and has a previous pattern of regular
purchases then take action “phone call”; otherwise take action
“letter”’. Many such potential decision rules could be formulated.
For each of the actions, phone call or letter, we could estimate the
gain, perhaps even in monetary terms, if we took that action and
the customer turned out to be the type who did (or did not)
respond well to that action. And then we could choose the decision
rule which made the minimum gain the largest. Or we could
average over the distribution of customers of each type, to yield an
average gain for each decision rule, and then choose that rule
which led to the largest average gain.

So where are we now?

Over the years, statistical inference has been the subject of
considerable controversy, sometimes quite heated. Although
different approaches to inference do sometimes lead to different
conclusions, experience shows that sensitive use by statisticians
who understand the methods they are using generally leads to
similar conclusions. This is all part of the art of statistics and
shows that carrying out a statistical analysis is not merely a
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mechanical exercise in mathematics. It requires understanding of
the data and their background, as well as a sound grasp of the
underlying inferential theory.

Different schools of statistical inference place varying degrees of
emphasis on a number of different principles. Examples of these
principles are the likelihood principle (if two different models
have the same likelihood function, then they should lead to the
same conclusions), the repeated sampling principle (statistical
procedures should be assessed based on how they would behave
‘on average’ if they were applied to many repeated samples), and
the sufficiency principle (concerned with summarizing data so
that information sufficient for estimating a parameter is retained).
Each of these principles seems perfectly reasonable, but they may
sometimes conflict.

For many years the classical frequentist methods were the most
widely used methods of inference, but Bayesian methods have
gained considerably in popularity in recent years. This has been as
a direct consequence of the development of powerful computers
and clever computing methods, as well as of enthusiastic
promotion of such methods by their supporters. Science takes
place in a social context, and the human aspects of how different
ideas about inference have gained and waned in ascendancy over
the past few decades is a fascinating story.

One final point: as I hope has been made apparent in this chapter,
there are different aspects to inference. In particular, we may be
interested in trying to find answers to different kinds of questions.
These include: what do the data tell me, what should I believe,
what should I do, and so on. Different approaches to inference are
best suited to different kinds of questions.
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Chapter 6

Statistical models

andmethods

The best thing about being a statistician is that you get to play in

everyone’s backyard.

John W. Tukey

Statistical models: putting the blocks together

I have used the phrase ‘statistical model’ at various places in this
book without so far defining what I mean. A statistical model is
some simple representation or description of the thing or system
being studied. A very simple model might involve just one aspect
of nature. Indeed, we saw examples of this in Chapter 4 when we
looked at distributions of single variables. More generally,
statistical models can be very elaborate indeed, perhaps involving
thousands of variables related in highly complicated ways.
Economists trying to guide the decisions of a national bank will
use such large models, for example.

A basic perspective on models is to ask whether they properly
represent the underlying reality: whether they are ‘true’ or not.
Indeed, this is the perspective we took earlier in the book, when
we asked if a proposed parameter value was the true value.
However, a more sophisticated perspective acknowledges that no
model, statistical or otherwise, can take into account all of the
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possible influences and relationships in the real world. It is this
sort of perspective which has led the eminent statistician George
Box to assert that ‘all models are wrong, some models are useful’.
We build models for a reason: to help us understand, predict,
decide, and so on. And while we recognize that our models
represent a necessary simplification of the awesome complexity of
the world, if we choose them well then they will enable us to do
these things. But if we choose them badly, then we will not
understand, our predictions will go awry, and our decisions will
lead to mistakes. Our aim, then, is to construct models which are
good enough for our purpose.

Statistical models may be conveniently divided into two types,
often calledmechanistic and empirical models. A mechanistic
model is based on some solid underlying theory for how things are
related. For example, a theory in physics might tell us how the
speed of falling objects increases with the time for which they
fall. Or another theory might tell us how drugs will disperse
throughout the body. In both of these cases, the models will be
based on theories about how things actually work. Indeed, the
models will be based on the mathematical equations describing
these theories, and the data we collect to evaluate our models will
be values of the variables used in the theories, such as speed and
time (in the falling object case) and concentration and time
(in the drug diffusion case). Mechanistic models are thus direct
mathematical ways of describing theories.

In contrast, empirical models are simply attempts to provide
convenient summaries for the important aspects of observed data.
We might have no theory which says that falling objects increase
their speed as time passes, but we may observe a relationship
between time and speed and, on the basis of this, conjecture some
increasing relationship. If there is no underlying theoretical basis
for this proposed relationship, the model would be an empirical
model.
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Mechanistic models are widespread in the physical sciences
and disciplines such as engineering. The social and behavioural
sciences tend to make more use of empirical models. Having
said that, obviously there is considerable overlap: the nature
of the model will depend on what is being modelled and how
well it is understood. Economics, a particular social science,
is full of mechanistic models based on theories about how
economic factors are related. In general, it is probably fair to say
that, in the initial stages of exploration of a phenomenon,
empirical models are more common since regularities and
patterns are being sought in the mass of observations. In later
stages, when understanding has grown, so mechanistic models
become more important. In any case, as our models for falling
objects show, a particular model can be constructed as empirical
and then become mechanistic, as understanding of the
phenomenon grows.

Sometimes it is useful to distinguish between the various
possible uses of statistical models. One such distinction is
between exploration and confirmation. In exploration, we
seek relationships or patterns. In confirmation, we aim to see
if data support a proposed explanation. So, for example, in an
exploratory study we might look for variables that are closely
related. Perhaps one variable takes a high value whenever
another one does, or perhaps sets of variables take very
similar values for different objects, and so on. In confirmatory
studies, on the other hand, we might use the data to estimate the
parameters of a proposed statistical model and carry out a
statistical test to see if the estimate is close enough to what our
theory predicted. Statistical methods of data exploration have
become increasingly important in recent years, with larger and
larger data sets accumulating. This is true for both scientific
applications (e.g. particle physics and astronomy) and
commercial applications (e.g. databases containing details of
supermarket purchases, telephone calls, or internet click stream
data).
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Another important distinction in statistical modelling is between
description and prediction. In describing a data set, the aim is to
summarize it in a convenient way. For example, if the data set
consists of observations of ten variables (height, weight, time to
travel to work, etc.) on each of a million people, then to begin
to understand it we need to reduce it to a manageable size. For
example, we could summarize it in terms of the means and
standard deviations of each of the variables, as well as measures of
how closely they were related. Then we would have some hope of
understanding what is going on since we would have described the
general properties of the data in a convenient way. Having said
that, as we saw in Chapter 2, such descriptive summaries are not
without their risks. By definition, they simplify the immense
complexity of the entire data set, so we must be alert for the
possibility that our summary description has left out something
important. For example, perhaps our model has failed to take
account of the fact that there are two distinct genetic groups in a
population, so that a more elaborate model is needed to represent
this.

In prediction, our aim is to use some of the variables to predict
values of others. For example, we might have a collection of data
showing details of childhood diet and their later adult height for a
sample of people. Using this, we could construct a model relating
adult height to childhood diet, and then use the model to predict
the likely future height of a child following a particular diet. Note
a fundamental aspect of the data needed for such modelling: we
need values for both the predictor variables and the predicted
variable from our sample. This will turn out to be a very important
distinction between predictive and descriptive models, as we will
see below.

Once again, the distinction is not always clear cut. We might
simply be concerned with describing the relationship between
childhood diet and adult height, with no intention to use the
model to predict one from the other.
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Another important kind of prediction is forecasting. Here we use
data from the past to construct a model which can be used as the
basis for predicting likely values of observations yet to be made.
For example, we might look at the monthly pattern of sales of
television sets over the past five years and extrapolate the trend in
sales and the seasonal variation to forecast the likely sales over the
next twelve months.

Statistical models also have other uses. We briefly saw their role in
decision making in Chapter 5. We also saw in Chapter 5 how the
parameters of distributions were estimated. This is done by
defining a measure of discrepancy between the observed data and
the theoretical distribution, and then choosing the estimated
parameter value which minimizes the discrepancy measure. A
common measure of discrepancy was derived from the likelihood,
measuring how probable it was that data like the observed data
would arise if the parameters took various different values. Now,
since distributions are merely simple forms of model, exactly the
same principles apply when fitting more elaborate models (such as
those illustrated below). However, a curious phenomenon arises as
the models become more and more elaborate.

I shall take a simple example to illustrate. Suppose we want to
construct a model to predict initial salaries of graduates, based on
data describing their schooling, the subjects they studied at
university, their examination scores, and also factors such as age,
sex, where they lived, and so on. Suppose we sample 100 new
graduates and collect the data from them. Now, in general, if we
try to base our prediction on very few variables (e.g. just age) then
we will not obtain very accurate predictions. Age, by itself, just
does not contain enough information to allow us to say very
precisely what someone’s graduate salary will be. To improve the
predictive accuracy we need to add more predictors (e.g. use age
and subject of study and exam scores to predict graduate salary).
However, and here comes the crunch, if we add too many
predictor variables then the predictive accuracy for the population
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decreases. Even though we are making use of more information
about the graduates, our model is not as good.

This seems counterintuitive. How can addingmore information
lead to worse predictions?

The answer is subtle, and goes under various names, including the
graphic overfitting. To understand it, let us take a step back and
see what our real aim is. Our aim is not to get the best predictions
we can for the 100 graduates in our sample: we already know their
initial salaries. Rather, it is to get the best predictions we can for
other graduates. That is, our aim is to generalize from the sample
we have. Now, by adding more and more predictor variables we
are certainly adding information which will enable us to predict
more and more accurately the salaries of those already in our
sample. But the sample is only a sample: it does not fully represent
the salaries of the entire population of graduates. And, after a
while, as we continue to add more predictor variables, so we start
to predict aspects of the data which are peculiar to the sample.
They are not features which apply to the more general population.

This phenomenon applies to all statistical modelling: models can
be too complicated, so that they fit the observed data very well
indeed but fail to generalize well to other objects drawn from the
same distribution. It means that it is necessary to develop
strategies for choosing models of the right complexity: too simple
and we risk missing out on potential predictability, too complex
and we risk overfitting. This principle underlies Occam’s razor,
which states that ‘models should be no more complicated than is
necessary’ (attributed to the 14th-century Franciscan friar William
of Occam).

The overfitting problem is particularly important in modern
statistics. Prior to the advent of the computer, and before it
became commonplace to fit complicated models with very large
numbers of parameters, there was less risk of overfitting.
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Statistical methods: statistics in action

The aim of this section is to outline some important classes of
statistical method, to show how they are related, and to illustrate
the sorts of problems they can be used to solve.

Let us begin by noting that we are frequently interested in
relationships between pairs of variables. Does risk of heart attack
increase with body mass index? Is global warming a consequence
of human activity? If unemployment goes up will inflation go
down? Will improving a car’s safety features increase its sales?
And so on. If two variables are related in the sense that larger
values of one tend to be associated with larger values of the other,
then the variables are said to be positively correlated. If larger
values of one tend to be associated with smaller values of the other,
they are said to be negatively correlated. Height and weight in
humans are positively correlated: taller people tend to be heavier.
Note that the relationship is not an exact one: there are light tall
people (the thin ones) and heavy short people. But, on average,
overall, tallness is associated with greater weight. We can also see
from this example that just because two variables are correlated
does not mean that one causes the other. Putting someone on a
diet of cream buns to increase their weight is unlikely to lead to an
increase in height, and putting them on a rack to stretch them is
unlikely to increase their weight. In fact, confusion between
correlation and causation has been the source of much
misunderstanding over the years. A random sample of children
aged between 5 and 16 years old is likely to show a marked positive
correlation between ability to read and ability to do arithmetic.
But one is unlikely to cause the other. It is more likely that age is a
common cause of each: the older children are better at both
reading and arithmetic.

A single number, a correlation coefficient, can be used to represent
the strength of a correlation. There are various ways in which this

98



Statisticalm
o
d
els

an
d
m
eth

o
d
s

strength may be measured, just as we saw that there were various
ways of defining ‘average’ and ‘dispersion’. In general, however,
correlation coefficients are standardized to lie between −1 and +1,
with 0 meaning no relationship, +1 meaning a perfect positive
correlation, and −1 meaning a perfect negative correlation. A
‘perfect’ correlation between two variables x and ymeans that if
you know x then you know y exactly.

Correlation is a symmetric relationship: if height is correlated
with weight, then weight is correlated with height, and the
strength of this correlation is the same whichever way we look at
it. In contrast, sometimes we are interested in asymmetric
relationships between variables. For example, we might want to
know how much weight difference, on average, is associated with a
height difference of ten centimetres. This sort of question is
answered by the statistical technique of regression analysis. A
regression model tells us what is the average value of a variable y
for each value of a variable x. In the example above, a ‘regression
of weight on height’ would tell us the average weight that people of
each height would take. This is illustrated in Figure 5, where
weight is plotted on the vertical axis, and height on the horizontal
axis. Each black dot shows the (weight, height) pair for a person
from our sample. Now it is obvious from this figure that we do not
have observed values for all possible heights. For example, there is
no data point with a height of exactly 6′. One way to overcome this
difficulty, to construct a model which gives us an average weight
for each value of height, is to suppose that there is a simple
relationship between height and average weight. A very simple
such relationship is a straight line relationship; an example of
such a line is shown in the figure. For any given height, this line
allows us to look up the corresponding value of average weight. In
particular, for example, it gives us a value for the average weight of
people who are 6′ tall.

There are several points to make about this approach.
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5. Fitting a line to data

First, it gives the average weights at each height. This is
reasonable: in real life, even people of the same height can weigh
different amounts.

Second, we need to find some way of determining exactly which
line we are talking about. The figure shows one line, but how did
we choose that line rather than some other? Now, lines are
uniquely specified by two parameters, their intercept (here, the
value of weight at which the line meets the weight axis) and slope,
so we need to find some way of choosing, or estimating, these two
parameters. But we know about parameter estimation; we studied
it in Chapter 5. To estimate parameters we choose those values
which minimize some measure of discrepancy between the model
and the observed data. For any particular (weight, height) pair in
the data, one measure of discrepancy is the squared difference
(again, squared so as to make things positive) between the
observed weight and the predicted weight at that height. An
overall discrepancy measure based on this is the sum of squared
differences between the observed weights and the predicted
weights at the heights given in the data. We then estimate the
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intercept and slope by choosing those values which minimize this
sum of squared differences. In the sense that it minimizes the
(sum of squared) differences between the observed and predicted
values of weight in the data, this least squares regression line yields
the best prediction of average weight for any value of height we
might care to choose.

The third point is that that the assumption of a straight line
relationship might seem fairly arbitrary, adopted with little
justification. Why choose a straight line, rather than a curved line?
Without going into the details here, it is possible to introduce
curvature of various degrees so that the line showing the
relationship between height and average weight can have more
complicated shapes – perhaps increasing more rapidly at lower
heights than at higher heights, for example. We do this by making
the model more complicated, by introducing extra parameters, in
addition to the intercept and slope.

The height/weight regression example sought to predict average
weight from only one predictor variable, height. We could also
include other potential predictors, in order to yield more accurate
predictions. For example, men and women have different body
shapes, so that, for a given height, some of the difference in
weights may well be due to gender. We might therefore also
include gender as a predictor. We could continue this, including
other variables we thought likely to be related to weight. We
should not go too far if we have observations on only a fixed
number of people, or once again our model will overfit the data.
We therefore might not want to include all of the variables we can
think of, but simply include a subset of them.

In general, there are also other reasons why we might want to
include only a subset of the potential predictor variables. For
example, perhaps measuring additional predictor variables is
expensive, or takes a long time, so we will want to keep the
number to a minimum. For these and other reasons, statisticians
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have developed methods for finding good subsets of variables,
where ‘good’ means that they yield the best predictions.

Regression models relate an outcome or response variable to
one or more predictor variables. This is an extremely common
type of problem, and other statistical models have been
developed to cope with similar situations which differ in some
ways from the straightforward regression situation. In survival
analysis, for example, the value of the response variable is
known only for some of the cases, and its value for the other cases
known only to exceed some value. This arises most commonly
(though certainly not only) when the response variable is time
duration. Thus, we might want to know how long a patient will
survive (hence the name of the technique) or how long a
component of a system will last before requiring replacement.
Taking the first case to illustrate, our data set might show that one
of the patients lived 5 months, another only 2 months, three
others lived 11 months, and so on. However, for practical reasons
perhaps we could not wait until the last patient in the study had
died (which might be years hence), so we stopped taking
observations. All we would then know about some of the patients
is that they lived longer than the time between starting and
stopping observations. Such data are described as censored.
To illustrate the complications they introduce, consider the
calculation of the average survival time. To calculate the average,
we need to add up the observed times and divide by how many
there are. Now we do not actually observe the survival times for
those patients who have been censored, so we cannot include them
in the calculation. But if we leave them out, we will be leaving out
precisely those values which are largest, so our estimate will be
biased downwards. Conversely, if we include them, using the
observed durations, the result will depend on when we happened
to choose to stop making our observations. Since this is equally
inappropriate, more sophisticated methods have been developed
which cope with censored data.
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Another variant on the problem of having a single outcome
variable related to one or more predictor variables occurs in
analysis of variance. This is widely used in agriculture,
psychology, industrial quality control, manufacturing, and other
areas. In analysis of variance, the predictor variables are
categorical, meaning that they each take only a few values. For
example, in manufacturing some chemical we might be able to
control temperature, pressure, and duration, and have three
settings for each: low, intermediate, and high. This sort of
situation arose when we discussed experimental design in
Chapter 3, and analysis of variance is often used to analyse
experiments. Although typically presented as rather different from
regression analysis, it is possible to reformulate it as a regression
model. Both are special cases of a broader class of model called a
linear model.

Linear models themselves have been extended in various ways.
One very important generalization is to so-called generalized
linear models. In regression and analysis of variance, the aim is to
predict the mean value of the response at each value of the
predictor(s). Generalized linear models extend this by permitting
other parameters of the distribution of the response, not merely its
mean, to be the subject of the prediction.

Yet another variant of the outcome/predictor structure arises
when the response is itself categorical. For example, the response
might be a list of possible medical diagnoses, and the predictors
might be a combination of symptoms (perhaps coded as present or
absent) and the results of medical tests. Such methods go under
the general name of supervised classification. The most important
special case of such models arises when the response variable is
binary, taking only two possible values, such as sick/healthy, good
risk/bad risk, profitable/unprofitable, spoken word ‘yes’/spoken
word ‘no’ (in speech recognition), authorized fingerprint/
unauthorized fingerprint (in biometrics recognition systems),

103



St
at
is
ti
cs

fraudulent transaction/legitimate transaction, and so on. In each
case, the aim will be to construct a model which will enable us to
determine the most likely category of new cases, using only the
information in the predictor variables.

A large number of statistical tools have been developed for such
situations. Amongst the earliest was linear discriminant analysis,
described in the 1930s but still very widely used today, both in its
basic form and in more elaborate extensions. Another method
which is very popular in some domains, such as medicine and
customer value management, is logistic discriminant analysis.
This is a variant of logistic regression, a type of generalized linear
model, so showing the close link between the classes of tools. In
fact, logistic regression can be regarded as the most basic kind of
neural network. Neural networks are so called because they were
originally suggested as models for the way the brain worked.
Nowadays, however, the work in the area has largely focused on
their statistical properties as prediction systems, regardless of
whether or not they form good models of natural systems.

Other models for supervised classification include tree classifiers
and nearest neighbour methods. A tree model splits variables into
ranges, and classifies new points according to the combination of
ranges in which they lie. For example, analysis of the data might
show that people who are aged over 50, have a sedentary lifestyle,
and have a body mass index greater than 25 are at risk of heart
disease. Such models can be represented as tree structures; hence
the name. In a nearest-neighbour method, we find the few objects
in the data set which are most similar (or ‘nearest’) to the new
object to be classified, where similarity is defined in terms of the
predictor variables. Then the new object is simply assigned to the
same class as the majority amongst these most similar objects.

Supervised classification is so called because it needs someone
(a ‘supervisor’) to provide the class labels for a sample of data,
from which we can construct the classification rule to apply to new
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objects. In other classification problems, however, there is no
existing class label, and the aim is simply to divide up the objects
into natural, or perhaps convenient classes. We might say that the
aim is to define the classes. In medicine, for example, we might
have a sample of patients for each of whom we have details of their
symptom patterns and test results, and we might suspect that
several distinct types of disease are represented in the sample.
Our aim, then, would be to see if the patients form distinct groups,
in terms of their symptoms and test results. Statistical tools for
exploring such groupings are called cluster analysis. Such
methods were helpful in identifying the distinction between
unipolar and bipolar depression, and are used in a wide variety of
other areas – including, for example, customer value management
and marketing, where interest lies in deciding if there are different
types of customer.

In cluster analysis, there is no ‘outcome’ or ‘response’ variable.
Rather, the aim is simply to describe the data in a convenient way.
Other statistical tools have the same objective, though the sort of
description they seek is completely different. For example, a
graphical model is a simplified description of the relationships
between several, possibly a large number, of variables, based on
the assumption that the relationships between many of the
variables are caused by intermediate relationships with other
variables. We saw a very simple example of this above: perhaps the
positive correlation between reading ability and arithmetic ability
of children was a consequence of the relationship between each of
these variables and age.

Such models can be extended by supposing that some of the
relationships are caused by unmeasured latent variables which are
related to some of the observed variables and hence induce an
apparent relationship between them. For example, we might
observe that the stock market prices of certain companies increase
or decrease together. One way to explain this might be to
conjecture the existence of some unobserved variable (some aspect
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of the economy, for example), which is related to each of the
prices, and which therefore induces the correlation between them:
when the unobserved variable increases, so do all of the prices.
Such ideas underlie factor analysismodels: the latent variable is
often called a latent factor. They also underlie hidden Markov
models, in which a sequence of observed values is explained in
terms of the hidden states of a system. For example, patients with
some diseases fluctuate in quality of life, sometimes relapsing and
sometimes making temporary recoveries. Such progression can be
modelled in terms of changing underlying states.

If classification methods are named after the sorts of problems
they are designed to solve, other methods are named after the
nature of the data on which they work. Time series analysis
methods, for example, work on time series: repeated observations
of the same variable or variables, at a sequence of times. Such data
structures are ubiquitous, occurring in economics (e.g.
measurements of inflation, GDP, and unemployment),
engineering, medicine (e.g. intensive care units), and any number
of other domains. In analysing a time series, we might be aiming
to understand it, to decompose it into key components (e.g. trend,
seasonality), to detect when system behaviour changes, to detect
anomalies (e.g. earthquake prediction), to forecast likely future
values, or for a host of other reasons. A wide variety of methods
have been developed for analysing such data.

Statistical graphics

One particular class of statistical tools is so important that it
deserves special mention. This is the use of graphics. The human
eye has been honed by aeons of evolution to be able to perceive
structures and patterns in the signals reaching it. Statisticians
make extensive use of this by representing data in a huge range of
different kinds of graphical display. When data are displayed well,
relationships between variables or configurations in data become
obvious. This is used both in analysing data, to help understand
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6. A ‘scatterplot matrix’, showing the times (in seconds) for the
100-metre and 400-metre sprint, and the distances (in metres) for the
shot and discus for competitors in the men’s decathlon in the 1988
Olympic Games. Each square shows the relationship between two of
the four variables. The strong correlation between the scores in the
two throwing events is immediately apparent

what is going on (recall the distribution of baseball salaries in
Figure 1), and for communicating the findings to others. Some
illustrations are given in Figures 6 to 8.

Conclusion

This chapter has presented a lightning review of just a few
important statistical tools, but there are a great many others I
have not mentioned. Different models are suited to different kinds
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7. A time series plot showing the amount withdrawn from an ATM
machine each day. The figure clearly shows that there are weekly and
monthly cycles, and also that there is a gradually increasing trend over
time. An anomalously low value near the end of the period is also
apparent

8. Distribution of the light scatter values from phytoplankton cells of
different species. In fact, three species are shown here, but two of them
have very similar distributions of values, so these combine to form a
single high peak
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of problems and different kinds of data, and there is an unlimited
number of problems and data structures. It is also important to
appreciate that models are not isolated entities. The truth is that
different models are related in multiple ways. They may generalize
or be special cases of other kinds of models or be adapted to
different kinds of data, but they are all embedded in a rich
network of relationships.
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Chapter 7

Statistical computing

The actual magic comes from our statistical analysis team.

Sam Alkhalaf

Statistics changes its spots

In the discussions above we saw that overfitting could be a
problem. We also left the solution rather in the air, simply saying
that it was necessary to choose models which were neither too
complicated nor too simple. Without substantial experience in
statistical modelling that is not very helpful advice, and more
objective approaches are needed. One is based on the principle of
cross-validation.

We have seen that, in general, as the complexity of a model
increases, so its goodness of fit to the available data continues to
improve but that its goodness of fit to other samples drawn from
the same distribution (or its ‘out of sample performance’) typically
initially improves but then begins to deteriorate. Here the ‘other
samples’ are representative of new data, which is what we are
really interested in. The point at which the model best fits data
from some ‘other sample’ would seem to give a model of the
appropriate level of complexity. And that is the key to the solution:
we should estimate the model’s parameters using one sample, and
evaluate its performance using some other sample.
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Unfortunately, we typically have only one sample. One approach is
therefore to (randomly) split this sample into two subsamples.
One subsample (the training or design sample) is used for
parameter estimation and the other (the validation sample) for
assessing performance and choosing the model. This is the
cross-validation approach. Typically, to ease any problems arising
from the fact that the subsample used for estimating the
parameters is not the entirety of the original sample, the
procedure is repeated multiple times. That is, the original sample
is randomly divided into two, parameters are estimated using one
subsample, and the model is evaluated using the other. This is
repeated for different random divisions of the sample. Finally, the
evaluation results from each split are averaged, to yield an overall
measure of likely future performance.

Cross-validation is an example of a computationally intensive
approach – so called for the obvious reason that multiple models
have to be built. Another important class of such methods is
bootstrap resampling. Bootstrap methods have a variety of uses,
but one important one is estimating the uncertainty associated
with complex models; that is, determining how different we might
expect the model to be if we had drawn a different sample of data.
Bootstrap methods work by taking random subsamples of the
same size as the original sample from the original sample (which
means some data points will be used more than once). A new
model, of the same form as that being evaluated, is built on each of
these subsamples. It is as if we had multiple samples, all of the
same size, from the original distribution, each yielding an
estimated model. This collection of models can then be used to
investigate how different the model would have been, had we
drawn a different sample.

One of the most striking illustrations of how the power of the
computer has changed modern statistics is in the impact of
computer-intensive methods on the Bayesian approach to
inference, described in Chapter 5. To use Bayesian methods in
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practice, it is necessary to calculate complicated functions of
distributions (in mathematical terms, high-dimensional
integrations are needed). The computer has allowed this problem
to be sidestepped. Instead of evaluating the distributions
mathematically, the computer draws large numbers of random
samples from them. The properties of the distributions can be
estimated from these random samples, in just the same way that
we used the sample mean to estimate the mean of a population.
SuchMarkov chain Monte Carlomethods have revolutionized the
practice of Bayesian statistics, essentially transforming it from a
theoretically attractive but practically limited set of ideas to a
powerful technology for data analysis.

The previous chapter drew attention to the power of graphical
methods, for both elucidation and communication, but the
computer has shifted graphical methods to an altogether new
plane. Whereas, in the past, we might have had static black and
white images, we now have dynamic colour images. Even more
importantly, we can now interact directly with the image. To take
just one simple example, it is possible to simultaneously display
multiple plots, each one showing the relationships between
different pairs of variables associated with the objects, like the
scatterplot matrix in Figure 6, but now with the displays linked via
the computer. Then highlighting or otherwise manipulating a set
of points manifests itself simultaneously in all the plots. Other
tools allow one to dynamically ‘fly’ through high-dimensional data
spaces, displaying the data in multiple ways.

Because statistics is used so universally, and because the computer
plays such a central role, it is hardly surprising that user-friendly
statistical software packages have been developed. Some of these
are so important that they have become industry standards in
certain application areas. But this should not lead us to forget that
effective application of statistical tools requires careful thought.
Indeed, in the early days of the development of statistical software,
some feared that the availability of such tools would remove the
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need for the statistician, since then ‘anyone could do a statistical
analysis: all they had to do was give the computer appropriate
instructions’. The fact is, however, that the reverse has proven to
be the case. There is more and more demand for statisticians as
time goes on. There are several reasons for this.

One reason is that, increasingly, data are recorded automatically.
In everyday life, every time you make a credit card purchase or
shop in a supermarket, details of the transaction are automatically
stored; in the natural sciences, digital instruments record physical
and chemical properties without needing human intervention; in
hospitals, electronic devices automatically monitor patients; and
so on. We are faced with a data avalanche. This represents a
tremendous opportunity, but statistical skills are needed to take
advantage of it.

A second reason is that new areas requiring statistical skills are
appearing. Bioinformatics and genomics are teasing apart the
awesome complexity of the human body from experimental and
observational data, and are based on statistical inference. The
hedge fund industry has been described as ‘an industry built on
statistics’. It uses statistical tools to model how stocks and other
price indices behave.

A third reason is that it is one thing to give commands to a
computer, but it is quite another to know what commands to give
and to understand the results. It is certainly not merely a question
of choosing the right tool for the job and letting the computer do
the rest. It requires statistical expertise and understanding. For an
amateur, it is important to know one’s limits, and when one should
call on the advice of an expert statistician. Regrettably, every week
the media provide illustrations of people who are stretching
themselves beyond their statistical understanding.

For these reasons and more, statistics is experiencing a golden
age.
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We have now reached the end of this very short introduction. We
have seen something of the extraordinary breadth of statistics: the
fact that it is applied in almost all walks of life. We have seen
something of its methods: the sophisticated tools and procedures
it uses. We have also seen that it is a dynamic discipline, still
growing and developing. Above all, however, I hope I have made
it clear that modern statistics, based on deep philosophical
foundations, is the art of discovery. Modern statistics enables us to
tease out the secrets of the universe around us. Modern statistics
enables understanding.
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Endnote

In Chapter 1, answers to elementary misunderstandings:

(1) Clearly, the sooner a disease is detected, the longer that patient

will still have to live, regardless of any medical intervention.

Somehow this needs to be taken into account.

(2) A 25% reduction means the price is reduced by a quarter. But that

means that to get back to the original price you have to increase

the reduced price by a third (33%), not a quarter (25%). For

example, a 25% discount on an original price of £100 leads to a

stated price of £75. To get back to the original price we have to

increase this by £25, which is 33% of £75.

(3) This assumes that life expectancy will continue to increase at the

same rate as it has increased in the past.

(4) If one child was gunned down in 1950, the statement would mean

that two were gunned down in 1951, four in 1952, eight in 1953,

sixteen in 1954, and so on. Continuing to double in this way would

mean that by now more children are gunned down each year than

there are people in the world. (This example is from the excellent

book by Joel Best, listed in the Further reading.)
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Q
quality control 103
quantile 35
quartile 35
questionnaire 9, 18, 25, 37, 38, 39

R
random allocation 48, 49, 52

sampling 52, 53
variable 64–74
variable, definition of 65
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randomization 47, 50
randomized clinical trial 48, 49,

75
controlled trial 2

range 32, 33, 34, 84, 85
ratio scale 25
reading ability 46, 47, 105
Recorded Crime Statistics 6
regression 99–102, 103
rejection region 86
repeated sampling principle

91
representative sample 9, 37, 38,

39, 51, 52, 53, 110
representative value, see

average, mean, median,
mode

response surface 17
Retail Price Index 19
Richard Runyon 6
right skewed 34, 35
Roosevelt 38
RoyMeadow 14
Royal Statistical Society 11

S
salaries 20, 30, 31, 32, 34, 35, 54,

96, 97, 107
Sally Clark 14–15, 61
Salvatore Benvenga 42
sample, see survey sampling,

representative sample,
random sampling

sampling frame 53
satellite images 5
SatNav systems 10
scatterplot matrix 107
selection bias 37, 39
side effects 50
significance testing 85–9
Siméon-Denis Poisson 57
simple random sampling 53
skewness 34, 35

software 112
space shuttle 38
spam 3, 13–14
speed of light 75
sphygmomanometer 41
standard deviation 33, 34, 73, 76,

84, 85, 95
definition 33

star 3, 15, 16, 26, 41
statistic, definition of 3
Statistical Science 3
statistics discipline, definitions of

2–3
stratified sampling 53
subjective probability, see

probability
sufficiency principle 91
suicide 40
summaries of data 95
summary statistics 26–35
supervised classification 103,

104
survey sampling 47, 51–4
surveys 44, 47, 74

aims 47
pilot 45

survival analysis 102
symmetry 59, 99
synaesthesia 24

T
tail 34, 43
teaching method 46, 47, 49
test scores 23, 28, 29, 33
tests, statistical 85–9
time series analysis 106
time series plot 108
TomBurnan 5
training sample 111
treatment 47, 48, 49, 50, 51, 85,

86
tree classifiers 104
t-test 89
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type I error 87, 88
type II error 88

U
unbiased estimate 82–3
uncertainty 2, 3, 13, 55–7, 111
unemployment 76, 98, 106
uniform distribution 69
units of measurement 26, 33, 42
University College, London 11
upper quartile 35
US Presidential election 38, 51
utility function 89

V
validation sample 111
variable, definition of 23
variance, definition of 33
viagra 14

W
Wald test 89
web search 5
weight 23, 25, 26, 28, 42, 48, 65,

66, 67, 68, 85, 98, 99,
100, 101
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